
Towards Generalizable Vision-Language Robotic Manipulation:
A Benchmark and LLM-guided 3D Policy

Ricardo Garcia∗†, Shizhe Chen∗†, Cordelia Schmid†

Press Pick Push Screw Close Open Stack/Put

"push down the

navy button"
"grasp the violet cup

and lift it"

"use the stick to drag the

cube onto the teal target"
"screw in the rose

light bulb"
"close the laptop"

"slide the bottom

drawer open"
"stack 2 purple blocks"

o
p
e
n
 d

ra
w

e
r

s
ta

c
k
 b

lo
c
k
s

re
a
c
h
 a

n
d
 d

ra
g

p
ic

k
 u

p
 c

u
p

p
u
s
h
 b

u
tt

o
n

c
lo

s
e

la
p
to

p
 l
id

s
c
re

w
 b

u
lb

Testing tasks - Generalization level

Training tasks

Level 2: Novel rigid objects

Color

p
ic

k
 a

n
d
 l
if
t

Shape

p
u
s
h
 b

u
tt

o
n

Level 3: Novel articulated objects

Instance Category

Action

part/instance

c
lo

s
e
 d

ra
w

e
r

c
lo

s
e
 g

ri
ll

c
lo

s
e

la
p
to

p
 l
id

o
p
e
n
 d

ra
w

e
r

Level 1: Novel placements

s
ta

c
k
 b

lo
c
k
s

p
u
s
h
 b

u
tt

o
n

Level 4: Long-horizon tasks

s
ta

c
k
 c

u
p
s

p
u
t

it
e
m

s

in
 d

ra
w

e
r

p
u
s
h
 b

u
tt

o
n
s

Fig. 1: GemBench benchmark for vision-language robotic manipulation. Top: GemBench comprises 16 training tasks
with 31 variations, covering seven action primitives. Bottom: The testing set includes 44 tasks with 92 variations, which are
organized into four progressively more challenging levels to systematically evaluate generalization capabilities.

Abstract— Generalizing language-conditioned robotic policies
to new tasks remains a significant challenge, hampered by
the lack of suitable simulation benchmarks. In this paper, we
address this gap by introducing GemBench, a novel benchmark
to assess generalization capabilities of vision-language robotic
manipulation policies. GemBench incorporates seven general
action primitives and four levels of generalization, spanning
novel placements, rigid and articulated objects, and complex
long-horizon tasks. We evaluate state-of-the-art approaches on
GemBench and also introduce a new method. Our approach
3D-LOTUS leverages rich 3D information for action prediction
conditioned on language. While 3D-LOTUS excels in both
efficiency and performance on seen tasks, it struggles with
novel tasks. To address this, we present 3D-LOTUS++, a frame-
work that integrates 3D-LOTUS’s motion planning capabilities
with the task planning capabilities of LLMs and the object
grounding accuracy of VLMs. 3D-LOTUS++ achieves state-of-
the-art performance on novel tasks of GemBench, setting a
new standard for generalization in robotic manipulation. The
benchmark, codes and trained models are available at https:
//www.di.ens.fr/willow/research/gembench/.

I. INTRODUCTION

Vision-language robotic manipulation aims to train poli-
cies performing complex tasks based on visual inputs and
language instructions [1], [2], [3], [4]. Given the vast di-
versity of real-world tasks, collecting data for every possible

∗The authors contributed equally to this work.
†Inria, École normale supérieure, CNRS, PSL Research University

firstname.lastname@inria.fr

task is prohibitively expensive. Hence, it is critical to develop
models that can effectively generalize to novel tasks.

A number of approaches have been proposed to improve
the generalization ability of robotic policies. One prominent
direction focuses on pretraining visual and language rep-
resentations on large-scale web data for robotics [5], [6],
[7], [8]. While these representations are more powerful, they
do not directly translate into generalizable policies for new
tasks. Another approach [1], [9], [10], [11], [12] pretrains
entire robotic policies by combining robot data with web
data, but these methods remain constrained by the limited
size and diversity of available robot datasets [13]. More
recently, foundation models such as large language models
(LLMs) [14] and vision-language models (VLMs) [15] have
been employed to enhance generalization of robot policies.
For example, CaP [16] uses LLMs to generate codes that
executes primitive actions, and VoxPoser [3] composes value
maps with foundation models for action execution with
classic motion planning. However, these approaches focus
on simpler tasks like pick-and-place and often struggle with
more complex manipulation like rotating objects.

Furthermore, there is a notable lack of systematic bench-
marks to evaluate the generalization capabilities of models.
Though several simulation-based benchmarks have been de-
veloped for vision-language robotic manipulation [26], [21],
[19], they primarily evaluate models on tasks seen during
training, neglecting the crucial aspect of generalization. A

ar
X

iv
:2

41
0.

01
34

5v
2

 [
cs

.R
O

]
 1

 M
ar

 2
02

5

https://www.di.ens.fr/willow/research/gembench/
https://www.di.ens.fr/willow/research/gembench/

TABLE I: Comparison of benchmarks for vision-and-language robotic manipulation. Multi-skill: covering multiple
action primitives beyond pick and place. atc-obj: tasks involve interactions with articulated objects. Test generalization level
to attr-obj: unseen size, color or texture of the object, act-obj: unseen action object combination, inst or cate: same action for
unseen object instance or category respectively and long-horizon: unseen combination of multiple seen actions and objects.

Benchmark Simulator Physics # Train
task(var)

Test
task(var)

Multi-
skills

atc-
obj

Test generalization level
attr-obj act-obj inst cate long-horizon

RLBench-74Task [17] RLBench ✓ 74 (74) 74 (74) ✓ ✓ ✗ ✗ ✗ ✗ ✗
RLBench-18Task [18] RLBench ✓ 18 (249) 18 (249) ✓ ✓ ✗ ✗ ✗ ✗ ✗
VLMBench [19] RLBench ✓ 8 (233) 8 (374) ✓ ✓ ✓ ✗ ✓ ✗ ✗
ALFRED [20] AI2-THOR ✗ 7 (21,023) 7 (1,529) ✓ ✓ ✓ ✗ ✗ ✗ ✓
Calvin [21] PyBullet ✓ 34 34 (1000) ✓ ✓ ✓ ✗ ✗ ✗ ✓
Ravens [22] PyBullet ✓ 10 10 ✗ ✗ ✓ ✗ ✓ ✓ ✗
Arnold [23] Isaac Sim ✓ 8 (3571) 8 (800) ✓ ✓ ✓ ✓ ✓ ✗ ✗
VIMA-Bench [24] Ravens ✓ 13 17 ✗ ✗ ✓ ✗ ✓ ✓ ✓
Colosseum [25] RLBench ✓ 20 (280) 20 (20,371) ✓ ✓ ✓ ✗ ✗ ✗ ✗
GemBench (Ours) RLBench ✓ 16 (31) 44 (92) ✓ ✓ ✓ ✓ ✓ ✓ ✓

few exceptions like VIMA-Bench [24] and Colosseum [25]
attempt to evaluate generalization abilities. However, VIMA-
Bench is limited to relatively simple action skills, while
Colosseum focuses more on environment perturbations like
lighting changes rather than generalizing to new tasks.

In this work, we introduce GEMBench - a new simu-
lation benchmark to evaluate GEneralization capabilities for
vision-language robotic Manipulation. As shown in Figure 1,
GemBench features two key improvements compared to prior
work. First, it incorporates a wider range of complex tasks,
involving seven core action skills: press, pick, push, screw,
close, open and put. Secondly, it introduces a comprehensive
suite of four generalization levels with increasing difficulty,
focusing on generalization to novel placements, rigid objects,
articulated objects, and long-horizon tasks respectively.

To tackle the problem, we first propose a new 3D
robotic manipulation policy - 3D-LOTUS with Language-
cOnditioned poinT cloUd tranSformer. By leveraging a
strong 3D backbone and an effective action representation,
3D-LOTUS achieves state-of-the-art performance on existing
vision-language manipulation benchmark [18] and Level 1 of
GemBench, while significantly improving training efficiency.
Nevertheless, 3D-LOTUS struggles to generalize to new
tasks in GemBench, mainly due to limitations in planning for
new tasks and grounding new objects. Therefore, we propose
an enhanced version 3D-LOTUS++ which integrates founda-
tion models to boost generalization capabilities. Specifically,
LLMs are employed for task planning, decomposing tasks
into step-by-step actionable plans, and VLMs are used for
object grounding which can localize new objects mentioned
in the plan. With the grounded object and the primitive action
in the plan, 3D-LOTUS serves as the motion controller to
generate action trajectories. Experimental results demonstrate
that 3D-LOTUS++ significantly improves generalization,
outperforming 3D-LOTUS on Levels 2 to 4 of GemBench.
To summarize, our contributions are three fold:
• We introduce a new benchmark GemBench to system-
atically evaluate generalization in vision-language robotic
manipulation across four complexity levels.
• We propose an effective manipulation policy 3D-LOTUS

and enhance its generalization ability with foundation models
for task planning and object grounding (3D-LOTUS++).
• Our models establish state of the arts on existing bench-
mark and GemBench, and also work reliably on a real robot.

II. RELATED WORK

Robotic manipulation benchmark. Significant progress has
been made in the development of robot simulators such as
RLBench [26], AI2-THOR [27] and Isaac Sim [28]. Leverag-
ing these simulators, various benchmarks have emerged for
robotic manipulation. Early benchmarks [17], [18] train and
test policies on the same task set, overlooking the critical
aspect of generalization to unseen scenarios. To address
this, more recent benchmarks [19], [20], [21], [22], [23],
[25], [24] have introduced generalization evaluations on new
compositions of objects and colors, new object shapes, or
even long-horizon tasks. Among them, VIMA-Bench [24]
and Colosseum [25] are most similar to our work, aiming
to systematically evaluate different generalization abilities.
However, VIMA-Bench [24] is limited to pick-and-place
tasks using a suction gripper, while Colosseum [25] em-
phasizes generalization to environment perturbations such as
changes in lighting and camera angles. In contrast, Gem-
Bench covers more complex action skills and evaluate gen-
eralization to entirely new tasks rather than perturbations of
the seen tasks. Table I provides a comprehensive comparison
of these benchmarks. We can observe that GemBench is most
general among all of them.
Vision-and-language robotic manipulation. Learning
robotic manipulation conditioned on vision and language
has received increasing attention [29], [30], [31]. The high
dimensionality of manipulation action space makes it chal-
lenging to directly use reinforcement learning (RL) in train-
ing [32]. Therefore, most works rely on imitation learn-
ing (IL) [33], [1], [17], [18], [34], [2], [8], [4], [35] using
scripted trajectories [26] or tele-operation data [13]. Visual
representation plays a crucial role in policy learning. Existing
works [33], [1], [36], [17], [34], [37] mainly use 2D images
to predict actions, though recent works have begun exploring
3D representations [38], [18], [2], [4], [35], [8]. In this work,

we take advantage of rich spatial information of 3D point
cloud for motion planning, while leaving object grounding
in 2D to benefit from the generalization strength of pretrained
2D models [15], [39], [40].
Foundation models for robotics. Learning-based robotic
policies often struggle to generalize to new scenarios [41].
Inspired by the remarkable generalization capabilities of
foundation models [39], [15], [42], recent work explores how
to leverage these models for planning, perception and control
in robotics. Huang et al. [43] use LLMs to decompose high-
level tasks into sub-steps. To ground plans in the visual
world, SayCan [44] combine LLMs with value functions
of pretrained skills. ViLa [45] replaces LLMs with a multi-
modal LLM GPT-4V [46]. CaP [16] instructs LLMs to write
code which call tools for perception and control. However,
these approaches rely on predefined motion skills, limiting
applicability to broader tasks. To address this, VoxPoser [3]
use LLMs to construct 3D voxel maps of affordance, con-
straint, rotation and velocity, which are fed into traditional
motion planing algorithms to plan a trajectory. Nevertheless,
VoxPoser only provides a coarse-grained understanding of
the scene and struggles with precise robot control. In this
work, we propose to combine the generalization ability of
foundation models with strong motion control capabilities
of 3D policies for robotic manipulation.

III. GEMBENCH: GENERALIZABLE VISION-LANGUAGE
ROBOTIC MANIPULATION BENCHMARK

This paper introduces the GemBench benchmark to sys-
tematically evaluate generalization capabilities of vision-and-
language robotic manipulation policies. It is built upon the
RLBench simulator [26], which provides a wide range of
visually and physically realistic tasks together with a frame-
work to generate scripted demonstrations. In the following,
we first describe training tasks in GemBench in Sec III-A
and then present four levels of generalization for evaluation
in Sec III-B. The details of the proposed GemBench are
presented in Sec VI-A in the appendix.

A. Training tasks

We select 16 tasks (31 variations1) from existing RLBench
benchmarks [26], [18] to capture a diverse range of action
primitives beyond simple pick-and-place. These tasks, shown
in Figure 1 (top), include seven action primitives: press, pick,
push, screw, close, open, and stack/put. Examples of training
tasks are push button, pick up cup, reach and drag cube,
screw light bulb in, close laptop lid, open drawer, stack
blocks. Task variations cover 20 objects (e.g., cube, cup,
fridge), 20 colors (e.g., red, blue, violet), and 3 object parts
(e.g., top, middle, bottom). The training set is sufficiently
diverse and should enable a robot to generalize to new tasks,
such as novel attribute-object compositions, new action-
object pairings, or even entirely new shapes.

1The RLBench tasks typically involve manipulating fixed-shape objects,
such as pressing a button, with variations including different object colors
(e.g., red or blue button), parts (e.g., top or middle drawer), and manipulation
sequences (e.g., press a red button followed by a green one).

B. Testing tasks with four levels of generalization

As shown in Figure 1 (bottom), the test set includes
four levels of generalization that progressively increase the
difficulty of vision-language robotic manipulation. The test
set consists of a total of 44 tasks (92 variations), with 23
tasks selected from the original RLBench 100 tasks [26] and
21 newly scripted tasks. The test levels differ in object shape
and color, object articulation and horizon of the tasks.
Level 1 - Novel placements: This level consists of the
same 16 tasks (31 variations) as the training set, but with
new object placements randomly sampled within the robot’s
workspace. Additionally, some tasks feature new distractor
objects with different colors. The objective is to evaluate
whether a policy can perform well on seen tasks with minor
configuration changes.
Level 2 - Novel rigid objects: This level comprises 15
unseen tasks (28 variations) where the robot interacts with
novel rigid objects using actions such as press, pick, and put.
There are two categories for generalization to rigid objects:
1) Novel object-color compositions. For instance, training
tasks only manipulate yellow button and rose bulb, while the
test task requires to operate a rose button. This level includes
20 new object-color compositions. 2) Novel object shapes.
For example, picking a cube is learned in training, but the
testing task is lifting a toy or a star-shaped item. There are
8 new object shapes in the evaluation.
Level 3 - Novel articulated objects: This set includes 18
new tasks (21 variations) where the robot interacts with
articulated objects. Three categories are proposed: 1) Novel
action-part compositions. For example, if trained to open
bottom drawer and put item in middle shelf, it now needs
to open middle drawer. There are 8 novel compositions. 2)
Novel instances. For example, after being trained on a three-
drawer unit, it must generalize to one with four drawers. This
set includes 11 new object instances. 3) Novel categories. For
example, it is trained to close a laptop lid but must generalize
to closing a grill lid. This includes 2 new object categories.
Level 4 - Novel Long-horizon tasks: This level presents the
greatest challenge as it requires the robot to combine multiple
actions learned during training. It includes 6 long-horizon
tasks (12 variations). For example, the task “put items in
drawer” involves a sequence of actions such as opening the
drawer, picking up a sequence of items (a cube, a cylinder
and a moon), and placing them inside according to the order
specified by the variation instruction.

IV. METHOD

A. Problem formulation

The goal is to learn a policy π(at |Ot ,L) for robotic
manipulation, where L is a language instruction, Ot ∈O,at ∈
A are the observation and action at step t respectively, with
O and A denoting the observation and action space.

The observation space O includes aligned RGB-D images
from K cameras, along with the robot’s proprioceptive state
consisting of joint and gripper poses. We assume the intrinsic
and extrinsic camera parameters are known.

Fig. 2: Overview of 3D-LOTUS++ framework. It leverages generalization capabilities of foundation models for planning
and perception, and strong action execution ability of 3D-LOTUS to perform complex tasks.

Fig. 3: 3D-LOTUS architecture. It takes point cloud and
text as input to predict the next action.

The action space A comprises the gripper’s position ap
t ∈

R3, rotation ar
t ∈ R3, and open state ao

t ∈ {0,1} indicating
if the gripper is open or closed. We utilize waypoint repre-
sentation [38], [47], [17], [18] for action sequences. Inverse
kinematics is used to move the robot from at−1 to at .

B. 3D-LOTUS policy

As 3D point clouds provide rich spatial information to
perceive object shapes and positions, we propose to effec-
tively exploit the 3D information for robotic manipulation.
The 3D-LOTUS policy is a 3D robotic manipulation policy
with language-conditioned point cloud transformer. Figure 3
illustrates the architecture of the policy.
Point cloud preprocessing. We follow PolarNet [2] to
project multi-view RGB-D images into a unified point cloud
in world coordinates, then downsample this point cloud to
one point per 1cm3 voxel [48]. We exclude points outside
the robot’s workspace, and points on the robotic arm using a
CAD model and joint poses of the arm, as these contribute
little for manipulation. The resulting point cloud V of n
points only covers the objects and robot gripper, significantly
reducing the number of points and improving speed without
compromising performance. Each point vi ∈ V consists of
XYZ coordinates vp

i and additional feature vo
i such as RGB

color and relative height to the table.
Language-conditioned point cloud transformer. We em-
ploy point cloud transformer v3 (PTV3) [49] as backbone to

encode point cloud V . PTV3 adopts a U-Net [50] architecture
with downsampling and upsampling blocks to efficiently
compute point embeddings, where each block consists of
transformer layers. For more details, please refer to the PTV3
paper [49]. We explore two variants to incorporate language
information into the PTV3 model. Assuming the language
instruction L is encoded by a CLIP text encoder [39] and
represented as a sequence of word embeddings (w1, · · · ,wL).
The first variant employs the adaptive normalization ap-
proach [51]. We compute a global language embedding w
by weighted averaging (w1, · · · ,wL), and use w to directly
regress dimension-wise scale and shift parameters for each
normalization layer in PTV3. The second variant utilizes a
more conventional cross-attention mechanism [52]. A cross-
attention layer is added after each self-attention layer in
PTV3, enabling each point to attend to the entire sequence
of word embeddings (w1, · · · ,wL).
Action prediction. Let ve

i denote the final point embedding
for each point vi after the language-conditioned PTV3 model.
We propose a new classification-based approach for action
prediction, in contrast to the regression-based approach [17],
[2], [8] or inefficient position classification over the whole
3D workspace [18], [4]. For position prediction, we predict
the gripper’s location along the X ,Y,Z axes separately. We
define sequential bins vi,k, j centered at each point’s location
vp

i for each axis k ∈ {X ,Y,Z}, with j ∈ [−m,m] representing
the bin index. Each bin has a size of b, so the position of bin
vi,k, j along k-axis is given by vp

i,k+b× j. Using ve
i , we predict

a heatmap for these bins at each point, and concatenate the
bins across all points to form the final heatmap for each
axis. During inference, we select the bin with the highest
probability to determine the position for each axis. For
rotation prediction, we also discretize the Euler angle for
each axis into bins and use classification to predict the angles.
The open state prediction remains a binary classification task.
We apply max pooling over all points ve

i to predict rotation
and open state. The cross entropy loss is employed to train
position, rotation and open state classification. Further details
are available in Sec VI-B in the appendix.

C. 3D-LOTUS++ policy

To accomplish a task specified by an instruction L like
‘open the door’, the end-to-end policy 3D-LOTUS integrates

multiple components into a single action prediction step. This
includes task planning (e.g., first grasp the door handle),
object grounding (e.g., localize the door handle in 3D space),
and motion control (move to the localized door handle). This
integration not only complicates error diagnosis, but also
poses challenges in generalization to unseen scenarios, such
as ‘open a new door’ or ‘close the door’.

To alleviate the above limitations, we propose enhancing
3D-LOTUS with foundation models. Existing LLMs [14]
and VLMs [15], [39], [40], are able to generalize to unseen
scenarios due to the training on massive data. Therefore, we
introduce a modular framework that disentangles task plan-
ning, object grounding and motion control, leveraging the
generalization capabilities of foundation models alongside
the action execution abilities of 3D-LOTUS to achieve more
generalizable robotic manipulation. Figure 2 illustrates the
overall framework, comprising three modules: task planning
with LLMs, object grounding with VLMs, and motion con-
trol with a modified version of 3D-LOTUS.
Task planning with LLM. Task planning aims to decom-
pose the instruction L into a sequence of steps l1, · · · , lT .
Each step corresponds to an action primitive that inter-
acts with an object. In this work, we define six action
primitives for object manipulation, covering a broad range
of tasks, namely grasp(object), move grasped object(target),
push down(object), push forward(object, target), release()
and rotate grasped object(). We utilize the LLM LLaMa3-
8B [14] for task planning due to its strong commonsense
knowledge and language reasoning capabilities. By providing
prompts for the task requirement and several in-context ex-
amples, we guide the LLM to generate an plan for instruction
L. Figure 2 presents an example of generated plans for the
task of opening a door. The detailed prompts for LLMs are
presented in Sec VI-C in the appendix.
Object grounding with VLMs. This module aims to lo-
calize an object given its text description in the generated
plan. To achieve this, we leverage state-of-the-art VLMs to
ensure robust generalization to new objects. First, we employ
the open-vocabulary object detector OWLv2 [40] to detect
bounding boxes with high objectiveness scores for each RGB
image. OWLv2 also generates a semantic embedding for
each bounding box, which is aligned with text embeddings
from the CLIP text encoder [39]. Next, we use the Segment
Anything Model (SAM) [15] to segment the object within
each bounding box. This segmentation mask, combined with
the corresponding RGB-D image, yields a 3D point cloud for
each bounding box. To merge observations of the same object
from different cameras, we compare semantic embeddings
and point cloud distances. Pairs of objects are merged if their
semantic and point cloud distances are below certain thresh-
olds. In this way, we obtain object-centric representations
for all objects in the scene, each object containing a merged
point cloud and an averaged semantic embedding. Given the
text description of an object, we compute its text embedding
via CLIP and measure cosine similarities between this text
embedding and all object semantic embeddings. The object
with the highest cosine similarity is selected as the match.

Motion control. Given the action primitive name and input
point cloud, the motion control module predicts a trajectory
of actions to execute this actionable step. 3D-LOTUS can be
easily modified for this purpose.

First, we change the input point feature vo
i by leveraging

the output of the object grounding module, which segments
the manipulated object and/or target location. This allows us
to categorize points into four types: goal object, goal target,
robot and obstacle. We treat points that do not belong to
goal object, target and robot as obstacles. We then learn
a look-up table to encode each point label and use this
as point feature vo

i instead of RGB colors in addition to
the XYZ coordinates vp

i . The new point feature help the
model focus on geometry rather than textures during motion
planning, thereby enhancing generalization to objects with
novel textures.

Second, instead of predicting a single action, we should
generate a sequence of actions to complete the planned
step. To achive this, we introduce a look-up table to encode
the timestep index of actions in the trajectory, denoted as
{xt}s

t=1. We concatenate the time embedding xt with the final
point embedding ve

i to predict action for each timestep. The
action prediction head is shared across all timesteps. As the
number of actions varies for different plans, we also predict
a stop probability to indiciate whether the trajectory should
terminate at the current time step.

V. EXPERIMENTS

A. Experimental setup

Evaluation setup. We follow prior work [18], [2] and use
K = 4 cameras positioned at the front, left shoulder, right
shoulder and wrist, with an image resolution of 256× 256.
For training, we generate 100 demonstrations for each task
variation, leading to a dataset of 3,100 demonstrations.
During testing, we use different random seeds from training
to ensure initial scene configurations are distinct from the
training data. We evaluate 20 episodes per task variation
per seed, and run the evaluation with 5 seeds, which results
in 20× 5× 92 evaluation episodes in total. The maximum
number of steps per episode is set to 25. We measure the task
performance by success rate (SR) of the evaluation episodes,
which is 1 for success and 0 for failure of an episode. The
average SR and standard derivation across seeds are reported.
Implementation details. For the 3D-LOTUS model, we
use 5 downsampling-upsampling blocks, each containing 1
transformer layer. The hidden sizes for these blocks are 64,
128, 256, 512, 768, respectively. For action prediction, the
number of bins for position is 30 (m = 15) and bin size
b =1cm. The number of bins for rotation is 72 with bin size
of 5◦. In the modified 3D-LOTUS for trajectory prediction,
the maximum trajectory length s is set as 5. We train 3D-
LOTUS with batch size of 8 and initial learning rate of 1e-4
for 150k iterations with linear learning rate decay. Training
takes around 11 hours on a single Nvidia A100 GPU. A
validation set of 20 episodes per task variation on Level 1
(different from testing episodes) is used to select the best
checkpoint, evaluated every 10k iterations.

TABLE II: Performance on RLBench-18Task. The Avg.
Rank denotes the averaged rank of the model across tasks.
Training time is the number of V100 GPU days for training.

Avg. SR ↑ Avg. Rank ↓ Train time ↓

C2F-ARM-BC [38] 20.1 8.6 -
Hiveformer [17] 45.3 6.9 -
PolarNet [2] 46.4 6.4 8.9
PerAct [18] 49.4 6.2 128.0
RVT [34] 62.9 4.4 8.0
Act3D [4] 65.0 4.3 40.0
RVT2 [37] 81.4 2.4 6.6
3D diffuser actor [35] 81.3 2.3 67.6

3D-LOTUS 83.1±0.8 2.2 2.23

TABLE III: Performance on four levels of GemBench.

Method L1 L2 L3 L4

Hiveformer [17] 60.3±1.5 26.1±1.4 35.1±1.7 0.0±0.0
PolarNet [2] 77.7±0.9 37.1±1.4 38.5±1.7 0.1±0.2
3D diffuser actor [35] 91.9±0.8 43.4±2.8 37.0±2.2 0.0±0.0
RVT-2 [37] 89.1±0.8 51.0±2.3 36.0±2.2 0.0±0.0

3D-LOTUS 94.3±1.4 49.9±2.2 38.1±1.1 0.3±0.3
3D-LOTUS++ 68.7±0.6 64.5±0.9 41.5±1.8 17.4±0.4

Baselines. We run four state-of-the-art methods on Gem-
Bench, including two 2D image based models2 (Hive-
former [17] and RVT-2 [37]), and two 3D-based models (Po-
larnet [2] and 3D diffuser actor [35]). All the baselines use
CLIP text encoder [39], while only 3D diffuser actor employs
visual representations pretrained on large-scale datasets. We
use official codes provided by the authors to validate the
training pipeline on RLBench-18Task benchmark. After re-
producing the results on RLBench-18Task, we apply the
same configuration to train on our GemBench benchmark.

B. Comparison with state of the arts

RLBench-18Task. We first evaluate on the widely used
RLBench-18Task benchmark [18], which contains the same
18 tasks (249 variations) for training and testing. The re-
sults are summarized in Table II, with a breakdown of
performance on individual tasks provided in Table IX in the
appendix. The 3D-LOTUS policy achieves state-of-the-art
performance using significantly less training time, demon-
strating strong action execution capability.
GemBench. Table III presents the results of different models
across the four generalization levels in GemBench. Detailed
results on individual tasks are shown in Sec VI-D in the
appendix. As expected, Level 1 which only involves novel
object placements, is easiest. The performance trend of
different models are similar to those in RLBench-18Task. In
Levels 2 to 4, we observe a significant drop in performance
for the state-of-the-art methods, highlighting the limitations
of existing methods in unseen generalization. Generalizing
skills for articulated objects (Level 3) proves to be more

2To be noted, the two methods utilize RGB images as input to the model,
but depth images are still used in post-processing to predict actions.

3We use 1 V100 GPU for training for fair comparison of training time.

TABLE IV: Ablation of 3D-LOTUS components.

Action Condition L1 L2 L3 L4

Regression AdaptiveNorm 83.3±0.7 29.3±1.9 34.5±1.0 0.0±0.0
Classification AdaptiveNorm 90.8±0.7 47.8±0.6 37.9±1.5 0.0±0.0
Classification CrossAttn 94.3±1.4 49.9±2.2 38.1±1.1 0.3±0.3

TABLE V: Ablations on 3D-LOTUS++ modules.

Task
Planning

Object
Grounding L1 L2 L3 L4

GT GT 92.6±0.7 80.1±0.5 47.8±1.4 31.5±1.1
GT VLM 71.0±1.7 66.3±0.9 46.0±1.5 19.4±1.5

LLM VLM 68.7±0.6 64.5±0.9 41.5±1.8 17.4±0.4

challenging than for rigid objects (Level 2). Level 4, which
features long-horizon tasks, is most difficult; the performance
of all state-of-the-art methods drop to close to a 0% success
rate. 3D-LOTUS++ significantly outperforms previous meth-
ods on more challenging generalization levels. Note that its
performance is lower than the SOTA methods on Level 1.
This can be explained by the zero-shot grounding models,
which struggles to distinguish some objects in seen tasks
such as ‘tuna can’ and ‘soup can’. The performance on Level
4 is suboptimal. Refer to the ablation study for an analysis.

C. Ablations

3D-LOTUS components. In Table IV, we ablate different
components of 3D-LOTUS. Row 1 uses regression for action
prediction. Its performance is worse than classification in
Row 2 for all levels. Furthermore, it requires more iterations
to converge. Row 2 and 3 compare two variants for language
conditioning. The cross attention outperforms adaptive nor-
malization method, though at a higher computation cost.
3D-LOTUS++ modules. The proposed 3D-LOTUS++ al-
lows for detailed error analysis by isolating each module
— task planning, object grounding, and motion control. To
facilitate this, we manually annotate groundtruth task plans
and object grounding labels for each task, and evaluate
the model’s performance with and without the ground truth
information. The results are shown in Table V. We can see
that the primary bottleneck in Levels 1 and 2 is the object
grounding module, where groundtruth object labels improve
the performance by a large margin. In Levels 3 and 4, how-
ever, even when provided with all groundtruth information,
the performance remains suboptimal. The primary issue lies
within the 3D-LOTUS motion control policy, specifically
its struggle to generalize to long-horizon tasks where initial
robot configurations deviate substantially from the training
data. Task planning in Level 4 also suffers from reduced
accuracy as the LLM operates without visual input. This lack
of visual awareness can lead to incorrect assumptions about
the environment. For example, for the task ’take shoes out
of the box,’ the LLM cannot determine if the box is open or
closed, potentially leading to an inefficient or failed plan.”

D. Real world experiments

We further perform real world evaluations of our models.

"stack the (yellow/navy) cup

on top of the (pink/yellow) cup"

"stack the (black/red) cup

on top of the (orange/black) cup"

"place the yellow cup inside the

red cup, then the cyan cup on top"
"put the (lemon/banana)

in the box"

"put the tuna can in the box,

then put the corn in the box"

"put the grapes in the

yellow plate, then put the

banana in the pink plate"

"put the (strawberry/peach)

in the box"

"put the pink mug on the

middle part of the hanger"
"open the top drawer"

"put the frog toy

in the top drawer"

Fig. 4: Real robot tasks variations. The top row illustrates task variations used for model training. The bottom row presents
new task variations to assess model’s generalization capabilities on the real robot.

TABLE VI: Performance of seen tasks with real robot.

Task PolarNet 3D-LOTUS

Stack yellow cup in pink cup 10/10 9/10
Stack navy cup in yellow cup 9/10 10/10
Put strawberry in box 7/10 10/10
Put peach in box 8/10 8/10
Open drawer 6/10 9/10
Put item in drawer 1/10 3/10
Hang mug 6/10 8/10

Avg. 6.7/10 8.1/10

Experimental setup. Our real robot setup includes a 6-
DoF UR5 robotic arm equipped with three RealSense d435
cameras. We consider 7 variations across 5 tasks during
training: stack cup (yellow in pink or navy in yellow), put
fruit (strawberry or peach) in box, open drawer, put item in
drawer and hang mug. For each task variation, we collect 20
human demonstrations via tele-operation. Then, we evaluate
on the same 7 seen task variations with different objects
placements and evaluate generalization capabilities on 7 new
unseen task variations: put fruit (lemon and banana) in box,
put food (tuna can then corn) in box and put fruits in plates
(grapes in the yellow plate and banana in the pink plate).
These tasks are illustrated in Figure 4. For each task variation
we run models 10 times and report the success rate.

Table VI shows that our new method, 3D-LOTUS, outper-
forms PolarNet, achieving an average success rate of 8.1/10
compared to PolarNet’s average performance of 6.7/10.
However, when applying the same 3D-LOTUS model to new
task variations, we observe a complete failure to generalize to
the new objects and instructions as shown in Table VII. In
contrast, our improved model, 3D-LOTUS++, successfully
addresses these new task variations, achieving an average
success rate of 7.9/10.

TABLE VII: Performance of unseen tasks with real robot.

Task 3D-LOTUS 3D-LOTUS++

Stack red cup in yellow cup 0/10 8/10
Stack black cup in orange cup 0/10 7/10
Place the yellow cup inside the red cup,
then the cyan cup on top 0/10 7/10
Put lemon in box 0/10 9/10
Put banana in box 0/10 7/10
Put tuna can in box, then corn in box 0/10 8/10
Put grapes in yellow plate,
then banana in pink plate 0/10 9/10

Avg. 0/10 7.9/10

VI. CONCLUSION

In this work, we introduce a new benchmark and method
for generalizable vision-language robotic manipulation. The
proposed benchmark GemBench systematically evaluates
four generalization levels: new placements, new rigid ob-
jects, new articulated objects, and long-horizon tasks. To
improve generalization ability, we introduce 3D-LOTUS++,
a modular framework that leverages foundation models for
task planning and object grounding alongside a strong 3D-
based motion plan policy 3D-LOTUS. Extensive experiments
demonstrate the effectiveness of 3D-LOTUS++ on novel
tasks. Our ablation studies highlight object grounding as a
critical bottleneck and reveal the limitations of the motion
control policy in complex scenarios. Future work will focus
on addressing these two issues.
Acknowledgements. This work was partially supported
by the HPC resources from GENCI-IDRIS (Grant 20XX-
AD011012122 and AD011014846). It was funded in part
by the French government under management of Agence
Nationale de la Recherche as part of the “France 2030”
program, reference ANR-23-IACL-0008 (PR[AI]RIE-PSAI
projet), and the ANR project VideoPredict (ANR-21-FAI1-
0002-01). Cordelia Schmid would like to acknowledge the
support by the Körber European Science Prize.

REFERENCES

[1] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, J. Dabis, C. Finn,
K. Gopalakrishnan, K. Hausman, A. Herzog, J. Hsu et al., “RT-1:
Robotics transformer for real-world control at scale,” in RSS, 2023.

[2] S. Chen, R. Garcia, C. Schmid, and I. Laptev, “PolarNet: 3D point
clouds for language-guided robotic manipulation,” in CoRL, 2023.

[3] W. Huang, C. Wang, R. Zhang, Y. Li, J. Wu, and L. Fei-Fei,
“VoxPoser: Composable 3D value maps for robotic manipulation with
language models,” in CoRL, 2023.

[4] T. Gervet, Z. Xian, N. Gkanatsios, and K. Fragkiadaki, “Act3D:
3D feature field transformers for multi-task robotic manipulation,” in
CoRL, 2023.

[5] S. Nair, A. Rajeswaran, V. Kumar, C. Finn, and A. Gupta, “R3M:
A universal visual representation for robot manipulation,” in CoRL,
2022.

[6] I. Radosavovic, T. Xiao, S. James, P. Abbeel, J. Malik, and T. Darrell,
“Real-world robot learning with masked visual pre-training,” in CoRL,
2023.

[7] S. Karamcheti, S. Nair, A. S. Chen, T. Kollar, C. Finn, D. Sadigh,
and P. Liang, “Language-driven representation learning for robotics,”
2019.

[8] S. Chen, R. Garcia, I. Laptev, and C. Schmid, “SUGAR: Pre-training
3D visual representations for robotics,” in CVPR, 2024.

[9] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, X. Chen, K. Choro-
manski, T. Ding, D. Driess, A. Dubey, C. Finn et al., “RT-2: Vision-
language-action models transfer web knowledge to robotic control,”
in CoRL, 2023.

[10] D. Driess, F. Xia, M. S. Sajjadi, C. Lynch, A. Chowdhery, B. Ichter,
A. Wahid, J. Tompson, Q. Vuong, T. Yu et al., “PALM-E: An
embodied multimodal language model,” in ICML, 2023.

[11] O. M. Team, D. Ghosh, H. Walke, K. Pertsch, K. Black, O. Mees,
S. Dasari, J. Hejna, T. Kreiman, C. Xu et al., “Octo: An open-source
generalist robot policy,” 2024.

[12] M. J. Kim, K. Pertsch, S. Karamcheti, T. Xiao, A. Balakrishna, S. Nair,
R. Rafailov, E. Foster, G. Lam, P. Sanketi et al., “OpenVLA: An open-
source vision-language-action model,” CoRL, 2024.

[13] Q. Vuong, S. Levine, H. R. Walke, K. Pertsch, A. Singh, R. Doshi,
C. Xu, J. Luo, L. Tan, D. Shah et al., “Open X-Embodiment: Robotic
learning datasets and RT-X models,” in CoRL, 2023.

[14] Meta, “Llama 3 model card,” 2024.
[15] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson,

T. Xiao, S. Whitehead, A. C. Berg, W.-Y. Lo, P. Dollár, and R. Gir-
shick, “Segment anything,” in ICCV, 2023.

[16] J. Liang, W. Huang, F. Xia, P. Xu, K. Hausman, B. Ichter, P. Florence,
and A. Zeng, “Code as policies: Language model programs for
embodied control,” in ICRA, 2023.

[17] P.-L. Guhur, S. Chen, R. Garcia Pinel, M. Tapaswi, I. Laptev, and
C. Schmid, “Instruction-driven history-aware policies for robotic ma-
nipulations,” in CoRL, 2023.

[18] M. Shridhar, L. Manuelli, and D. Fox, “Perceiver-actor: A multi-task
transformer for robotic manipulation,” in CoRL, 2023.

[19] K. Zheng, X. Chen, O. C. Jenkins, and X. Wang, “VLMbench: A
compositional benchmark for vision-and-language manipulation,” in
NeurIPS, 2022.

[20] M. Shridhar, J. Thomason, D. Gordon, Y. Bisk, W. Han, R. Mottaghi,
L. Zettlemoyer, and D. Fox, “ALFRED: A benchmark for interpreting
grounded instructions for everyday tasks,” in CVPR, 2020.

[21] O. Mees, L. Hermann, E. Rosete-Beas, and W. Burgard, “CALVIN: A
benchmark for language-conditioned policy learning for long-horizon
robot manipulation tasks,” IEEE RA-L, 2022.

[22] A. Zeng, P. Florence, J. Tompson, S. Welker, J. Chien, M. Attarian,
T. Armstrong, I. Krasin, D. Duong, V. Sindhwani, and J. Lee,
“Transporter networks: Rearranging the visual world for robotic ma-
nipulation,” in CoRL, 2020.

[23] R. Gong, J. Huang, Y. Zhao, H. Geng, X. Gao, Q. Wu, W. Ai,
Z. Zhou, D. Terzopoulos, S.-C. Zhu et al., “ARNOLD: A benchmark
for language-grounded task learning with continuous states in realistic
3d scenes,” in CVPR, 2023.

[24] Y. Jiang, A. Gupta, Z. Zhang, G. Wang, Y. Dou, Y. Chen, L. Fei-Fei,
A. Anandkumar, Y. Zhu, and L. Fan, “VIMA: robot manipulation with
multimodal prompts,” in ICML, 2023.

[25] W. Pumacay, I. Singh, J. Duan, R. Krishna, J. Thomason, and D. Fox,
“The COLOSSEUM: A benchmark for evaluating generalization for
robotic manipulation,” arXiv preprint arXiv:2402.08191, 2024.

[26] S. James, Z. Ma, D. R. Arrojo, and A. J. Davison, “RLBench: The
robot learning benchmark & learning environment,” IEEE RA-L, 2020.

[27] E. Kolve, R. Mottaghi, W. Han, E. VanderBilt, L. Weihs, A. Herrasti,
M. Deitke, K. Ehsani, D. Gordon, Y. Zhu et al., “AI2-Thor: An
interactive 3d environment for visual ai,” arXiv:1712.05474, 2017.

[28] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Mack-
lin, D. Hoeller, N. Rudin, A. Allshire, A. Handa, and G. State,
“Isaac Gym: High performance gpu based physics simulation for robot
learning.” in NeurIPS Datasets and Benchmarks, 2021.

[29] L. Shao, T. Migimatsu, Q. Zhang, K. Yang, and J. Bohg, “Con-
cept2Robot: Learning manipulation concepts from instructions and
human demonstrations,” IJRR, 2021.

[30] C. Lynch, A. Wahid, J. Tompson, T. Ding, J. Betker, R. Baruch,
T. Armstrong, and P. Florence, “Interactive language: Talking to robots
in real time,” IEEE RA-L, 2023.

[31] S. Stepputtis, J. Campbell, M. Phielipp, S. Lee, C. Baral, and
H. Ben Amor, “Language-conditioned imitation learning for robot
manipulation tasks,” in NeurIPS, 2020.

[32] D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang,
D. Quillen, E. Holly, M. Kalakrishnan, V. Vanhoucke et al., “Scalable
deep reinforcement learning for vision-based robotic manipulation,” in
CoRL, 2018.

[33] E. Jang, A. Irpan, M. Khansari, D. Kappler, F. Ebert, C. Lynch,
S. Levine, and C. Finn, “BC-Z: Zero-shot task generalization with
robotic imitation learning,” in CoRL, 2022.

[34] A. Goyal, J. Xu, Y. Guo, V. Blukis, Y.-W. Chao, and D. Fox, “RVT:
Robotic view transformer for 3D object manipulation,” in CoRL, 2023.

[35] T.-W. Ke, N. Gkanatsios, and K. Fragkiadaki, “3D Diffuser Actor:
Policy diffusion with 3D scene representations,” in CoRL, 2024.

[36] C. Chi, S. Feng, Y. Du, Z. Xu, E. Cousineau, B. Burchfiel, and S. Song,
“Diffusion policy: Visuomotor policy learning via action diffusion,”
RSS, 2023.

[37] A. Goyal, V. Blukis, J. Xu, Y. Guo, Y.-W. Chao, and D. Fox, “RVT2:
Learning precise manipulation from few demonstrations,” in RSS,
2024.

[38] S. James, K. Wada, T. Laidlow, and A. J. Davison, “Coarse-to-
fine q-attention: Efficient learning for visual robotic manipulation via
discretisation,” in CVPR, 2022.

[39] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal,
G. Sastry, A. Askell, P. Mishkin, J. Clark et al., “Learning transferable
visual models from natural language supervision,” in ICML, 2021.

[40] M. Minderer, A. A. Gritsenko, and N. Houlsby, “Scaling open-
vocabulary object detection,” in NeurIPS, A. Oh, T. Naumann,
A. Globerson, K. Saenko, M. Hardt, and S. Levine, Eds., 2023.

[41] T. Yu, T. Xiao, A. Stone, J. Tompson, A. Brohan, S. Wang, J. Singh,
C. Tan, D. M, J. Peralta, B. Ichter, K. Hausman, and F. Xia,
“Scaling robot learning with semantically imagined experience,”
arXiv:2302.11550, 2023.

[42] OpenAI, “GPT-4 technical report,” arXiv:2302.11550, 2023.
[43] W. Huang, P. Abbeel, D. Pathak, and I. Mordatch, “Language models

as zero-shot planners: Extracting actionable knowledge for embodied
agents,” in ICML, 2022.

[44] A. Brohan, Y. Chebotar, C. Finn, K. Hausman, A. Herzog, D. Ho,
J. Ibarz, A. Irpan, E. Jang, R. Julian et al., “Do as I can, not as I say:
Grounding language in robotic affordances,” in CoRL, 2023.

[45] Y. Hu, F. Lin, T. Zhang, L. Yi, and Y. Gao, “Look before you leap:
Unveiling the power of GPT-4V in robotic vision-language planning,”
arXiv:2311.17842, 2023.

[46] G. OpenAI, “GPT-4V(ision) system card,” preprint, 2023.
[47] S. Liu, S. James, A. J. Davison, and E. Johns, “Auto-Lambda:

Disentangling dynamic task relationships,” TMLR, 2022.
[48] Q.-Y. Zhou, J. Park, and V. Koltun, “Open3D: A modern library for

3D data processing,” arXiv:1801.09847, 2018.
[49] X. Wu, L. Jiang, P.-S. Wang, Z. Liu, X. Liu, Y. Qiao, W. Ouyang,

T. He, and H. Zhao, “Point Transformer v3: Simpler, faster, stronger,”
in CVPR, 2024.

[50] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional
networks for biomedical image segmentation,” in MICCAI, 2015.

[51] S. Dubey, S. K. Singh, and B. Chaudhuri, “AdaNorm: Adaptive
gradient norm correction based optimizer for CNNs,” in WACV, 2023.

[52] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in
NeurIPS, 2017.

APPENDIX

A. The proposed GemBench benchmark

Table VIII presents all the tasks and variations used in
training and the four generalization levels in testing in the
proposed GemBench.

B. Details of 3D-LOTUS policy

1) Point cloud preprocessing: We automatically filter out
irrelevant points from the point cloud during preprocessing.
To remove background and table points, we define the
robot’s workspace and the table height, excluding all points
outside these boundaries. For the robotic arm, we assign
3D bounding boxes to each of its links. Using the robot’s
proprioceptive state, we transform these bounding boxes
based on the known poses and remove any points within
them. As a result, the remaining point cloud contains only
objects and the robotic gripper. Figure 5 illustrates the point
cloud before and after the point removal step.

2) Action prediction: We discretize the groundtruth po-
sition ap

t and rotation ar
t to train the model. For position

prediction, let bp
t,k ∈ Rn×2m represent the position of the

concatenated bins for all points along the k axis, where n
is the number of points and 2m is the number of bins per
point. We calculate the Euclidean distance between each bin
and ap

t,k, defining the score for bin i as:

p̂t,k,i =


0, if ||bp

t,k,i −ap
t,k||

2
2 > 0.01 or bp

t,k,i ∈ B
1

||bp
t,k,i −ap

t,k||22
, otherwise.

(1)

where B denotes the set of points that belong to the robot
arm and gripper, and their scores are set to zero to ensure that
the gripper’s position is predicted based only on the objects
in the scene. The groundtruth probability of position along
the k axis is then obtained by normalizing the scores p̂t,k,i
via L1 norm. For rotation prediction, we simply use one-hot
label along each axis.

C. Details of 3D-LOTUS++ policy

1) Task planning: Figure 6 illustrates the prompts used
in LLMs for task planning. For each task variation in the
training set, we craft a corresponding example as shown in
Figure 7. During inference, for each new instruction, we use
SentenceBert [?] to compute the sentence embedding of the
instruction and compare it to the existing instructions. We
then select the top 20 examples with the highest similarities
to the query instruction as in-context examples to the LLM.

2) Object grounding: We use VLMs to detect the location
of queried objects except for tasks requiring grounding
different parts of articulated object like bottom drawer and
top shelf. This limitation arises because our VLMs can only
detect the whole object like drawer, but cannot ground the
target level of the drawer. Therefore, we further leverage the
LLM to predict the height range of the target object. We
first obtain the overall height of the target object based on
VLM’s prediction, then we use prompts presented in Figure 8
to guide the LLM in predicting the height range.

D. Detailed evaluation results

RLBench-18Task. Table IX presents the detailed results of
different models on each task in RLBench-18Task bench-
mark. Our 3D-LOTUS policy achieves better performances
especially on tasks requiring high precision such as insert
peg, place cups and stack cups.
GemBench. Table X to XIII show the results of different
models on the four generalization levels in GemBench re-
spectively.

E. Detail task specification

We describe each task in detail along with its variations
below, and highlight the newly created tasks in GemBench.
Push Button

Filename: push button.py
Task: Push button with the specified color.
New/Modified: No.
Variations per level: Level 1: 0 (maroon), 3 (navy) and

4 (yellow). Level 2: 13 (azure), 15 (rose) and 17 (white).
Objects: 1 button.
Success Metric: The button is completely pressed.

Close Fridge
Filename: close fridge.py
Task: Close the fridge door.
New/Modified: No.
Objects: 1 fridge.
Variations per level: Level 1: 0.
Success Metric: The revolute joint of the fridge door has

been rotated so that the door is closed and in contact with
the fridge cabinet.

Close Laptop Lid
Filename: close laptop lid.py
Task: Grasp the laptop lid and rotate to close the laptop.
New/Modified: No.
Objects: 1 box, 1 laptop.
Variations per level: Level 1: 0.
Success Metric: The revolute joint of the laptop lid has

been rotated so that the laptop is closed.

Close Microwave
Filename: close microwave.py
Task: Close the microwave door.
New/Modified: No.
Objects: 1 microwave.
Variations per level: Level 1: 0.
Success Metric: The revolute joint of the microwave has

been rotated so that the microwave door is closed.

Open Door
Filename: open door.py
Task: Pick up the door handle and open the door by

pushing.
New/Modified: Yes, modified to add new instructions.
Objects: 1 door with a handle.
Variations per level: Level 1: 0.

TABLE VIII: Training and testing tasks & variations in GemBench. The testing tasks contain four levels of generalization,
where Level 1 evaluates the generalization to novel placements, Level 2 novel rigid objects, Level 3 novel articulated objects,
and Level 4 novel long-horizon tasks.

Train / Level 1 Level 2 Level 3 Level 4
Task Variation Color Shape Instance Category Action-Part Long-horizon

maroon button azure button 2 buttons
navy button rose button 3 buttonsPress Push button

yellow button white button
Lamp on

4 buttons

red block teal block red cylinder
lime block violet block red starPick and lift
cyan block black block red moon

magenta cup gray cup
silver cup olive cup

Pick

Pick up cup
orange cup purple cup

red toy

green target pink targetSlide block blue target yellow target
teal target cyan targetPush

Reach and drag black target navy target

azure jar blue jarClose jar violet jar green jar
rose bulb lime bulbScrew

Screw bulb white bulb maroon bulb

Close fridge fridge fridge2 door
Close laptop lid laptop lid laptop lid2 boxClose
Close microwave microwave microwave2

grill
drawer

Open door door door2 fridge
Open box box box2 toilet laptop lid

Take shoes
out of box

bottom drawer drawer2, drawer3 microwaveOpen
Open drawer top drawer long drawer w/ 4 levels middle drawer

Put 3 items
in drawer

2 gray blocks 2 orange blocks
2 olive blocks 2 silver blocks

Stack 3-4
blocksStack blocks

2 purple blocks 2 magenta blocks Stack 2 cups

crackers box mustard bottlePut groceries soup can sugar box
Put all

groceries

bottom shelf

Put/
Stack

Put money middle shelf
Put cube in
bottom shelf top shelf

(a) The original point cloud. (b) Removing background and table. (c) Removing robot arm.

Fig. 5: Automatic point removal. We use geometry information to automatically filter out irrelevant points in the scene.

Success Metric: The handle has been rotated 25º to
unlock the door and the revolute joint of the door has been
rotated 25º.

Open Box
Filename: open box.py
Task: Open the box lid.
New/Modified: Yes, modified to add new instructions.
Objects: 1 box.
Variations per level: Level 1: 0.

Success Metric: The revolute joint of the box lid has
rotated 90º so that it is in the open configuration.

Open Drawer
Filename: open drawer.py
Task: Open one of the three drawers: top, middle, or

bottom.
New/Modified: No.
Objects: 1 drawer.
Variations per level: Level 1: 0 (bottom) and 2 (top) and

1 I would like you to help me write Python code to control a robot arm operating in a tabletop environment. Please
complete the code every time when I give you new query and a list of objects visible at the initial step. Pay
attention to appeared patterns in the given context code. Be thorough and thoughtful in your code. Do not
include any import statement. Do not repeat my question. Do not provide any text explanation (comment in code
is okay).

2

3 You are only allowd to use the following action primitives that a robotic arm can perform:
4

5 1. ‘grasp(object)‘: Grasp the specified object. Ensure that the robot gripper is open and not holding any other
object before grasping. The robot gripper can only grasp one object at a time. After grasping, the robot
gripper will close and securely hold the object. Return the grasped object.

6

7 2. ‘move_grasped_object(target)‘: Move the grasped object to the specified target. Ensure that the robot gripper
is closed and holding an object before moving. After moving, the robot gripper will still hold the object. The
target can be a text description of a specified place, the location of previous objects, or a direction such
as up, down, forward and out for small movements in those directions. Return the grasped object.

8

9 3. ‘rotate_grasped_object()‘: Rotate the gripper while holding the object. Ensure that the robot gripper is
holding an object before performing the rotation. After rotating, the gripper will still hold the object.
Return the grasped object.

10

11 4. ‘push_down(object)‘: Push down the specified object vertically, such as a button. The robot gripper does not
hold the specified object but may hold other objects. Return the grasped object.

12

13 5. ‘push_forward(object, target)‘: Push forward the specified object towards a target place. If no target is
specified, the object will be pushed forward by a small distance.The robot gripper does not hold the specified
object but may hold other objects. Return the grasped object.

14

15 6. ‘release()‘: Open the gripper to release an object. Ensure the object is held in the gripper before releasing.
After releasing, the gripper is open and not holding any object.

16

17 It’s essential to stick to the format of these basic skills. When creating a plan, replace object or target inside
the function with text descriptions or previously returned objects. Do not use objects not visible in the
scene, but the robot can discover more objects through for example openning box or drawer. Generate step-by-
step plans. Do not use for loop.

18

19 I will first give you the context of the code below:

Fig. 6: Prompts used in LLM for task planning.

TABLE IX: Multi-Task Performance on RLBench. We report the success rate on all tasks in RLBench-18Task [18]
benchmark. Our 3D-LOTUS outperforms all methods while having higher training speed.

Avg. Avg. Train time Inf. Speed Close Drag Insert Meat off Open Place Place
Models Success ↑ Rank ↓ (in days) ↓ (in fps) ↑ Jar Stick Peg Grill Drawer Cups Wine
C2F-ARM-BC [38], [18] 20.1 8.6 - - 24 24 4 20 20 0 8
HiveFormer [17] 45.3 6.9 - - 52.0 76.0 0.0 100.0 52.0 0.0 80
PolarNet [2] 46.4 6.4 8.9 - 36.0 92.0 4.0 100.0 84.0 0.0 40
PerAct [18] 49.4 6.2 128.0 4.9 55.2±4.7 89.6±4.1 5.6±4.1 70.4±2.0 88.0±5.7 2.4±3.2 44.8±7.8
RVT [34] 62.9 4.4 8.0 11.6 52.0±2.5 99.2±1.6 11.2±3.0 88.0±2.5 71.2±6.9 4.0±2.5 91.0±5.2
Act3D [4] 65.0 4.3 40.0 - 92.0 92.0 27.0 94.0 93.0 3.0 80
RVT-2 [37] 81.4 2.4 6.6 20.6 100.0±0.0 99.0±1.7 40.0±0.0 99.0±1.7 74.0±11.8 38.0±4.5 95.0±3.3
3D diffuser actor [35] 81.3 2.3 67.6 - 96.0±2.5 100.0±0.0 65.6±4.1 96.8±1.6 89.6±4.1 24.0±7.6 93.6±4.8
3D-LOTUS (ours) 83.1 2.2 2.2 9.5 96.0±0.0 100.0±0.0 69.6±3.6 98.4±2.2 85.6±7.3 40.8±12.1 91.2±6.6

Push Put in Put in Put in Screw Slide Sort Stack Stack Sweep to Turn
Models Buttons Cupboard Drawer Safe Bulb Block Shape Blocks Cups Dustpan Tap
C2F-ARM-BC [38], [18] 72 0 4 12 8 16 8 0 0 0 68
HiveFormer [17] 84 32.0 68.0 76.0 8.0 64.0 8.0 8.0 0.0 28.0 80
PolarNet [2] 96 12.0 32.0 84.0 44.0 56.0 12.0 4.0 8.0 52.0 80
PerAct [18] 92.8±3.0 28.0±4.4 51.2±4.7 84.0±3.6 17.6±2.0 74.0±13.0 16.8±4.7 26.4±3.2 2.4±2.0 52.0±0.0 88.0±4.4
Act3D [4] 99 51.0 90.0 95.0 47.0 93.0 8.0 12.0 9.0 92.0 94
RVT [34] 100.0±0.0 49.6±3.2 88.0±5.7 91.2±3.0 48.0±5.7 81.6±5.4 36.0±2.5 28.8±3.9 26.4±8.2 72.0±0.0 93.6±4.1
RVT-2 [37] 100.0±0.0 66.0±4.5 96.0±0.0 96.0±2.8 88.0±4.9 92.0±2.8 35.0±7.1 80.0±2.8 69.0±5.9 100.0±0.0 99.0±1.7
3D diffuser actor [35] 98.4±2.0 85.6±4.1 96.0±3.6 97.6±2.0 82.4±2.0 97.6±3.2 44.0±4.4 68.3±3.3 47.2±8.5 84.0±4.4 99.2±1.6
3D-LOTUS (ours) 100.0±0.0 78.4±4.6 97.6±3.6 95.2±3.4 88.8±3.4 99.2±1.8 34.4±4.6 58.4±8.3 75.2±7.7 96.0±2.8 90.4±4.6

Level 3: 1(middle).

Success Metric: The prismatic joint of the specified

drawer is fully extended.

1 # query: push the maroon button.
2 button = push_down(object="maroon button")
3

4 # query: close fridge.
5 fridge_door = push_forward(object="fridge door")
6

7 # query: close laptop lid.
8 laptop_lid = grasp(object="laptop lid")
9 laptop_lid = move_grasped_object(target="down")

10 release()
11

12 # query: close microwave.
13 microwave_door = push_forward(object="microwave door")
14

15 # query: open the door.
16 door_handle = grasp(object="door handle")
17 door_handle = rotate_grasped_object()
18 door_handle = push_forward(object=door_handle)
19

20 # query: open box.
21 box_lid = grasp(object="box lid")
22 box_lid = move_grasped_object(target="up")
23 release()
24

25 # query: open bottom drawer.
26 bottom_handle = grasp(object="bottom drawer handle")
27 bottom_handle = move_grasped_object(target="out")
28 release()
29

30 # query: lift the cyan block up to the target.
31 cyan_cube = grasp(object="cyan cube")
32 cyan_cube = move_grasped_object(target="red ball")
33

34 # query: lift the orange cup.
35 orange_cup = grasp(object="orange cup")
36 orange_cup = move_grasped_object(target="up")
37

38 # query: pick up and set down 2 purple blocks on top of each other.
39 purple_cube_1 = grasp(object="purple cube")
40 purple_cube_1 = move_grasped_object(target="green square")
41 release()
42 purple_cube_2 = grasp(object="purple cube", not=[purple_cube_1])
43 purple_cube_2 = move_grasped_object(target=purple_cube_1)
44 release()
45

46 # query: put the crackers box in the cupboard.
47 crackers_box = grasp(object="crakers box")
48 crackers_box = move_grasped_object(target="cupboard")
49 release()
50

51 # query: leave the money on the middle shelf on the safe.
52 money = grasp(object="money")
53 money = move_grasped_object(target="middle shelf")
54 release()
55

56 # query: push the block until it is sitting on top of the green target.
57 cube = push_forward(object="red cube", target="green square")
58

59 # query: use the stick to drag the cube onto the teal target.
60 stick = grasp(object="stick")
61 cube = push_forward(object="gray cube", target="teal square")
62

63 # query: screw on the violet jar lid.
64 lid = grasp(object="gray lid")
65 lid = move_grasped_object(target="violet jar")
66 lid = rotate_grasped_object()
67 release()
68

69 # query: screw in the white light bulb.
70 bulb = grasp(object="white light bulb")
71 bulb = move_grasped_object(target="brown lamp")
72 bulb = rotate_grasped_object()
73 release()

Fig. 7: In-context examples of each training task for task planning.

1 Please help me define the height range for different levels of an articulated object. I will provide you the
target level and the total height of the object. Your task is to output two numbers representing the height
range for the target level. Pay attention to the appeared patterns in the given examples. Do not repeat my
question. Do not provide any text explanation.

2

3 The examples are as follows:
4

5 target: bottom drawer handle
6 height: 0.4
7 target height range: [0.1, 0.2]
8

9 target: top drawer handle
10 height: 0.4
11 target height range: [0.3, 0.4]
12

13 target: bottom shelf
14 height: 0.5
15 target height range: [0, 0.1]
16

17 target: middle shelf
18 height: 0.5
19 target height range: [0.15, 0.25]

Fig. 8: Prompts used in LLMs to predict the height range of an object.

TABLE X: Performance on GemBench Level 1.

Method Avg. Close
Fridge+0

Close
Jar+15

Close
Jar+16

CloseLaptop
Lid+0

Close
Microwave+0

LightBulb
In+17

LightBulb
In+19

Open
Box+0

Open
Door+0

Open
Drawer+0

Hiveformer [17] 60.3±1.5 96±4.2 64±13.9 92±2.7 90±3.5 88±7.6 12±4.5 13±6.7 4±4.2 53±15.2 15±12.2
PolarNet [2] 77.6±0.9 99±2.2 99±2.2 99±2.2 95±3.5 98±2.7 72±12.5 71±6.5 32±11.5 69±8.9 61±12.4
3D diffuser actor [35] 91.9±0.8 100±0.0 100±0.0 100±0.0 99±2.2 100±0.0 85±5.0 88±2.7 11±2.2 96±4.2 82±9.1
RVT-2 [37] 89.0±0.8 77±11.0 97±4.5 98±2.7 77±13.0 100±0.0 93±5.7 91±8.2 7±4.5 98±4.5 93±5.7
3D-LOTUS (ours) 94.3±3.5 96±3.7 100±0.0 100±0.0 98±2.5 98±4.0 84±7.4 85±9.5 99±2.0 77±2.5 83±8.7
3D-LOTUS++ (ours) 68.7±0.6 95±0.0 100±0.0 99±2.0 28±2.5 87±5.1 55±10.5 45±8.9 55±8.9 79±9.7 68±12.5

Method Open
Drawer+2

Pick&
Lift+0

Pick&
Lift+2

Pick&
Lift+7

PickUp
Cup+8

PickUp
Cup+9

PickUp
Cup+11

Push
Button+0

Push
Button+3

Push
Button+4

PutIn
Cupboard+0

Hiveformer [17] 59±7.4 86±4.2 92±6.7 93±2.7 83±7.6 69±12.9 61±19.8 84±11.9 68±6.7 87±7.6 34±8.2
PolarNet [2] 90±7.1 92±9.1 84±7.4 88±5.7 82±7.6 79±4.2 72±10.4 100±0.0 100±0.0 99±2.2 52±7.6
3D diffuser actor [35] 97±4.5 99±2.2 99±2.2 99±2.2 96±2.2 97±4.5 98±2.7 98±2.7 96±4.2 98±2.7 85±5.0
RVT-2 [37] 94±4.2 99±2.2 98±2.7 100±0.0 99±2.2 99±2.2 99±2.2 100±0.0 100±0.0 100±0.0 88±8.4
3D-LOTUS (ours) 93±6.0 99±2.0 100±0.0 99±2.0 97±4.0 96±3.7 94±4.9 99±2.0 99±2.0 100±0.0 89±5.8
3D-LOTUS++ (ours) 75±4.5 97±6.0 94±3.7 93±5.1 86±8.0 88±6.8 91±4.9 100±0.0 100±0.0 100±0.0 1±2.0

Method PutIn
Cupboard+3

PutMoney
InSafe+0

PutMoney
InSafe+1

Reach&
Drag+14

Reach&
Drag+18

Slide
Block+0

Slide
Block+1

Stack
Blocks+30

Stack
Blocks+36

Stack
Blocks+39

Hiveformer [17] 74±6.5 85±3.5 88±2.7 37±5.7 32±7.6 99±2.2 91±12.4 6±5.5 7±4.5 6±4.2
PolarNet [2] 88±4.5 93±4.5 95±5.0 99±2.2 99±2.2 100±0.0 0±0.0 34±10.8 30±9.4 36±12.9
3D diffuser actor [35] 82±11.5 95±5.0 98±2.7 100±0.0 99±2.2 100±0.0 89±4.2 88±7.6 85±6.1 89±5.5
RVT-2 [37] 80±6.1 93±8.4 96±8.5 85±10.0 94±2.2 100±0.0 37±6.7 88±5.7 93±2.7 88±11.5
3D-LOTUS (ours) 72±11.2 94±3.7 99±2.0 99±2.0 100±0.0 100±0.0 100±0.0 94±5.8 91±6.6 90±4.5
3D-LOTUS++ (ours) 2±2.5 22±6.8 16±4.9 94±3.7 62±8.7 100±0.0 65±5.5 86±5.8 20±4.5 28±13.6

Pick and Lift
Filename: pick and lift.py
Task: Pick a colored cube and lift it to a red sphere target.
New/Modified: No.
Objects: 3 colored cubes, one with the specified color and

the other two with different colors as distractors.
Variations per level: Level 1: 0 (red), 2 (lime) and 7

(cyan) and Level 2: 14 (teal), 16 (violet) and 18 (black).
Success Metric: The cube of the specified color is

grasped and next to the target red sphere.

Pick Up Cup
Filename: pick up cup.py

Task: Pick the cup with the specified color and lift it from
the table.

New/Modified: No.
Objects: 3 tall colored cups.
Variations per level: Level 1: 8 (magenta), 9 (silver)

and 11 (orange) and Level 2: 10 (gray), 12 (olive) and 13
(purple).

Success Metric: The cup of the specified color is grasped
and lifted from the table.

Stack Blocks
Filename: stack blocks.py
Task: Stack N blocks of the specified color on the green

TABLE XI: Performance on GemBench Level 2.

Method Avg. Push
Button+13

Push
Button+15

Push
Button+17

Pick&
Lift+14

Pick&
Lift+16

Pick&
Lift+18

PickUp
Cup+10

PickUp
Cup+12

PickUp
Cup+13

Hiveformer 26.1±1.4 97±2.7 85±10.0 88±2.7 21±6.5 9±4.2 8±6.7 30±7.1 22±13.5 26±10.6
PolarNet 37.1±1.4 100±0.0 100±0.0 85±7.9 3±4.5 1±2.2 0±0.0 48±11.0 46±8.9 16±6.5
3D diffuser actor 43.4±2.8 87±13.0 81±6.5 60±9.4 9±4.2 18±9.1 0±0.0 84±5.5 60±11.7 62±13.0
RVT-2 51.0±2.3 100±0.0 100±0.0 100±0.0 47±7.6 29±9.6 8±4.5 81±8.2 59±9.6 72±9.7
3D-LOTUS (ours) 49.9±2.2 99±2.0 100±0.0 100±0.0 3±2.5 18±8.7 33±9.3 89±3.7 78±8.7 57±7.5
3D-LOTUS++ (ours) 64.5±0.9 99±2.0 100±0.0 99±2.0 94±3.7 96±3.7 95±3.2 79±4.9 89±9.7 84±10.2

Method Stack
Blocks+24

Stack
Blocks+27

Stack
Blocks+33

Slide
Block+2

Slide
Block+3

Close
Jar+3

Close
Jar+4

LightBulb
In+1

LightBulb
In+2

Lamp
On+0

Hiveformer 0±0.0 4±4.2 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0 4±4.2 0±0.0 7±4.5
PolarNet 1±2.2 2±2.7 6±8.2 0±0.0 0±0.0 20±10.6 82±5.7 22±11.5 17±8.4 14±10.8
3D diffuser actor 66±13.9 82±2.7 50±14.6 0±0.0 0±0.0 23±16.8 82±5.7 51±17.8 60±10.0 7±7.6
RVT-2 18±4.5 56±16.7 45±13.7 0±0.0 1±2.2 7±7.6 77±5.7 68±14.4 6±6.5 0±0.0
3D-LOTUS (ours) 13±8.1 40±9.5 69±5.8 0±0.0 0±0.0 71±5.8 90±4.5 24±4.9 41±8.6 0±0.0
3D-LOTUS++ (ours) 22±9.3 83±7.5 59±3.7 27±9.8 5±3.2 98±2.5 96±3.7 56±9.7 43±7.5 2±2.0

Method Reach&
Drag+5

Reach&
Drag+7

PutCube
InSafe+0

Pick&Lift
Cylinder+0

Pick&Lift
Star+0

Pick&Lift
Moon+0

Pick&Lift
Toy+0

PutIn
Cupboard+7

PutIn
Cupboard+8

Hiveformer 1±2.2 0±0.0 4±2.2 78±5.7 73±7.6 88±2.7 87±4.5 0±0.0 0±0.0
PolarNet 61±8.2 10±6.1 40±14.1 93±6.7 88±8.4 93±6.7 90±3.5 0±0.0 0±0.0
3D diffuser actor 0±0.0 64±6.5 3±2.7 99±2.2 43±17.9 91±9.6 30±9.4 0±0.0 3±4.5
RVT-2 91±2.2 89±6.5 6±5.5 98±2.7 98±4.5 94±4.2 78±8.4 0±0.0 0±0.0
3D-LOTUS (ours) 95±4.5 18±10.8 25±5.5 88±8.7 69±6.6 80±8.4 96±3.7 0±0.0 0±0.0
3D-LOTUS++ (ours) 94±2.0 64±12.4 37±5.1 91±2.0 94±3.7 29±6.6 71±2.0 1±2.0 0±0.0

TABLE XII: Performance on GemBench Level 3.

Method Avg. Close
Door+0

Close
Box+0

Close
Fridge2+0

CloseLaptop
Lid2+0

Close
Microwave2+0

Open
Door2+0

Open
Box2+0

Hiveformer 35.1±1.7 0±0.0 1±2.2 34±9.6 52±9.1 15±7.1 32±11.5 5±3.5
PolarNet 38.5±1.7 0±0.0 0±0.0 78±5.7 26±8.2 74±6.5 33±6.7 23±8.4
3D diffuser actor 37.0±2.2 0±0.0 0±0.0 97±2.7 23±6.7 88±7.6 86±7.4 67±9.8
RVT-2 36.0±2.2 1±2.2 2±2.7 72±6.7 42±14.0 71±8.9 79±6.5 5±6.1
3D-LOTUS (ours) 38.1±1.1 0±0.0 58±8.1 36±9.7 54±10.7 85±7.1 42±6.8 11±6.6
3D-LOTUS++ (ours) 41.5±1.8 1±2.0 29±8.6 93±2.5 50±9.5 99±2.0 52±10.3 16±8.0

Method Open
Drawer2+0

Open
Drawer3+0

OpenDrawer
Long+0

OpenDrawer
Long+1

OpenDrawer
Long+2

OpenDrawer
Long+3

Toilet
SeatUp+0

Open
Fridge+0

Hiveformer 59±11.9 39±11.9 78±8.4 82±4.5 49±4.2 57±11.5 6±4.2 0±0.0
PolarNet 91±4.2 29±8.2 84±11.9 88±5.7 63±8.4 37±7.6 2±2.7 4±2.2
3D diffuser actor 19±8.2 1±2.2 15±5.0 35±13.7 26±9.6 79±12.9 0±0.0 7±5.7
RVT-2 81±11.9 0±0.0 84±8.2 39±10.8 11±8.9 75±6.1 7±5.7 0±0.0
3D-LOTUS (ours) 90±3.2 22±8.1 56±13.9 33±11.2 17±8.1 75±6.3 0±0.0 4±5.8
3D-LOTUS++ (ours) 70±5.5 41±4.9 72±4.0 52±10.8 23±8.1 78±5.1 8±5.1 0±0.0

Method OpenLaptop
Lid+0

Open
Microwave+0

PutMoney
InSafe+2

Open
Drawer+1

Close
Drawer+0

Close
Grill+0

Hiveformer 100±0.0 0±0.0 0±0.0 0±0.0 83±5.7 44±10.8
PolarNet 100±0.0 0±0.0 1±2.2 4±4.2 29±11.9 42±11.5
3D diffuser actor 100±0.0 0±0.0 2±4.5 0±0.0 66±7.4 65±13.7
RVT-2 93±5.7 0±0.0 0±0.0 6±2.2 78±8.4 9±4.2
3D-LOTUS (ours) 100±0.0 0±0.0 0±0.0 0±0.0 87±8.1 29±6.6
3D-LOTUS++ (ours) 86±6.6 0±0.0 13±8.1 0±0.0 69±5.8 19±13.9

platform. There are always 4 blocks of the specified color,
and 4 distractor blocks of another color. The block colors
are sampled from the full set of 20 color instances.

New/Modified: No.
Objects: 8 color blocks (4 are distractors), and 1 green

platform
Variations per level: Level 1: 30 (2 gray blocks), 36 (2

olive blocks), 39 (2 purple blocks) and Level 2: 24 (2 orange
blocks), 27 (2 silver blocks) and 33 (2 magenta blocks).

Success Metric: N blocks are inside the area of the green
platform.

Put Groceries in Cupboard
Filename: put groceries in cupboard.py
Task: Grab the specified object and put it in the cupboard

above. The scene always contains 9 YCB objects that are
randomly placed on the tabletop.

New/Modified: Yes, modified the object names to include
object category and therefore the instructions.

Objects: 9 YCB objects, and 1 cupboard (that hovers in
the air like magic).

Variations per level: Level 1: 0 (crackers box) and 3 (soup

TABLE XIII: Performance on GemBench Level 4.

Method Avg. Push
Buttons4+1

Push
Buttons4+2

Push
Buttons4+3

TakeShoes
OutOfBox+0

PutItems
InDrawer+0

PutItems
InDrawer+2

Hiveformer 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0
PolarNet 0.1±0.2 1±2.2 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0
3D diffuser actor 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0
RVT-2 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0
3D-LOTUS (ours) 0.3±0.3 3±4.0 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0
3D-LOTUS++ (ours) 17.4±0.4 76±7.4 49±8.6 37±8.1 0±0.0 0±0.0 0±0.0

Method PutItems
InDrawer+4 Tower4+1 Tower4+3 Stack

Cups+0
Stack

Cups+3
PutAllGroceries
InCupboard+0

Hiveformer 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0
PolarNet 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0
3D diffuser actor 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0
RVT-2 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0
3D-LOTUS (ours) 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0
3D-LOTUS++ (ours) 0±0.0 17±10.8 30±13.4 0±0.0 0±0.0 0±0.0

can) and Level 2: 7 (mustard bottle) and 8 (sugar box).
Success Metric: The specified object is inside the

cupboard.

Put Money in Safe
Filename: put money in safe.py
Task: Pick up the stack of money and put it inside the

safe on the specified shelf. The shelf has three placement
locations: top, middle, bottom.

New/Modified: No.
Objects: 1 stack of money, and 1 safe.
Variations per level: Level 1: 0 (bottom) and 1 (middle)

and Level 2: 2 (top).
Success Metric: The stack of money is on the specified

shelf inside the safe.

Slide Block to Color Target
Filename: slide block to color target peract.py
Task: Slide the block on to one of the colored square

targets. The target colors are limited to red, blue, pink, and
yellow.

New/Modified: Yes, modified as in RLBench-18Task [18].
The original slide block to target.py task contained only one
target. Three other targets were added to make a total of 4
variations.

Objects: 1 block and 4 colored target squares.
Variations per level: Level 1: 0 (green) and 1 (blue) and

Level 2: 2 (pink) and 3 (yellow).
Success Metric: Some part of the block is inside the

specified target area.

Reach and Drag
Filename: reach and drag peract.py
Task: Grab the stick and use it to drag the cube on to the

specified colored target square. The target colors are sampled
from the full set of 20 color instances.

New/Modified: Yes, modified as in RLBench-18Task [18].
The original reach and drag.py task contained only one tar-
get. Three other targets were added with randomized colors.

Objects: 1 block, 1 stick, and 4 colored target squares.

Variations per level: Level 1: 14 (teal) and 18 (black)
and Level 2: 5 (cyan) and 7 (navy).

Success Metric: Some part of the block is inside the
specified target area.

Close Jar
Filename: close jar.py
Task: Put the lid on the jar with the specified color and

screw the lid in. The jar colors are sampled from the full set
of 20 color instances.

New/Modified: No.
Objects: 1 jar lid and 2 colored jars.
Variations per level: Level 1: 15 (azure) and 16 (violet)

and Level 2: 3 (blue) and 4 (green).
Success Metric: The lid is on top of the specified jar and

the Franka gripper is not grasping anything.

Screw Bulb
Filename: light bulb in.py
Task: Pick up the light bulb from the specified holder,

and screw it into the lamp stand. The colors of holder are
sampled from the full set of 20 color instances. There are
always two holders in the scene – one specified and one
distractor holder.

Modified: No.
Objects: 2 light bulbs, 2 holders, and 1 lamp stand.
Variations per level: Level 1: 17 (rose) and 19 (white)

and Level 2: 1 (lime) and 2 (maroon).
Success Metric: The bulb from the specified holder is

inside the lamp stand dock.

Close Door
Filename: close door.py
Task: Grab the handle of the door and pull to close the

door.
Modified: Yes, modified to add new instructions.
Objects: 1 door with a handle.
Variations per level: Level 3: 0.
Success Metric: The revolute joint of the door is in the

close configuration.

Close Box
Filename: close box.py
Task: Grab the box lid and rotate to close the box.
New/Modified: Yes, modified to add new instructions.
Objects: 1 box.
Variations per level: Level 3: 0.
Success Metric: The revolute joint of the box lid has

rotated so that it is in the closed configuration.

Close Drawer
Filename: close drawer.py
Task: Close one of the three drawers: top, middle, or

bottom.
New/Modified: Yes, modified to add new instructions.
Objects: 1 drawer unit with 3 drawers.
Variations per level: Level 3: 0.
Success Metric: The prismatic joint of the specified

drawer is fully contracted.

Open Fridge
Filename: open fridge.py
Task: Grab the handle of the fridge door and pull to open

the fridge.
New/Modified: Yes, modified to add new instructions.
Objects: 1 fridge.
Variations per level: Level 3: 0.
Success Metric: The revolute joint of the fridge door has

rotated 70 degrees so that the fridge is open.

Open Laptop Lid
Filename: open laptop lid.py
Task: Grab the laptop lid and open it.
New/Modified: Yes, we modified the close laptop lid task

to add a new task where the laptop is already close and the
goal is to open the lid instead of closing it.

Objects: 1 laptop and 1 box.
Variations per level: Level 3: 0.
Success Metric: The revolute joint of the laptop lid

reaches its minimum value so that the laptop is open.

Open Microwave
Filename: open microwave.py
Task: Grab the handle to pull and open the microwave

door.
New/Modified: Yes, modified to add new instructions.
Objects: 1 microwave.
Variations per level: Level 3: 0.
Success Metric: The revolute joint of the microwave has

rotated at least 80º.

Put Cube In Safe
Filename: put cube in safe.py
Task: Pick up the cube and put it inside the safe on the

specified shelf. The shelf has three placement locations: top,
middle, bottom.

New/Modified: Yes, new task based on put money in safe
where the bank note is changed by a cube.

Objects: 1 cube and 1 safe.
Variations per level: Level 1: 0.
Success Metric: The cube is on the specified shelf inside

the safe.

Close Fridge2
Filename: close fridge2.py
Task: Close the fridge door by pushing it.
New/Modified: Yes, new task based on close fridge where

the fridge mesh and texture are completely changed.
Objects: 1 microwave.
Variations per level: Level 1: 0.
Success Metric: The revolute joint of the fridge door is

in closed configuration and the door is in contact with the
fridge cabinet.

Close Laptop Lid2
Filename: close laptop lid2.py
Task: Grasp the laptop lid and rotate to close the laptop.
New/Modified: Yes, a new task based on close laptop lid

task where the laptop is already close and the goal is to open
the lid instead of closing it.

Objects: 1 box, 1 laptop.
Variations per level: Level 3: 0.
Success Metric: The revolute joint of the laptop lid is in

the close configuration.

Close Microwave2
Filename: close microwave2.py
Task: Close the microwave door.
New/Modified: Yes, new task based on close microwave

task where the microwave and handle meshes and textures
are completely changed.

Objects: 1 microwave.
Variations per level: Level 3: 0.
Success Metric: The revolute joint of the microwave is

in the close configuration.

Open Door2
Filename: open door2.py
Task: Pick up the door handle and open the door by

pushing.
New/Modified: Yes, a new task based on open door task

where the door, door frame and handle meshes and textures
are completely changed.

Objects: 1 door with a handle.
Variations per level: Level 3: 0.
Success Metric: The handle has been rotated 25º to

unlock the door and the revolute joint of the door has been
rotated 20º.

Open Box2
Filename: open box2.py
Task: Open the box lid.
New/Modified: Yes, a new task based on open box task

where the box mesh and texture are changed.
Objects: 1 box with a lid.

Variations per level: Level 3: 0.
Success Metric: The revolute joint of the box lid has

rotated 90º so that it is in the open configuration.

Open Drawer2
Filename: open drawer2.py
Task: Open one of the three drawers: top, middle, or

bottom.
New/Modified: Yes, a new task based on open drawer

task where the drawer handles and cabinet meshes, colors
and textures are changed.

Objects: 1 drawer.
Variations per level: Level 3: 0 (bottom).
Success Metric: The prismatic joint of the specified

drawer is fully extended.

Open Drawer3
Filename: open drawer3.py
Task: Open one of the three drawers: top, middle, or

bottom.
New/Modified: Yes, a new task based on open drawer

task where the drawer handles and cabinet meshes, colors
and textures are changed and different to Open Drawer2.

Objects: 1 drawer.
Variations per level: Level 3: 0 (bottom).
Success Metric: The prismatic joint of the specified

drawer is fully extended.

Open Drawer Long
Filename: open drawer long.py
Task: Open one of the four drawers: top, top middle,

bottom middle or bottom.
New/Modified: Yes, a new task based on open drawer task

where the drawer unit has 4 drawers and and the handles and
cabinet meshes, colors and textures are changed.

Objects: 1 drawer.
Variations per level: Level 3: 0 (bottom), 1 (bottom

middle), 2 (top middle) and 3 (top).
Success Metric: The prismatic joint of the specified

drawer is fully extended.

Lamp On
Filename: lamp on.py
Task: Press the button to light on the lamp.
New/Modified: No.
Objects: 1 lamp, 1 button.
Variations per level: Level 2: 0.
Success Metric: The button is pressed and the lamp light

is on.

Close Grill
Filename: close grill.py
Task: Close the grill.
New/Modified: No.
Objects: 1 grill.
Variations per level: Level 3: 0.

Success Metric: The revolute joint of the grill lid is in
the close configuration.

Toilet Seat Up
Filename: toilet seat up.py
Task: Grasp the toilet seat and rotate it to move it up the

toilet.
New/Modified: No.
Objects: 1 toilet.
Variations per level: Level 3: 0.
Success Metric: The revolute joint of the toilet seat is in

the open configuration.

Pick and Lift Cylinder
Filename: pick and lift cylinder.py
Task: Pick and lift the cylinder with the specified color.
New/Modified: Yes, a new task based on pick and lift task

where cubes are changed with cylinders.
Objects: 3 colored cylinders, one with the specified color

and the other two with different colors as distractors.
Variations per level: Level 2: 0 (red).
Success Metric: The cylinder of the specified color is

grasped and placed in the target red sphere.

Pick and Lift Star
Filename: pick and lift star.py
Task: Pick and lift the star with the specified color.
New/Modified: Yes, a new task based on pick and lift task

where cubes are changed with stars.
Objects: 3 colored stars, one with the specified color and

the other two with different colors as distractors.
Variations per level: Level 2: 0 (red).
Success Metric: The star of the specified color is grasped

and placed in the target red sphere.

Pick and Lift Moon
Filename: pick and lift moon.py
Task: Pick and lift the moon with the specified color.
New/Modified: Yes, a new task based on pick and lift task

where cubes are changed with moons.
Objects: 3 colored moons, one with the specified color

and the other two with different colors as distractors.
Variations per level: Level 2: 0 (red).
Success Metric: The moon of the specified color is

grasped and placed in the target red sphere.

Pick and Lift Toy
Filename: pick and lift moon.py
Task: Pick and lift the duck rubber toy with the specified

color
New/Modified: Yes, a new task based on pick and lift task

where cubes are changed with duck rubber toys.
Objects: 3 colored duck rubber toys, one with the speci-

fied color and the other two with different colors as distrac-
tors.

Variations per level: Level 2: 0 (red).

Success Metric: The duck rubber toy of the specified
color is grasped and placed in the target red sphere.

Push Buttons4
Filename: push buttons4.py
Task: Push 2/3/4 buttons in the given color order.
New/Modified: Yes, a new task based on push button

where there are 4 buttons instead of one, and the goal is
change to follow a sequence of 2/3/4 buttons colors.

Objects: 4 colored buttons.
Variations per level: Level 4: 1 (navy then teal), 2 (green

then yellow then rose), 3 (maroon then blue then orange then
magenta).

Success Metric: The buttons are pressed consecutively
in the same order as specified by the instructions.

Take Shoes Out Of Box
Filename: take shoes out of box.py
Task: Open the box and then take both shoes and place

them in the table.
New/Modified: No.
Objects: 1 box and 2 shoes.
Variations per level: Level 4: 0.
Success Metric: Both shoes are outside of the box and

on top of the table.

Put Items In Drawer
Filename: put items in drawer.py
Task: Put a cube, a cylinder and a moon in the specified

order and inside one of the three drawers: top, middle and
bottom.

New/Modified: Yes. The task is a new long horizon task
that combines open drawer task and put in drawer.

Objects: 1 cube, 1 cylinder, 1 moon and a drawer.
Variations per level: Level 4: 0 (cube then cylinder then

moon in bottom drawer), 2 (cube then cylinder then moon in
top drawer) and 4 (cube then moon then cylinder in middle
drawer).

Success Metric: The cube, the cylinder and the moon
have been placed in order inside the specified drawer.

Tower4
Filename: tower4.py
Task: Stack 2, 3 or 4 cubes to create a tower on top of

the green platform.
New/Modified: Yes, a new task based on stack blocks

reducing the number of cubes to 4 blocks of different colors
without repetitions.

Objects: 4 cubes of different colors and a green platform.
Variations per level: Level 4: 1 (stack white then teal then

blue) and 3 (stack orange then gray then lime then rose).
Success Metric: The cubes are stacked in the correct

order and on top of the green platform.

Stack Cups
Filename: stack cups.py

Task: Stack all cups on top of the specified color cup.
The cup colors are sampled from the full set of 20 color
instances. The scene always contains three cups.

New/Modified: No.
Objects: 3 tall cups.
Variations per level: Level 4: 0 (red) and 3 (green).
Success Metric: All other cups are inside the specified

cup.

Put All Groceries In Cupboard
Filename: put all groceries in cupboard.py
Task: Grab each one of the groceries and put them inside

the cupboard until all of them are inside the cupboard.
New/Modified: Yes, modified to add new instructions and

improve the groceries names.
Objects: 6 YCB objects (1 crackers box, 1 chocolate jello

box, 1 strawberry jello box, 1 soup can, 1 spam can, 1
mustard bottle and 1 sugar box), and 1 cupboard (that hovers
in the air like magic).

Variations per level: Level 4: 0.
Success Metric: All the groceries are set inside the

cupboard.

	Introduction
	Related work
	GEMBench: GEneralizable Vision-Language Robotic Manipulation Benchmark
	Training tasks
	Testing tasks with four levels of generalization

	Method
	Problem formulation
	3D-LOTUS policy
	3D-LOTUS++ policy

	Experiments
	Experimental setup
	Comparison with state of the arts
	Ablations
	Real world experiments

	Conclusion
	References
	The proposed GemBench benchmark
	Details of 3D-LOTUS policy
	Point cloud preprocessing
	Action prediction

	Details of 3D-LOTUS++ policy
	Task planning
	Object grounding

	Detailed evaluation results
	Detail task specification

