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ABSTRACT

Zero-shot domain adaptive semantic adaptation aims to transfer knowledge from
a source domain and learn a target segmenter without access to any target do-
main data. Some existing methods have achieved notable performances by trans-
forming source features to the target domain through language-driven methods.
However, these methods often align language features to global image features
coarsely resulting in sub-optimal performance. To address the challenges, we pro-
pose a graph motif-based adaptation method designed to balance the efficiency
and effectiveness of feature alignment. Our approach involves constructing mo-
tif structures based on domain-wise image feature distributions. By increasing
the angle between language-vision directed edges, we effectively pull visual fea-
tures toward the language feature center, thereby achieving cross-modality feature
alignment. Additionally, we employ relationship-constraint losses, i.e., directional
and contrastive losses, to mitigate the mode-collapse during target feature styliza-
tion. These relationship-constraint losses help stabilize the learning process and
improve the robustness of the adaptation. Extensive experimental results validate
the efficacy of our proposed method. The code for this method will be made
available.

1 INTRODUCTION

In the field of computer vision, semantic segmentation Zhao & Tao (2023); Kang et al. (2020); Chen
et al. (2017) has attracted much attention from researchers due to its pivotal role in scene under-
standing, e.g., autonomous driving. However, in practical scenarios, there often exists a significant
gap in data distribution between the training data, which is used to learn the model, and the test data,
upon which the model is deployed. Domain gaps may exist in different weather conditions, such as
rain, snow, etc., or different light conditions, such as day and night. These domain gaps Deng et al.
(2009) can lead to performance degradation when the source-trained model is deployed in the target
domain.

Zero-shot domain adaptive semantic segmentation (ZSDA-SS) has been introduced to address the
challenges posed by domain gaps. Unlike unsupervised domain adaptation (UDA), ZSDA-SS does
not require any target domain data to be involved in the training stage, making it more practical for
real-world applications. Some CLIP-based methods Yang et al. (2024) use the language descrip-
tion of the target domain as the guide to transform the source image features to the target domain
stylized features, and they allow us to learn the target domain segmenters in a zero-shot paradigm.
Though these methods have achieved significant performance enhancements, they still exhibit two
primary limitations. Firstly, the existing methods cannot accomplish a proper balance between the
computation cost and the graininess of alignment across domains. They represent the image feature
via a global feature vector, which is then aligned with the text embedding Fahes et al. (2023). This
coarse alignment of compressed image features inevitably leads to the loss of domain-specific infor-
mation, adversely affecting the effectiveness of feature alignment. Secondly, most existing methods
typically achieve cross-modality feature alignment by directly increasing the cosine similarities of
each paired image and text sample Kerr et al.; Wang et al. (2022); Xiao et al. (2023). This approach,
however, focuses solely on the optimization of a single sample pair, which can cause the shared
feature space to lack diversity. This may lead to mode-collapse during feature stylization, as the
model becomes overly specialized to specific pairs and loses the ability to handle a broader range of
styles and variations effectively Gal et al. (2022). Therefore, it is essential to develop a feature align-

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

!

text
encoder

TrgEmb 1

TrgEmb 2
TrgEmb 3

“driving at night.”
“driving in snow.”

image
encoder

stylized target features

“driving in game.”

hybrid cross-modality graph

mine
motifs

source image

motif matching

Figure 1: Illustration of our proposed zero-shot domain adaptation method. It transforms the source
image features into stylized features under the driven of target text descriptions. It constructs a
hybrid cross-modality graph and utilizes the motif matching strategy to achieve cross-domain align-
ment.

ment method that incorporates multiple sample constraints to improve the diversity and robustness
of feature stylization.

To address these challenges, we propose a graph motif-based zero-shot test time adaptation method,
as illustrated in Fig. 1. Our method provides an efficient framework that transfers models from
the source domain to multiple target domains simultaneously. We adopt the Prompt-driven Instance
Normalization (PIN) module from PØDA to transform the source features into target stylized fea-
tures. Unlike existing methods, we use the mean and variance parameters to estimate the distribution
range of the transformed features for each target domain. We leverage the domain-wise target fea-
ture distributions along with the text embedding of the domain descriptions to construct a hybrid
graph across modalities. Specifically, we define a motif structure that describes the relationships
among the extreme features within the distribution range of visual features and the text embed-
ding themselves. By maximizing the angle between the language-vision directed edges within the
matched motifs, we guide the visual features to converge around the linguistic feature centers, thus
achieving cross-modality feature alignment. Moreover, to prevent the style transformation process
from succumbing to mode-collapse, we introduce directional and contrastive losses. These losses
act both as constraints and as guidance within the feature space, thereby enhancing the diversity of
the transformed target features and improving the overall effectiveness of domain adaptation.

We summarize our contributions as follows:

• We propose a graph motif-based method for the zero-shot domain adaptive semantic seg-
mentation (ZSDA-SS) problem. To the best of our knowledge, this is the first work to
address the ZSDA-SS task by matching graph motifs across modalities and domains.

• We introduce directional and contrastive losses to constrain the stylization process and
prevent mode-collapse.

• Extensive experiments conducted on benchmark tasks demonstrate that our method
achieves state-of-the-art adaptation performance.

2 BACKGROUND

2.1 UNSUPERVISED DOMAIN ADAPTATION

Unsupervised Domain adaptation (UDA) has been extensively studied for its potential in model gen-
eralization and deployment. It has been widely utilized in many files of computer vision, such as
image classification He et al. (2016); Sener et al. (2016); Wang & Jiang (2022); Wang et al. (2021),
image segmentation Cao et al. (2023); Zhou et al. (2023); Jin et al. (2023); He et al. (2020); Wu
et al. (2024), object detection Redmon et al. (2016); Wu et al. (2022c;b); Liu et al. (2023b;c), and
image clustering Liu et al. (2022; 2023a). DANN Ganin & Lempitsky (2015) utilizes Generative
Adversarial Networks to introduce a Gradient Reversal Layer that addresses domain adaptation chal-
lenges effectively. CIGAR Liu et al. (2023b) proposes to transform the image features into graphs
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and employ a graph-matching method to realize feature alignment. The concept of One-Shot Un-
supervised Domain Adaptation (OSUDA) is further explored by researchers who aim to transfer
knowledge using only one example from the target domain. Luo et al. Luo et al. (2020) propose
to use a generator to extract style information from images, which helps in reducing overfitting is-
sues in domain adaptation. Wu et al. Wu et al. (2022a) employ a patch-matching method to blend
information from target styles to enhance adaptation accuracy. Lengyel et al. Lengyel et al. (2021)
propose Zero-Shot Domain Adaptation (ZSDA), a setting in which no target domain data is available
throughout the adaptation process PØDA Fahes et al. (2023) proposes to utilize the image encoder of
the language-vision model as the backbone to extract image features. They propose a Prompt-driven
Instance Normalization to transfer the source features into target domains and fine-tune the target
model. ULDA Yang et al. (2024) extends PØDA in a hierarchical manner. They propose to align the
transformed target domain features at global, category, and pixel levels. However, it significantly
increases the training computational cost and thus limits their practical applications.

2.2 VISION-LANGUAGE MODELS

Extracting the relationship between vision and language modalities has been an important research
area in recent years Lu et al. (2019); Lee et al. (2009); Tan & Bansal (2019); Gao et al. (2019); Devlin
et al. (2018); Dosovitskiy et al. (2020); Liu et al. (2021). CLIP Radford et al. (2021) proposes
to employ a contrastive learning method to learn the feature similarities between language-vision
sample pairs, setting a foundational precedent for subsequent research in this area. CoOp Zhou
et al. (2022b) proposes to use learnable variables to represent the text prompt, instead of using fixed
hand-craft prompts. By the learnable prompts, CoOp gains a stronger ability to extract text features.
CoCoOp Zhou et al. (2022a) proposes to extract the image features as the condition of text prompts
to further enhance the relationship between visual and linguistic features. The CLIP-based model
uses a lot of training data so that it contains a wealth of knowledge, which makes it obtain excellent
zero-shot image classification capability. This robust knowledge base allows these models to bridge
the gap between textual and visual data effectively, catalyzing advancements in text-driven image
editing applications such as image stylization. StyleCLIP Patashnik et al. (2021) introduces a latent
mapper that aligns the features of an input image with text guidance descriptions. CLIPStyler Kwon
& Ye (2022) utilizes text descriptions to define the desired style and employs CLIP to transform
the image into the specified style by minimizing the distance between the transformed image and
the description text in the shared feature space. It is realized by pulling the distance between the
converted image and the description text in the shared feature space. The vision-language pretrained
models have been widely employed in many other computer vision fields Kerr et al.; Wang et al.
(2022); Xiao et al. (2023).

3 PRELIMINARY

3.1 PROMPT-DRIVEN ZERO-SHOT DOMAIN ADAPTATION (PØDA)

PØDA Fahes et al. (2023) is a recent method designed to deal with the ZSDA-SS problem using
the pretrained vision-language model CLIP. It consists of two steps, i.e., i) the stylization of target
domain features, and ii) the fine-tuning of the target segmenter.

The first step of PØDA leverages the text description of the target domain as a prompt to extract
language knowledge, which guides the alignment of visual features across domains. Specifically, it
introduces a Prompt-driven Instance Normalization (PIN) module to transform the source image fea-
tures fs extracted from the CLIP image encoder to the target stylized features fs→t. The stylization
process is mathematically formulated as follows:

fs→t = PIN(fs, µ,ω)

= ω(
fs → µ(fs)

ω(fs)
) + µ,

(1)

where µ and ω are trainable parameters that represent the style information of target domain fea-
tures. µ(fs) and ω(fs) are channel-wise mean and standard deviation of input source features. By
minimizing the following loss function, the PIN module enhances the similarity between fs→t and
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CLIP text embedding TrgEmb, which characterizes the style of a target domain.

LPIN (fs→t,TrgEmb) = 1→ avg(fs→t) · TrgEmb

↑avg(fs→t)↑ · ↑TrgEmb↑ , (2)

where avg() is the average pooling operation to pool the feature map into a vector. After training
the PIN module using source images and corresponding descriptions of the target domain, the target
style information is encoded into the PIN parameters µ and ω. With Eq. 1, we can transform each
source image feature to its counterpart in the target domain. In the second step, we obtain the target
segmenter by fine-tuning the classification head with these features fs→t in the target style and their
labels. For further details, please refer to Fahes et al. (2023).

3.2 GRAPH MOTIF

Graph theory West et al. (2001) has proven its effectiveness in the field of computer vision, where
the concept of graph motifs has been increasingly utilized to enhance structural and relational under-
standing in image and video analysis. A graph motif, defined as a recurring and significant subgraph
pattern within a large graph, represents a form of a higher-order graph that exists between second-
order relational distances and complex graph structures. These motifs offer a powerful means to
capture intricate relationships and local features prevalent in visual data. For instance, MotifNet
Zellers et al. (2018) employs motifs to represent the relationships between semantic nodes and gen-
erate scene graphs, while SOMA Li et al. (2023) constructs motifs with category-wise prototypes
from different domains and implements cross-domain alignment to address the adaptive open-set
object detection problem. A more detailed introduction to the use of graph motifs is presented in
Chen et al. (2022); West et al. (2001).

4 METHOD

Problem formulation. Let Ds = {(xs, ys)} represent the source domain, where xs ↓ Rh↑w↑3

denotes a source image and ys ↓ Rh↑w↑C is the corresponding pixel-wise label map. Here, h
and w are the height and width of an image, respectively, and C represents the number of semantic
categories. Similarly, N target domains are denoted by {Di

t}Ni=1 = {{(x1
t , y

1
t )}, . . . , {(xN

t , y
N
t )}}.

The segmenter is defined as Gs/t = Eimg ↔Hs/t, where Eimg is the backbone utilizing the frozen
pretrained image encoder from CLIP, and Hs/t is the segmentation head. Given the pretrained
source segmenter Gs and the text description {TrgDesci}N1 of N target domains, our method aims
to learn a target semantic segmenter Gt for each target domain driven by its text description.

4.1 OVERVIEW

Fig. 2 illustrates the structure of our proposed method, which consists of two processes: stylization
of target domains and target segmenter fine-tuning. During the stylization process, we extract the
features of source images fs = Eimg(xs) with CLIP image encoder Eimg and input the descriptions
{TrgDesci}Ni=1 of various target domains into the CLIP text encoder Etxt to obtain the text embed-
ding {TrgEmbi}Ni=1 = Etxt({TrgDesci}Ni=1). We utilize the PIN module of PØDA to transform fs
into {fis→t}Ni=1 which encapsulates the style information of target domains as depicted by the cor-
responding text descriptions. Specifically, we estimate the distributions of i-th target features using
the mean µ

i and standard variance ω
i of fis→t. We correlate the visual knowledge and the linguistic

knowledge by constructing a hybrid cross-modality graph Gh, in which the visual meta-nodes repre-
sent the distributions of {fis→t}Ni=1 and the linguistic nodes represent the text embedding. We define
a graph motif that consists of a text embedding TrgEmb and two extreme features (Pv+, Pv↓) on
the boundary of a visual feature distribution. The geometry of a motif represents the similarity of
cross-modality features and can be utilized for the following alignment process. We mine all motifs
M inherent in Gh and measure their semantic consistency using our proposed directed edge-based
metric. By matching these graph motifs, we achieve feature alignment across domains. Additionally,
to prevent the style transformation process from falling into mode-collapse, we introduce directional
and contrastive losses.

Our method is different from the previous methods in three points. First, we propose the graph motif-
based method designed to estimate and align the semantic consistency between linguistic and visual
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Figure 2: Overview of the proposed zero-shot domain adaptive semantic segmentation framework.
(a) shows the two processes of this method: i) stylization of target domain features and ii) target
segmenter fine-tuning. (b) is the details of the stylization process. By the optimized PIN modules,
we fine-tune the segmentation head of the target segmenter.

features for domain adaptation. Second, we incorporate a directional loss, which establishes a ref-
erence system for transforming target features based on the relationships of text embedding. Third,
we employ the contrastive loss to equalize the stylistic intensity across different target domains.

4.2 MOTIF-BASED FEATURE MATCHING

Hybrid cross-modality graph. Given the source image xs and a pretrained CLIP model, we input
xs into the CLIP image encoder Eimg to extract their image features fs. For each target domain,
we use a text prompt to describe its characteristics, e.g., ”driving in snow”. We feed all descriptions
into the CLIP text encoder Etext to obtain the language embedding Pl = {TrgEmbi}Ni=1 of all
target domains. In the zero-shot domain adaptation setting, no data from the target domains is
available. Thereby, for the i-th target domain, we adopt a text-driven PIN module of PØDA and
TrgEmbi to transform the source features fs using Eq. (1) and let the transformation result fis→t =
PINi(fs, µi

,ω
i) reflect the style of the target domain. Here, {µi}Ni=1 and {ωi}Ni=1 denote the centers

and scales of the stylized target image features, respectively. These learnable variables simulate
meta-nodes Qv = {Qi

v}Ni=1, where Q
i
v represents the distribution range of domain-wise visual

features. With these meta-nodes of visual features and the linguistic nodes of text prompts, we
construct the hybrid graph Gh = {Qv,Pl} to represent the relationships of the features across
modalities.

Graph motif. To discover the similarity information between visual and linguistic features, we
define a triangular graph motif pattern, specifically a third-order subgraph, which recurs within the
hybrid graph. Each graph motif is composed of cross-modality feature nodes from various target
domains. We mine all graph motifs M within Gh and achieve cross-domain feature alignment
by measuring their domain-level semantic consistency. For each target domain, we calculate the
extreme feature pairs Pv = {(P j

v+, P
j
v↓)}Nj=1 on the boundary of stylized feature distribution range

(visual meta-node) Qj
v . The extreme feature pair of j-th visual feature distribution is defined as:

P
j
v+ = µ

j + εω
j
,

P
j
v↓ = µ

j → εω
j
,

(3)
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where ε denotes the zoom factor used to scale the distribution of visual features. We then connect
a language node TrgEmbi ↓ PL to an extreme visual feature pair (P j

v+, P
j
v↓) ↓ Pv to form the

triangular graph motif M i,j = {TrgEmbi, P j
v+, P

j
v↓} ↓ M. This structured approach allows us

to systematically explore and quantify the interactions between the linguistic and visual modalities
across different domains.

Motif matching. Most existing works focus on increasing the cosine similarity between linguistic
and visual features to enhance their semantic consistency. However, these studies often only consider
the global features and overlook the diversity inherent in dispersed visual feature distributions. To
address this problem, we propose a motif-based method to match the features across modalities
more effectively. To align features across domains, we divide the motif set M into two subsets,
i.e., the matched motif set Mm and the unmatched motif set Mum, where Mm ↗Mum = M and
Mm ↘ Mum = ≃. A motif M i,j is an element of Mm, iff its linguistic and visual nodes belong
to the same domain (i.e., i = j); otherwise it is an element of Mum. Conversely, motifs where
the nodes come from different domains (i.e., i ⇐= j) are categorized into the unmatched motif set
Mum ⇒ M. Inspired by SOMA Li et al. (2023), we introduce the following metric to estimate the
semantic consistency of a graph motif:

sim
i,j = 1→cos(ϑi,j) =

edge
i,j
+ · edgei,j↓∥∥∥edgei,j+
∥∥∥ ·

∥∥∥edgei,j↓
∥∥∥
,

edge
i,j
+ = TrgEmbi → P

j
v+,

edge
i,j
↓ = TrgEmbi → P

j
v↓,

(4)

where edge
i,j
+ and edge

i,j
↓ are two directed edges that originate from the linguistic node and extend

towards the extreme visual feature boundaries within the graph motif M i,j . ϑi,j denotes the vectorial
angle between edge

i,j
+ and edge

i,j
↓ . The similarity measure sim

i,j , ranging from 0 to 2, quantifies
the alignment between the text prompt of the i-th target domain and the visual feature distribution
of the j-th target domain. The matching loss is formulated as follows:

Lmatch = →
N∑

i=1

log(
exp(simi,i)

∑N
j=1 exp(sim

i,j)
). (5)

By minimizing Lmatch, the visual features are enforced to closely align around the corresponding
text prompt embedding, thereby enhancing their semantic consistency.

4.3 RELATIONSHIP-CONSTRAINT ADAPTATION

Directional loss. It is recognized that utilizing a single sample pair to compute cosine similarities
can decrease the diversity of the shared feature space and induce mode-collapse Gal et al. (2022).
This is particularly problematic in tasks such as image style transformation or feature stylization,
where diversity in visual representation is crucial for robust performance. In practice, the source
segmenter is often transferred to more than one target domain. Considering that different domains
may have unique but related style information in the feature space, one effective approach is to use
the directionality of their text descriptions as a reference system. This method maps text description
embedding to points in the feature space, where the direction between any two points reflects the
stylistic distance or similarity between their corresponding domains. Inspired by Wang et al. (2023);
Gal et al. (2022), we apply the following directional loss during the optimization of PIN modules:

Ldir =
1

N2

N∑

i=1

N∑

j=1

[1→ cos(TrgEmbi → TrgEmbj , fis→t → fjs→t)]. (6)

The PIN modules will transform the visual features onto a navigation path defined by the directional
vectors between text embedding. By applying Ldir that penalizes deviations from this path, the
model can better maintain diversity in its outputs while adapting to new domains.

Contrastive loss. The directional loss provides a reference direction for optimizing target visual
features. However, it lacks relational constraints among different domain styles. As observed in
Nerf-Art Wang et al. (2023), this can result in uneven degrees of stylization across various domains.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Thereby, we adopt a contrastive learning paradigm to equalize the stylistic intensity across different
target domains. This approach is effective in learning discriminative features that are robust across
domains with different styles. The contrastive loss is mathematically formulated as:

Lcon = → 1

N

N∑

i=1

log[
exp(TrgEmbi · fis→t)

exp(TrgEmbi · fis→t) +
∑

j ↔=i exp(TrgEmbi · fjs→t)
], (7)

where fis→t and fjs→t are positive and negative samples, which are different styles of image fea-
tures related to a specific domain description, TrgEmbi. This contrastive framework compels the
PIN module to differentiate between correct and incorrect style transformations, thereby not only
preserving but also enhancing the diversity and accuracy of the style features in the target domain.

4.4 OPTIMIZATION

During the target feature stylization process, we employ an overall loss to train the PIN modules,
encapsulated as follows:

Ltotal = ϖmatchLmatch + ϖdirLdir + ϖconLcon + LPIN , (8)

where ϖmatch, ϖdir, and ϖcon are the weights of graph motif matching, directional, and contrastive
losses, respectively. After training the PIN modules for all target domains, the optimized style pa-
rameters {µi

,ω
i} are utilized to transform the source image features into corresponding target fea-

tures. Subsequently, we fine-tune the target segmenters using the cross-entropy loss CE(fs→f , ys)
with stylized features and source labels.

5 EXPERIMENTS

5.1 DATASETS AND EVALUATION

To assess the efficacy of our proposed method, we conducted several experiments on domain adap-
tive semantic segmentation tasks. We use the mean Intersection Over Union (mIoU) and mean
Pixcel Classification Accuracy (mAcc) to evaluate the segmentation performance of the target seg-
menters. We compare our method with source CLIP, CLIPStyler, and PØDA. The results of the
comparison methods are inherited from Fahes et al. (2023) and Yang et al. (2024). The experiments
addressed three types of domain shifts: (a) from clear to adverse weather conditions (Cityscapes
⇑ ACDC), (b) from synthetic environments to adverse weather conditions (GTA5 ⇑ ACDC), and
(c) between real and synthetic environments (Cityscapes ↭ GTA5). There are three benchmark
datasets involved in the experiments: Cityscapes Cordts et al. (2016), ACDC Sakaridis et al. (2021),
and GTA5 Richter et al. (2016). Cityscapes is a dataset that contains urban landscapes captured
under clear weather conditions. It includes 2,975 training images and 500 validation images, each
annotated with 19 pixel-level categories. GTA5 includes 25,000 images rendered using the gaming
engine from Grand Theft Auto, also annotated with pixel-level labels. ACDC comprises driving
scenes collected under various adverse visual conditions such as fog, nighttime, rain, and snow. It
shares the same 19 semantic categories with Cityscapes. We conduct the experiments five times with
our proposed method and show the errors of average metrics in the tables.

5.2 IMPLEMENTATION DETAILS

We utilize the DeepLabV3+ Chen et al. (2018) architecture to construct both the source and target
segmenters, denoted as Gs/t. In particular, the image encoder Eimg from the CLIP-ResNet-50
Radford et al. (2021) model serves as the backbone for Gs/t. During the whole adaptation process,
the structure and parameters of Eimg remain frozen. For initializing the segmentation models, the
weights from PØDA Fahes et al. (2023) are used to set up the target segmentation head Ht. We
employ the Stochastic Gradient Descent (SGD) optimizer Song et al. (2013), with a learning rate of
0.1 and a batch size of 8 over 10,000 iterations to train the PIN modules across all target domains.
The zoom factor ε for computing Lmatch is set to be 5. The loss weights ϖmatch, ϖdir, and ϖcon

for computing Ltotal are set to 0.1, 0.05, and 0.05, respectively. When fine-tuning the segmentation
head of the target segmenter, we adopt the SGD optimizer with a learning rate of 0.01 and a batch
size of 8 for 2,500 iterations. All experiments are performed using NVIDIA 3090 GPUs.
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Table 1: Performance comparison of Cistyscapes⇑ACDC. In this experiment, the source domain
is Cityscapes and the target domains are subsets of ACDC corresponding to four adverse weathers.
mIoU and mAcc are average mIoU and average mAcc across all target domains.

Adaptation Source2Fog Source2Night Source2Rain Source2Snow
mIoU mAccDescription driving in fog driving at night driving under rain driving in snow

Method mIoU mAcc mIoU mAcc mIoU mAcc mIoU mAcc
Source 49.98 65.42 18.31 34.16 38.20 58.97 39.28 54.64 36.44 53.29

CLIPStyler 48.87 64.31 20.83 35.32 36.97 57.46 40.31 54.42 36.75 52.87
PØDA 51.54 64.51 25.03 55.50 42.31 75.40 43.90 70.70 40.69 66.52
ours 52.71 66.38 25.11 39.83 44.20 73.86 45.20 68.40 41.80±0.36 62.11±0.42

Table 2: Performance comparison of GTA5⇑ACDC. In this experiment, the source domain is
GTA5 and the target domains are subsets of ACDC corresponding to four adverse weathers. mIoU
and mAcc are average mIoU and average mAcc of all target domains.

Adaptation Source2Fog Source2Night Source2Rain Source2Snow
mIoU mAccDescription driving in fog driving at night driving under rain driving in snow

Method mIoU mAcc mIoU mAcc mIoU mAcc mIoU mAcc
Source 33.20 42.51 12.22 22.56 33.32 43.15 32.33 40.60 27.76 37.20

CLIPStyler 30.79 40.37 11.12 20.18 31.17 40.06 30.65 38.97 25.93 34.89
PØDA 35.76 44.98 13.35 25.24 34.19 45.93 33.81 42.10 29.27 39.56
ours 36.47 45.89 16.44 30.42 35.33 46.03 34.56 43.43 30.70±0.29 41.44±0.40

Table 3: Performance comparison between Cistyscapes and GTA5. CS⇑GTA5 and GTA5⇑CS
represent the the adaptation tasks of Cistyscapes⇑GTA5 and GTA5⇑Cistyscapes, respectively.
styler represents the CLIPStyler method.
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mIoU

C
S⇑

G
TA

5 Description = ”driving in a game”
source 68.7 22.7 78.8 36.8 17.3 39.7 39.3 14.8 72.6 22.5 87.3 57.5 26.1 74.3 44.6 20.5 0.0 18.3 10.4 39.6
styler 73.1 29.9 77.9 25.5 11.7 39.7 35.9 24.0 67.4 12.8 88.8 46.6 33.4 72.0 42.8 11.1 0.0 28.8 14.6 38.7±0.16
PØDA 73.9 22.7 78.8 37.5 14.2 37.0 33.1 17.3 72.4 26.2 88.9 62.7 37.0 74.3 43.0 11.9 0.0 35.3 13.9 41.1±0.48
ours 75.6 24.4 79.6 37.9 14.6 38.6 39.8 21.8 73.8 30.2 88.7 61.8 40.6 75.4 43.6 12.9 0.0 37.6 17.4 42.9±0.29

G
TA

5⇑
C

S Description = ”driving in real”
source 59.0 20.9 72.8 16.5 24.6 31.4 34.8 23.6 82.1 17.0 66.3 63.5 14.7 81.3 20.8 17.2 4.7 20.6 19.6 36.4
styler 66.7 23.6 64.1 5.1 3.7 20.7 19.3 18.1 81.7 12.4 81.0 54.6 0.5 73.5 20.7 22.3 4.0 15.8 10.7 31.5±0.21
PØDA 84.3 36.7 79.4 18.3 16.5 36.9 38.5 33.8 82.4 19.1 75.9 62.7 16.5 75.5 15.7 19.6 11.3 16.5 21.8 40.1±0.52
ours 86.1 35.5 80.3 18.4 18.8 36.8 37.3 29.0 83.6 19.4 77.6 63.4 16.5 79.3 19.6 25.6 5.8 19.1 21.0 40.7±0.38

5.3 COMPARISON WITH STATE-OF-THE-ARTS

Cityscapes⇑ACDC. Tab. 1 shows the experimental results. Our method achieves the average mIoU
and mean accuracies of 41.8 and 62.11, the average mIoU perforamnce exceeding all existing meth-
ods to achieve sota performance. In comparison with the source CLIP model, we achieve the aver-
age mIoU and mean accuracies gains of 5.36 and 8.82, respectively. Compared with the Unet-based
CLIPStyler, our method surpasses it by 5.05 and 9.24 in average mIoU and mean accuracies across
four target subsets, respectively. Additionally, our method demonstrates improvements of 1.11 in av-
erage mIoU over the closely related method PØDA. The experimental results show that our method
can effectively transfer CLIP from clear weather data to adverse weather data.

GTA5⇑ACDC. Tab. 2 presents the comparison results. Our method achieves a 30.70 average mIoU
and a 41.44 average mean accuracies, exceeding all existing methods. When compared with CLIP-
Stlyer, our method outperforms it by 4.77 in average mIoU and 6.55 in average mean accuracies,
respectively. We also compare our method with the closely related PØDA, our method surpasses
it by 1.43 and 1.88 in average mIoU and average mean accuracies, respectively. The experimental
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Table 4: Comparison results of different components of total loss. mIoUC2A and mIoUG2A

denote the average mIoUs of Cityscapes⇑ACDC and GTA5⇑ACDC.

Lmatch Ldir Lcons mIoUC2A mIoUG2A

40.69 29.27
↫ 41.31 30.45

↫ 40.85 29.86
↫ 41.12 29.90

↫ ↫ 41.37 30.11
↫ ↫ 41.59 30.53
↫ ↫ 41.68 30.49
↫ ↫ ↫ 41.80 30.70

results show that our method can effectively transfer CLIP from synthetic data to adverse weather
data.

Cityscapes↭GTA5. Tab. 3 lists the detailed category-wise comparison results. Our method
achieves 42.9 and 40.7 mIoUs for two tasks, surpassing the source CLIP model by margins of 3.3
and 4.3. In comparison with CLIPStyler, our method improves the average mIoUs by margins of 4.2
and 9.2. We also compare our method with the closely related PØDA, our method achieves improve-
ments of 1.8 and 0.6 mIoUs. The experimental results show that our method can effectively transfer
CLIP between real data and synthetic data. Therefore, our method has potential for applications in
autonomous driving, such as using synthetic data to enrich datasets for improving the performance
of segmentation models in the real world.

5.4 ABLATION STUDIES

To evaluate the effectiveness of our proposed method, we present the following ablation studies in
Tab. 4 and Tab. 5. The experiments are conducted on the adaptation tasks from clear weather to ad-
verse weathers (Cityscapes⇑ACDC) and from synthetic data to adverse weathers (GTA5⇑ACDC).

Ablation on the effectiveness of each component. Tab. 4 lists the average mIoU performance of
our method using different loss components. Take Cityscapes⇑ACDC for example, each compo-
nent of Ltotal contributes significantly to the performance of target segmenters. Among these com-
ponents, the graph motif matching loss has the most substantial impact, enhancing the average mIoU
by 0.62 from 40.69 of the baseline method. The addition of directional and contrastive losses im-
proves the segmentation performance by 0.16 and 0.43, respectively. When using both relationship-
constraint losses simultaneously, the average mIoU increases from 40.69 to 41.37. By integrating the
motif matching loss and two relationship-constraint losses, our method achieves improvements in
average mIoU by 0.90 and 0.99, respectively. When using all loss components, our method achieves
the best average mIoU of 41.80 and 30.70 for Cityscapes⇑ACDC and GTA5⇑ACDC, respectively.

Ablation on the motif zoom factor. Tab. 5 shows the impact of different motif zoom factors. We set
ε to 1, 3, 5, 7, and 9 and carried out comparative experiments to assess the changes in segmentation
performance. The results indicate that motif matching does not significantly improve segmentation
performance when a is less than 5. This limited effectiveness can be attributed to the smaller ε

values resulting in a too compact range for the visual meta-node in feature space. Such compactness
affects the separability of the language-vision directed edges. Conversely, a large ε causes confusion
within the visual meta-node due to overly expanded feature spaces, which can blur the distinctions
necessary for effective segmentation. The optimal ε is experimentally determined to be 5 for all
tasks.

5.5 QUALITATIVE RESULTS

Result comparison. Fig. 3 shows the semantic segmentation qualitative results for the adaptation
task from Cityscapes to ACDC. Compared to PØDA, our method demonstrates a more precise seg-
mentation results. This improvement is particularly noticeable in the segmentation of large areas
such as the sky and road, where our approach has achieved significant performance enhancements.
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Figure 3: Qualitative comparison results on the task of Cityscapes⇑ACDC.

Table 5: Comparison results of different motif matching zoom factors. mIoUC2A and mIoUG2A

denote the average mIoUs of Cityscapes⇑ACDC and GTA5⇑ACDC. The larger the value of ε, the
wider the distribution range of visual meta-nodes in the graph motif, resulting in greater separation
of the extreme values of visual features.

ε 1 3 5 7 10

mIoUC2A 40.88 41.47 41.80 41.63 41.52

mIoUG2A 29.61 30.13 30.70 30.55 30.49

6 CONCLUSION

We propose a graph motif-based adaptation method to deal with the zero-shot domain adaptive
semantic segmentation problem. We employ the CLIP encoders to extract the visual and linguistic
features and adopt the prompt-driven instance normalization module to transform the source features
into stylized target features. We propose a graph motif structure to represent the relationships among
the visual feature distributions and text embedding. By reducing the language-vision directed edges
in the motifs, we pull visual features to the text embedding centers of target domains. In addition,
we employ the relationship-constraint losses, i.e., directional and contrastive losses, to stabilize the
learning process and improve the robustness of the adaptation. The comprehensive experiments
verify the effectiveness of our proposed method.
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