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Abstract

Therapeutic antibodies require not only high-
affinity target engagement, but also favorable
manufacturability, stability, and safety profiles
for clinical effectiveness. These properties are
collectively called ‘developability’. To enable a
computational framework for optimizing antibody
sequences for favorable developability, we intro-
duce a guided discrete diffusion model trained on
natural paired heavy- and light-chain sequences
from the Observed Antibody Space (OAS) (Olsen
et al., 2022) and quantitative developability mea-
surements for 246 clinical-stage antibodies. To
steer generation toward biophysically viable can-
didates, we integrate a Soft Value-based Decoding
in Diffusion (SVDD) Module that biases sampling
without compromising naturalness. In uncon-
strained sampling, our model reproduces global
features of both the natural repertoire and ap-
proved therapeutics, and under SVDD guidance
we achieve significant enrichment in predicted
developability scores over unguided baselines.
When combined with high-throughput developa-
bility assays, this framework enables an iterative,
ML-driven pipeline for designing antibodies that
satisfy binding and biophysical criteria in tandem.

1. Introduction

Therapeutic antibodies are pivotal biomolecules with ap-
plications spanning oncology (Paul et al., 2024), autoim-
mune disorders (Chan & Carter, 2010), infectious diseases
(Sparrow et al., 2017), and metabolic conditions (Lu et al.,
2020). Beyond high-affinity target binding, a developable
antibody must also exhibit favorable manufacturability, for-
mulation stability, and safety profiles to support scalable
production and reliable delivery (Jain et al., 2017; Carter
& Rajpal, 2022). Although high-throughput screens and in
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silico tools can identify and design candidates for binding
affinity (Agarwal et al., 2024; Frey et al., 2025), comprehen-
sive machine-driven frameworks for optimizing key devel-
opability attributes are still lacking. There is therefore an
urgent need for computational methods that not only predict
developability properties to triage high-quality binders for
downstream validation, but also guide the redesign of exist-
ing antibody sequences toward improved developability.

Contemporary in silico approaches typically benchmark
candidate antibodies’ biophysical attributes against those
of clinically approved therapeutics (Raybould et al., 2019;
2024; Park & Izadi, 2024). However, these comparative met-
rics often overlook the inherent variability within approved
antibody repertoires and, in the absence of true negative
controls, cannot establish meaningful developability thresh-
olds. Moreover, because experimental workflows almost
invariably screen solely for target binding — omitting paral-
lel assessments of manufacturability, solubility, or stability
— there is a critical need for computational methods that
optimize sequences for favorable developability properties.
Other model-based optimization frameworks have been pro-
posed (Sinai et al., 2020; Stanton et al., 2022; Gruver et al.,
2023; Reddy et al., 2024), and some specific to antibodies.
Recently, another study (Wang et al., 2025) demonstrated
the usefulness of using physical descriptors derived from
predicted structures from protein language models to guide
antibody design.

As a step towards addressing this challenge, we developed a
machine learning-guided generative framework anchored on
our newly published developability dataset. We trained our
generative model on natural paired heavy- and light-chain
sequences from the Observed Antibody Space (OAS) and
built quantitative regressors using the comprehensive devel-
opability measurements reported in (Arsiwala et al., 2025)
for 246 antibodies spanning clinical use and trial stages. We
take a complementary approach to directly use experimen-
tally generated developability measurements from diverse
clinically approved antibodies to guide antibody design.
We show that, without any conditional input, our model
can produce novel sequences that mirror both natural reper-
toire diversity and features of clinically approved antibodies.
Moreover, by integrating a Soft Value-based Decoding in
Diffusion (SVDD) (Li et al., 2024) guidance module, we can
bias generation toward candidates with predicted favorable
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Figure 1. Overview of our generative framework for novel an-
tibodies. This framework incorporates an ESM2-based diffusion
model trained with paired antibodies sequences from OAS. For
guided generation, soft value-based decoding in diffusion (SVDD)
was used with developability predictors trained with data from
(Arsiwala et al., 2025).

developability. By employing a derivative-free guidance
approach, we established a flexible framework that is com-
patible with various types of predictors. When paired with
high-throughput automated assays, this framework offers a
powerful avenue to design therapeutic antibodies that meet
both affinity and biophysical criteria.

1.1. Generative model

We trained an antibody-specific masked discrete diffusion
model on the Observed Antibody Space (OAS) database of
sequenced antibodies from over 80 studies. Specifically, we
used the order-agnostic diffusion model (OADM) (Hooge-
boom et al., 2021) training objective (which had previously
been used in EvoDiff (Alamdari et al., 2023)). For sim-
plicity, we re-trained an ESM-2 (8M) (Lin et al., 2023)
architecture using this objective. The OAS dataset contains
~?2.4 billion unpaired and ~1.8 million paired sequences
collected from human B-cell sequencing. We used the
AntiRef-90 (Briney, 2023) version of OAS to remove par-
tial sequences and clustered using MMseqs2 (Steinegger
& Soding, 2017) at a 90% threshold which yielded 1.68
million clusters.

During training we concatenated the paired heavy and light
chains into a single sequence <heavy> | <light> by in-
troducing a pipe token (|). During generation, we sam-
pled a sequence length for the concatenated heavy and light
chains from the training dataset and generated sequences
according to that length. Usually order-agnostic models
are decoded in random orders, but we found that decod-
ing according to minimum entropy positions yielded better
sequences. We also experimented with different sampling

temperatures in the softmax function according to the for-

ﬁ Identically to language models,
Jj=1

higher temperatures correspond to more diverse generations
and lower temperatures approach greedy/deterministic sam-

ples for each position.

mula p(x;) =

1.2. Developability dataset

Recently, we released a dataset that contains biophysical
assay measurements for 9 antibody developability proper-
ties across 246 clinical antibodies (Arsiwala et al., 2025)!,
greatly expanding on the set of 137 clinical antibodies pro-
vided in (Jain et al., 2017), and running these assays at
higher throughput. The 2017 dataset catalyzed the devel-
opment of many developability predictors, so we sought
to train new predictors on the bigger dataset and demon-
strate whether we could apply SVDD guidance using these
predictors as oracles.

1.3. Predictive model

As a simple oracle, we trained ridge regression models on
top of ESM-2 embeddings to predict antibody developa-
bility properties using the aforementioned dataset. Heavy
and light chain sequences were passed independently to
ESM to generate mean-pooled embeddings, which were
then concatenated and standardized. Finally, a ridge regres-
sion with alpha=0.1 was used. To evaluate performance,
we performed hierarchical clustering to separate the 246
sequences into 5 roughly-equal sized folds maximally sepa-
rated by pairwise sequence identity, and provide the Spear-
man and Pearson correlation statistics in Table 1.

For this work, we focus on two biophysical properties
when training our predictors: hydrophobicity (measured
by hydrophobic interaction chromatography, HIC) and self-
association (measured by affinity capture self-interacting
nanoparticle spectroscopy, AC-SINS, at pH 7.4). We se-
lected these properties for two reasons. First, they directly
impact the administrability of candidate antibodies. Second,
they present a realistic scenario in which predictors suffer
from limited performance due to data scarcity, allowing us
to assess whether guidance compromises the naturalness of
sequence generation.

1.4. Guided generation using the predictive models

To bias sequence generation toward favorable developability
characteristics, we paired SVDD with our generative model.
At each step, SVDD assesses several intermediate samples
(“branches”) using dedicated scoring models and selects the
one with the highest composite score. We approximate the
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Assay Spearman’s p  Pearson’s R
HAC RT 0.74 £0.22 0.80 £0.24
SEC %Monomer  0.54 £+ 0.05 0.81£0.14
AC-SINSpH74 0.49+0.09 0.49+0.12
HIC RT 0.42 +0.09 0.34 £0.08
CHO PR Score 0.41 +£0.09 0.41+£0.12
Ova PR Score 0.40 £ 0.09 0.28+0.17
AC-SINSpH 6.0 0.38+0.09 0.33 £0.17
Tml 0.35+0.16 0.32£0.19
Tm2 0.204+0.14 0.33£0.17
SMAC RT 0.18 £0.17 0.00£0.14
Titer 0.17+0.14 0.17£0.19
Purity %LC+HC  0.10 +0.21 0.11+£0.18

Table 1. Results of training an ESM-2 embedding-based regression
models (oracles) on all of the properties in the dataset, as assessed
by the average Spearman and Pearson correlations across 5 folds of
cross-validation. Assays are ordered by Spearman rank correlation
coefficient. The two chosen properties used for guidance in this
work are denoted by bold.

SVDD value function via a posterior mean estimate (Figure
1): for a given position, we sample multiple branches, fully
denoise each, and compute scores by equally weighting the
negative normalized AC-SINS and HIC measurements. The
branch whose denoised sequence achieves the top score is
retained as the current state, and the process repeats. This
approach obviates the need to retrain predictors on partially
masked data at varying masking levels and accommodates
non-differentiable scoring functions.

2. Results
2.1. Diversity/Naturalness

We first evaluated our unconditional generation model’s
ability to produce plausible antibodies (naturalness), and
the diversity of the generated sequences. To assess natural-
ness, we scored generated sequences using two independent
antibody-specific language models, AbLang2 (Olsen et al.,
2024) and p-IgGen (Turnbull et al., 2024), under differ-
ent sampling temperatures. Both models are able to take
paired heavy- and light-chain antibody sequences as input.
To quantify diversity, we constructed sequence-similarity
networks comparing generated sequences to 246 clinical
antibodies in the training set, and to natural antibodies from
the Observed Antibody Space (OAS) database, employing
MMseqs?2 (Steinegger & Soding, 2017). We observed that
higher sampling temperatures yield more diverse sequences
(Figure 2a) at the expense of lower log-likelihood (natural-
ness) scores (Figure 2b). At T' = 1.0, we found a favorable
trade-off: generated sequences are diverse while retaining
high log-likelihood scores (Figure 2a,b). This observation
is also evident from the corresponding Sequence Similarity
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(a) Empirical Cumulative Distribution Functions (ECDFs) of pair-
wise sequence similarities for Natural and Clinical antibodies, and
sequences generated at different sampling temperatures.
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(b) Violin plot of sequence naturalness scored with AbLang-2 and
p-IgGen

Figure 2. Tunable generation of diverse antibodies.

Network (SSN), and in contrast with sequences generated
at T=2 (Figure 3). Interestingly, the natural and clinically
approved antibodies are distributed throughout the sequence
similarity network rather than being confined to tight clus-
ters. This dispersion likely reflects the heterogeneous devel-
opment trajectories of clinical candidates. Moreover, this
sequence diversity in the training set of our predictive mod-
els, in addition to their robust cross-validation performance,
supports that these models are well suited to guide antibody
design.

2.2. Guided Generation

We configured SVDD to guide generation using both hy-
drophobicity (HIC RT) and self-association (AC SINS) pre-
dictors. In total, we generated 13,519 antibody sequences
with 7' = 1.0 across two experiments, masking the 1)
Complementarity Determining Region of the Heavy chain
(HCDR3), a highly variable sequence that influences devel-
opability and binding; and 2) the framework regions of both
chains, more conserved sequences that provide a structural
scaffold for CDRs. We used the antibodies characterized
in (Arsiwala et al., 2025) as starting template sequences
for generation. Figure 4a shows the joint distribution of
hydrophobicity and self-association scores for the 1) un-
conditionally generated, 2) framework guided, 3) HCDR3
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Figure 3. Sequence Similarity Networks of Generated Antibod-
ies with Natural and Clinical Antibodies. a) The generated
sequences cover a large region of natural sequence space, and clin-
ical candidates are interspersed in that space. b) At high sampling
temperatures, sequences are highly diverse but no longer overlap
closely with natural and clinical sets. This also leads to many small
disconnected clusters shown in pink.

guided, and 4) the original clinical sequences used as tem-
plates. We indicate the 10th percentile of the measured
clinical sequences as dotted line references. For both scores,
our guided generation successfully enriched the number
of sequences in the lower left quadrant, from 3.3% in the
seed sequence set, to 10.5% and 8.3% for framework and
HCDR3 generation, respectively. These values were also
higher than unconditional generation. In addition, generated
guided sequences preserved the naturalness of unconditional
and template clinical sequences (Figure 5).

3. Discussion and Future Works

In this work, we demonstrate that discrete diffusion—based
models can generate plausible and diverse antibody se-
quences. We find that while high sampling temperatures
increase diversity, they also degrade naturalness. When cou-
pled with simple biophysical predictors, these models can
effectively explore novel regions of therapeutic sequence
space while preserving naturalness. A natural next step
is developing better predictors for biophysical properties.
Many antibody biophysical property predictors have been
developed (Jain et al., 2017; Tomar et al., 2017; Khurana
et al., 2018; Thumuluri et al., 2021; Zhou et al., 2022; Lai,
2022; Gentiluomo et al., 2020; Prihoda et al., 2022; Schmitt
et al., 2023; Wu et al., 2025; Park & Izadi, 2024; Rollins
et al., 2024) but restrictive commercial terms, difficulty in-
stalling, inconsistent benchmark comparisons or insufficient
performance limit their use. Additionally, developing pre-
dictors across highly diverse sequences has been found to
be much more challenging than predicting local mutational
effects (Groth et al., 2023; Notin et al., 2023), but with larger
amounts of high quality training data we are confident that
generalized predictors across natural and clinical antibody
space (and eventually, across different formats such as Fc-
fusions, single domain antibodies (VHH, scFv, monobod-
ies), and multispecifics) could achieve much higher accuracy
and hence improve guided generation quality.
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Figure 4. Density plot of predicted self-association and hy-
drophobicity for various generation conditions. Thresholds
are calculated based on the lower 10% of predicted properties of
clinical antibodies. We show that we can increase the proportion
of antibodies in the lower left quadrant (high developability) for
both properties simultaneously using guided generation.
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Figure 5. Generated antibodies have high naturalness. Violin
plot of generated sequences scored with Ablang-2 and p-IgGen

To advance this framework, we plan to incorporate larger,
more diverse labeled datasets covering additional biophysi-
cal assays and to investigate multi-task predictors that jointly
model target binding as well as developability. Extending
our guidance beyond posterior-mean SVDD may enable
stronger steering with fewer denoising steps. We will also
validate generated candidates experimentally to quantify
real-world developability gains and refine our predictors
accordingly.

Impact Statement

Antibodies comprise a major modality of therapeutics, and
have been used to treat cancer, autoimmune diseases and in-
fectious diseases. We expect that machine learning research
focused on optimizing developability will have a positive
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social impact in reducing clinical trial costs and enabling
more therapies to come to market.
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