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Abstract
We investigate the finite-time analysis of finding
(δ, ϵ)-stationary points for nonsmooth nonconvex
objectives in decentralized stochastic optimiza-
tion. A set of agents aim at minimizing a global
function using only their local information by in-
teracting over a network. We present a novel
algorithm, called Multi Epoch Decentralized On-
line Learning (ME-DOL), for which we establish
the sample complexity in various settings. First,
using a recently proposed online-to-nonconvex
technique, we show that our algorithm recovers
the optimal convergence rate of smooth noncon-
vex objectives. We then extend our analysis to the
nonsmooth setting, building on properties of ran-
domized smoothing and Goldstein-subdifferential
sets. We establish the sample complexity of
O(δ−1ϵ−3), which to the best of our knowledge
is the first finite-time guarantee for decentralized
nonsmooth nonconvex stochastic optimization in
the first-order setting (without weak-convexity),
matching its optimal centralized counterpart. We
further prove the same rate for the zero-order ora-
cle setting without using variance reduction.

1. Introduction
At the heart of many practical machine learning problems,
we must deal with nonconvex optimization of nonsmooth
objective functions. Examples include training neural net-
works with ReLU activation functions, blind deconvolution,
sparse dictionary learning, and robust phase retrieval. De-
spite the significant practical success of such schemes, the
vast majority of prior work in theoretical analysis of nons-
mooth nonconvex optimization focused on asymptotic con-
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vergence results (Rockafellar & Wets, 2009; Clarke et al.,
2008). More recently, finite-time analysis of this class of
problems has attracted significant attention (Jordan et al.,
2023; Majewski et al., 2018; Davis & Drusvyatskiy, 2019;
Daniilidis & Drusvyatskiy, 2020; Tian et al., 2022).

On the other hand, decentralization is a crucial mech-
anism to scale up optimization problems. For nons-
mooth objectives, though the class of convex problems
is well-understood in decentralized optimization (Nedic &
Ozdaglar, 2009; Scaman et al., 2018), the characterization
of optimal finite-time rates for nonconvex problems has re-
mained elusive (except for weakly-convex problems (Chen
et al., 2021)). In the present work, we address the finite-time
analysis of decentralized nonsmooth nonconvex stochastic
optimization.

We consider a decentralized optimization problem where
a group of n agents aim at minimizing a global function.
However, each agent has limited information about this
global objective and interacts with its neighbors to solve the
global problem, formulated in the following form

min
x∈Rd

{
f(x) =

1

n

n∑
i=1

f i(x)
}
. (1)

Local functions f i are in the form of f i(x) =
Eξi∼Di

[F i(x, ξi)], where F i(x, ξi) are stochastic with ran-
dom index ξi, and ξi corresponds to a data sample from
local dataset of agent i. We assume that the local functions
are nonconvex and Lipschitz continuous but do not neces-
sarily have Lipschitz continuous gradients, i.e., they are
nonsmooth.

In an optimization problem, a tractable optimality criterion
is required for finite-time convergence guarantees. For non-
smooth nonconvex objectives, ϵ-stationarity cannot be guar-
anteed in finite time (Kornowski & Shamir, 2021; Zhang
et al., 2020b). Instead, the notion of (δ, ϵ)-stationarity is
a tractable criterion (Zhang et al., 2020b), where we seek
vectors with norm less than ϵ among the convex hull of the
subdifferential set of a ball with radius δ (see Definition 2
for exact mathematical definition). The goal of this paper is
to identify a (δ, ϵ)-stationary point of the global function f
when agents have access to either the first-order oracle (i.e.,
∇F i(·, ξi)) or the zero-order oracle (i.e., F i(·, ξi)).
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1.1. Contributions

In this paper, we address the finite-time analysis of decen-
tralized nonsmooth nonconvex stochastic optimization. We
present a novel algorithm, called Multi Epoch Decentralized
Online Learning (ME-DOL), for which we establish the
sample complexity in various settings. Our contributions
are three-fold.

• We adopt the online-to-nonconvex conversion tech-
nique of Cutkosky et al. (2023) to streamline the
finite-time analysis of ME-DOL for decentralized non-
smooth nonconvex optimization. First, for smooth ob-
jectives, we prove that the complexity of finding (δ, ϵ)-
stationary points is O(δ−1ϵ−3) (Theorem 1). This rate
implies the optimal complexity of O(ϵ−4) for finding ϵ-
stationary points of smooth objectives (Arjevani et al.,
2023; Lu & De Sa, 2021).

• For nonsmooth stochastic optimization with first-
order oracles, ME-DOL achieves the same complexity,
O(δ−1ϵ−3), matching its centralized counterpart (The-
orem 2). To the best of our knowledge, this is the first
finite-time guarantee for decentralized nonsmooth non-
convex stochastic optimization in the first-order oracle
setting. Prior to our work, Chen et al. (2021) provided
finite-time guarantees only on the Moreau Envelope of
weakly-convex functions.

• For the zero-order oracle setting, ME-DOL achieves
the best known complexity result in terms of δ and ϵ,
i.e., O(δ−1ϵ−3) (Theorem 3), which also matches its
centralized zero-order counterpart (Lin et al., 2022).
In the decentralized setting, this rate was previously
achieved only with the variance reduction mechanism
(Lin et al., 2024).

1.2. Highlights of Technical Analysis

Randomized Smoothing. Finite-time analysis of nons-
mooth objectives is mainly based on smooth approxima-
tions of these objectives. Randomized Smoothing (RS) and
Moreau Envelope (ME) are the most common approxima-
tion methods. In ME, the original function is approximated
with fME

µ (x) = miny∈Rd

{
f(y) + 1

2µ∥y − x∥2
}

(Davis &
Drusvyatskiy, 2019; Scaman et al., 2018; 2020). ME ap-
proximation provides theoretical guarantees when applied
on structured objectives with regularizer or used with weak-
convexity assumption (Davis & Drusvyatskiy, 2019), but
it might be practically unrealistic in some applications that
use ReLU neural networks and ρ-margin SVMs (Tian et al.,
2022). On the other hand, in RS the original function f is
approximated by fRS

δ (x) = E[f(x+ δu)], where u comes
from a Gaussian distribution or a uniform distribution on
the unit ball. In RS, the smoothness parameter depends on

the ambient dimension as
√
d, but it provides favorable theo-

retical properties (see Proposition 1). Specifically, finding a
(δ, ϵ)-stationary point of a nonsmooth L-Lipschitz function
f can be pursued via finding an ϵ-stationary point of fδ with
a δL approximation error. RS does not require additional
assumptions beyond Lipschitz continuity of the function,
and this makes RS more tractable in practical applications.
In this work, we develop our algorithm based on RS.

Nonconvex to Online Conversion. Another important tech-
nique in nonsmooth optimization is a reduction from nons-
mooth nonconvex optimization to online learning (Cutkosky
et al., 2023). In its original form, the method works on
centralized optimization, where an online algorithm runs
for a certain period, a candidate point is generated, and
at the end of the period the online algorithm is restarted.
The implementation of the online algorithm can be written
explicitly in the form of gradient clipping (Kornowski &
Shamir, 2024). From a technical perspective, the use of
regret bounds in online learning streamlines the complexity
analysis in the nonsmooth optimization. In our paper, we
utilize decentralized online algorithm of Shahrampour &
Jadbabaie (2018) to address decentralized nonsmooth non-
convex optimization. Compared to the centralized problem
(Cutkosky et al., 2023), in the decentralized setting, the
discrepancy between local variables and global variables
makes the analysis more challenging.

Geometric Lemma of (Kornowski & Shamir, 2024). The
optimality criterion for nonsmooth analysis is constructed
on the Goldstein subdifferential set. The technical result
of Kornowski & Shamir (2024), which links the Goldstein
subdifferential set of fδ to fδ+µ for µ, δ > 0, plays an
important role in our analysis. Basically, for the goal of
finding a (δ, ϵ)-stationary point of f , we can use a proportion
of δ, namely aδ (for 0 < a < 1), for smoothing and use
the rest of the budget to identify a ((1 − a)δ, ϵ)-stationary
point of the smoothed function faδ with the smoothness
parameter L1 = O(a−1δ−1). This approach allows us to
efficiently control the discrepancy terms.

Remark 1. In decentralized nonsmooth nonconvex optimiza-
tion, our goal is to find a (δ, ϵ)-stationary point of global
function f with randomized smoothing using partial infor-
mation. For smooth objectives, the complexity of finding
ϵ-stationary points in terms of the smoothness parameter
L1 and ϵ is O(L1ϵ

−4) (Lu & De Sa, 2021). For the nons-
mooth objectives, a straightforward application of random-
ized smoothing with L1 = O(δ−1) leads to the overall com-
plexity of O(δ−1ϵ−4), which is sub-optimal. To improve
this rate, we develop a technique inspired by Cutkosky et al.
(2023) and based on decentralized online learning, and we
obtain a finite-time bound, in which some of the terms de-
pend on L1. With the geometric lemma of Kornowski &
Shamir (2024) we control the complexity of L1-dependent
terms. As a result, we obtain the same complexity rate (up
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to constant factors) for decentralized nonsmooth noncon-
vex stochastic optimization as previously achieved in the
centralized setting (Cutkosky et al., 2023).

1.3. Literature Review

Nonconvex optimization is well-studied under Lipschitz-
smoothness assumption. In this setting, the goal is to find
an ϵ-stationary point x satisfying ∥∇f(x)∥ ≤ ϵ. For the
deterministic setting, it is well-known that gradient descent
(GD) achieves a O(ϵ−2) sample complexity, and this rate
is optimal (Carmon et al., 2020). In the stochastic setting,
SGD achieves O(ϵ−4) rate with the assumption of unbiased,
bounded variance gradients (Ghadimi & Lan, 2013). This
rate is also optimal as shown by Arjevani et al. (2023). We
now discuss several strands of related literature.

Nonsmooth Nonconvex Optimization. The first non-
asymptotic analysis for nonsmooth nonconvex objectives
was provided by Zhang et al. (2020b), showing that finding
ϵ-stationary points in finite time is impossible. Furthermore,
it was proved by Kornowski & Shamir (2021) that obtaining
a near ϵ-stationary point is also impossible in nonsmooth
optimization. Therefore, the goal of finding (δ, ϵ)-stationary
points considered in Zhang et al. (2020b) is a tractable opti-
mality criterion for nonsmooth objectives.

First-Order Nonsmooth Nonconvex Setting. (δ, ϵ)-
Goldstein stationarity of nonsmooth objectives has been
analyzed in various settings (Tian et al., 2022). Davis et al.
(2022) showed that Õ(δ−1ϵ−3) can be achieved for Lips-
chitz continuous objectives when function values and gra-
dients can be evaluated at points of differentiability. More
recently, Cutkosky et al. (2023) proved that the O(δ−1ϵ−3)
sample complexity is optimal in the stochastic first-order
setting.

Zero-Order Nonsmooth Nonconvex Setting. Another
line of work focuses on zero-order setting in nonsmooth non-
convex optimization. Lin et al. (2022) proposed a gradient-
free method GFM and its stochastic counterpart SGFM,
which achieve O(d

3
2 δ−1ϵ−4) sample complexity. Chen et al.

(2023) improved this complexity to O(d
3
2 δ−1ϵ−3) by apply-

ing variance reduction. Furthermore, Kornowski & Shamir
(2024) improved the dimension dependence to O(dδ−1ϵ−3)
based on online-to-nonconvex conversion technique intro-
duced by Cutkosky et al. (2023).

Deterministic Nonsmooth Nonconvex Setting. In the de-
terministic setting, even in the absence of noise, it is hard
to deal with nonsmooth objectives, and randomization is
necessary to obtain a dimension independent guarantee. Fur-
thermore, deterministic algorithms require zero-order oracle
for finite-time convergence guarantees (Jordan et al., 2022;
2023; Tian et al., 2022).

Distributed Smooth Setting. In the literature the term
distributed may refer to different layers of optimization,
i.e. application, protocol or network topology (Lu & De Sa,
2021). In federated learning, it refers to the application layer
where each agent uses its local data with shared parameters
(McMahan et al., 2016). In fully decentralized scenarios,
each agent updates its local parameter using local data and
communicates through a connected network. For nonconvex
objectives, decentralized SGD has gained a lot of attention
(Lian et al., 2017) due to the linear speed-up property. Many
works analyzed decentralized algorithms under identically
distributed data or bounded outer variance assumption for
smooth problems (Tang et al., 2018; Koloskova et al., 2019;
Li et al., 2020; Wang et al., 2020; Xu et al., 2023).

Decentralized Nonsmooth Setting. For decentralized non-
convex nonsmooth optimization, though the asymptotic anal-
ysis was previously explored in Swenson et al. (2022), there
exists a scant literature on the finite-time analysis. For λ-
weakly-convex nonsmooth objectives, Chen et al. (2021)
provided finite-time guarantees on ME. More recently, Lin
et al. (2024) proposed an algorithm (DGFM) that achieves
O(d3/2δ−1ϵ−4) complexity rate in the zero-order setting.
In the same setup, they also proposed DGFM+ by incor-
porating variance reduction to obtain the O(d3/2δ−1ϵ−3)
complexity rate.

We also focus on decentralized nonsmooth nonconvex
stochastic optimization in the present work. We develop a
fully decentralized method that mimics a restarting decen-
tralized online learning algorithm. Under mild technical
assumptions (e.g., Lipschitz continuity of the objective func-
tion and unbiased, bounded variance gradients), we analyze
the finite-time performance of the algorithm. We study three
settings: (i) smooth first-order, (ii) nonsmooth first-order,
and (iii) nonsmooth zero-order. For all of them, we establish
the optimal sample complexity as previously derived for the
centralized stochastic optimization (Tables 1-2).

2. Problem Setting
Notation: We denote by ∥x∥ the Euclidean norm, by [n] the
set {1, 2, 3, ..., n}, by B(x, δ) := {y ∈ Rd : ∥y − x∥ ≤ δ},
by conv(·) the convex hull operator, and by unif(A) the
uniform measure over a set A. ∥·∥F denotes the Frobe-
nius norm and ∥·∥2 denotes the spectral norm. We use the
standard notation O(·), Θ(·) , Ω(·) to hide the absolute con-
stants and Õ(·) to hide poly-logarithmic factors. 1d and
Sd−1 denote the vector of all ones and the unit sphere in Rd,
respectively.

Network Setup: In decentralized learning, we have n
agents that communicate through a network. We assume
that the network is connected, i.e., there exists a (potentially
multi-hop) path from any agent i ∈ [n] to j ̸= i. The net-
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Table 1. The sample complexity of finding (δ, ϵ)-stationary points
in centralized nonsmooth nonconvex stochastic optimization. d :
ambient dimension, γ = f(x0)− infx f(x) where x0 is the initial
point, G2: bound on the second moment of stochastic gradient (for
first-order methods) and bound on the second moment of Lipschitz
constant (for zero-order methods). ‘*’: Oracle requires an addi-
tional constraint on the directional derivative. The dependence to
dimension d is only reported for zero-order methods.

ORACLE METHOD REFERENCE COMPLEXITY

FIRST* SINGD (ZHANG
ET AL., 2020B)

Õ( γG
3

δϵ4
)

FIRST PSINGD (TIAN ET AL.,
2022)

Õ( γG
3

δϵ4
)

FIRST O2NC (CUTKOSKY
ET AL., 2023)

O( γG
δϵ3

)

ZERO SGFM (LIN ET AL.,
2022)

O(d
3
2 (G

4

ϵ4
+ γG3

δϵ4
))

ZERO GFM+ (CHEN ET AL.,
2023)

O(d
3
2 (G

3

ϵ3
+ γG2

δϵ3
))

ZERO OSNNO (KORNOWSKI
& SHAMIR,
2024)

O( dγG
2

δϵ3
)

Table 2. The sample complexity of finding (δ, ϵ)-stationary points
for decentralized nonsmooth nonconvex stochastic optimization.
‘*’ : weakly convex setting, ‘**’ : variance reduction. The depen-
dence to dimension d is only reported for zero-order methods.

ORACLE METHOD REFERENCE COMPLEXITY

FIRST* DPSM (CHEN ET AL., 2021) O(ϵ−4)

ZERO DGFM (LIN ET AL., 2024) O(d
3
2 δ−1ϵ−4)

ZERO** DGFM+ (LIN ET AL., 2024) O(d
3
2 δ−1ϵ−3)

ZERO ME-DOL Our Work O(dδ−1ϵ−3)
FIRST ME-DOL Our Work O(δ−1ϵ−3)

work topology is governed by a symmetric doubly stochas-
tic matrix P = [Pij ]

n
i,j=1 ∈ Rn×n, where 1⊤nP = 1⊤n and

P1n = 1n (Assumption 1). Throughout the learning pro-
cess, agent i receives only information about its local func-
tion f i in the form of stochastic gradients or noisy function
evaluations. Note that Pij ∈ [0, 1] and if Pij = 0 agents
i and j do not directly share information with each other.
However, if Pij > 0 agents share their decision variables as
described in the ME-DOL (Algorithm 1). As such, the neigh-
borhood of agent i is defined as Ni := {j ∈ [n] : Pij > 0}.

Information Oracles: We assume that each agent i ∈
[n] has access to its information oracles. In the first-order
setting, the oracle Of returns stochastic gradient at query
point x given by Oi

f (x) = ∇F i(x, ξi). For the first-order
oracles we assume that the oracle returns unbiased estimates
of the gradient with bounded variance (Assumption 4). In

the zero-order setting, agents have access to the stochastic
function value oracle Oz at query point x, that is Oi

z(x) =
F i(x, ξi) with Assumption 2 in place.

2.1. Stationarity Metric in Nonsmooth Analysis

In nonconvex smooth optimization problems, finding an
ϵ-stationary point x, i.e. ∥∇f(x)∥ ≤ ϵ is a well-known
tractable optimality condition. For nonsmooth objec-
tives, a more relaxed criterion called near ϵ-stationarity
can be considered for a point x with min{∥g∥ : g ∈
∪y∈B(x,δ)∂f(y)} ≤ ϵ. However, both could be intractable
criteria for nonsmooth objectives (Kornowski & Shamir,
2021). By Rademacher’s Theorem, Lipschitz continuous
functions are almost everywhere differentiable. For this
class of functions, we can study (δ, ϵ)-stationarity. Let us
first define Goldstein δ-subdifferential as follows.
Definition 1. Goldstein δ-subdifferential of f at x is the set

∂δf(x) := conv(∪y∈B(x,δ)∂f(y)),

where the Clarke subdifferential set ∂f(x) := conv{g :
g = lim

xs→x
∇f(xs)}.

Since Goldstein δ-subdifferential is the convex hull of a
set of Clarke subdifferentials, it is possible that an element
of Goldstein δ-subdifferential is not an element of Clarke
subdifferential set of points y ∈ B(x, δ) for a nondiffer-
entiable function f . An example of a function that has a
(δ, ϵ)-stationary point that is not near ϵ-stationary is given in
Kornowski & Shamir (2021) (Proposition 2).
Definition 2. Given a Lipschitz function f : Rd → R, a
point x ∈ Rd and δ > 0 , denote ∥∇f(x)∥δ := min{∥g∥ :
g ∈ ∂δf(x)}. A point x is called a (δ, ϵ)-stationary point of
f(·) if ∥∇f(x)∥δ ≤ ϵ.

This is a weaker notion than ϵ-stationarity or near ϵ-
stationarity. In case of differentiable functions with L1

Lipschitz gradients, an ( ϵ
3L1

, ϵ
3 )-Goldstein stationary point

is also ϵ-stationary (Zhang et al., 2020b).

2.2. Properties of Randomized Smoothing

In the nonsmooth analysis, finding (δ, ϵ)-stationary points
of the global function f(x) = 1

n

∑n
i=1 f

i(x) is a reason-
able and tractable optimality criterion using randomized
smoothing.
Definition 3. Given an L-Lipschitz function f , we denote
its smoothed surrogate as fδ(x) := Eu∼P [f(x + δu)],
where P is the uniform distribution on the unit ball, i.e.,
unif(B(0, 1)).
Proposition 1. (Lin et al., 2022) Suppose that the function
f : Rd → R is L-Lipschitz. Then, it holds that:

• |fδ(·)− f(·)| ≤ δL.
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• fδ(·) is L-Lipschitz.

• fδ(·) is differentiable with c
√
dLδ−1-Lipschitz gradi-

ents for a numeric constant c > 0.

• ∇fδ(·) ∈ ∂δf(·) , where ∂δf(·) is the Goldstein subd-
ifferential.

RS allows us to work with a “smoothed” objective fδ with
the cost of δL approximation error. Also, the last item
in Proposition 1 links finding a (δ, ϵ)-stationary point of a
nonsmooth objective f with finding an ϵ-stationary point
of the smoothed objective fδ . Furthermore, we will use the
following lemma for nonsmooth analysis.

Lemma 1. (Kornowski & Shamir, 2024) For any δ, µ ≥ 0 :
∂µfδ(x) ⊆ ∂µ+δf(x) .

Proposition 2. By Lemma 1 and Definition 2 for ∥·∥δ we
have ∥∇f(x)∥δ ≤ ∥∇faδ(x)∥(1−a)δ for any a ∈ (0, 1).

For the task of finding (δ, ϵ)-stationary points of a function,
δ denotes the radius of the ball as in Definition 1. Lemma
1 allows us to distribute δ such that we can use a portion
of it for smoothing and allocate the remaining part to the
radius of the ball around the critical point. In Proposition 2
by choosing a = 1

2 we have ∥∇f(x)∥δ ≤ ∥∇f δ
2
(x)∥ δ

2
.

Using these lemmas and randomized smoothing, we can
facilitate our convergence analysis. In the context of decen-
tralized optimization, we can use the surrogate function fδ
of global function f , and by the linearity of expectation we
have fδ = 1

n

∑n
i=1 (f

i)δ. Furthermore, using the follow-
ing lemma, summation of gradients of smoothed functions
1
n

∑n
i=1 ∇(f i)δ(xi) can be related to 1

n

∑n
i=1 ∇fδ(xi).

Lemma 2. Suppose that n local functions {f i}ni=1 have
L1-Lipschitz gradients and f(x) = 1

n

∑n
i=1 f

i(x). Con-
sider the set of points {wt,i} for i ∈ [n], t ∈ [T ], and let
w̄t = 1

n

∑n
i=1 wt,i and ∥wt,i − w̄t∥ ≤ r, ∀i ∈ [n],∀t ∈

[T ]. Then, we have∥∥∥∥∥ 1

nT

T∑
t=1

n∑
i=1

∇f(wt,i)

∥∥∥∥∥ ≤

∥∥∥∥∥ 1

nT

T∑
t=1

n∑
i=1

∇f i(wt,i)

∥∥∥∥∥+ 2rL1.

2.3. Assumptions

We assume that agents communicate synchronously through
the network. For example, agent i takes a weighted average
of the decision variables in its neighborhood as follows

yt,i =
∑
j∈Ni

Pijxt,j =

n∑
j=1

Pijxt,j ,∀i ∈ [n],

as elaborated in Algorithm 1. The communication matrix P
is fixed over time and satisfies the following assumption.

Assumption 1. The network is connected and the com-
munication matrix P ∈ Rn×n is symmetric and doubly
stochastic. ρ denotes the second largest singular value of
the matrix P . Given that the network is connected, we have
that ρ ∈ [0, 1).

Assumption 1 is widely used in the decentralized optimiza-
tion literature (see e.g., (Shahrampour & Jadbabaie, 2018)).
Regardless of whether the network structure is fixed or time-
varying, some connectivity assumption is needed to solve
the global problem. Here, the quantity ρ determines the con-
nectivity of the network, and a smaller ρ indicates a more
well-connected network topology.

Assumption 2. We assume that local objective functions
have the form f i(x) = Eξ[F

i(x, ξ)], where ξ denotes the
random index. The stochastic component of local functions
F i(·, ξ) : Rd → R is L(ξ)-Lipschitz for any ξ, i.e., it holds
that ∣∣F i(x, ξ)− F i(y, ξ)

∣∣ ≤ L(ξ) ∥x− y∥ ,

for any x, y ∈ Rd and i ∈ [n]. L(ξ) has a bounded second
moment such that Eξ[L(ξ)

2] ≤ L2.

We note that Assumption 2 is weaker than assuming that
F i(·, ξ) is L-Lipschitz (Chen et al., 2023; Kornowski &
Shamir, 2024). Taking expectation from above, it can
be shown that local functions f i are Lipschitz continuous.
However, we do not assume that gradients are Lipschitz. Fur-
thermore, directional differentiability holds for commonly
used nonsmooth functions (e.g., ReLU) and enables the use
of Lebesgue path integrals (Zhang et al., 2020b).

Assumption 3. The local objectives f i : Rd → R are lower
bounded (f i)∗ := infx f

i(x) > −∞. Therefore, the global
function f is also lower bounded, and we define γ such that
f(x̄0) − infx f(x) ≤ γ, where x̄0 is the average of initial
points (among agents) for the algorithm.

We also make the following standard assumptions on the
stochastic gradients (Shahrampour & Jadbabaie, 2018;
Zhang et al., 2020b) .

Assumption 4. We assume that the first-order ora-
cle returns unbiased, bounded variance estimate of
the gradient such that E[∇F i(x, ξ)] = ∇f i(x) and
E[
∥∥∇F i(x, ξ)−∇f i(x)

∥∥2] ≤ σ2. Furthermore, we as-
sume that the second moment of the stochastic gradient is
bounded such that E[

∥∥∇F i(x, ξ)
∥∥2] ≤ G2.

3. Algorithm and Main Technical Results
In this section, we present our decentralized algorithm for
finding a (δ, ϵ)-stationary point of the global objective f in
(1). Our algorithm is termed Multi Epoch Decentralized On-
line Learning (ME-DOL), for which we establish the sample
complexity in different settings. First, we present our result
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Algorithm 1 Multi Epoch Decentralized Online Learning
Input: δ′ ∈ R≥0, K ∈ N , T ∈ N, decentralized online
learning algorithm A with bounded domain D, doubly
stochastic communication matrix P .
Initialize: y0T,i = 0 for all i ∈ [n].
for k = 1 to K do

Restart A
Let yk0,i = yk−1

T,i , ∀i ∈ [n]
for t = 1 to T , ∀i ∈ [n] do

Get ∆k
t,i for all agents from A (Algorithm 4)

xk
t,i = ykt−1,i +∆k

t,i

skt,i ∼ unif[0, 1]

wk
t,i = ykt−1,i + skt,i∆

k
t,i

ykt,i =
∑n

j=1 Pijx
k
t,j =

∑
j∈Ni

Pijx
k
t,j

if Information Oracle == Zero-Order then
gkt,i = Zero-Order Gradient(F i, wk

t,i, δ
′, ξkt,i)

else
gkt,i = First-Order Gradient(F i, wk

t,i, δ
′, ξkt,i)

end if
Send gkt,i to A as gradient

end for
Set w̄k = 1

nT

∑n
i=1

∑T
t=1 w

k
t,i for k ∈ [K]

end for
Sample wout ∼ unif{w̄1, ..., w̄K}
Output : wout

on smooth nonconvex objectives (Theorem 1), and we then
extend our results to nonsmooth nonconvex objectives with
randomized smoothing in first-order and zero-order settings
(Theorems 2 and 3, respectively). Our technique is based
on a reduction from nonsmooth nonconvex decentralized
optimization to decentralized online learning.

In Algorithm 1, we have periods of length T , where in each
epoch k ∈ [K] a decentralized online algorithm A is used
to generate action ∆k

t,i for agent i ∈ [n] at iteration t ∈ [T ].
The action space D is bounded such that ∥∆∥ ≤ D for all
∆ ∈ D. At each epoch k, A must run on a linear optimiza-
tion problem with the objective of agent i as

∑T
t=1⟨∆, gkt,i⟩,

where gkt,i is the stochastic gradient (respectively, approxi-
mation of the stochastic gradient using noisy function eval-
uations) in the first-order (respectively, zero-order) setting.
We use Algorithm 4 (Shahrampour & Jadbabaie, 2018) for
A. Based on action ∆k

t,i the variable xk
t,i is generated and

then averaged over neighborhood of i to get ykt,i. The set
of nT points wk

t,i ∀i ∈ [n],∀t ∈ [T ], at which the gradi-
ents are evaluated, are averaged to produce the final output
of each epoch, denoted as w̄k. These points are proposed
as candidates for identifying a (δ, ϵ)-stationary point of the
global function f . Algorithm 1 outputs a randomly selected
candidate point w̄l where l ∼ unif[K].

Remark 2. Note that Pij = 0 if agents i and j are not

Algorithm 2 First-Order Gradient(F, x, δ′, ξ)
Input: Function F , point x, smoothing parameter δ′,
random seed ξ.
Sample z ∼ unif(B(0, 1))
g = ∇F (x+ δ′z, ξ)
Output: g

Algorithm 3 Zero-Order Gradient(F, x, δ′, ξ)
Input: Function F , point x, smoothing parameter δ′,
random seed ξ, dimension d.
Sample z ∼ unif(Sd−1)
Evaluate F (x+ δ′z, ξ) and F (x− δ′z, ξ)

g = d
2δ′

(
F (x+ δ′z, ξ)− F (x− δ′z, ξ)

)
z

Output: g

neighbors. Therefore, updates ykt,i =
∑n

j=1 Pijx
k
t,j (in

Algorithm 1) and ∆k
t+ 1

2 ,i
=
∑n

j=1 Pij∆
k
t,j (in Algorithm

4) do not contradict the decentralized nature of the learning.
Basically, for each agent i ∈ [n], the sum always reduces to
a weighted averaging over the neighborhood of agent i.
Remark 3. The original implementation of Algorithm 4
in Shahrampour & Jadbabaie (2018) is based on mirror
descent, but here we use the Euclidean distance as the gen-
erator of Bregman divergence, reducing the algorithm to
decentralized online gradient descent.

3.1. Challenges in the Analysis of Decentralized
Algorithm

In centralized optimization, the difference of function val-
ues in consecutive iterations, f(xt)− f(xt−1), depends on
the update rule. The update rule can be written as xt =
xt−1 +∆t. For example, in SGD, ∆t = −η∇F (xt−1, ξ).
Various algorithms use the past information to generate
∆t or process the latest information as in the normalized
gradient descent (Murray et al., 2019) or gradient clipping
(Zhang et al., 2020a). For any algorithm with the update rule
xt = xt−1+∆t, one can write f(xt) = f(xt−1)+⟨∆t,∇t⟩
where ∇t =

∫ 1

0
∇f(xt−1 + s∆t)ds. Cutkosky et al. (2023)

Algorithm 4 Decentralized Online Optimization Algorithm
A (Shahrampour & Jadbabaie, 2018)

Input: Domain D, doubly stochastic matrix P , learning
rate η, stochastic gradients gkt,i.
Initialize: ∆k

1
2 ,i

= 0 for all i ∈ [n] and k ∈ [K].
Iterations : Step t ≥ 1, update for each i ∈ [n]:
∆k

t,i = argmin
∆∈D

{
η⟨∆, gkt−1,i⟩+ 1

2

∥∥∆−∆k
t− 1

2 ,i

∥∥2}
∆k

t+ 1
2 ,i

=
∑n

j=1 Pij∆
k
t,j
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observed that ∆t can be generated via an online learning
algorithm (e.g., online gradient descent (OGD)), in which
case the summation of the differences for T rounds can be
written as follows

f(xT )− f(x0) =

T∑
t=1

⟨∆t,∇t⟩

=

T∑
t=1

⟨gt,∆t − u⟩+
T∑

t=1

⟨∇t − gt,∆t⟩+
T∑

t=1

⟨gt, u⟩,

where {gt} are the stochastic gradients provided to the on-
line learning algorithm. This equation holds for any u in
hindsight, and the first summation term corresponds to the
regret of the online algorithm. The second term has expec-
tation equal to 0 (if gradients are unbiased), and for the last
term we have freedom to select an optimal u.

In the decentralized counterpart of this conversion, which is
the focal point of our analysis, the main difference is that the
change in the global function depends on the average action,
i.e., ∆̄t = x̄t − x̄t−1, but f(x̄t) = f(x̄t−1) + ⟨∆̄t, ∇̃t⟩
where ∇̃t =

∫ 1

0
∇f(x̄t−1 + s∆̄t)ds. The key techni-

cal challenge is the discrepancy between ∇̃t and ∇̄t =∑n
i=1 ∇t,i/n, where ∇t,i :=

∫ 1

0
∇f i(yt−1,i + s∆t,i)ds.

In the decentralized analysis, we have the decentralized re-
gret term and an additional discrepancy term that arises due
to the difference between ∇̃t − ∇̄t, which requires careful
analysis.

3.2. Smooth Analysis

Let us now present our first result on smooth objectives in
the following theorem.

Theorem 1. Let Assumptions 1, 3, 4 hold and further as-
sume that f i is L-Lipschitz and has L1-Lipschitz gradient
for all i ∈ [n]. Let δ, ϵ ∈ (0, 1) and choose

• N := KT = Θ(δ−1ϵ−3(1− ρ)−2),

• T = Θ((1− ρ)
1
3 (δN)

2
3 ),

• D = δ(1−ρ)
2T

√
n

,

• η = Θ(
√

(1− ρ) D√
T
).

Then, running Algorithm 1 with δ′ = 0 for N rounds
gives an output that satisfies the following inequality for the
global function f(x) = 1

n

∑
f i(x),

Ek∼unif[K]

[∥∥∇f(w̄k)
∥∥
δ

]
≤ ϵ.

Remark 4. For smooth objectives this result implies that a
(δ, ϵ)-stationary point can be found in N = O(δ−1ϵ−3) iter-
ations. This rate results in the optimal complexity of O(ϵ−4)

for finding an ϵ-stationary point of nonconvex smooth objec-
tives (Arjevani et al., 2023; Lu & De Sa, 2021) as δ = O(ϵ).
Furthermore, the dependence of N to (1− ρ)−2 indicates
that in a well-connected network (smaller ρ), we need less
iterations to find a (δ, ϵ)-stationary point.

For smooth objectives we do not need randomized smooth-
ing, so we choose δ′ = 0. We can use the full budget δ for
the search radius, so we set D = δ(1−ρ)

2T
√
n

in order to satisfy
∥w̄k −wk

t,i∥ ≤ δ. The complete proof of Theorem 1 can be
found in the Appendix (Section A.3).

3.3. Challenges in Nonsmooth Analysis

For nonsmooth objectives, we utilize randomized smooth-
ing. The straightforward application of randomized smooth-
ing, such as merely replacing the task of finding a (δ, ϵ)-
stationary point of a nonsmooth function f with the task of
finding an ϵ-stationary point of the smoothed function would
result in the sub-optimal complexity of O(δ−1ϵ−4) since
the optimal rate for decentralized smooth nonconvex objec-
tives is O(L1ϵ

−4) (Lu & De Sa, 2021), and L1 = O(δ−1)
for the smoothed function according to Proposition 1.

To address this, we must control δ that affects the smooth-
ness parameter L1. In the proof of Theorem 1, we have the
following inequality (see Equation 9), which also plays an
important role in the nonsmooth analysis.

E

[
1

K

K∑
k=1

∥∥∥∥∥ 1

nT

T∑
t=1

n∑
i=1

∇f(wk
t,i)

∥∥∥∥∥
]

≤ 2γT
√
n

δN(1− ρ)
+

σ√
nT

+
c1√
T

+
δL1(1− ρ)c3

2T
√
n

.

However, for nonsmooth objectives, f must be replaced
by a smoothed function f(1−a)δ in the left-hand side, and
using Proposition 2, we can consider finding an (aδ, ϵ)-
stationary point of f(1−a)δ for 0 < a < 1. A larger a
increases the “radius of possible stationarity” but decreases
the “smoothness”, and we need to balance this trade-off.

3.4. Nonsmooth Analysis with First-Order Oracle

For nonsmooth objectives, we can choose a = 1
2 , and the

goal is to find a ( δ2 , ϵ)-stationary point of f δ
2

. Then, we
can extend the result of Theorem 1 with the smoothness
parameter L1 = 2c

√
dLδ−1, where c is a constant that

depends on the geometry of the problem (see Appendix B).
Theorem 2. Let δ, ϵ ∈ (0, 1). Suppose that Assumptions 1,
3, 4 hold and that f i is L-Lipschitz for all i ∈ [n]. Choose
N,T, η as in Theorem 1, and set D = δ(1−ρ)

4T
√
n

. Then, run-

ning Algorithm 1 with δ′ = δ
2 for N rounds gives an output

that satisfies the following inequality

Ek∼unif[K]

[∥∥∇f(w̄k)
∥∥
δ

]
≤ c8(δN)−

1
3 ≤ ϵ,
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where c8 = O((1− ρ)−
2
3 ) and it does not depend on δ and

N (see Appendix A.4 for the exact quantification of c8).

To the best of our knowledge, the above theorem estab-
lishes the first complexity rate for nonsmooth nonconvex
functions in decentralized stochastic optimization (with-
out weak-convexity assumption). In terms of δ and ϵ, the
rate N = O(δ−1ϵ−3) matches the best known rates in the
centralized setting (Cutkosky et al., 2023). This rate also
recovers the optimal results in the smooth nonconvex setting
when δ = O(ϵ).

3.5. Nonsmooth Analysis with Zero-Order Oracle

In the first-order setting, we used Assumption 4 that implies
access to unbiased, bounded variance gradient estimates.
In the zero-order setting, agents do not have access to the
gradient information, but they can estimate the gradient
using noisy function values. The output of Algorithm 3
provides an unbiased gradient estimator with bounded vari-
ance (Shamir, 2017), and it can be used in lieu of stochastic
gradients returned by the first-order oracle.

Lemma 3. (Kornowski & Shamir, 2024) Let w = x+ s∆
be a point with s ∼ unif[0, 1]. The gradient estimator

g =
d

2δ′

(
F (x+ s∆+ δ′z, ξ)− F (x+ s∆− δ′z, ξ)

)
z,

as generated by Algorithm 3 satisfies the following condi-
tions

Eξ,z[g|x, s,∆] = ∇fδ′(x+ s∆) = ∇fδ′(w),

and
Eξ,z[∥g∥2 |x, s,∆] ≤ 16

√
2πdL2.

The bound on the second moment helps us replace G and
σ in the first-order setting (Assumption 4) by a quantifiable
constant. Running ME-DOL using (the noisy version of)
smoothed functions f i

δ and the gradient estimator in Algo-
rithm 3, we have the following convergence guarantee for
the zero-order setting.

Theorem 3. Let δ, ϵ ∈ (0, 1). Suppose that Assumptions 1,
2, 3 hold and that the zero-order oracle returns unbiased
estimates of the function values. Choose N,T, η as in The-
orem 1, and set D = δ(1−ρ)

4T
√
n

. Then, running Algorithm 1

with δ′ = δ
2 for N rounds gives an output that satisfies the

following inequality

Ek∼unif[K]

[∥∥∇f(w̄k)
∥∥
δ

]
≤ c11(δN)−

1
3 ≤ ϵ,

where c11 = O(d
1
3 (1 − ρ)−

2
3 ) and it does not depend on

δ and N (see Appendix A.5 for the exact quantification of
c11).

Similar to previous results, the complexity of finding a (δ, ϵ)-
stationary point is N = O(δ−1ϵ−3) in terms of δ and ϵ.
In decentralized zero-order nonsmooth nonconvex stochas-
tic optimization, our result matches the best known rate
O(δ−1ϵ−3) as shown in Table 2 without recourse to vari-
ance reduction.
Remark 5. In the zero-order setting (Table 2), the dimension
dependence of our algorithm is O(d), which improves upon
DGFM and DGFM+, where the dimension dependence is
O(d

3
2 ). This result also matches with the optimal dimension

dependence in the centralized setting following the analysis
of Kornowski & Shamir (2024).

4. Numerical Experiments
To validate the performance of our algorithm, we conduct
experiments on several datasets1.

Model. We consider the nonconvex penalized SVM with
capped-ℓ1 regularizer. The model trains a binary classifier
x ∈ Rd on the training data {ai, bi}mi=1, where ai ∈ Rd and
bi ∈ {−1, 1} are the (normalized) feature vector and label
for the i-th sample, respectively. Local objective functions
can be written as

f i(x) =
1

mi

mi∑
j=1

l(bji (a
j
i )

⊤x) + ν(x),

where l(y) = max{1 − y, 0}, m =
∑n

i=1 mi, ν(x) =

λ
∑d

j=1 min{|x(j)|, α}, and λ, α > 0. Similar to experi-
ments of Lin et al. (2024), we set λ = 10−5/n and α = 2.
For each dataset, we divide the training samples equally
among agents, i.e., mi = m/n.

Setup. We consider a network of n = 20 agents with a ring
topology. Hyper-parameters of our algorithm, η and D, are
selected based on the theorems, where η = Θ(D/

√
T ). We

set η = 0.01×D and vary D in the range of 10−4 to 10−2

in different experiments.

Results. To empirically analyze the performance of ME-
DOL, global gradient norms

∥∥∇f(w̄k)
∥∥ for k ≥ 1 are

calculated for both first-order and zero-order settings. We
use three datasets (ijcnn, rcv, SUSY) to illustrate the de-
cay of gradient norms with respect to iterations. The plots
are reported in Figs. 1 and 2. This observation validates
Theorems 2 and 3 in our paper, respectively.

We further evaluate the classification accuracy over the test
data. We compare our algorithm in the zero-order setting
with DGFM in Lin et al. (2024) on three datasets (a9a,
HIGGS, covtype), and accuracy plots are reported in Fig.
5 (see Appendix C). We can see that our algorithm dom-
inates DGFM in terms of the test classification accuracy.

1Codes for numerical experiments are available at
https://github.com/emreesahinoglu/Decentralized-Nonsmooth.git
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Figure 1. Evaluation of the gradient norm in the first-order setting.

Figure 2. Evaluation of the gradient norm in the zero-order setting.

In the first-order setting, we compare our algorithm with
DPSGD in Lian et al. (2017) on three datasets (a9a, HIGGS,
covtype), and accuracy plots are depicted in Fig. 6 (see
Appendix C), where again our algorithm achieves a better
performance in terms of the classification accuracy. Note
that DPSGD was originally proposed for smooth problems,
but the same algorithm with projection (DPSM) was ana-
lyzed in the nonsmooth setting as well (Chen et al., 2021).

Impact of Network: We also evaluate the effect of net-
work connectivity on the ring-based graphs with n = 20
agents, using the number of neighbors from {7, 9, 11, 13}.
The corresponding ρ values are {0.81, 0.70, 0.57, 0.44}, re-
spectively. As the number of neighbors increases, the graph
becomes more connected, and the value of ρ decreases. In
Fig. 3 we observe that better connectivity (smaller ρ) results
in a faster convergence in the first-order setting.

To further evaluate the effect of network topology, we design
the communication matrices based on Erdos-Renyi random
graph G(20, p), where p represents the probability of ex-
istence of an edge. In this experiment, p is selected from
{0.5, 0.6, 0.7, 0.8}, for which the corresponding ρ values

Figure 3. Ring graphs in the first-order setting.

Figure 4. Random graphs in the first-order setting.

are {0.83, 0.63, 0.56, 0.47}. The plots are presented in Fig.
4, where again we observe that larger probability, which
implies (possibly) better connectivity, results in a faster con-
vergence. Note that since in this experiment the graphs are
generated randomly, one might get different values for ρ
even by trying the same edge probabilities.

5. Conclusion
We presented a novel algorithm for decentralized nons-
mooth nonconvex stochastic optimization in first-order and
zero-order oracle settings. We adopted recent techniques
on online-to-nonconvex conversion (Cutkosky et al., 2023)
and the geometric lemma on Goldstein subdifferential sets
(Kornowski & Shamir, 2024) to streamline the finite-time
analysis of the algorithm. Our algorithm achieved the op-
timal sample complexity of O(δ−1ϵ−3) for finding (δ, ϵ)-
stationary points of the global objective in three settings,
namely (i) smooth first-order, (ii) nonsmooth first-order,
and (iii) nonsmooth zero-order. Notably, to the best of our
knowledge, we provided the first finite-time convergence
characterization in the nonsmooth first-order setting (with-
out weak-convexity assumption (Chen et al., 2021)), and
our result on the nonsmooth zero-order setting does not use
variance reduction. Future directions include the investiga-
tion of high probability bounds (as opposed to expectation),
the optimal dependence to network parameters, as well as
convergence in the deterministic regime.

In our theorems, we found that N = O((1− ρ)−2), but it
is challenging to evaluate the optimality with respect to ρ
in the nonsmooth setting using the (δ, ϵ)-stationarity con-
cept. There is currently no lower bound on the communica-
tion complexity for the decentralized nonsmooth nonconvex
stochastic optimization, i.e., in the nonsmooth setting the op-
timal dependence on ρ in finding (δ, ϵ)-stationary points has
not been explored yet. For the smooth decentralized setting,
the lower bound on ρ-dependency is given as O((1− ρ)−

1
2 )

(Lu & De Sa, 2021), using a carefully designed commu-
nication protocol that allows for network structure change.
Whether the optimal dependence to ρ in the nonsmooth set-
ting is the same and whether that potential gap can be closed
are interesting research questions.

9



Online Optimization Perspective on First-Order and Zero-Order Decentralized Nonsmooth Nonconvex Stochastic Optimization

Impact Statement
We do not anticipate any future societal consequences as this
work contributes to the theory of decentralized optimization.

Acknowledgements
The authors gratefully acknowledge the support of Mechan-
ical and Industrial Engineering (MIE) Chair Fellowship at
Northeastern University as well as NSF ECCS-2240788
Award for this research.

References
Arjevani, Y., Carmon, Y., Duchi, J. C., Foster, D. J., Srebro,

N., and Woodworth, B. Lower bounds for non-convex
stochastic optimization. Mathematical Programming, 199
(1-2):165–214, 2023.

Carmon, Y., Duchi, J. C., Hinder, O., and Sidford, A. Lower
bounds for finding stationary points I. Mathematical
Programming, 184(1-2):71–120, 2020.

Chen, L., Xu, J., and Luo, L. Faster gradient-free algorithms
for nonsmooth nonconvex stochastic optimization. In
International Conference on Machine Learning (ICML),
pp. 5219–5233. PMLR, 2023.

Chen, S., Garcia, A., and Shahrampour, S. On distributed
nonconvex optimization: Projected subgradient method
for weakly convex problems in networks. IEEE Transac-
tions on Automatic Control, 67(2):662–675, 2021.

Clarke, F. H., Ledyaev, Y. S., Stern, R. J., and Wolenski,
P. R. Nonsmooth analysis and control theory, volume
178. Springer Science & Business Media, 2008.

Cutkosky, A., Mehta, H., and Orabona, F. Optimal stochas-
tic non-smooth non-convex optimization through online-
to-non-convex conversion. In International Conference
on Machine Learning (ICML), pp. 6643–6670. PMLR,
2023.

Daniilidis, A. and Drusvyatskiy, D. Pathological subgra-
dient dynamics. SIAM Journal on Optimization, 30(2):
1327–1338, 2020.

Davis, D. and Drusvyatskiy, D. Stochastic model-based
minimization of weakly convex functions. SIAM Journal
on Optimization, 29(1):207–239, 2019.

Davis, D., Drusvyatskiy, D., Lee, Y. T., Padmanabhan, S.,
and Ye, G. A gradient sampling method with complex-
ity guarantees for lipschitz functions in high and low
dimensions. Advances in Neural Information Processing
Systems (NeurIPS), 35:6692–6703, 2022.

Ghadimi, S. and Lan, G. Stochastic first-and zeroth-order
methods for nonconvex stochastic programming. SIAM
Journal on Optimization, 23(4):2341–2368, 2013.

Jordan, M., Kornowski, G., Lin, T., Shamir, O., and Zam-
petakis, M. Deterministic nonsmooth nonconvex opti-
mization. In The Thirty Sixth Annual Conference on
Learning Theory, pp. 4570–4597. PMLR, 2023.

Jordan, M. I., Lin, T., and Zampetakis, M. On the complex-
ity of deterministic nonsmooth and nonconvex optimiza-
tion. arXiv preprint arXiv:2209.12463, 2022.

Koloskova, A., Stich, S., and Jaggi, M. Decentralized
stochastic optimization and gossip algorithms with com-
pressed communication. In International Conference on
Machine Learning (ICML), pp. 3478–3487, 2019.

Kornowski, G. and Shamir, O. Oracle complexity in non-
smooth nonconvex optimization. Advances in Neural
Information Processing Systems (NeurIPS), 34:324–334,
2021.

Kornowski, G. and Shamir, O. An algorithm with optimal
dimension-dependence for zero-order nonsmooth noncon-
vex stochastic optimization. Journal of Machine Learning
Research, 25(122):1–14, 2024.

Li, T., Sahu, A. K., Zaheer, M., Sanjabi, M., Talwalkar, A.,
and Smith, V. Federated optimization in heterogeneous
networks. Proceedings of Machine learning and systems,
2:429–450, 2020.

Lian, X., Zhang, C., Zhang, H., Hsieh, C.-J., Zhang, W.,
and Liu, J. Can decentralized algorithms outperform
centralized algorithms? a case study for decentralized
parallel stochastic gradient descent. Advances in neural
information processing systems (NeurIPS), 30, 2017.

Lin, T., Zheng, Z., and Jordan, M. Gradient-free methods
for deterministic and stochastic nonsmooth nonconvex
optimization. Advances in Neural Information Processing
Systems (NeurIPS), 35:26160–26175, 2022.

Lin, Z., Xia, J., Deng, Q., and Luo, L. Decentralized
gradient-free methods for stochastic non-smooth non-
convex optimization. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 38, pp. 17477–
17486, 2024.

Liu, J. S. and Liu, J. S. Monte Carlo strategies in scientific
computing, volume 75. Springer, 2001.

Lu, Y. and De Sa, C. Optimal complexity in decentral-
ized training. In International Conference on Machine
Learning (ICML), pp. 7111–7123. PMLR, 2021.

10



Online Optimization Perspective on First-Order and Zero-Order Decentralized Nonsmooth Nonconvex Stochastic Optimization

Majewski, S., Miasojedow, B., and Moulines, E. Analysis
of nonsmooth stochastic approximation: the differential
inclusion approach. arXiv preprint arXiv:1805.01916,
2018.

McMahan, H. B., Yu, F., Richtarik, P., Suresh, A., and
Bacon, D. Federated learning: Strategies for improving
communication efficiency. In Proceedings of the 29th
Conference on Neural Information Processing Systems
(NeurIPS), Barcelona, Spain, pp. 5–10, 2016.

Murray, R., Swenson, B., and Kar, S. Revisiting normalized
gradient descent: Fast evasion of saddle points. IEEE
Transactions on Automatic Control, 64(11):4818–4824,
2019.

Nedic, A. and Ozdaglar, A. Distributed subgradient
methods for multi-agent optimization. IEEE Transac-
tions on Automatic Control, 54(1):48–61, 2009. doi:
10.1109/TAC.2008.2009515.

Rockafellar, R. T. and Wets, R. J.-B. Variational analysis,
volume 317. Springer Science & Business Media, 2009.

Scaman, K., Bach, F., Bubeck, S., Massoulié, L., and Lee,
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Yousefian, F., Nedić, A., and Shanbhag, U. V. On stochas-
tic gradient and subgradient methods with adaptive
steplength sequences. Automatica, 48(1):56–67, 2012.

Zhang, J., He, T., Sra, S., and Jadbabaie, A. Why gradient
clipping accelerates training: A theoretical justification
for adaptivity. In International Conference on Learning
Representations (ICLR), 2020a.

Zhang, J., Lin, H., Jegelka, S., Sra, S., and Jadbabaie, A.
Complexity of finding stationary points of nonconvex
nonsmooth functions. In International Conference on
Machine Learning (ICML), pp. 11173–11182, 2020b.

11



Online Optimization Perspective on First-Order and Zero-Order Decentralized Nonsmooth Nonconvex Stochastic Optimization

A. Proof of Theorems
First, we state the following lemma to use in the proof of Theorem 1.

Lemma 4. Given Assumption 1, for the update in Algorithm 1, we have for any i ∈ [n], t ∈ [T ], k ∈ [K] that

∥∥ȳkt − ykt,i
∥∥ ≤ D

√
n

1− ρ
.

Proof. We have based on the update rule that

ykt,i =

n∑
j=1

Pijx
k
t,j =

n∑
j=1

Pijy
k
t−1,j +

n∑
j=1

Pij∆
k
t,j .

Let ykt ∈ Rnd be the concatenation of vectors ykt,1, y
k
t,2, . . . , y

k
t,n, and ζkt ∈ Rnd be the concatenation of vectors∑n

j=1 P1j∆
k
t,j ,
∑n

j=1 P2j∆
k
t,j , . . . ,

∑n
j=1 Pnj∆

k
t,j . We then have

ykt = (P ⊗ I)ykt−1 + ζkt .

Without loss of generality let yk0 = 0. Then,

ykt,i =

n∑
j=1

t−1∑
τ=0

[P t−1−τ ]ijζ
k
τ+1,j ⇒ ykt,i − ȳkt =

n∑
j=1

t−1∑
τ=0

(
[P t−1−τ ]ij −

1

n

)
ζkτ+1,j .

Combining the geometric mixing bound of
∑n

j=1 |P t
ij − 1

n | ≤
√
nρt (Liu & Liu, 2001) and the fact that ∥ζkτ+1,j∥ ≤ D, the

proof is complete.

A.1. Proof of Proposition 2

Proof. By Lemma 1 we have ∂µfδ(x) ⊆ ∂µ+δf(x). Using Definition 2, we have ∥∇f(x)∥µ+δ ≤ ∥∇fδ(x)∥µ. Replacing δ
with aδ and µ with (1− a)δ for a ∈ (0, 1) gives ∥∇f(x)∥δ ≤ ∥∇faδ(x)∥(1−a)δ .

A.2. Proof of Lemma 2

Proof. We know that
1

n

n∑
i=1

∇f i(w̄t) = ∇f(w̄t) =
1

n

n∑
i=1

∇f(w̄t).

Using L1 smoothness of f i and f and ∥wt,i − w̄t∥ ≤ r, we have that
∥∥∇f i(wt,i)−∇f i(w̄t)

∥∥ ≤ rL1 and
∥∇f(wt,i)−∇f(w̄t)∥ ≤ rL1. Therefore,∥∥∥∥∥ 1

nT

T∑
t=1

n∑
i=1

∇f(wt,i)

∥∥∥∥∥ ≤ 1

nT

T∑
t=1

∥∥∥∥∥
n∑

i=1

∇f(wt,i)−
n∑

i=1

∇f(w̄t)

∥∥∥∥∥+ 1

nT

T∑
t=1

∥∥∥∥∥
n∑

i=1

∇f i(w̄t)−
n∑

i=1

∇f i(wt,i)

∥∥∥∥∥
+

∥∥∥∥∥ 1

nT

T∑
t=1

n∑
i=1

∇f i(wt,i)

∥∥∥∥∥
≤

∥∥∥∥∥ 1

nT

T∑
t=1

n∑
i=1

∇f i(wt,i)

∥∥∥∥∥+ 2rL1,

which completes the proof.

A.3. Proof of Theorem 1

Proof. Throughout the proof, superscript k denotes the k-th epoch, subscript i denotes the agent index, and subscript t
represents the iteration.
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Let us start with the following definitions:

gkt,i := Oi
f (w

k
t,i) (stochastic gradient returned by the oracle)

ḡkt := 1
n

∑n
i=1 g

k
t,i (average of local stochastic gradients)

∆k
t,i is generated based on the decentralized online learning algorithm A (Algorithm 4)

∆̄k
t := 1

n

∑n
i=1 ∆

k
t,i (average of local actions)

∇k
t,i :=

∫ 1

0
∇f i(ykt−1,i + s∆k

t,i)ds (expected local gradient)

∇̄k
t := 1

n

∑n
i=1 ∇k

t,i (average of expected local gradients)

∇̃k
t :=

∫ 1

0
∇f(x̄k

t−1 + s∆̄k
t )ds (expected global gradient)

For any Lipschitz continuous function and an update rule xt = xt−1 +∆t we have

f(xt)− f(xt−1) =

∫ 1

0

⟨∇f(xt−1 + s∆t),∆t⟩ds = ⟨∇t,∆t⟩.

In our decentralized update rule it follows by doubly stochasticity of P that

ȳkt :=
1

n

n∑
i=1

ykt,i =
1

n

n∑
i=1

n∑
j=1

Pijx
k
t,j =

1

n

n∑
j=1

n∑
i=1

Pijx
k
t,j =

1

n

n∑
j=1

xk
t,j =: x̄k

t ,

and since xk
t,i = ykt−1,i +∆k

t,i, we get that x̄k
t = x̄k

t−1 + ∆̄k
t .

Therefore, we can write the following for the global function f(x) = 1
n

∑n
i=1 f

i(x),

f(x̄k
t )− f(x̄k

t−1) = ⟨∇̃k
t , ∆̄

k
t ⟩,

and summing both sides over t ∈ [T ] gives

f(x̄k
T )− f(x̄k

0) =

T∑
i=1

⟨∇̃k
t , ∆̄

k
t ⟩.

There are two sources of randomness in the algorithm, namely ξkt,i and skt,i. Taking expectation over those, we can decompose
above into four terms:

E[f(x̄k
T )− f(x̄k

0)] =

T∑
t=1

E[⟨∆̄k
t , ∇̃k

t ⟩]

=

T∑
t=1

E[⟨ḡkt , ∆̄k
t − uk⟩]︸ ︷︷ ︸

Rk
T (uk)

+

T∑
t=1

E[⟨ḡkt , uk⟩]︸ ︷︷ ︸
T2

+

T∑
t=1

E[⟨∆̄k
t , ∇̃k

t − ∇̄k
t ⟩]︸ ︷︷ ︸

T3

+

T∑
t=1

E[⟨∆̄k
t , ∇̄k

t − ḡkt ⟩], (2)

where the last term equals zero due to the unbiased gradient assumption that E[ḡkt ] = ∇̄k
t . The above holds for any uk, and

choosing uk = −D
∑T

t=1

∑n
i=1 ∇fi(wk

t,i)

∥∑T
t=1

∑n
i=1 ∇fi(wk

t,i)∥
, we have that

T2 = E[⟨
T∑

t=1

ḡkt , u
k⟩] = E[⟨uk,

1

n

T∑
t=1

n∑
i=1

∇f i(wk
t,i)⟩] + E[⟨uk,

T∑
t=1

ḡkt − 1

n

T∑
t=1

n∑
i=1

∇f i(wk
t,i)⟩]

≤ E

[
−DT

∥∥∥∥∥ 1

nT

T∑
t=1

n∑
i=1

∇f i(wk
t,i)

∥∥∥∥∥
]
+ E

[
D

n

∥∥∥∥∥
T∑

t=1

n∑
i=1

(∇f i(wk
t,i)− gkt,i)

∥∥∥∥∥
]

≤ E

[
−DT

∥∥∥∥∥ 1

nT

T∑
t=1

n∑
i=1

∇f i(wk
t,i)

∥∥∥∥∥
]
+Dσ

√
T

n
,
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where we used Assumption 4 and Jensen’s inequality in the last line.

Rearranging Equation (2) using above and dividing by DT yields

E

[∥∥∥∥∥ 1

nT

T∑
t=1

n∑
i=1

∇f i(wk
t,i)

∥∥∥∥∥
]

︸ ︷︷ ︸
ϵ−term

≤ E[f(x̄k
0)− f(x̄k

T )]

DT︸ ︷︷ ︸
sub−optimality

+
σ√
nT︸ ︷︷ ︸

noise

+
E[
∑T

t=1⟨ḡkt , ∆̄k
t − uk⟩]

DT︸ ︷︷ ︸
regret−term

+
E[
∑T

t=1⟨∆̄k
t , ∇̃k

t − ∇̄k
t ⟩]

DT︸ ︷︷ ︸
discrepancy

.

(3)
We will now average above over K epochs and bound each term. It is only the sub-optimality term that will telescope. Other
terms can be bounded independent of k, i.e., bounds for noise term, regret term and discrepancy term are independent of
epochs. Recall that N := KT .

Sub-optimality Term: Let γ := f(x̄0)− infx f(x). Summing the sub-optimality term over k ∈ [K] and dividing by K,
the sum telescopes as follows due to the initialization at the start of each epoch k ∈ [K]:

1

K

K∑
k=1

E[f(x̄k
0)− f(x̄k

T )]

DT
=

f(x̄1
0)− E[f(x̄K

T )]

DTK
≤ γ

DN
. (4)

Regret Term: For the regret term, we can use Theorem 5 of Shahrampour & Jadbabaie (2018) with a fixed learning rate η,
where for any k ∈ [K]:

Rk
T (u

k) ≤ 4D2

η
+ η
(G2T

2
+

2TG(L+G)
√
n

1− ρ

)
.

Choosing η = 8D
c1

√
T

where c1 = 4
√

G2(1−ρ)+4G(L+G)
√
n

2(1−ρ) gives

regret− term ≤ D
√
Tc1

DT
= O(T−1/2). (5)

Discrepancy Term: For this part, we remove the superscript k for simplicity as the results hold for any k ∈ [K]. First,
recall that ∥∆̄t∥ ≤ D since the domain D in Algorithm 4 is bounded. Next, we will bound ∥∇̃t −∇̄t∥ under the assumption
that local functions f i are L1-Lipschitz smooth. Note that due to doubly stochasticity of P we also have x̄t = ȳt. Therefore,

∇̃t − ∇̄t =
1

n

n∑
i=1

∫ 1

0

(∇f i(ȳt−1 + s∆̄t)−∇f i(yt−1,i + s∆t,i))ds.

Then, we have

∥∇̃t − ∇̄t∥ ≤ L1

n

n∑
i=1

∫ 1

0

∥∥ȳt−1 + s∆̄t − yt−1,i − s∆t,i

∥∥ ds ≤ L1

n

n∑
i=1

∥ȳt−1 − yt−1,i∥+
L1

2n

n∑
i=1

∥∥∆̄t −∆t,i

∥∥ .
The first term can be bounded with Lemma 4 as ∥ȳt−1 − yt−1,i∥ ≤ D

√
n

1−ρ . We can bound the second term with∥∥∆̄t −∆t,i

∥∥ ≤ 2D. Hence, ∥∇̃t − ∇̄t∥ ≤ L1Dc2 where c2 :=
√
n

1−ρ + 1. The discrepancy term can then be bounded as

discrepancy − term ≤ DL1c2. (6)

Substituting (4), (5), and (6) into (3), we get

E

[
1

K

K∑
k=1

∥∥∥∥∥ 1

nT

T∑
t=1

n∑
i=1

∇f i(wk
t,i)

∥∥∥∥∥
]
≤ γ

DN
+

σ√
nT

+
c1√
T

+DL1c2. (7)

In the left-hand side of (7), we have the average of local gradients. Using Lemma 2, we can connect this to the average
of global gradients. To this end, we need r such that ∥wk

t,i − w̄k
t ∥ ≤ r. Since ∥ȳkt−1 − ykt−1,i∥ ≤ D

√
n

1−ρ , we have

∥wk
t,i − w̄k

t ∥ ≤ ∥ȳkt−1 − ykt−1,i∥+ 2D ≤ D(
√
n

1−ρ + 2). Now, utilizing Lemma 2 with r = D(
√
n

1−ρ + 2), we obtain∥∥∥∥∥ 1

nT

T∑
t=1

n∑
i=1

∇f(wk
t,i)

∥∥∥∥∥ ≤

∥∥∥∥∥ 1

nT

T∑
t=1

n∑
i=1

∇f i(wk
t,i)

∥∥∥∥∥+DL1

( 2
√
n

1− ρ
+ 4
)
. (8)
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Combining (7) and (8), we obtain

E

[
1

K

K∑
k=1

∥∥∥∥∥ 1

nT

T∑
t=1

n∑
i=1

∇f(wk
t,i)

∥∥∥∥∥
]
≤ γ

DN
+

σ√
nT

+
c1√
T

+DL1c3,

where c3 := c2 +
2
√
n

1−ρ + 4 = 3
√
n

1−ρ + 5.

We must have
∥∥wk

t,i − w̄k
∥∥ ≤ δ to bound

∥∥∇f(w̄k)
∥∥
δ
. We have

∥∥wk
t1,i

− wk
t2,j

∥∥ ≤
∥∥wk

t1,i
− w̄k

t1

∥∥ +
∥∥w̄k

t1 − w̄k
t2

∥∥ +∥∥wk
t2,j

− w̄k
t2

∥∥ ≤ 2r + DT = D( 2
√
n

1−ρ + 4 + T ). If T ≥ 3 and
√
n

1−ρ ≥ 2, choosing D = δ(1−ρ)
2T

√
n

guarantees that∥∥wk
t,i − w̄k

∥∥ ≤ δ, and thus

Ek∼unif[K]

[∥∥∇f(w̄k)
∥∥
δ

]
≤ E

[
1

K

K∑
k=1

∥∥∥∥∥ 1

nT

T∑
t=1

n∑
i=1

∇f(wk
t,i)

∥∥∥∥∥
]
≤ 2γT

√
n

δN(1− ρ)
+

σ√
nT

+
c1√
T

+
δL1(1− ρ)c3

2T
√
n

. (9)

This inequality will also be used in the proof of Theorem 2 and Theorem 3. Now, we can use δ < 1 and 1
T ≤ 1√

T
to get

E

[
1

K

K∑
k=1

∥∥∥∥∥ 1

nT

T∑
t=1

n∑
i=1

∇f(wk
t,i)

∥∥∥∥∥
]
≤ 2γ

√
n

δN(1− ρ)
T +

1√
T

(
σ√
n
+ c1 + L1

1− ρ

2
√
n
c3

)
.

Choosing T = c4 (δN)
2
3 where c4 :=

(
(1−ρ)(2σ+2c1

√
n+L1(1−ρ)c3)

8γn

) 2
3

, we have

E

[
1

K

K∑
k=1

∥∥∥∥∥ 1

nT

T∑
t=1

n∑
i=1

∇f(wk
t,i)

∥∥∥∥∥
]
≤ (δN)−

1
3

(
2γ

√
nc4

1− ρ
+

1
√
c4

(
σ√
n
+ c1 + L1

1− ρ

2
√
n
c3

))
= c5(δN)−

1
3 ,

where c5 := 6γ
√
n

1−ρ c4 = 6γ
√
n

1−ρ

(
(1−ρ)(2σ+2c1

√
n+L1(1−ρ)c3)

8γn

) 2
3

= 3
2

(
γ(2σ+2c1

√
n+L1(1−ρ)c3)

2

(1−ρ)
√
n

) 1
3

. In terms of the network

connectivity measure 1− ρ, c5 = O((1− ρ)−
2
3 ). As a result, we derive

Ek∼unif[K]

[∥∥∇f(w̄k)
∥∥
δ

]
≤ E

[
1

K

K∑
k=1

∥∥∥∥∥ 1

nT

T∑
t=1

n∑
i=1

∇f(wk
t,i)

∥∥∥∥∥
]
≤ O((δN)−

1
3 ),

which means that given {δ, ϵ, ρ}, we can find a (δ, ϵ)-stationary point in N = Θ
(
δ−1ϵ−3(1− ρ)−2

)
rounds. For smooth

functions δ = O(ϵ), so the overall rate matches the optimal rate of N = O(ϵ−4).

A.4. Proof of Theorem 2

Proof. Recall from Proposition 1 that (f i)δ and in turn fδ have L1-Lipschitz smooth gradients with smoothness parameter
L1 = cL

√
dδ−1, where L is due to Lipschitz continuity of the original functions f i and f . Now, in Equation (9) replacing δ

by δ
2 and f by f δ

2
, the smoothness parameter becomes L1 = 2cL

√
d

δ , which yields

E

[
1

K

K∑
k=1

∥∥∥∥∥ 1

nT

T∑
t=1

n∑
i=1

∇f δ
2
(wk

t,i)

∥∥∥∥∥
]
≤ 4γ′T

√
n

δN(1− ρ)
+

G√
nT

+
c1√
T

+
cL

√
d(1− ρ)c3
2T

√
n

, (10)

where γ′ := γ + L due to the approximation error incurred in (4), and σ is also replaced by G. For the last term we can use
1
T ≤ 1√

T
to get

E

[
1

K

K∑
k=1

∥∥∥∥∥ 1

nT

T∑
t=1

n∑
i=1

∇f δ
2
(wk

t,i)

∥∥∥∥∥
]
≤ 4γ′√n

δN(1− ρ)
T +

1√
T

(
G√
n
+ c1 +

cL
√
d(1− ρ)c3
2
√
n

)
.

Choosing T = c7 (δN)
2
3 where c7 :=

(
(1−ρ)(2G+2c1

√
n+cL

√
d(1−ρ)c3)

16γ′n

) 2
3

, we have

E

[
1

K

K∑
k=1

∥∥∥∥∥ 1

nT

T∑
t=1

n∑
i=1

∇f δ
2
(wk

t,i)

∥∥∥∥∥
]
≤ (δN)−

1
3

(
4γ′√nc7
(1− ρ)

+
1

√
c7

(
G√
n
+ c1 +

cL
√
d(1− ρ)

2
√
n

c3

))
= c8(δN)−

1
3 ,
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where c8 := 12γ′√n
1−ρ c7 = 12γ′√n

1−ρ

(
(1−ρ)(2G+2c1

√
n+cL

√
d(1−ρ)c3)

16γ′n

) 2
3

= 3
(

γ′(2G+2c1
√
n+cL

√
d(1−ρ)c3)

2

4(1−ρ)
√
n

) 1
3

. Using Propo-
sition 2 on the left-hand side of above completes the proof. In terms of the network connectivity measure 1− ρ, we have
c8 = O((1− ρ)−

2
3 ).

A.5. Proof of Theorem 3

Proof. Similar to the proof of Theorem 2, in Equation (9), we replace δ by δ
2 and f by f δ

2
, so the smoothness parameter

becomes L1 = 2cL
√
d

δ . Applying Lemma 3, we can bound σ by
√
16

√
2πdL2 as well. Therefore, we have

E

[
1

K

K∑
k=1

∥∥∥∥∥ 1

nT

T∑
t=1

n∑
i=1

∇f δ
2
(wk

t,i)

∥∥∥∥∥
]
≤ 4γ′T

√
n

δN(1− ρ)
+

√
16

√
2πdL2

√
nT

+
c10√
T

+
cL

√
d(1− ρ)c3
2T

√
n

,

where c10 := 4
√

c29(1−ρ)+4c9(L+c9)
√
n

2(1−ρ) and c9 :=
√

16
√
2πdL2.

If we follow similar steps as in the proof of Theorem 2, we have the following result

E

[
1

K

K∑
k=1

∥∥∥∥∥ 1

nT

T∑
t=1

n∑
i=1

∇f δ
2
(wk

t,i)

∥∥∥∥∥
]
≤ c11(δN)−

1
3 ,

where c11 := 3

(
γ′(2

√
16

√
2πdL2+2c10

√
n+cL

√
d(1−ρ)c3)

2

4(1−ρ)
√
n

) 1
3

. Using Proposition 2 on the left-hand side of above completes

the proof. In terms of the network connectivity measure 1−ρ and ambient dimension d, we have c11 = O(d
1
3 (1−ρ)−

2
3 ).

B. Constant Terms
The smoothness parameter of fδ is κ d!!

(d−1)!!
L
δ , where κ = 2

π if d is even, and κ = 1 otherwise. Thus, the geometric constant
c := κ 1√

d
d!!

(d−1)!! . We note that lim
d→∞

c = lim
d→∞

κ 1√
d

d!!
(d−1)!! =

√
π
2 (Yousefian et al., 2012). Here, we summarize the constant

terms used throughout the proofs:

c1 = 4

√
G2(1− ρ) + 4G(L+G)

√
n

2(1− ρ)

c3 =
3
√
n

1− ρ
+ 5

c5 =
3

2

(
γ(2σ + 2c1

√
n+ L1(1− ρ)c3)

2

(1− ρ)
√
n

) 1
3

c8 = 3

(
γ′(2G+ 2c1

√
n+ cL

√
d(1− ρ)c3)

2

4(1− ρ)
√
n

) 1
3

c9 =

√
16
√
2πdL2

c10 = 4

√
c29(1− ρ) + 4c9(L+ c9)

√
n

2(1− ρ)

c11 = 3

(
γ′(2

√
16
√
2πdL2 + 2c10

√
n+ cL

√
d(1− ρ)c3)

2

4(1− ρ)
√
n

) 1
3

C. Numerical Experiments Results
In this section, we present the plots of test accuracy comparisons (Figs. 5-6), described in our experiments.
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Figure 5. Evaluation of the test accuracy of our algorithm and DGFM in the zero-order setting.

Figure 6. Evaluation of the test accuracy of our algorithm and DPSGD in the first-order setting.
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