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Abstract

LoRA (Low-Rank Adaptation) is a widely
used LLM fine-tuning method. During the fine-
tuning process, the Scaling Law can guide the
selection of the optimal model scale and data
complexity to balance model performance and
fine-tuning costs. Although existing methods
frequently rely on external metrics (e.g., cross-
entropy or perplexity) to evaluate model perfor-
mance, the scaling law may exhibit instability
during testing, which is largely attributed to the
generalization gap between training and testing.
To address this issue, we propose the Mutual
Information Upper Bound (MIUB) metric be-
tween base modules and LoRA modules, to
investigate the Scaling Law in the large-scale
LoRA fine-tuning context. The metric gauges
the dependency between the general knowl-
edge obtained during pre-training and the task-
specific knowledge acquired through LoRA
adaptation. In doing so, the metric pays more
attention to the distribution changes within the
LoRA architecture, so as to evaluate the Scal-
ing Law more robustly. In our experiments, we
validated this approach on benchmark datasets,
using the Llama3-8B and Phi3-3B models. The
results show that the proposed MIUB metric
aligns more accurately and stably with the scal-
ing law of LoRA fine-tuning compared to cross-
entropy, perplexity and more metrics.

1 Introduction

Pre-trained on vast amounts of data, large lan-
guage models like GPT-X (Achiam et al., 2023)
and LLaMA3 (Dubey et al., 2024) have achieved
remarkable results in general domains. However, to
address various personalized needs, especially un-
der the pressure of inference deployment costs, fine-
tuning serves as an effective method, enhancing the
model’s personalization and multi-tasking capabili-
ties with relatively small datasets (Kim et al., 2024;
Wang et al., 2023; Ge et al., 2023). Among these,
LoRA (Low-Rank Adaptation) (Hu et al., 2021;

Yang et al., 2024) fine-tuning leverages the idea of
low-rank approximation. By freezing the parame-
ters of the large model, it only uses a small number
of newly added low-rank parameter matrices to
learn the specific knowledge in the new data.

There is no doubt that whether it is LLMs pre-
training or fine-tuning, how to controllably balance
computing resources and model effects has always
been a widely concerned issue. Some work has pro-
posed that there is a scaling law for large model
pre-training (Kaplan et al., 2020; Wei et al., 2024),
that is, as the size of the LLM increases and the
amount of pre-training data increases, the effect
of pre-training usually changes regularly. In the
pre-training stage, external metrics such as Cross
Entropy and Perplexity are usually used to con-
struct Scaling Law for evaluating the model. The
existing evaluation metrics primarily focus on as-
sessing the overall distribution of the model. Some
work also shows that evaluations based on external
metrics are sometimes not stable (Wei et al., 2024).

In the LoRA architecture, the factors that affect
the effect of model fine-tuning mainly include the
model size, the rank size of LoRA, the amount
of data, etc. In addition, there is a natural gener-
alization gap (e.g., distribution shift and knowl-
edge conflict) between training and testing (Xiao,
2024). When there is a large difference between
the amount of data and the model size, the impact
caused by this generalization gap is not obvious.
Howeyver, the base module is frozen, and the size
of the LoORA module changes relatively little, and
the variation in the amount of fine-tuning data is
also limited. Therefore, the evaluation of Scaling
Law based on external metrics will be disturbed by
the generalization gap, leading to instability.

In order to solve the above problems, we shift
our perspective to the interior of the LoRA frame-
work. From a general perspective, the effect after
fine-tuning is mainly related to two parts of knowl-
edge, one is the meta-knowledge relied on from



the large language model, and the other is the gen-
eralized knowledge learned by the newly added
parameters (Mao et al., 2024; Jovanovic and Voss,
2024). Some work has shown that when fine-tuning
large models, there will be conflicts between new
and old knowledge (Shi et al., 2024). Therefore,
inspired by the above research, we propose to use
the Mutual Information Upper Bound (MIUB) be-
tween base modules and LoRA modules to evaluate
the Scaling Law in LoRA fine-tuning. MIUB quan-
titatively analyzes the upper bound of the internal
distribution’s dependency relationship. This helps
reduce the interference of various generalization
gaps on the evaluation of the scaling law.

By leveraging the structural advantages of LoRA,
it can efficiently calculate the MIUB metric be-
tween the output distribution of the large model
and that of LoRA. Experimental results show that
the MIUB decreases as the size of the large model,
the LoRA rank, and the data size (length or com-
plexity) increase. Additionally, the MIUB adheres
to the scaling law, is more stable than traditional
external evaluation metrics, and better reflects the
actual performance trends of the model (such as
accuracy). This implies that the MIUB metric en-
ables a more precise selection of the optimal rank
and model size configuration, striking a balance
between task performance and resource consump-
tion. Furthermore, this paper compares the MIUB
size patterns under different prompt templates and
contrasts them with the patterns used in fine-tuning.

¢ An internal metric, the Mutual Information
Upper Bound (MIUB), is proposed for the
LoRA architecture. By quantitatively analyz-
ing the dependency relationship between the
base modules and LoRA modules, it miti-
gates the instability of the testing Scaling Law
caused by the generalization gap.

* Theoretical analysis demonstrates that the
Scaling Law derived from MIUB enable more
stable assessment of distributional discrepan-
cies between base and LoRA modules, en-
hancing the stability of performance evalua-
tion in LoRA fine-tuning.

* Empirical results reveal that MIUB not only
aligns with the Scaling Law across model
sizes and data complexities but also achieves
superior robustness and stability compared
to traditional metrics like Cross-Entropy, Per-
plexity (PPL) and more.

2 Related Works

As the scale of large models continues to increase,
LoRA is widely used as a lightweight fine-tuning
method. However, similar to how the Scaling Law
govern pretraining paradigms, establishing LoRA-
specific Scaling Law has become crucial for op-
timizing resource reducing trial-and-error costs.
Therefore, this section systematically reviews the
research advancements in both Low-Rank Adapta-
tion techniques and Scaling Law theories.

2.1 Scaling Law

The Scaling Law have been a persistent topic in
both nature and science (Gan et al., 2021), and in
recent years, they have also shown strong guiding
capabilities in the field of Large Language Mod-
els (LLMs). In the field of neural networks, the
Scaling Law critically demonstrate how model per-
formance scales with increases in computational
resources, data, and model parameters. (Hu et al.,
2021) first introduced the “scaling law” for neu-
ral language models, indicating that larger models
trained on more data tend to perform better. (Zhang
et al., 2024) comprehensively tested the Scaling
Law of fine-tuning frameworks under existing eval-
uation metrics. In the information retrieval domain,
(Fang et al., 2024) proposed using contrastive log-
likelihood as a metric to assess whether retrieval
models adhere to the Scaling Law. In the compres-
sion domain, (Wei et al., 2024) introduced the
information-theoretic Matrix entropy to measure
the performance of large models, showing that Ma-
trix entropy is more accurate and stable compared
to the unstable CE (cross-entropy) and PPL (per-
plexity) metrics. This work has inspired us to in-
vestigate the internal relationships within models
to evaluate the Scaling Law of LoRA.

2.2 Low-Rank Adaptation

(Hu et al., 2021) was the first to propose the ap-
plication of LoRA in large models. The core idea
of this method is to decompose the weight updates
of the model into low-rank matrices, significantly
reducing computational costs while maintaining
model performance. In recent years, various works
have focused on reducing the cost of model fine-
tuning and enhancing its generalization capabilities
in the design of LoRA structures. (Ding et al., 2023)
further reduced the computational cost of LoRA by
using gating units to dynamically adjust the intrin-
sic rank. Additionally, combining LoRA with MoE
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Figure 1: Overall schematic diagram. a) The left figure refers to the dependency between LLM Space and LoRA
Space during LoRA fine-tuning. This paper measures this dependency by the upper limit of mutual information, and
the generalization of the model will also change accordingly. b) The right figure refers to the LoRA training mode
used in this paper and the method of calculating MIUB in this process.

techniques has also provided assurance for enhanc-
ing its generalization ability. LoORAHub (Huang
et al., 2023) selects different LoRA combinations
for task generalization. (Dou et al., 2024) proposed
MoELoRA, which utilizes both LoORA and MoE
for specific task adjustment and multi-task process-
ing. (Liu et al., 2023) introduced the multimodal
learning capabilities of multimodal expert models.
During the LoRA fine-tuning process, the parame-
ters of the base modules are frozen. Meanwhile, the
LoRA’s rank size limits the changes in model size
and computational cost. In view of this, the tradi-
tional external metrics used to quantify the overall
distribution face greater challenges in stably eval-
uating the Scaling Law. Therefore, by leveraging
the architectural advantage of LoRA, we propose
a Scaling Law metric that focuses on the internal
distribution changes of the model.

3 Methodology
3.1 The Scaling Law of LoRA

For newly added fine-tuning data, without disrupt-
ing the feature space of the large model itself (i.e.,
by freezing the parameters of the large model),
LoRA relies on some of the meta-knowledge of the
LLM and learns new specific features by adding
low-rank parameter weights. Therefore, as shown
in Figure 1, there is a natural dependence and gener-

alization relationship between the LLM and LoRA
modules. Furthermore, we model the dependency
relationship between them as mutual information.
which not only measures the information obtained
about the distribution of LoRA from the LLM vari-
ables but also reveals the extent of their overlap in
feature space.

Definition 1 (Mutual Information for LoRA Adap-
tation). Let O and L denote the hidden state dis-
tributions of the base LLM and LoRA-adapted fea-
tures, respectively. Their mutual information is de-

fined as:

p(o,1)
I(0O; L ://p o,l)log————dodl, (1)
(OB = | P8 o
where p(o,l) is the joint distribution, and p(o),
p(l) are marginals. Higher Z(O; L) indicates
stronger dependency between pretrained knowl-
edge and LoRA modules.

In the previous text, we first proposed using mu-
tual information to measure the dependency rela-
tionship between the distribution of the base mod-
ule and that of the Low-Rank Adaptation (LoRA)
module. However, the mutual information levels
presented by models of different scales vary greatly,
making it difficult for us to find a stable dependency
pattern. Especially when there are issues such as
noise in the feature distribution, the calculation of



mutual information will be significantly affected.
In view of this, this paper further designs the Mu-
tual Information Upper Bound (MIUB) as a metric
to measure the difference between the distribution
of the large model and the LoRA distribution.

Theorem 2 (Mutual Information Upper Bound be-
tween Base Modules and LoRA Modules). Let
O and L be random variables representing the
output distributions of the base LLM and LoRA
module, respectively, with joint distribution Ppy,
and marginal distributions Po and Py,. The mutual
information Z(O; L) is bounded by:

I(O; L) <2-Dys(Por||PoPr), (2)

where Djs denotes the Jensen-Shannon diver-
gence. The proof can be found in Appendix A.
As shown in Figure 1, large models acquire rich
meta-knowledge, and the knowledge from new
data absorbed by the LoRA module inevitably de-
pends on the features already learned by the large
model. Specifically, a larger MIUB value implies
a stronger dependency relationship between the
base modules and the LoRA modules, and a higher
degree of overlap in the distribution space. This
often indicates that the LoRA module learns less
domain-specific knowledge from the new data, and
generally, the actual performance of the model will
also deteriorate accordingly.

By introducing the MIUB to measure depen-
dence within the LoRA architecture, it ensures that
the dependence will not decrease indefinitely dur-
ing the data measurement process, but will instead
stabilize within a certain range and approach its
upper bound. This approach provides a theoretical
upper limit for the dependence in the LoRA archi-
tecture, while also guaranteeing its convergence,
ensuring that the dependence ultimately stabilizes
within a finite range and avoiding excessive fluctu-
ations or infinite reduction. Furthermore, we will
give two corollaries: one is the Scaling Law based
on the MIUB metric, and the other is why MIUB is
closer to the actual model performance than other
metrics.

Corollary 1. Here is a scaling law that focuses on
the model size, LoRA rank size, and dataset size
during LoRA fine-tuning:

No Ry

MIUB(N, R, D) = A <N>a B <R>ﬁ

Do\"”
ro(P)

3)

where MIUB(N, R, D) is the metric as a function
of the number of parameters in the large model
N, the LoRA rank size R, and the dataset size D.
No, Ro, Dy are scaling constants that normalize
the respective terms. o, 3,y are scaling exponents
that describe how the MIUB scales with respect to
the model size, LoRA rank size, and dataset size,
respectively. A, B, C' are constants that depend on
the specific problem and architecture.

Assumption 3. This paper assumes that the gen-
eralization gap G gqp is the main reason for the
instability of the scaling law in the LoRa frame-
work. G gqp arises from the difference between the
training error and the testing error for unseen la-
belswork (Xiao, 2024 ), which encompasses factors
such as distribution shifts and knowledge conflicts.
Formally, we can express it as:

n
Ggap = Bi*" — By = Y Ii+ Majsr,  (4)

=1

where I; denotes the i-th contributing error, and
M ;s represents the error caused by the distribu-
tion evaluation metric.

Corollary 2. Based on the above hypothesis, the
discrepancy between the Scaling Law’s evaluation
metric M and the model’s actual performance Y
is defined as the generalization gap G yqp, as ex-
pressed in the following equation.

n
Y = M =" T + Mg, (5)
=1

In the context of LoRA, variations in rank have a
relatively limited impact on model size and com-
putational cost. Traditional metrics primarily fo-
cus on overall distributional changes, and M ;s
is influenced by the parameters and knowledge in-
herited from the base model distribution. On one
hand, this influence increases the error, enlarging
G gap and further deviating from the model’s actual
performance. On the other hand, traditional met-
rics may exhibit insensitivity to distributional shifts
specific to the LORA components.

In contrast, the Mutual Information Upper
Bound (MIUB) quantifies the dependencies be-
tween internal distributions, allowing for a more
effective evaluation of the model’s generalization
ability when learning new data. Therefore, MIUB
serves as a more reliable scaling law metric in
LoRA fine-tuning, providing greater stability in as-
sessing model adaptability and performance.



3.2 Calculating MIUB in LoRA Architecture

The paper adds LoRA structures to all the Dense
Linear layers in the Attention and FFN modules of
a large model. The original parameters of the large
model are frozen, and only the LoRA components
are trained during fine-tuning. Specifically, the hid-
den states of the large model are denoted as h7"; ;,,
and the hidden states of LoRA, h;7 ., are obtained
by adding the hidden states of the large model to
the output of LoRA.

The hidden states A’ ,, and A7, ., are con-
verted into probability distributions using the soft-
max function. Then, the MIUB between these two
probability distributions is calculated, as shown in
Figure 1. By summing the MIUBs of all the LoRA
components, we obtain the MIUB for a single sam-
ple. The average MIUB across all samples gives
the final evaluation value:

1 m
M = N%;DJS(P’Q) (6)
where D¢ (P||Q) represents the Jensen-Shannon
divergence between the probability distributions P
and @ for the m-th component.

As shown in the Appendix B, we employed
prompt learning during the fine-tuning of the large
model. Taking a classification task as an example,
the Train Prompt instructs the model to select the
correct option and serves as a zero-shot template.
During testing, in addition to the zero-shot prompt,
we also have the option to use a 1-shot template
(Test Prompt 1), which includes one positive and
one negative example, a few-shot template, and a
template that imposes restrictions on the task out-
put (Test Prompt 3). We also evaluate the model’s
performance across different prompt templates.

4 [Experiments

In this section, we will evaluate the proposed model
structure on natural language tasks and verify the
effectiveness of various measures we use. All ex-
periments were performed on NVIDIA A800 GPU.

4.1 Model and Hyperparameters

We use Llama3 (Dubey et al., 2024) and Phi3-
3B (Abdin et al., 2024) as our testing model,
Llama3 has 8B parameters and 32 layers and Phi3
has 3B parameters and 32 layers, we use them to
test the best model settings on models of different
sizes. We use Adam as the optimizer with a learn-
ing rate of 4 x 10~° for fine-tuning downstream
tasks and set the batch size to 32.

4.2 Dataset and Metrics

We use our proposed structure on five popular zero-
shot generation tasks, including PIQA (Bisk et al.,
2020), ARC-Challenge (Clark et al., 2018), ARC-
Easy (Clark et al., 2018), Winogrande (Sakaguchi
et al., 2021), and HellaSwag (Zellers et al., 2019),
with higher accuracy, indicating that Mooe has a
stronger parameter fine-tuning ability to handle
downstream tasks.

For perplexity verification, we chose two
datasets: Wiki2 (Merity et al., 2016) and PTB (Mar-
cus et al., 1994). Lower Perplexity indicates that the
compressed model has a stronger ability to main-
tain the output distribution of the original model.

In addition, we use Metaphor Understanding
Challenge (MUNCH) (Tong et al., 2024) dataset.
Given that metaphor understanding is significantly
challenging for large language models (LLMs), this
test can effectively verify the applicability of each
metric in evaluating the fine-tuning effect .

Seven metrics, Accuracy (ACC), Cross-Entropy
(CE), Perplexity (PPL), Cosine similarity (COS),
and Euclidean distance (EU), Mutual Informa-
tion (MI) and Mutual Information Upper Bound
(MIUB), were used for experimental evaluation.

4.3 Scaling Law Setting

* For the scaling settings of the LoORA compo-
nents, we primarily adjusted the rank to differ-
ent sizes, specifically 32, 128, 512.

* For the large model, we applied a parameter-
sharing compression method to adjust the scal-
ing of the model. To ensure that the model’s
basic performance is not unfairly affected or
that abnormal experimental results do not oc-
cur due to compression, we fixed the first 16
layers of the Phi3 and llama3 models and ap-
plied different parameter-sharing strategies to
the last 16 layers: sharing every eight layers
(shares), every four layers (sharey), every
two layers (shares), and no sharing (sharey).

* In the data scaling section, we selected 100
data samples from each of the test sets across
multiple tasks, with data lengths in the ranges
of [1, 100], [101, 200], and [201, 300].

4.4 Main Results

We conducted experiments on seven benchmark
datasets, where AVG refers to the average value
of ARC-Easy, ARC-Challenge, HellaSwag, PIQA



Table 1: Experiments comparing the performance of the Scaling Law under MIUB and Cross-Entropy metrics
through controlled configurations of LoRA ranks and model sizes. Black arrows indicate the trend of model size
scaling for the ACC metric, red arrows signify that the trends of the CE or MIUB metrics deviate from the ACC
trend, while green arrows denote alignment with the ACC trend.

Dataset ‘ Model ‘ Metrics ‘ 32 128 512 ‘ shareg  sharey  shares  sharep
ACC 0.951 0.951 0.969 0.955 0.949 0.951 0.955
Phi3 CE 0.018 0.162 0.007 | 23.977 9.647 2514 0.077
MIUB | 1586.0 1566.6  1567.7 | 1902.6 1712.6 1643.0 1597.3
ARC-Easy
ACC 0.873 0.846 0.862 0.007 0.901 0.894 0.912
LLaMA3 CE 12.924 11.789 13427 8.741 11.594 13.399 14.339
MIUB | 3420.8 3407.1 3398.8 | 3831.8 3579.5 3443.7 3405.1
ACC 0.859 0.863 0.887 0.849 0.863 0.887 0.873
Phi3 CE 0.018 0.159 0.007 | 24.661 9.606 2.510 0.070
ARC-Challenge MIUB | 1596.2 1579.1 1578.3 | 1913.3  1728.5 1657.4 1607.6
ACC 0.754 0.782 0.792 0.007 0.154 0.816 0.823
LLaMA3 CE 12.018  10.444 12.342 | 9.033 13.328 11.295 13.463
MIUB | 3456.9 3447.6  3439.3 | 38619 3613.7 3485.0  3446.6
ACC 0.809 0.796 0.814 0.789 0.809 0.789 0.813
Phi3 CE 0.009 0.191 0.014 18.215 14.896 0.057 0.007
MIUB | 15214 1518.7 1511.6 | 18849 16859 1608.0 1542.1
HellaSwag
ACC 0.840 0.866 0.875 0.279 0.817 0.872 0.882
LLaMA3 CE 0.013 0.005 0.010 16.376 7.447 2.124 0.014
MIUB | 3287.5 3272.7 3258.3 | 3765.5 3475.7 3282.1 3282.0
ACC 0.848 0.849 0.836 0.852 0.859 0.858 0.863
Phi3 CE 0.020 0.362 0.012 17.117 13471 0.494 0.065
PIQA MIUB | 1610.5 1590.2 1586.4 | 1906.6  1742.5 1693.0 1621.0
ACC 0.858 0.871 0.900 0.620 0.837 0.891 0.891
LLaMA3 CE 13.441 8.074 12.947 | 16.547 12926 12.793 10.299
MIUB | 3509.1 3498.1 34859 | 3882.3  3658.6 3540.3 3497.6
ACC 0.815 0.822 0.814 0.817 0.803 0.821 0.830
Phi3 CE 0.024 0.242 2452 | 23470 11.055 9.077 0.004
. MIUB | 1543.6 1530.5 15314 | 1883.2 1679.8 1616.7 1557.5
Winogrande
ACC 0.799 0.822 0.866 0.494 0.725 0.855 0.863
LLaMA3 CE 0.211 1.125 4.984 5.591 9.211 7.702 4.700
MIUB | 3246.5 3232.1 3217.7 | 37443 3407.2 3238.6  3233.0
ACC 0.856  0.8561  0.8641 | 0.852 0.8571  0.861T  0.8671"
Phi3 CE 0.018  0.2511 0.6027 | 20.110 12.695 2.763 0.035
AVG MIUB | 1564.6 1551.5, 1548.6| | 1894.5 1706.7 1642.2 1579.1
ACC 0.825 0.8371 0.8591 | 0.281 0.5501  0.867t  0.8741
LLaMA3 CE 5519  4.056 64461 | 9.345 10.1811 7.544 5.803
MIUB | 3360.2 3346.9, 3334.0, | 3803.9 3527.8) 3368.6, 3350.2

and Winogrande datasets. The experimental results
show that the MIUB has two conclusions:

MIUB changes regularly with the change of

model size. The bolded text in Table 1 indicates
that MIUB follows the pattern of decreasing as the
model size increases. From the the average results
(AVGQG) the ranks of LoRA are set to 32, 128 and
512 respectively. As the ranks increase, that is, the
size of LoRA increases, MIUB gradually decreases,
which means that LoRA relies less on the features
of the large model and has stronger generalization.
In the right half of the table, the sizes of the large
model are set to shareg, sharey, shares, shareq,
corresponding to models with 18 layers, 20 layers,
24 layers, and 32 layers of parameters, respectively.
Notably, the computational FLOPs remain constant

across all configurations. As the size of the LLM
base modules changes, MIUB also decreases. It
is worth noting that the change of the rank of the
LoRA part has little effect on the model size, so
the change of MIUB is small, while the change
of the large model size is large, so the change of
MIUB is larger. Additionally, as shown in Figure
2, we present the MIUB and PPL with respect to
the size of the large model for the PTB and Wiki2
language modeling tasks. The experimental results
indicate that, with the increase in the number of
parameters, MIUB exhibits a significant decreasing
trend, demonstrating that the scaling law holds.

Compared to traditional metrics, MIUB not
only better reflects the changing trend of actual
effects but also exhibits greater stability in ad-
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Figure 2: Comparative experiment between MIUB and
PPL under LLM size changes.

hering to the scaling law. We analyze this from
two perspectives: first, by comparing the trends of
CE, MIUB, and actual performance (ACC), and
second, by conducting a comparative analysis of
the Scaling Law based on PPL, CE, and MIUB. As
shown in Table 1, in the AVG test based on the Phi3
model, an abnormal increase in CE was observed
(indicated by the red arrow) even as ACC improved.
In contrast, MIUB consistently decreased as ACC
increased, indicating that during fine-tuning, the
model’s dependency on the larger model weakened,
leading to stronger learning of generalized knowl-
edge. Regarding the stability of the scaling law,
compared to CE, which exhibited a significant ab-
normal increase as the rank increased, MIUB con-
sistently maintained a steady decline. As the size
of the larger model increased, calculations revealed
that the CE value at shareg was 571 times that
of share;, while the size of the larger model in-
creased by less than twice. In comparison, MIUB’s
change was more stable, decreasing by 17%. This
effect is more pronounced in Figure 2. The change
in large model size is not linear; the increase be-
comes more significant. Additionally, under limited
data conditions, although the model tends to learn
more generalized knowledge, the complexity of the
large model inevitably increases. Therefore, while
MIUB still shows a decreasing trend, the rate of de-
crease will correspondingly diminish. The reason
for the above experimental results is that MIUB
measures the changes in the distribution relation-
ship within the LoRA architecture, making it more
sensitive to the evaluation of the model’s general-
ization ability (performance) in the context of the
Scaling Law.

Additionally, the trend diagrams for the five

datasets referenced in Table 1 can be found in Ap-
pendix C.

1.00-
N -1580
ACC
0.9e =% MiB
-1560
0.90- Q
8 -15402
< =
0.851 -1520
0.80- -1500
100 200 300
Length

Figure 3: The scaling law of data complexity.

4.5 Data Complexity

To study the data size scaling law based on MIUB,
we conducted experiments analyzing data complex-
ity. As described in the Scaling Law Setting section,
the data was divided according to length, and the
experimental results are shown in Figure 3. The
results indicate that as the data length increases,
the actual performance (ACC) of the large model
improves, suggesting that the large model acquires
more comprehensive information from the prompt.
At the same time, MIUB exhibits a systematic de-
crease, indicating that as the new data becomes
more complex (larger in scale), the dependency on
the large model during fine-tuning diminishes, and
there is a greater need for the LoRA module to
learn more generalized knowledge.

4.6 Prompt Learning Analysis

This paper uses four types of prompt templates,
as shown in Table 2. “Main” refers to the zero-
shot prompt used for training, while “Promptl”
“Prompt2” and “Prompt3” are one-shot templates,
few-shot templates with positive and negative ex-
amples, and output control templates, respectively.
The experimental results show that regardless of the
template used, MIUB decreases with the increase
in LoRA and the size of the large model, demon-
strating the stability of MIUB as a scaling law ef-
fectiveness metric. Comparing the four prompts,
the order is generally: MIUB (Prompt1) > MIUB
(Main) > MIUB (Prompt3) > MIUB (Prompt2).
Promptl has the highest MIUB because it incorpo-
rates data from the training set, which enhances the
dependency on the large model during the knowl-
edge learning process. In contrast, Prompt2, due
to the inclusion of negative examples, has greater
uncertainty and thus a smaller MIUB.



Table 2: The results of different prompt on Phi3-3B Model.

Dataset ‘ Matrices ‘ 32 128 512 ‘ shares sharey shares share;
Main (ACC) 0.856 0.856 0.864 | 0.852 0.857 0.861 0.867

Main (MIUB) 1564.6 1551.5 1548.6 | 1894.5 1706.7 1642.2 1579.1

Promptl (ACC) | 0.854 0.851 0.854 | 0.836 0.832 0.853 0.865

AVG | Promptl (MIUB) | 1569.7 1556.4 1537.4 | 1900.5 1704.7 1652.0 1591.0
Prompt2 (ACC) | 0.855 0.850 0.852 | 0.838 0.820 0.853 0.865

Prompt2 (MIUB) | 1533.0 1525.7 1516.1 | 1889.1 1682.9 1609.4 1552.0

Prompt3 (ACC) | 0.869 0.866 0.870 | 0.859 0.856 0.869 0.872

Prompt3 (MIUB) | 1545.2 1541.6 1534.7 | 1894.7 1711.0 1635.5 1573.1

Table 3: Comparative experiments between MIUB and
other metrics on the MUNCH dataset

Matrices 32 128 512
ACC 0.712 0.712 0.712
CE 6.299 89691 9.8321
COS 2553 25551 25561
EU 3982.5 2086.1 | 1426.8 |
MI(10~ 1) 14359 14358 ] 1436.01
MI(1073) 2036.9 20369 2048.0
MI 40714 40714  4064.6)
MIUB(10~ 1) | 2835.2 2835.2 2835.2
MIUB(1073) | 2899.5  2899.5 2881.2)
MIUB 40714 40714  4064.6])

4.7 Comparison with More Matrices

To evaluate the Scaling Law of relevant datasets
where the LLM base model performs poorly, we
conduct a comparative analysis of five Scaling Law
metrics with different rank sizes, including the Mu-
tual Information Upper Bound (MIUB). In Table 3,
cross-entropy (CE) is an external metric, and co-
sine (COS) similarity, Euclidean distance (EU), and
mutual information (MI) are internal metrics for
assessing the model’s internal distribution changes
based on this paper’s calculation method. Notably,
to fully compare the performance differences be-
tween MIUB and MI, we use the method of adding
noise to test which metric is more robust.

During the process of changing the rank from
32 to 512, the model’s actual accuracy remained
unchanged, with only the model size being altered.
The external cross-entropy (CE) and internal cosine
similarity (COS) metrics both showed an upward
trend, which deviated from the model’s actual per-

formance. Meanwhile, the Euclidean distance (EU)
metric dropped significantly, also failing to mir-
ror the model’s true performance. Notably, without
noise in the distributions of the base and LoRA
modules, the values of the Mutual Information Up-
per Bound (MIUB) and mutual information (MI)
are equal, align with the model’s actual effect, and
remain basically stable. However, once the distribu-
tions are disturbed by noise, regardless of whether
the noise level is low (0.001) or high (0.1), the
mutual information (MI) exhibits an abnormal in-
creasing trend. In stark contrast, even when the
noise level reaches 0.1, the Mutual Information Up-
per Bound (MIUB) can still conform to the actual
performance of the model. In conclusion, it can be
concluded that for LoRA fine-tuning, the MIUB is
a more robust Scaling Law metric.

5 Conclusion

In order to reduce the trial-and-error cost of LoRA
fine-tuning, this paper proposes the Mutual Infor-
mation Upper Bound (MIUB) metric for evaluating
the general LoRA framework, and systematically
explores the Scaling Law of MIUB with respect
to LLM size, rank size of the LoRA module, and
data size. Specifically, by leveraging the structural
advantages of LoRA, this paper calculates MIUB
based on the output distributions of the LLM’s
frozen layer and the LoRA module, and quanti-
tatively evaluates the generalization gap between
training and testing by quantifying the dependency
between the LoRA module and the base model.
Experiments on eight benchmark datasets and two
general large models, LLaMA3-8B and Phi3-3B,
show that the MIUB not only aligns with the Scal-
ing Law , but also provides more robust and stable
results compared to traditional general metrics.



6 Limitations

In terms of fine-tuning large models using LoRA,
this study, conducted on models of the same scale
while controlling for parameters and data com-
plexity, demonstrates that the scaling law based
on the mutual information upper bound exhibits
more consistent and stable trends compared to
other metrics. However, there are several key limi-
tations: the experiments have not been conducted
on different scales within the same series of LLMs
(e.g., LLaMA3-8B, LLaMA3-14B, etc.), validation
on a broader range of LLMs such as DeepSeek,
Qwen2.5, GPT, GLM4, and others is required. We
plan to address these limitations in future work
with more extensive experimental studies.
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A The proof of Theorem 2

Proof. Let O represent the output distribution from
the base LLM module, and L denote the output
distribution introduced by the LoRA adaptation
module. The mutual information between these two
distributions can be written as the Kullback-Leibler
(KL) divergence between their joint distribution
Py, and the product of their marginals Pp ® Py

I(O; L) = D1 (Por||[Po @ Pr),  (7)
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where Py captures the knowledge learned by the
base modules during pre-training, and P, repre-
sents the task-specific knowledge gained through
the LoRA module. Next, the Jensen-Shannon (JS)
divergence between the joint distribution (repre-
senting the interaction between the base model and
LoRA) and the product of independent marginals
(representing the decoupling of base and LoRA) is
defined as:

1
Dys (Por||[Po ® Pr) = §DKL (Por||M)

1
+ —DxpL

3Dt (Po @ P M),

®)
where M = %(Po L + Po ® Pr) serves as the
midpoint distribution. Using the convexity property
of KL divergence, we derive the following funda-
mental inequality:

Z(O; L) < 2-Dys (Por|[Po @ P).  (9)

O

B Prompts

Train Prompt

Choose the correct answer for the following
question: x;

Answer: y;

Test Prompt 1

Choose the correct answer for the following
question. Here is an example shown below:
8;

The new question is: x;

Answer: y;

Test Prompt 2

Choose the correct answer for the following
question. Here is an positive example shown
below: s;

Here is an negative example shown below:
i

The new question is: z;

Answer:

Test Prompt 3

Please note that you can only choose from
A, B, c or D. Choose the correct answer for
the following question: x;

Answer:

C Scaling Law Trend Chart
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Figure 4: Evaluate the effect of model testing with changing LoRA rank.
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Figure 5: Evaluate the effect of model testing with changing LLM size based on parameter sharing.
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