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Abstract001

LoRA (Low-Rank Adaptation) is a widely002
used LLM fine-tuning method. During the fine-003
tuning process, the Scaling Law can guide the004
selection of the optimal model scale and data005
complexity to balance model performance and006
fine-tuning costs. Although existing methods007
frequently rely on external metrics (e.g., cross-008
entropy or perplexity) to evaluate model perfor-009
mance, the scaling law may exhibit instability010
during testing, which is largely attributed to the011
generalization gap between training and testing.012
To address this issue, we propose the Mutual013
Information Upper Bound (MIUB) metric be-014
tween base modules and LoRA modules, to015
investigate the Scaling Law in the large-scale016
LoRA fine-tuning context. The metric gauges017
the dependency between the general knowl-018
edge obtained during pre-training and the task-019
specific knowledge acquired through LoRA020
adaptation. In doing so, the metric pays more021
attention to the distribution changes within the022
LoRA architecture, so as to evaluate the Scal-023
ing Law more robustly. In our experiments, we024
validated this approach on benchmark datasets,025
using the Llama3-8B and Phi3-3B models. The026
results show that the proposed MIUB metric027
aligns more accurately and stably with the scal-028
ing law of LoRA fine-tuning compared to cross-029
entropy, perplexity and more metrics.030

1 Introduction031

Pre-trained on vast amounts of data, large lan-032

guage models like GPT-X (Achiam et al., 2023)033

and LLaMA3 (Dubey et al., 2024) have achieved034

remarkable results in general domains. However, to035

address various personalized needs, especially un-036

der the pressure of inference deployment costs, fine-037

tuning serves as an effective method, enhancing the038

model’s personalization and multi-tasking capabili-039

ties with relatively small datasets (Kim et al., 2024;040

Wang et al., 2023; Ge et al., 2023). Among these,041

LoRA (Low-Rank Adaptation) (Hu et al., 2021;042

Yang et al., 2024) fine-tuning leverages the idea of 043

low-rank approximation. By freezing the parame- 044

ters of the large model, it only uses a small number 045

of newly added low-rank parameter matrices to 046

learn the specific knowledge in the new data. 047

There is no doubt that whether it is LLMs pre- 048

training or fine-tuning, how to controllably balance 049

computing resources and model effects has always 050

been a widely concerned issue. Some work has pro- 051

posed that there is a scaling law for large model 052

pre-training (Kaplan et al., 2020; Wei et al., 2024), 053

that is, as the size of the LLM increases and the 054

amount of pre-training data increases, the effect 055

of pre-training usually changes regularly. In the 056

pre-training stage, external metrics such as Cross 057

Entropy and Perplexity are usually used to con- 058

struct Scaling Law for evaluating the model. The 059

existing evaluation metrics primarily focus on as- 060

sessing the overall distribution of the model. Some 061

work also shows that evaluations based on external 062

metrics are sometimes not stable (Wei et al., 2024). 063

In the LoRA architecture, the factors that affect 064

the effect of model fine-tuning mainly include the 065

model size, the rank size of LoRA, the amount 066

of data, etc. In addition, there is a natural gener- 067

alization gap (e.g., distribution shift and knowl- 068

edge conflict) between training and testing (Xiao, 069

2024). When there is a large difference between 070

the amount of data and the model size, the impact 071

caused by this generalization gap is not obvious. 072

However, the base module is frozen, and the size 073

of the LoRA module changes relatively little, and 074

the variation in the amount of fine-tuning data is 075

also limited. Therefore, the evaluation of Scaling 076

Law based on external metrics will be disturbed by 077

the generalization gap, leading to instability. 078

In order to solve the above problems, we shift 079

our perspective to the interior of the LoRA frame- 080

work. From a general perspective, the effect after 081

fine-tuning is mainly related to two parts of knowl- 082

edge, one is the meta-knowledge relied on from 083
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the large language model, and the other is the gen-084

eralized knowledge learned by the newly added085

parameters (Mao et al., 2024; Jovanovic and Voss,086

2024). Some work has shown that when fine-tuning087

large models, there will be conflicts between new088

and old knowledge (Shi et al., 2024). Therefore,089

inspired by the above research, we propose to use090

the Mutual Information Upper Bound (MIUB) be-091

tween base modules and LoRA modules to evaluate092

the Scaling Law in LoRA fine-tuning. MIUB quan-093

titatively analyzes the upper bound of the internal094

distribution’s dependency relationship. This helps095

reduce the interference of various generalization096

gaps on the evaluation of the scaling law.097

By leveraging the structural advantages of LoRA,098

it can efficiently calculate the MIUB metric be-099

tween the output distribution of the large model100

and that of LoRA. Experimental results show that101

the MIUB decreases as the size of the large model,102

the LoRA rank, and the data size (length or com-103

plexity) increase. Additionally, the MIUB adheres104

to the scaling law, is more stable than traditional105

external evaluation metrics, and better reflects the106

actual performance trends of the model (such as107

accuracy). This implies that the MIUB metric en-108

ables a more precise selection of the optimal rank109

and model size configuration, striking a balance110

between task performance and resource consump-111

tion. Furthermore, this paper compares the MIUB112

size patterns under different prompt templates and113

contrasts them with the patterns used in fine-tuning.114

• An internal metric, the Mutual Information115

Upper Bound (MIUB), is proposed for the116

LoRA architecture. By quantitatively analyz-117

ing the dependency relationship between the118

base modules and LoRA modules, it miti-119

gates the instability of the testing Scaling Law120

caused by the generalization gap.121

• Theoretical analysis demonstrates that the122

Scaling Law derived from MIUB enable more123

stable assessment of distributional discrepan-124

cies between base and LoRA modules, en-125

hancing the stability of performance evalua-126

tion in LoRA fine-tuning.127

• Empirical results reveal that MIUB not only128

aligns with the Scaling Law across model129

sizes and data complexities but also achieves130

superior robustness and stability compared131

to traditional metrics like Cross-Entropy, Per-132

plexity (PPL) and more.133

2 Related Works 134

As the scale of large models continues to increase, 135

LoRA is widely used as a lightweight fine-tuning 136

method. However, similar to how the Scaling Law 137

govern pretraining paradigms, establishing LoRA- 138

specific Scaling Law has become crucial for op- 139

timizing resource reducing trial-and-error costs. 140

Therefore, this section systematically reviews the 141

research advancements in both Low-Rank Adapta- 142

tion techniques and Scaling Law theories. 143

2.1 Scaling Law 144

The Scaling Law have been a persistent topic in 145

both nature and science (Gan et al., 2021), and in 146

recent years, they have also shown strong guiding 147

capabilities in the field of Large Language Mod- 148

els (LLMs). In the field of neural networks, the 149

Scaling Law critically demonstrate how model per- 150

formance scales with increases in computational 151

resources, data, and model parameters. (Hu et al., 152

2021) first introduced the “scaling law” for neu- 153

ral language models, indicating that larger models 154

trained on more data tend to perform better. (Zhang 155

et al., 2024) comprehensively tested the Scaling 156

Law of fine-tuning frameworks under existing eval- 157

uation metrics. In the information retrieval domain, 158

(Fang et al., 2024) proposed using contrastive log- 159

likelihood as a metric to assess whether retrieval 160

models adhere to the Scaling Law. In the compres- 161

sion domain, (Wei et al., 2024) introduced the 162

information-theoretic Matrix entropy to measure 163

the performance of large models, showing that Ma- 164

trix entropy is more accurate and stable compared 165

to the unstable CE (cross-entropy) and PPL (per- 166

plexity) metrics. This work has inspired us to in- 167

vestigate the internal relationships within models 168

to evaluate the Scaling Law of LoRA. 169

2.2 Low-Rank Adaptation 170

(Hu et al., 2021) was the first to propose the ap- 171

plication of LoRA in large models. The core idea 172

of this method is to decompose the weight updates 173

of the model into low-rank matrices, significantly 174

reducing computational costs while maintaining 175

model performance. In recent years, various works 176

have focused on reducing the cost of model fine- 177

tuning and enhancing its generalization capabilities 178

in the design of LoRA structures. (Ding et al., 2023) 179

further reduced the computational cost of LoRA by 180

using gating units to dynamically adjust the intrin- 181

sic rank. Additionally, combining LoRA with MoE 182

2



⊕

LoRA SpaceLLM Space

Dependencies

𝐷𝐽𝑆(𝑃||𝑄)

Mutual Information 
Upper Bound

Generalizability

The Data With 
Different Complexity

N Layers

Hidden
States

Hidden
States

… …

ℎ𝐿𝐿𝑀
MIUB

Pretrained 
Weights

𝑟

LORA
Weights

a) b)

Figure 1: Overall schematic diagram. a) The left figure refers to the dependency between LLM Space and LoRA
Space during LoRA fine-tuning. This paper measures this dependency by the upper limit of mutual information, and
the generalization of the model will also change accordingly. b) The right figure refers to the LoRA training mode
used in this paper and the method of calculating MIUB in this process.

techniques has also provided assurance for enhanc-183

ing its generalization ability. LoRAHub (Huang184

et al., 2023) selects different LoRA combinations185

for task generalization. (Dou et al., 2024) proposed186

MoELoRA, which utilizes both LoRA and MoE187

for specific task adjustment and multi-task process-188

ing. (Liu et al., 2023) introduced the multimodal189

learning capabilities of multimodal expert models.190

During the LoRA fine-tuning process, the parame-191

ters of the base modules are frozen. Meanwhile, the192

LoRA’s rank size limits the changes in model size193

and computational cost. In view of this, the tradi-194

tional external metrics used to quantify the overall195

distribution face greater challenges in stably eval-196

uating the Scaling Law. Therefore, by leveraging197

the architectural advantage of LoRA, we propose198

a Scaling Law metric that focuses on the internal199

distribution changes of the model.200

3 Methodology201

3.1 The Scaling Law of LoRA202

For newly added fine-tuning data, without disrupt-203

ing the feature space of the large model itself (i.e.,204

by freezing the parameters of the large model),205

LoRA relies on some of the meta-knowledge of the206

LLM and learns new specific features by adding207

low-rank parameter weights. Therefore, as shown208

in Figure 1, there is a natural dependence and gener-209

alization relationship between the LLM and LoRA 210

modules. Furthermore, we model the dependency 211

relationship between them as mutual information. 212

which not only measures the information obtained 213

about the distribution of LoRA from the LLM vari- 214

ables but also reveals the extent of their overlap in 215

feature space. 216

Definition 1 (Mutual Information for LoRA Adap- 217

tation). Let O and L denote the hidden state dis- 218

tributions of the base LLM and LoRA-adapted fea- 219

tures, respectively. Their mutual information is de- 220

fined as: 221

I(O;L) =

∫∫
p(o, l) log

p(o, l)

p(o)p(l)
dodl, (1) 222

where p(o, l) is the joint distribution, and p(o), 223

p(l) are marginals. Higher I(O;L) indicates 224

stronger dependency between pretrained knowl- 225

edge and LoRA modules. 226

In the previous text, we first proposed using mu- 227

tual information to measure the dependency rela- 228

tionship between the distribution of the base mod- 229

ule and that of the Low-Rank Adaptation (LoRA) 230

module. However, the mutual information levels 231

presented by models of different scales vary greatly, 232

making it difficult for us to find a stable dependency 233

pattern. Especially when there are issues such as 234

noise in the feature distribution, the calculation of 235
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mutual information will be significantly affected.236

In view of this, this paper further designs the Mu-237

tual Information Upper Bound (MIUB) as a metric238

to measure the difference between the distribution239

of the large model and the LoRA distribution.240

Theorem 2 (Mutual Information Upper Bound be-241

tween Base Modules and LoRA Modules). Let242

O and L be random variables representing the243

output distributions of the base LLM and LoRA244

module, respectively, with joint distribution POL245

and marginal distributions PO and PL. The mutual246

information I(O;L) is bounded by:247

I(O;L) ≤ 2 · DJS(POL∥POPL), (2)248

where DJS denotes the Jensen-Shannon diver-249

gence. The proof can be found in Appendix A.250

As shown in Figure 1, large models acquire rich251

meta-knowledge, and the knowledge from new252

data absorbed by the LoRA module inevitably de-253

pends on the features already learned by the large254

model. Specifically, a larger MIUB value implies255

a stronger dependency relationship between the256

base modules and the LoRA modules, and a higher257

degree of overlap in the distribution space. This258

often indicates that the LoRA module learns less259

domain-specific knowledge from the new data, and260

generally, the actual performance of the model will261

also deteriorate accordingly.262

By introducing the MIUB to measure depen-263

dence within the LoRA architecture, it ensures that264

the dependence will not decrease indefinitely dur-265

ing the data measurement process, but will instead266

stabilize within a certain range and approach its267

upper bound. This approach provides a theoretical268

upper limit for the dependence in the LoRA archi-269

tecture, while also guaranteeing its convergence,270

ensuring that the dependence ultimately stabilizes271

within a finite range and avoiding excessive fluctu-272

ations or infinite reduction. Furthermore, we will273

give two corollaries: one is the Scaling Law based274

on the MIUB metric, and the other is why MIUB is275

closer to the actual model performance than other276

metrics.277

Corollary 1. Here is a scaling law that focuses on278

the model size, LoRA rank size, and dataset size279

during LoRA fine-tuning:280

MIUB(N,R,D) = A

(
N0

N

)α

+B

(
R0

R

)β

+ C

(
D0

D

)γ

.

(3)281

where MIUB(N,R,D) is the metric as a function 282

of the number of parameters in the large model 283

N , the LoRA rank size R, and the dataset size D. 284

N0, R0, D0 are scaling constants that normalize 285

the respective terms. α, β, γ are scaling exponents 286

that describe how the MIUB scales with respect to 287

the model size, LoRA rank size, and dataset size, 288

respectively. A,B,C are constants that depend on 289

the specific problem and architecture. 290

Assumption 3. This paper assumes that the gen- 291

eralization gap Ggap is the main reason for the 292

instability of the scaling law in the LoRa frame- 293

work. Ggap arises from the difference between the 294

training error and the testing error for unseen la- 295

belswork (Xiao, 2024), which encompasses factors 296

such as distribution shifts and knowledge conflicts. 297

Formally, we can express it as: 298

Ggap = Eunseen
te − Etr =

n∑
i=1

Ii +Mdist, (4) 299

where Ii denotes the i-th contributing error, and 300

Mdist represents the error caused by the distribu- 301

tion evaluation metric. 302

Corollary 2. Based on the above hypothesis, the 303

discrepancy between the Scaling Law’s evaluation 304

metric M and the model’s actual performance Y 305

is defined as the generalization gap Ggap, as ex- 306

pressed in the following equation. 307

Y −M =

n∑
i=1

Ii +Mdist, (5) 308

In the context of LoRA, variations in rank have a 309

relatively limited impact on model size and com- 310

putational cost. Traditional metrics primarily fo- 311

cus on overall distributional changes, and Mdist 312

is influenced by the parameters and knowledge in- 313

herited from the base model distribution. On one 314

hand, this influence increases the error, enlarging 315

Ggap and further deviating from the model’s actual 316

performance. On the other hand, traditional met- 317

rics may exhibit insensitivity to distributional shifts 318

specific to the LoRA components. 319

In contrast, the Mutual Information Upper 320

Bound (MIUB) quantifies the dependencies be- 321

tween internal distributions, allowing for a more 322

effective evaluation of the model’s generalization 323

ability when learning new data. Therefore, MIUB 324

serves as a more reliable scaling law metric in 325

LoRA fine-tuning, providing greater stability in as- 326

sessing model adaptability and performance. 327
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3.2 Calculating MIUB in LoRA Architecture328

The paper adds LoRA structures to all the Dense329

Linear layers in the Attention and FFN modules of330

a large model. The original parameters of the large331

model are frozen, and only the LoRA components332

are trained during fine-tuning. Specifically, the hid-333

den states of the large model are denoted as hmLLM ,334

and the hidden states of LoRA, hmlora, are obtained335

by adding the hidden states of the large model to336

the output of LoRA.337

The hidden states hmLLM and hmLoRA are con-338

verted into probability distributions using the soft-339

max function. Then, the MIUB between these two340

probability distributions is calculated, as shown in341

Figure 1. By summing the MIUBs of all the LoRA342

components, we obtain the MIUB for a single sam-343

ple. The average MIUB across all samples gives344

the final evaluation value:345

M =
1

N

∑
ωset

∑
m

Dm
JS(P∥Q) (6)346

where Dm
JS(P ||Q) represents the Jensen-Shannon347

divergence between the probability distributions P348

and Q for the m-th component.349

As shown in the Appendix B, we employed350

prompt learning during the fine-tuning of the large351

model. Taking a classification task as an example,352

the Train Prompt instructs the model to select the353

correct option and serves as a zero-shot template.354

During testing, in addition to the zero-shot prompt,355

we also have the option to use a 1-shot template356

(Test Prompt 1), which includes one positive and357

one negative example, a few-shot template, and a358

template that imposes restrictions on the task out-359

put (Test Prompt 3). We also evaluate the model’s360

performance across different prompt templates.361

4 Experiments362

In this section, we will evaluate the proposed model363

structure on natural language tasks and verify the364

effectiveness of various measures we use. All ex-365

periments were performed on NVIDIA A800 GPU.366

4.1 Model and Hyperparameters367

We use Llama3 (Dubey et al., 2024) and Phi3-368

3B (Abdin et al., 2024) as our testing model,369

Llama3 has 8B parameters and 32 layers and Phi3370

has 3B parameters and 32 layers, we use them to371

test the best model settings on models of different372

sizes. We use Adam as the optimizer with a learn-373

ing rate of 4 × 10−5 for fine-tuning downstream374

tasks and set the batch size to 32.375

4.2 Dataset and Metrics 376

We use our proposed structure on five popular zero- 377

shot generation tasks, including PIQA (Bisk et al., 378

2020), ARC-Challenge (Clark et al., 2018), ARC- 379

Easy (Clark et al., 2018), Winogrande (Sakaguchi 380

et al., 2021), and HellaSwag (Zellers et al., 2019), 381

with higher accuracy, indicating that Mooe has a 382

stronger parameter fine-tuning ability to handle 383

downstream tasks. 384

For perplexity verification, we chose two 385

datasets: Wiki2 (Merity et al., 2016) and PTB (Mar- 386

cus et al., 1994). Lower Perplexity indicates that the 387

compressed model has a stronger ability to main- 388

tain the output distribution of the original model. 389

In addition, we use Metaphor Understanding 390

Challenge (MUNCH) (Tong et al., 2024) dataset. 391

Given that metaphor understanding is significantly 392

challenging for large language models (LLMs), this 393

test can effectively verify the applicability of each 394

metric in evaluating the fine-tuning effect . 395

Seven metrics, Accuracy (ACC), Cross-Entropy 396

(CE), Perplexity (PPL), Cosine similarity (COS), 397

and Euclidean distance (EU), Mutual Informa- 398

tion (MI) and Mutual Information Upper Bound 399

(MIUB), were used for experimental evaluation. 400

4.3 Scaling Law Setting 401

• For the scaling settings of the LoRA compo- 402

nents, we primarily adjusted the rank to differ- 403

ent sizes, specifically 32, 128, 512. 404

• For the large model, we applied a parameter- 405

sharing compression method to adjust the scal- 406

ing of the model. To ensure that the model’s 407

basic performance is not unfairly affected or 408

that abnormal experimental results do not oc- 409

cur due to compression, we fixed the first 16 410

layers of the Phi3 and llama3 models and ap- 411

plied different parameter-sharing strategies to 412

the last 16 layers: sharing every eight layers 413

(share8), every four layers (share4), every 414

two layers (share2), and no sharing (share1). 415

• In the data scaling section, we selected 100 416

data samples from each of the test sets across 417

multiple tasks, with data lengths in the ranges 418

of [1, 100], [101, 200], and [201, 300]. 419

4.4 Main Results 420

We conducted experiments on seven benchmark 421

datasets, where AVG refers to the average value 422

of ARC-Easy, ARC-Challenge, HellaSwag, PIQA 423
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Table 1: Experiments comparing the performance of the Scaling Law under MIUB and Cross-Entropy metrics
through controlled configurations of LoRA ranks and model sizes. Black arrows indicate the trend of model size
scaling for the ACC metric, red arrows signify that the trends of the CE or MIUB metrics deviate from the ACC
trend, while green arrows denote alignment with the ACC trend.

Dataset Model Metrics 32 128 512 share8 share4 share2 share1

ARC-Easy

Phi3
ACC 0.951 0.951 0.969 0.955 0.949 0.951 0.955
CE 0.018 0.162 0.007 23.977 9.647 2.514 0.077

MIUB 1586.0 1566.6 1567.7 1902.6 1712.6 1643.0 1597.3

LLaMA3
ACC 0.873 0.846 0.862 0.007 0.901 0.894 0.912
CE 12.924 11.789 13.427 8.741 11.594 13.399 14.339

MIUB 3420.8 3407.1 3398.8 3831.8 3579.5 3443.7 3405.1

ARC-Challenge

Phi3
ACC 0.859 0.863 0.887 0.849 0.863 0.887 0.873
CE 0.018 0.159 0.007 24.661 9.606 2.510 0.070

MIUB 1596.2 1579.1 1578.3 1913.3 1728.5 1657.4 1607.6

LLaMA3
ACC 0.754 0.782 0.792 0.007 0.154 0.816 0.823
CE 12.018 10.444 12.342 9.033 13.328 11.295 13.463

MIUB 3456.9 3447.6 3439.3 3861.9 3613.7 3485.0 3446.6

HellaSwag

Phi3
ACC 0.809 0.796 0.814 0.789 0.809 0.789 0.813
CE 0.009 0.191 0.014 18.215 14.896 0.057 0.007

MIUB 1521.4 1518.7 1511.6 1884.9 1685.9 1608.0 1542.1

LLaMA3
ACC 0.840 0.866 0.875 0.279 0.817 0.872 0.882
CE 0.013 0.005 0.010 16.376 7.447 2.124 0.014

MIUB 3287.5 3272.7 3258.3 3765.5 3475.7 3282.1 3282.0

PIQA

Phi3
ACC 0.848 0.849 0.836 0.852 0.859 0.858 0.863
CE 0.020 0.362 0.012 17.117 13.471 0.494 0.065

MIUB 1610.5 1590.2 1586.4 1906.6 1742.5 1693.0 1621.0

LLaMA3
ACC 0.858 0.871 0.900 0.620 0.837 0.891 0.891
CE 13.441 8.074 12.947 16.547 12.926 12.793 10.299

MIUB 3509.1 3498.1 3485.9 3882.3 3658.6 3540.3 3497.6

Winogrande

Phi3
ACC 0.815 0.822 0.814 0.817 0.803 0.821 0.830
CE 0.024 0.242 2.452 23.470 11.055 9.077 0.004

MIUB 1543.6 1530.5 1531.4 1883.2 1679.8 1616.7 1557.5

LLaMA3
ACC 0.799 0.822 0.866 0.494 0.725 0.855 0.863
CE 0.211 1.125 4.984 5.591 9.211 7.702 4.700

MIUB 3246.5 3232.1 3217.7 3744.3 3407.2 3238.6 3233.0

AVG

Phi3
ACC 0.856 0.856↑ 0.864↑ 0.852 0.857↑ 0.861↑ 0.867↑
CE 0.018 0.251↑ 0.602 ↑ 20.110 12.695 ↓ 2.763↓ 0.035↓

MIUB 1564.6 1551.5↓ 1548.6↓ 1894.5 1706.7↓ 1642.2↓ 1579.1↓

LLaMA3
ACC 0.825 0.837↑ 0.859↑ 0.281 0.550↑ 0.867↑ 0.874↑
CE 5.519 4.056↓ 6.446 ↑ 9.345 10.181 ↑ 7.544 ↓ 5.803 ↓

MIUB 3360.2 3346.9↓ 3334.0↓ 3803.9 3527.8↓ 3368.6↓ 3350.2 ↓

and Winogrande datasets. The experimental results424

show that the MIUB has two conclusions:425

MIUB changes regularly with the change of426

model size. The bolded text in Table 1 indicates427

that MIUB follows the pattern of decreasing as the428

model size increases. From the the average results429

(AVG) the ranks of LoRA are set to 32, 128 and430

512 respectively. As the ranks increase, that is, the431

size of LoRA increases, MIUB gradually decreases,432

which means that LoRA relies less on the features433

of the large model and has stronger generalization.434

In the right half of the table, the sizes of the large435

model are set to share8, share4, share3, share1,436

corresponding to models with 18 layers, 20 layers,437

24 layers, and 32 layers of parameters, respectively.438

Notably, the computational FLOPs remain constant439

across all configurations. As the size of the LLM 440

base modules changes, MIUB also decreases. It 441

is worth noting that the change of the rank of the 442

LoRA part has little effect on the model size, so 443

the change of MIUB is small, while the change 444

of the large model size is large, so the change of 445

MIUB is larger. Additionally, as shown in Figure 446

2, we present the MIUB and PPL with respect to 447

the size of the large model for the PTB and Wiki2 448

language modeling tasks. The experimental results 449

indicate that, with the increase in the number of 450

parameters, MIUB exhibits a significant decreasing 451

trend, demonstrating that the scaling law holds. 452

Compared to traditional metrics, MIUB not 453

only better reflects the changing trend of actual 454

effects but also exhibits greater stability in ad- 455
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Figure 2: Comparative experiment between MIUB and
PPL under LLM size changes.

hering to the scaling law. We analyze this from456

two perspectives: first, by comparing the trends of457

CE, MIUB, and actual performance (ACC), and458

second, by conducting a comparative analysis of459

the Scaling Law based on PPL, CE, and MIUB. As460

shown in Table 1, in the AVG test based on the Phi3461

model, an abnormal increase in CE was observed462

(indicated by the red arrow) even as ACC improved.463

In contrast, MIUB consistently decreased as ACC464

increased, indicating that during fine-tuning, the465

model’s dependency on the larger model weakened,466

leading to stronger learning of generalized knowl-467

edge. Regarding the stability of the scaling law,468

compared to CE, which exhibited a significant ab-469

normal increase as the rank increased, MIUB con-470

sistently maintained a steady decline. As the size471

of the larger model increased, calculations revealed472

that the CE value at share8 was 571 times that473

of share1, while the size of the larger model in-474

creased by less than twice. In comparison, MIUB’s475

change was more stable, decreasing by 17%. This476

effect is more pronounced in Figure 2. The change477

in large model size is not linear; the increase be-478

comes more significant. Additionally, under limited479

data conditions, although the model tends to learn480

more generalized knowledge, the complexity of the481

large model inevitably increases. Therefore, while482

MIUB still shows a decreasing trend, the rate of de-483

crease will correspondingly diminish. The reason484

for the above experimental results is that MIUB485

measures the changes in the distribution relation-486

ship within the LoRA architecture, making it more487

sensitive to the evaluation of the model’s general-488

ization ability (performance) in the context of the489

Scaling Law.490

Additionally, the trend diagrams for the five491

datasets referenced in Table 1 can be found in Ap-492

pendix C.493
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Figure 3: The scaling law of data complexity.

4.5 Data Complexity 494

To study the data size scaling law based on MIUB, 495

we conducted experiments analyzing data complex- 496

ity. As described in the Scaling Law Setting section, 497

the data was divided according to length, and the 498

experimental results are shown in Figure 3. The 499

results indicate that as the data length increases, 500

the actual performance (ACC) of the large model 501

improves, suggesting that the large model acquires 502

more comprehensive information from the prompt. 503

At the same time, MIUB exhibits a systematic de- 504

crease, indicating that as the new data becomes 505

more complex (larger in scale), the dependency on 506

the large model during fine-tuning diminishes, and 507

there is a greater need for the LoRA module to 508

learn more generalized knowledge. 509

4.6 Prompt Learning Analysis 510

This paper uses four types of prompt templates, 511

as shown in Table 2. “Main” refers to the zero- 512

shot prompt used for training, while “Prompt1” 513

“Prompt2” and “Prompt3” are one-shot templates, 514

few-shot templates with positive and negative ex- 515

amples, and output control templates, respectively. 516

The experimental results show that regardless of the 517

template used, MIUB decreases with the increase 518

in LoRA and the size of the large model, demon- 519

strating the stability of MIUB as a scaling law ef- 520

fectiveness metric. Comparing the four prompts, 521

the order is generally: MIUB (Prompt1) > MIUB 522

(Main) > MIUB (Prompt3) > MIUB (Prompt2). 523

Prompt1 has the highest MIUB because it incorpo- 524

rates data from the training set, which enhances the 525

dependency on the large model during the knowl- 526

edge learning process. In contrast, Prompt2, due 527

to the inclusion of negative examples, has greater 528

uncertainty and thus a smaller MIUB. 529
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Table 2: The results of different prompt on Phi3-3B Model.

Dataset Matrices 32 128 512 share8 share4 share2 share1

AVG

Main (ACC) 0.856 0.856 0.864 0.852 0.857 0.861 0.867
Main (MIUB) 1564.6 1551.5 1548.6 1894.5 1706.7 1642.2 1579.1

Prompt1 (ACC) 0.854 0.851 0.854 0.836 0.832 0.853 0.865
Prompt1 (MIUB) 1569.7 1556.4 1537.4 1900.5 1704.7 1652.0 1591.0

Prompt2 (ACC) 0.855 0.850 0.852 0.838 0.820 0.853 0.865
Prompt2 (MIUB) 1533.0 1525.7 1516.1 1889.1 1682.9 1609.4 1552.0

Prompt3 (ACC) 0.869 0.866 0.870 0.859 0.856 0.869 0.872
Prompt3 (MIUB) 1545.2 1541.6 1534.7 1894.7 1711.0 1635.5 1573.1

Table 3: Comparative experiments between MIUB and
other metrics on the MUNCH dataset

Matrices 32 128 512

ACC 0.712 0.712 0.712
CE 6.299 8.969 ↑ 9.832 ↑

COS 255.3 255.5 ↑ 255.6 ↑
EU 3982.5 2086.1 ↓ 1426.8 ↓

MI(10−1) 1435.9 1435.8 ↓ 1436.0 ↑
MI(10−3) 2036.9 2036.9 2048.0 ↑

MI 4071.4 4071.4 4064.6↓

MIUB(10−1) 2835.2 2835.2 2835.2
MIUB(10−3) 2899.5 2899.5 2881.2↓

MIUB 4071.4 4071.4 4064.6↓

4.7 Comparison with More Matrices530

To evaluate the Scaling Law of relevant datasets531

where the LLM base model performs poorly, we532

conduct a comparative analysis of five Scaling Law533

metrics with different rank sizes, including the Mu-534

tual Information Upper Bound (MIUB). In Table 3,535

cross-entropy (CE) is an external metric, and co-536

sine (COS) similarity, Euclidean distance (EU), and537

mutual information (MI) are internal metrics for538

assessing the model’s internal distribution changes539

based on this paper’s calculation method. Notably,540

to fully compare the performance differences be-541

tween MIUB and MI, we use the method of adding542

noise to test which metric is more robust.543

During the process of changing the rank from544

32 to 512, the model’s actual accuracy remained545

unchanged, with only the model size being altered.546

The external cross-entropy (CE) and internal cosine547

similarity (COS) metrics both showed an upward548

trend, which deviated from the model’s actual per-549

formance. Meanwhile, the Euclidean distance (EU) 550

metric dropped significantly, also failing to mir- 551

ror the model’s true performance. Notably, without 552

noise in the distributions of the base and LoRA 553

modules, the values of the Mutual Information Up- 554

per Bound (MIUB) and mutual information (MI) 555

are equal, align with the model’s actual effect, and 556

remain basically stable. However, once the distribu- 557

tions are disturbed by noise, regardless of whether 558

the noise level is low (0.001) or high (0.1), the 559

mutual information (MI) exhibits an abnormal in- 560

creasing trend. In stark contrast, even when the 561

noise level reaches 0.1, the Mutual Information Up- 562

per Bound (MIUB) can still conform to the actual 563

performance of the model. In conclusion, it can be 564

concluded that for LoRA fine-tuning, the MIUB is 565

a more robust Scaling Law metric. 566

5 Conclusion 567

In order to reduce the trial-and-error cost of LoRA 568

fine-tuning, this paper proposes the Mutual Infor- 569

mation Upper Bound (MIUB) metric for evaluating 570

the general LoRA framework, and systematically 571

explores the Scaling Law of MIUB with respect 572

to LLM size, rank size of the LoRA module, and 573

data size. Specifically, by leveraging the structural 574

advantages of LoRA, this paper calculates MIUB 575

based on the output distributions of the LLM’s 576

frozen layer and the LoRA module, and quanti- 577

tatively evaluates the generalization gap between 578

training and testing by quantifying the dependency 579

between the LoRA module and the base model. 580

Experiments on eight benchmark datasets and two 581

general large models, LLaMA3-8B and Phi3-3B, 582

show that the MIUB not only aligns with the Scal- 583

ing Law , but also provides more robust and stable 584

results compared to traditional general metrics. 585
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6 Limitations586

In terms of fine-tuning large models using LoRA,587

this study, conducted on models of the same scale588

while controlling for parameters and data com-589

plexity, demonstrates that the scaling law based590

on the mutual information upper bound exhibits591

more consistent and stable trends compared to592

other metrics. However, there are several key limi-593

tations: the experiments have not been conducted594

on different scales within the same series of LLMs595

(e.g., LLaMA3-8B, LLaMA3-14B, etc.), validation596

on a broader range of LLMs such as DeepSeek,597

Qwen2.5, GPT, GLM4, and others is required. We598

plan to address these limitations in future work599

with more extensive experimental studies.600
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A The proof of Theorem 2736

Proof. Let O represent the output distribution from737

the base LLM module, and L denote the output738

distribution introduced by the LoRA adaptation739

module. The mutual information between these two740

distributions can be written as the Kullback-Leibler741

(KL) divergence between their joint distribution742

POL and the product of their marginals PO ⊗PL:743

I(O;L) = DKL (POL∥PO ⊗ PL) , (7)744

where PO captures the knowledge learned by the 745

base modules during pre-training, and PL repre- 746

sents the task-specific knowledge gained through 747

the LoRA module. Next, the Jensen-Shannon (JS) 748

divergence between the joint distribution (repre- 749

senting the interaction between the base model and 750

LoRA) and the product of independent marginals 751

(representing the decoupling of base and LoRA) is 752

defined as: 753

DJS (POL∥PO ⊗ PL) =
1

2
DKL (POL∥M)

+
1

2
DKL (PO ⊗ PL∥M) ,

(8) 754

where M = 1
2(POL + PO ⊗ PL) serves as the 755

midpoint distribution. Using the convexity property 756

of KL divergence, we derive the following funda- 757

mental inequality: 758

I(O;L) ≤ 2 · DJS (POL∥PO ⊗ PL) . (9) 759
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Figure 4: Evaluate the effect of model testing with changing LoRA rank.
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Figure 5: Evaluate the effect of model testing with changing LLM size based on parameter sharing.
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