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Figure 1: The overall OMG4 pipeline and performance comparison. OMG4 is a multi-stage 4DGS
compression framework, progressively identifying important Gaussians (Gaussian Sampling), prun-
ing unnecessary Gaussians (Gaussian Pruning), and merging similar Gaussians (Gaussian Merg-
ing), followed by attribute compression. The rate-distortion curve shows that OMG4 achieved sig-
nificant improvements over recent state-of-the-art methods (larger circles indicate higher FPS).

ABSTRACT

4D Gaussian Splatting has emerged as a new paradigm for dynamic scene rep-
resentation, enabling real-time rendering of scenes with complex motions. How-
ever, it faces a major challenge of storage overhead, as millions of Gaussians are
required for high-fidelity reconstruction. While several studies have attempted to
alleviate this memory burden, they still face limitations in compression ratio or
visual quality. In this work, we present OMG4 (Optimized Minimal 4D Gaussian
Splatting), a framework that constructs a compact set of salient Gaussians capable
of faithfully representing 4D Gaussian models. Our method progressively prunes
Gaussians in three stages: (1) Gaussian Sampling to identify primitives critical
to reconstruction fidelity, (2) Gaussian Pruning to remove redundancies, and (3)
Gaussian Merging to fuse primitives with similar characteristics. In addition,
we integrate implicit appearance compression and generalize Sub-Vector Quan-
tization (SVQ) to 4D representations, further reducing storage while preserving
quality. Extensive experiments on standard benchmark datasets demonstrate that
OMG4 significantly outperforms recent state-of-the-art methods, reducing model
sizes by over 60% while maintaining reconstruction quality. These results position
OMG4 as a significant step forward in compact 4D scene representation, opening
new possibilities for a wide range of applications.

1 INTRODUCTION

3D Gaussian Splatting (Kerbl et al., 2023) has recently achieved remarkable success, becoming a
backbone for diverse 3D vision tasks ranging from 3D novel view synthesis and reconstruction to
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downstream applications such as visual odometry (Keetha et al., 2024; Yan et al., 2024), 3D scene
editing (Wang et al., 2025b; Lee et al., 2025a), and degradation-aware rendering (Lee et al., 2024a;
Yu et al., 2024; Wan et al., 2025), to name a few. Building on this success, 4D Gaussian represen-
tations that explicitly model space and time have emerged as a new paradigm for dynamic scene
reconstruction (Yang et al., 2024; Wu et al., 2024; Yang et al., 2023; Wang et al., 2025a). By aug-
menting each Gaussian primitive with temporal parameters, these approaches can effectively capture
object motion and appearance variations over time, enabling photorealistic novel view synthesis in
real time. This capability opens the door to a wide range of applications, such as free-viewpoint
video (Girish et al., 2024b; Li et al., 2025; Sun et al., 2024), autonomous driving simulation Khan
et al. (2024); Zhou et al. (2024), and VR/AR Pan et al. (2025); Jiang et al. (2024); Xu et al. (2023),
where spatio-temporal coherence and real-time rendering are crucial.

Modeling the dynamic scenes using Gaussian primitives has evolved in two directions. Deformation-
based methods employ a canonical set of 3D Gaussians and learns a deformation field that predicts
per-primitive displacement and maps canonical primitives to each time step (Wu et al., 2024; Yang
et al., 2023). The other approach treats the space-time as a single volume and optimizes a set of
4D Gaussian primitives, extending 3D Gaussians to the time axis for temporally varying appear-
ance (Yang et al., 2024). By encoding motions within primitives rather than through warping, it can
naturally handle complex non-rigid dynamics and occlusions, yielding higher-fidelity reconstruc-
tions.

Nevertheless, current 4D Gaussian representations often carry a substantial computational cost and
memory footprint. The number of primitives can grow to millions (e.g., Real-Time4DGS (Yang
et al., 2024) produces millions of 4D Gaussians, consuming over a gigabyte of memory), with each
primitive carrying high-dimensional attributes that evolve over time. As a result, storage require-
ments frequently exceed practical limits, particularly under real-time constraints, on mobile devices,
or in streaming scenarios. This overhead further complicates various downstream tasks, highlighting
the need for effective storage reduction techniques that preserve both visual fidelity and rendering
speed.

Several works have attempted to alleviate the significant storage requirement of explicit 4D represen-
tations (Yuan et al., 2025; Zhang et al., 2025; Li et al., 2025). 4DGS-1K (Yuan et al., 2025) presents
a lifespan-based importance score to prune short-lived Gaussians, reducing the number of primitives
and compressing the representation to hundreds of megabytes. GIFStream (Li et al., 2025) performs
motion-aware pruning using feature streams and further mitigates storage overhead. On the other
hand, Light4GS (Liu et al., 2025) leverages a deep context model, and ADC-GS (Huang et al., 2025)
adopts an anchor-based structure and hierarchical approach for modeling motions at various scales
to compress a deformation-based approach (e.g., (Wu et al., 2024)). Despite these advances, exist-
ing methods still require tens of megabytes to represent only a few seconds of dynamic scenes (e.g.,
10 sec in N3DV (Li et al., 2022b)), limiting their practicality for long-duration and high-resolution
dynamic contents.

In this paper, we propose OMG4 (Optimized Minimal 4D Gaussian Splatting), a novel framework
designed to reconstruct dynamic scenes with high fidelity and compact model size. Our approach
is primarily based on Real-Time4DGS (Yang et al., 2024), which represents a dynamic scene as
a 4D volume parameterized by a set of millions of 4D primitives, demanding substantial storage.
We introduce a multi-stage optimization pipeline that progressively reduces the number of Gaus-
sians, consisting of Gaussian Sampling, Gaussian Pruning, and Gaussian Merging. Furthermore,
we incorporate implicit appearance modeling and generalize the Sub-Vector Quantization (SVQ)
framework (Lee et al., 2025b), originally developed for static scenes, to dynamic 4D representations
for additional compression.

We begin by analyzing the spatio-temporal properties of each Gaussian through its contribution to
the rendered image. This analysis motivates Gaussian Sampling, which employs gradient-based
scores to capture the impact of Gaussians in both static and dynamic regions, retaining only the
salient ones. To further refine the representation, Gaussian Pruning eliminates redundant Gaussians,
while Gaussian Merging leverages inter-Gaussian correlations to identify and fuse Gaussians with
similar attributes, yielding a more compact set of primitives. These steps collectively provide a
compact yet expressive Gaussian representation of dynamic scenes. Once we construct a compact
Gaussian set through these steps, we encode high-dimensional appearance attributes of Gaussians
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using a small MLP. We subsequently apply the SVQ that we extend for 4D representation to other
attributes, compressing the model size.

We conduct comprehensive experiments on the N3DV (Li et al., 2022b) and MPEG (Li et al., 2025)
datasets and evaluate the proposed method under various metrics. To the best of our knowledge,
we achieve state-of-the-art performance under a strict memory budget of around 3 MB, significantly
reducing the volume of the baseline model by three orders of magnitude. Notably, compared to
GIFStream (Li et al., 2025), a recent state-of-the-art approach, our method reduces storage size by
approximately 65% (from 10.0 MB to 3.61 MB in the N3DV dataset) while maintaining comparable
reconstruction quality. We believe that the proposed approach represents a promising step for the
field, opening new avenues for various research directions and practical applications.

To sum up, our contributions are as follows:

• We propose a novel multi-stage framework, progressively reducing the number of Gaus-
sians, Gaussian Sampling, Gaussian Pruning, and Gaussian Merging, while maintaining
the reconstruction quality.

• We generalize Sub-Vector Quantization (SVQ) for 4D representations together with im-
plicit appearance compression, enabling highly compact yet high-fidelity models.

• To the best of our knowledge, we achieve state-of-the-art performance around a 3 MB
memory budget, and negligible visual quality loss compared to the baseline model while
condensing the model size from gigabytes to a few megabytes.

2 RELATED WORK

2.1 3D GAUSSIAN SPLATTING AND COMPRESSION

3D Gaussian Splatting (3DGS) (Kerbl et al., 2023) enables high-fidelity scene reconstruction with
real-time rendering, using 3D Gaussians as fundamental primitives. However, it typically requires
millions of primitives, which incurs substantial memory costs, urging the need for effective com-
pression solutions. Several studies (Fan et al., 2024; Girish et al., 2024a; Shin et al., 2025; Lee et al.,
2024c; 2025b) have proposed primitive pruning and attribute compression. LocoGS (Shin et al.,
2025) proposes a locality-aware compact representation that encodes locally coherent Gaussian at-
tributes with a multi-scale hash grid. Compact 3DGS (Lee et al., 2024c) adopts a learnable mask
to remove unnecessary Gaussians and vector quantization (VQ) to condense geometry attributes.
OMG (Lee et al., 2025b) further aims for a more compact representation, introducing sub-vector
quantization (SVQ) that splits the vectors into multiple small sub-vectors and applies VQ, achiev-
ing significant performance improvement. Other works, on the other hand, present anchor-based
approaches to address Gaussian redundancy (Lu et al., 2023; Chen et al., 2024). Scaffold-GS (Lu
et al., 2023) organizes local Gaussians around the learned anchor points and predicts their attributes
with lightweight MLPs, while HAC (Chen et al., 2024) leverages a hash grid to capture spatial
consistencies among the anchors. Although these approaches effectively reduce the storage require-
ments of 3DGS, they do not straightforwardly generalize to 4D representations.

2.2 DYNAMIC 3D GAUSSIAN SPLATTING AND COMPRESSION

Early efforts to extend static scene reconstruction to dynamic settings (Cao & Johnson, 2023;
Fridovich-Keil et al., 2023; Wang et al., 2023; Pumarola et al., 2020; Li et al., 2022a) were primarily
based on neural volumetric rendering, but suffered from high computational costs. More recently,
many studies have sought to extend 3DGS to dynamic scenes, which can be broadly categorized into
two approaches: (1) representing dynamic scenes with 4D Gaussian primitives that jointly encode
spatial and temporal dimensions (Yang et al., 2024; Li et al., 2024), or (2) deforming 3D Gaussians
at each timestamp via a deformation field (Kratimenos et al., 2024; Bae et al., 2024; Wu et al., 2024;
Yang et al., 2023). Among them, Real-Time4DGS (Yang et al., 2024) achieves high-fidelity model-
ing of dynamic scenes by parameterizing the 4D volume with a set of 4D Gaussians. Most recently,
FreeTimeGS (Wang et al., 2025a) has shown promising performance by moving 3D Gaussians over
time, leveraging motion vectors.
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Figure 2: The overall architecture of the proposed OMG4.

Similar to 3DGS, dynamic extensions also require a significant number of primitives, motivating
the development of lightweight methods. Within the first category, which employs 4D Gaussian
primitives, CSTG (Lee et al., 2024b), MEGA (Zhang et al., 2025), and 4DGS-1K (Yuan et al., 2025)
have been proposed. Among them, 4DGS-1K (Yuan et al., 2025) reduces storage by discarding
Gaussians with short lifespans, achieving a model size of around 50 MB after post-processing. In
contrast, other works (Liu et al., 2025; Huang et al., 2025; Chen et al., 2025; Li et al., 2025) focus
on compressing deformable 3DGS. In this paper, we primarily target Real-Time4DGS (Yang et al.,
2024), which demands an extremely large number of primitives (approximately 2 GB per scene),
and aim to drastically reduce its memory footprint while preserving its strength in photorealistic
dynamic scene reconstruction.

3 PRELIMINARY

Our framework is primarily built upon Real-Time4DGS (Yang et al., 2024)1, which treats a dynamic
scene as a 4D volume, parameterized with a set of 4D Gaussian primitives defined by a 4D mean
at spatio-temporal space, an anisotropic 4D covariance, an opacity, and spherical harmonics (SH)
coefficients. During rendering, 4D Gaussians are conditioned at timestamp t, yielding 3D position
and covariance. For further details, please refer to the original paper.

We denote the set of Gaussians of pretrained Real-Time4DGS model by P = {(xi, fi, ai)}Ni=1,
where xi is a spatial mean (i.e., µ1:3), fi ∈ R3 is the zero-th order of the SH coefficient, and ai
denotes the remaining per-primitive attributes such as opacity, scale, and rotation.

4 METHODS

We propose a novel framework for high-fidelity dynamic scene representation with a minimal num-
ber of Gaussians consisting of Gaussian Sampling (Sec. 4.1), Gaussian Pruning (Sec. 4.2), Gaussian
Merging (Sec. 4.3), and Gaussian attributes compression (Sec. 4.4). An overview of the entire
pipeline is provided in Fig. 2.

4.1 GAUSSIAN SAMPLING

Prior methods typically rely on an excessive number of Gaussians for high-quality dynamic scene
reconstruction, incurring significant storage overhead. Although recent studies observed that many
Gaussians contribute only marginally to reconstruction quality, this challenge has yet to be fully
addressed. In this section, we propose the Static–Dynamic Score (SD-Score), which combines a
Static Score and a Dynamic Score to quantify each Gaussian’s contribution. Static regions are
often characterized by temporally persistent and spatially dispersed Gaussians, whereas dynamic
regions tend to contain temporally short-lived and spatially concentrated Gaussians. Exploiting

1We also applied OMG to the recently proposed FreeTimeGS (Wang et al., 2025a). Due to space limits, we
are unable to provide the details and kindly refer to the original paper for a full description.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Figure 3: A comparison of rendered images. (Left) Real-Time4DGS (Yang et al., 2024) with 3.6M
Gaussians. (Right) 1K optimization after Gaussian Sampling with 0.7M Gaussians.

these properties, our method identifies the salient Gaussians, as shown in Fig. 3, retaining only 20%
of those from a pre-trained Real-Time4DGS model (Yang et al., 2024) is sufficient to reconstruct the
scene with negligible quality loss.

SD Score. The proposed Static–Dynamic Score (SD-Score) to calculate the importance of each
Gaussian is defined as follows:

SD(i) = S
(i)
grad · T

(i)
grad, S

(i)
grad =

N∑
j=1

||∇ui,j
Lj ||2, T

(i)
grad =

N∑
j=1

∇tiLj , (1)

where N is the number of input images (# of input views × # of frames), i is the Gaussian index,
Lj is the reconstruction loss of the input image j, ui,j ∈ R2 denotes the projected 2D coordinate of
the i-th Gaussian for the j-th image, and ti ∈ R is the time coordinate of i-th Gaussian.

Static Score. The static score for the i-th Gaussian, S(i)
grad, is defined as an accumulation of the

view-space gradients across all timesteps, capturing the overall rendering sensitivity with respect
to the Gaussian’s projected coordinates. In static regions, Gaussians are temporally long-lived yet
relatively sparse (i.e., fewer Gaussians per unit area), so even small positional perturbations can
influence the rendering loss across many timesteps, yielding higher static scores. In contrast, Gaus-
sians associated with dynamic regions are often active only at specific time steps and are spatially
dense (e.g., a larger number of Gaussians per unit area). Consequently, the effect of a single Gaus-
sian’s positional change on the overall reconstruction loss is diluted, resulting in lower static scores.

Dynamic Score. The dynamic score for the i-th Gaussian, T (i)
grad, is a sum of time gradients that

measures the sensitivity of the reconstruction loss with respect to the time coordinate of each Gaus-
sian. Gaussians with a high dynamic Score often imply that they play a pivotal role in representing
dynamic regions, as these areas are sensitive to temporal changes, capturing the motion of the ob-
jects. We accumulate the signed time gradients rather than their magnitudes to capture consistent
temporal trends. This avoids assigning high scores to Gaussians with frequent sign flips (i.e., flick-
ering), enhancing the robustness of the score.

By combining the complementary Static and Dynamic Score, the SD-Score can provide a balanced
evaluation of the overall contribution of each Gaussian. We subsequently sample the Gaussians
with high SD values with a sampling ratio of τGS , forming a set of sampled Gaussians, PGS , and
optimize it for TGS iterations.

4.2 GAUSSIAN PRUNING

While the first Gaussian sampling stage with the SD-Score yields a set of critical Gaussians, PGS , it
may still include redundant Gaussians. In response, we introduce a Gaussian Pruning strategy that
further refines the set by eliminating superfluous Gaussians that remain after the first stage.

Fig. 4 illustrates the space defined by Sgrad and Tgrad, where the curve Tgrad = c/Sgrad denotes the
selection boundary from the first Gaussian sampling stage. Within this space, we identify Gaussians
that are likely redundant, and our empirical analysis shows that those with both S

(i)
grad and T

(i)
grad values

being small can be safely filtered out (gray regions in Fig. 4). To this end, we apply thresholding to
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Figure 4: Illustration of Gaussian Pruning. (Left) Space defined by Static and Dynamic score and
Gaussian Sampling Boundary. (Middle) A rendered image with unique Gaussians that satisfy both
unique static and dynamic thresholds, and one after 1K optimization. (Right) A rendered image with
redundant Gaussians that are not included in a unique area.

both scores, with each threshold defined as follows:

PGP = {Gi ∈ PGS | (S(i)
grad ≥ τS) ∨ (T

(i)
grad ≥ τT )}, τS = Qp

(
{S(i)

grad}
)
, τT = Qp

(
{T (i)

grad}
)
,

(2)
where τS and τT are the thresholds for Sgrad and Tgrad respectively, and Qp(·) denotes the p-quantile
value, reflecting the relative distribution of Gaussians. As shown in Fig. 4, the pruned set, PGP , can
still represent the scene with fine details and we optimize PGP for TGP iterations.

One may question the necessity of employing two distinct stages, since, in principle, sampling
and pruning could be integrated into a single process. Nevertheless, our experiments indicate that
separating these stages proves to be more effective, as evidenced by the ablation study in Sec. 5.2.
We hypothesize that this advantage arises from the intermediate optimization performed between
the two stages, which further refines the representation and ultimately results in a more compact set.

4.3 GAUSSIAN MERGING

The first two stages, Gaussian Sampling and Gaussian Pruning, are effective in preserving a com-
pact and salient set of Gaussians. However, both stages evaluate the importance of each Gaussian
individually, without considering similarities across Gaussians. To further reduce redundancy, we
introduce a Gaussian Merging technique that clusters highly similar Gaussians and fuses them into
single representative Gaussians.

Gaussian Clustering. We define a Similarity Score to quantify the similarity among Gaussians
and identify clusters. We first divide space into a 4D grid and compute the Similarity Score among
the Gaussians within the same grid cell. Such a spatio-temporal grid can group Gaussians with tem-
poral proximity, preventing the merging of temporally mismatched Gaussians and preserving tempo-
ral coherence, while reducing computational complexity. We define the Similarity Score S(Gi, Gj)
between two Gaussians as a sum of spatial proximity and appearance similarity:

S(Gi, Gj) = −||xi − xj ||22 + λ||fi − fj ||22, (3)

where λ is a fixed balancing weight, xi ∈ R3 is the position, and fi ∈ R3 is the zero-th order
spherical-harmonics (RGB) coefficient of Gi. A higher score indicates a greater spatial-appearance
similarity. For each Gaussian Gi, we construct a cluster of Gaussians Ci by thresholding the Simi-
larity Score with τsim:

Ci = {i} ∪ {j ∈ Pi | S(Gi, Gj) ≥ τsim}, (4)
where Pi denotes a set of Gaussian indices within the spatio-temporal grid cell that contain the
Gaussian Gi. We then deduplicate identical clusters and remove subset ones, yielding a final set of
maximal clusters, C = {Cq}NC

q=1. Gaussians not included in any clusters remain as singletons.

Gaussian Merging. Within each cluster, we assign learnable per-Gaussian weights wx
i ∈ R and

wf
i ∈ R to the position and appearance attributes, respectively. During training-time rendering, all

Gaussians in a cluster Cq are replaced by a single proxy whose elements are defined as follows:

x̄q =
∑
i∈Cq

wx
i xi, f̄q =

∑
i∈Cq

wf
i fi, āq = ar(Cq), r(Cq) = argmax

i∈Cq

wx
i , (5)
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Table 1: Quantitative results on N3DV (Li et al., 2022b) dataset. All results without ∗ mark are
sourced from the original paper. † denotes post-processed models. • denotes the results excluding
Coffee Martini scene.

Method PSNR↑ SSIM↑ LPIPS↓ FPS↑ # Gaussians↓ Storage (MB)↓
1352 × 1014 Resolution

HexPlane (Cao & Johnson, 2023) 31.70 0.987 0.075 0.2 - 250
DyNeRF (Li et al., 2022a) 29.58 0.980 0.083 0.015 - 28

Real-Time4DGS (Yang et al., 2024)∗ 31.96 0.946 0.051 57 3,397,510 2087
STG (Li et al., 2024) 32.05 0.946 0.044 140 - 200

4DGS (Wu et al., 2024) 31.15 - 0.049 82 - 18
MEGA (Zhang et al., 2025) 31.49 - 0.057 77.42 - 25.05

ADC-GS (Huang et al., 2025)–L 31.67 0.981 0.061 110 - 6.57
ADC-GS (Huang et al., 2025)–S 31.41 0.972 0.066 126 - 4.04

GIFStream (Li et al., 2025) 31.75 0.938 0.051 95 - 10.0
CSTG (Lee et al., 2024b)† 31.69 0.945 0.054 186 - 15.4

Ours–L 31.80 0.941 0.059 246 171,136 3.61
Ours–S 31.60 0.939 0.064 258 137,414 2.54

1024 × 768 Resolution
Real-Time4DGS (Yang et al., 2024)∗ 32.21 0.950 0.040 96 2770350 1701

4DGS-1K (Yuan et al., 2025)† 31.87 0.944 0.053 805 666,632 49.50
Light4GS (Liu et al., 2025)•–L 31.69 - 0.053 37 - 5.46
Light4GS (Liu et al., 2025)•–S 31.48 - 0.064 40 - 3.77

Ours–L 32.09 0.946 0.047 253 147,153 3.15
Ours–S 31.81 0.944 0.051 246 120,513 2.25

Ours•–L 32.80 0.951 0.044 259 139,320 2.99
Ours•–S 32.58 0.950 0.047 244 113,862 2.13

where the both weights wx
i , w

f
i are normalized per cluster. The position and appearance are the

weighted sum of the Gaussians within the cluster, and the attributes of the representative Gaussian
is used for āq . We optimize both weights wx

i , w
f
i for TGM iterations and repeat the Gaussian Merg-

ing M times, progressively increasing the grid size. The detailed process of Gaussian Merging is
provided in appendix A.3.

4.4 ATTRIBUTE COMPRESSION

Given the compact Gaussian set, we compress attributes by adapting the OMG architecture (Lee
et al., 2025b), which is initially designed for static 3DGS, to the 4DGS setting with explicit time
conditioning. Concretely, we follow OMG’s compression pipeline, which employs an MLP to ex-
tract spatial features and three additional small MLPs that take the spatial features and position as
inputs, producing opacities, static colors, and view-dependent colors, respectively. We extend these
MLPs to also take the time coordinate, enabling time-varying opacity and appearance.

Furthermore, OMG introduced Sub-Vector Quantization (SVQ), which partitions an input vector
into sub-vectors and quantizes each with a small codebook, demonstrating both high efficiency and
reconstruction quality. In this work, we extend SVQ to dynamic 3D scene representations. Specifi-
cally, we retain the 4D Gaussian means in full precision for stability, while applying SVQ to other
attributes, including the additional rotation quaternion and temporal-axis scales introduced in Real-
Time4DGS (Yang et al., 2024) to model scene motion. However, quantizing both static and dynamic
attributes simultaneously leads to unstable optimization. To mitigate this, we propose a staged SVQ
scheme: SVQ is first applied only to 3D attributes and optimized for T3D iterations, after which
SVQ is activated for 4D attributes. This staged approach decouples temporal and appearance sensi-
tivities from static components, resulting in stable optimization. Finally, we compress the quantized
elements using Huffman encoding (Huffman, 1952) followed by LZMA compression (Pavlov).

5 EXPERIMENTS AND RESULTS

5.1 IMPLEMENTATION DETAILS

For each stage, we optimize for 1,000 iterations (TGS = TGP = TGM = 1,000). Starting from a
pretrained model, we first perform Gaussian Sampling, followed by Gaussian Pruning at the 1,000th

7
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Table 2: Quantiatve results on Bartender scene of MPEG (Li et al., 2025) dataset. All results without
∗ mark are sourced from the original paper.

Method PSNR↑ SSIM↑ LPIPS (VGG)↓ FPS↑ # Gaussians↓ Storage (MB)↓
Real-Time4DGS (Yang et al., 2024)∗ 32.44 0.895 0.1579 115 2,653,870 1630

GIFStream (Li et al., 2025)–L 31.94 0.879 0.190 - - 5.3
GIFStream (Li et al., 2025)–S 31.35 0.872 0.207 - - 2.3

Ours–L 32.19 0.892 0.175 203 319,906 6.33
Ours–S 31.91 0.887 0.190 238 196,319 4.00

Table 3: Quantitative results on applying OMG4 to FTGS (FreeTimeGS) (Wang et al., 2025a),
evaluated on N3DV (Li et al., 2022b) dataset (*We reproduced FTGS models since the codes and
pretrain models are not publicly available).

Method PSNR↑ SSIM↑ LPIPS↓ FPS↑ # Gaussians↓ Storage (MB)↓
FTGS–L∗ 32.80 0.9579 0.0398 129 500,000 61.04
FTGS–S∗ 32.00 0.9504 0.0559 160 100,000 12.21

Ours (FTGS–L, AC Only) 32.59 0.9568 0.0405 73 500,000 9.66
Ours (FTGS–S, AC Only) 32.15 0.9496 0.0551 107 100,000 2.12

Ours (FTGS–L) 32.62 0.9562 0.0411 91 283,977 5.60
Ours (FTGS–S) 32.22 0.9516 0.0491 112 90,227 1.92

iteration. Gaussian Merging is then applied twice, at the 2,000th and 3,000th iterations, respectively.
After merging, attribute compression begins. We train the MLPs at the 4,000th iteration and keep
training until the end. We start applying SVQ to 3D attributes at the 9,000th iteration, and then SVQ
to 4D attributes at the 10,000th iteration. The sampling ratio is set to τGS = 0.2, and a 0.6-quantile
threshold is used for Gaussian Pruning. We perform Gaussian Merging twice, increasing the spatial
grid size by a factor of 1.2, while keeping a constant temporal grid size of 2.0. We used all identical
hyperparameters across the dataset. Learning rates, codebook sizes, and other hyperparameters
follow Real-Time4DGS (Yang et al., 2024) and OMG (Lee et al., 2025b). All experiments are
conducted on a single RTX 3090 GPU.

5.2 RESULTS AND ANALYSIS

We conduct experiments on N3DV (Li et al., 2022b) and Bartender data2 of the MPEG (Li et al.,
2025) dataset. As shown in Tab. 1 and Fig. 5, we effectively reduce the model size of the baseline
Real-Time4DGS (Yang et al., 2024), from 2 GB to around 3 MB, while preserving comparable visual
quality. Notably, OMG4 can reduce the storage requirement of the original Real-Time4DGS (Yang
et al., 2024) by 99%. In addition, compared to a recent state-of-the-art method GIFStream (Li et al.,
2025), OMG4 achieved 65% reduction in storage (from 10MB to 3.61) while even improving the
PSNR (31.75 vs. 31.80).

4DGS-1K (Yuan et al., 2025) achieves the highest FPS due to its visibility mask, which identifies
the visible Gaussians at a given timestamp t, and only those Gaussians are involved in rasteriza-
tion, thereby dramatically reducing computational costs. Although we do not employ any visibility
masks, as improving FPS is outside our scope, we can still improve the FPS of the baseline model
by 4.31×, thanks to our compact representation. We additionally conduct experiments on Bartender
data of the MPEG (Li et al., 2025) dataset, which exhibits more complex motions than the N3DV (Li
et al., 2022b) dataset. Following GIFStream (Li et al., 2025), we use the first 65 frames for our ex-
periment. OMG4 consistently outperforms the state-of-the-art methods, efficiently reconstructing
the scene with minimal storage overhead, as reported in Tab. 2.

Application on FreeTimeGS. We further extend OMG4 to FreeTimeGS (Wang et al., 2025a),
comprehensively evaluating the proposed method beyond Real-Time4DGS (Yang et al., 2024). We
begin with the pretrained FreeTimeGS models3 with 500K Gaussians (FTGS–L) as our backbone
model and apply OMG4, progressively pruning Gaussians from 500K to around 280K (Ours (FTGS–
L)) and 90K (Ours (FTGS–S)) primitives. To see the effectiveness of the proposed multi-stage
frameworks, we also provided the results of Ours (FTGS–L, AC only) and Ours (FTGS–L, AC

2Other data from the MPEG dataset were not publicly available.
3We reproduced FreeTimeGS models since the codes and pre-trained models are not publicly available.
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Figure 5: Qualitative results on N3DV dataset (Li et al., 2022b).

Table 4: Ablation study on each module of the proposed method where GS, GP, GM, AC refers
to Gaussian Sampling, Gaussian Pruning, Gaussian Merging and Attribution Compression, respec-
tively. GS+GP means applying GS and GP simutaenously at the first iteration.

Modules PSNR↑ SSIM↑ LPIPS↓ FPS↑ # Gaussians ↑ Storage (MB)↓
GS+GP GS GP GM AC

31.96 0.9459 0.0506 57 3,397,510 2126
✓ OOM

✓ 32.07 0.9454 0.0518 126 679,502 13.26
✓ ✓ ✓ 31.89 0.9429 0.0559 244 235,027 4.83

✓ ✓ ✓ 31.68 0.9407 0.0606 217 171,214 3.61
✓ ✓ ✓ ✓ 31.80 0.9414 0.0594 246 171,136 3.61

only), where we apply only the proposed attribute compression technique to the pretrained Free-
TimeGS models (FTGS–L: 500K Gaussians, FTGS–S: 100K Gaussians). As Tab. 3 shows, OMG4
can significantly reduce the storage of FreeTimeGS by 90%. Even under the stricter memory budget
of around 2 MB, OMG4 still remains effective, benefiting from its prior. This result highlights the
versatility of OMG4, showing that it can be effectively applied to diverse 4D representation methods.

Ablation Studies. In this section, we present ablation studies on each module of OMG4, sum-
marized in Tab. 4. First, directly applying Attribute Compression to Real-Time4DGS (Yang et al.,
2024) incurs out-of-memory failure, due to a larger number of Gaussians. When we implement
Gaussian Sampling only, we can remove 80% of Gaussians, even outperforming Real-Time4DGS.
We assume this is because Gaussian Sampling can act as a regularizer by eliminating noisy Gaus-
sians, hence raising visual quality. Adding Gaussian Pruning can reduce the memory footprint from
gigabytes to a few megabytes, and Gaussian Merging achieves the minimal number of Gaussians,
integrating highly correlated Gaussians. It may appear possible to perform Gaussian Sampling and
Gaussian Pruning simultaneously. However, our ablation study (fifth row, GS+GP in Tab. 4) shows
that doing so results in a PSNR drop of 0.12 dB. This finding highlights the importance of the pro-
posed multi-stage pipeline: by first stabilizing the optimization with Gaussian Sampling and then
progressively reducing the number of Gaussians through Gaussian Pruning, we are able to maintain
reconstruction quality while ensuring stable training. One possible explanation is that TGS iteration
training before Gaussian Pruning stabilizes the whole optimization process. Therefore, our pipeline
separates Gaussian Sampling and Gaussian Pruning with a sufficient optimization term.

6 CONCLUSION

We introduce OMG4, a compact dynamic-scene representation that progressively reduces the num-
ber of primitives and compresses the Gaussian attributes. We present Gaussian Sampling and Gaus-
sian Pruning, which reduce the number of Gaussians significantly and further leverage the correla-
tion of Gaussians to fuse the similar Gaussians in the Gaussian Merging stage. Lastly, we couple
these Gaussian minimization techniques with implicit appearance encoding and 4D extension of
Sub-Vector Quantization (SVQ). Consequently, OMG4 compresses Real-Time4DGS by three or-
ders of magnitude at comparable fidelity. OMG4 also transfers to the recent state-of-the-art method,
FreeTimeGS, achieving 90% storage reduction while maintaining high reconstruction quality. With
its significant performance improvement, we believe OMG4 marks an important advance in 4D
scene representation, opening new opportunities for research and various practical applications.
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ized walkable spaces. In SIGGRAPH Asia 2023 Conference Papers, pp. 1–12, 2023.

Chi Yan, Delin Qu, Dan Xu, Bin Zhao, Zhigang Wang, Dong Wang, and Xuelong Li. Gs-slam:
Dense visual slam with 3d gaussian splatting. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 19595–19604, 2024.

Zeyu Yang, Hongye Yang, Zijie Pan, and Li Zhang. Real-time photorealistic dynamic scene repre-
sentation and rendering with 4d gaussian splatting, 2024. URL https://arxiv.org/abs/
2310.10642.

Ziyi Yang, Xinyu Gao, Wen Zhou, Shaohui Jiao, Yuqing Zhang, and Xiaogang Jin. Deformable
3d gaussians for high-fidelity monocular dynamic scene reconstruction, 2023. URL https:
//arxiv.org/abs/2309.13101.

Zehao Yu, Anpei Chen, Binbin Huang, Torsten Sattler, and Andreas Geiger. Mip-splatting: Alias-
free 3d gaussian splatting. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 19447–19456, 2024.

Yuheng Yuan, Qiuhong Shen, Xingyi Yang, and Xinchao Wang. 1000+ fps 4d gaussian splatting for
dynamic scene rendering, 2025. URL https://arxiv.org/abs/2503.16422.

Xinjie Zhang, Zhening Liu, Yifan Zhang, Xingtong Ge, Dailan He, Tongda Xu, Yan Wang, Zehong
Lin, Shuicheng Yan, and Jun Zhang. Mega: Memory-efficient 4d gaussian splatting for dynamic
scenes, 2025. URL https://arxiv.org/abs/2410.13613.

Xiaoyu Zhou, Zhiwei Lin, Xiaojun Shan, Yongtao Wang, Deqing Sun, and Ming-Hsuan Yang. Driv-
inggaussian: Composite gaussian splatting for surrounding dynamic autonomous driving scenes,
2024. URL https://arxiv.org/abs/2312.07920.

A APPENDIX

A.1 USING LLM FOR POLISHING WRITING

We made limited use of a large language model (LLM) to assist with paper preparation, specifically
for refining wording, improving clarity, and providing light proofreading. Its role was restricted to
suggesting alternative phrasings and correcting minor grammatical issues, while all technical content
and substantive writing were carried out by the authors. As this partial assistance helped improve
readability and logical flow, we disclose it here in accordance with the ICLR policy.
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A.2 ADDITIONAL IMPLEMENTATION DETAILS

In this section, we describe the implementation details and experimental settings in detail. As men-
tioned, we follow the Sub-Vector Quantization (SVQ) setup of OMG (Lee et al., 2025b), where
codebook size of scale bs, rotation br, and encoded appearance feature bf are 29, 213, and 210, re-
spectively. Real-Time4DGS (Yang et al., 2024) introduces new attributes, st, scale along the time
axis, and ql, an additional quaternion to define the rotation matrix. We set their codebook size to 29

and 213, respectively. In terms of our small model, we decrease the size of the codebooks for 3D
attributes to bs = 28, br = 213, and bf = 210, while keeping those for the two 4D attributes as they
are. We use the same codebook setup to both N3DV (Li et al., 2022b) and MPEG (Li et al., 2025)
datasets. We set τGS = 0.4 and 0.6-quantile for MPEG (Li et al., 2025) dataset.

For our FreeTimeGS (Wang et al., 2025a) experiment, we use τGS = 0.7 and the quantile at level
0.6 for Gaussian Pruning, for the large model, while τGS is set to 0.3 and a 0.4-quantile is adopted
for the small model, to aggressively prune the primitives. Similar to the Real-Time4DGS (Yang
et al., 2024) implementation, we also sub-vector quantize the origin attributes that FreeTimeGS
introduces, velocity and duration. We keep the identical codebook size for both scales of the model,
and we use the codebook size 210 for the velocity and duration.

A.3 ANALYSIS ON METHOD

SD Score. In this section, we analyze the proposed SD score in Gaussian Sampling stage. Gaus-
sian Sampling aims to extract a subset of Gaussians that can faithfully represent both static and
dynamic regions. Previous work (Oh et al., 2025) has attempted to leverage the variance of time
distribution, Σt, as a cue to detect separate static and dynamic regions. Gaussians located at the
regions with various motions tend to have relatively smaller values of Σt compared to those lying
on the stationary area, as rapid changes in appearance or geometry restrict each primitive to have a
short lifespan, being temporally localized. However, using Σt alone to select a subset with a limited
budget can be biased toward extremes because sampling dynamic Gaussians by taking the bottom
Σt subset focuses on a few high-velocity regions (e.g., moving hands in Fig. 6), while neglecting
other dynamic structures such as secondary body motion. This is because Σt is agnostic to the visual
contribution, oversampling transients that are temporally sharp. On the other hand, our SD Score
addresses this by combining gradient-based contribution with temporal support. Under the same
sampling budget, it can distribute the budget across multiple dynamic regions while keeping enough
static structures, as shown in Fig. 6, producing better perceptual fidelity with the same number of
Gaussians.

Moreover, some online 4D reconstruction approaches (Dai et al., 2025; Liu et al., 2024) adopts 2D
optical flow to distinguish dynamic and static Gaussians using 2D optical flow. To further examine
whether such approach can benefit our pipeline, we adopt the optical-flow–based dynamic region
estimation proposed in (Liu et al., 2024) and use it as a Dynamic Score. While streaming-based
methods typically compute optical flow of each streamed frame, our method requires evaluating
each Gaussian’s contribution to the entire scene globally. To this end, we accumulate optical-flow
magnitudes across all frames. We then project each Gaussian onto the image plane and accumulate
the flow magnitudes of pixels that fall within the corresponding 2D dynamic regions, thereby as-
signing an optical flow magnitude to each 4D Gaussian. If the accumulated optical flow exceeds a
threshold τflow, we mark such Gaussians as dynamic Gaussians.

The segmented results are provided in Fig. 7 and quantitative results on the N3DV dataset are
delivered in Tab. 5. The optical flow-based variant performs noticeably worse than our temporal
gradient-based Dynamic Score in terms of both reconstruction quality and compression efficiency.
We assume this is because optical flow is highly sensitive to frame-to-frame pixel changes and thus
primarily highlights a few extremely fast-moving regions, rather than Gaussians that are essential
for maintaining the global scene structure. As illustrated in Fig. 7, the top 10% Gaussians ranked
by optical flow predominantly capture highly dynamic parts, but fail to select representative dy-
namic Gaussians necessary for preserving the overall scene, similar to using Σt (Oh et al., 2025).
In other words, optical flow mainly measures how much a Gaussian move and does not guarantee
sufficient coverage of the entire dynamic region under a tight sampling budget. In contrast, our tem-
poral gradient-based Dynamic Score directly measures how much each Gaussian contributes to the
reconstruction loss over time, leading to far more stable and reliable selections.
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Table 5: Comparison of replacing the Dynamic Score with optical flow.
Methods PSNR↑ SSIM↑ LPIPS↓ # Gaussians ↓ Storage (MB)↓

Optical flow 27.19 0.840 0.156 150,889 3.20
Temporal gradient (Ours) 31.60 0.939 0.064 137,414 2.54

Gaussian Merging. Algorithm. 1 describes a detailed process of Gaussian Merging. As men-
tioned earlier, our Gaussian Merging performs correlation-considered Gaussian removal based on
the locality of Gaussians, while Gaussian Sampling and Gaussian Pruning rather aim to identify the
salience or contribution of a single Gaussian.

Figure 6: Effect of the sampling criterion under a fixed sampling budget. (Left) Rendered images
with the full model. (Middle): Our SD Score selection using top 10% Static score and Dynamic
Score. (Right) Σt-based sampling with the same sampling ratio.

Figure 7: Visualization of 2D optical flow-based Dynamic score. (Left) Predicted 2D optical flow.
(Middle-Left): Optical flow thresholded with τflow. (Middle-Right) Rendered image with the Gaus-
sians projected on high-optical flow region. (Right): Rendered image with the Gaussians of top 10%
Dynamic score.

Ablation Studies. We further conduct ablation studies on the proposed method, evaluated on cook
spinach and sear steak data of N3DV dataset (Li et al., 2022b). We compare each hyperparameter
of the Gaussian removal stage. Tab. 6 and Tab. 7 show the comparison on different pruning ratio
p and the number of Gaussian Merging implementation, respectively. As expected for Gaussian-
based models, the reconstruction quality increases monotonically with the number of Gaussians.
We experimentally set these hyperparameters, considering the storage and image fidelity tradeoff.

A.4 PER-SCENE RESULTS

In this section, we provide per-scene results of N3DV dataset (Li et al., 2022b) in Tab. 8
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Algorithm 1 Gaussian Merging

Require: Gaussian set PGP ; clusters C = {Cq}NC
q=1; training steps TM

Initialize per-member logits ℓxi ←0, ℓfi ←0 for all i
for t = 1 to TM do

for all clusters Cq do
wx

i ← σ(ℓxi )
/∑

j∈Cq
σ(ℓxj ) for i ∈ Cq ▷ Position weights

wf
i ← σ(ℓfi )

/∑
j∈Cq

σ(ℓfj ) for i ∈ Cq ▷ Appearance weights

x̄q ←
∑

i∈Cq
wx

i xi; f̄q ←
∑

i∈Cq
wf

i fi
āq ← ar(Cq), r(Cq) = argmaxi∈Cq

wx
i

end for
Pproxy ← {(x̄q, f̄q, āq)}NC

q=1 ∪ {(xi, fi, ai) : i /∈
⋃

q Cq}
Render Pproxy, compute loss L, and update {ℓxi , ℓ

f
i } by backprop

end for
return pruned set Pproxy

Table 6: Ablation study on the quantile level of p of Gaussian Pruning.
Methods PSNR ↑ SSIM ↑ LPIPS ↓ # Gaussians ↓ Storage (MB) ↓
p = 0.6 33.51 0.956 0.045 225,286 4.65
p = 0.7 33.47 0.956 0.046 172,193 3.95
p = 0.8 33.40 0.955 0.048 143,030 3.07
p = 0.9 33.05 0.950 0.055 83,052 1.91

Table 7: Ablation study on the number of Gaussian Merging execution M .
Methods PSNR ↑ SSIM ↑ LPIPS ↓ # Gaussians ↓ Storage (MB) ↓
M = 1 33.44 0.955 0.047 161663 3.43
M = 2 33.40 0.955 0.048 143030 3.07
M = 3 33.32 0.954 0.049 130320 2.82
M = 4 33.26 0.954 0.0501 120347 2.63

Table 8: Quantitative results on N3DV (Li et al., 2022b) dataset. All results without ∗ mark are
sourced from the original paper. † denotes post-processed models.

Method Coffee Martini Cook Spinach Cut Roasted Beef Flame Salmon Flame Steak Sear Steak Average
PSNR↑

HexPlane (Cao & Johnson, 2023) - 32.04 32.54 29.47 32.08 32.38 -
Real-Time4DGS (Yang et al., 2024)∗ 28.33 32.93 33.85 29.38 33.51 33.51 32.01

STG (Li et al., 2024) 28.61 33.18 33.52 29.48 33.64 33.89 32.05
4DGS (Wu et al., 2024) 27.34 32.46 32.90 29.20 32.51 32.49 31.15

MEGA (Zhang et al., 2025) 27.84 33.08 33.58 28.48 32.27 33.67 31.49
ADC-GS (Huang et al., 2025)-L - 32.34 31.88 29.01 32.65 32.48 31.67

GIFStream (Li et al., 2025) 28.14 33.03 33.19 28.51 33.76 33.83 31.75
Ours–L 28.10 33.12 33.61 28.70 33.57 33.69 31.80
Ours–S 27.98 32.93 33.30 28.40 33.42 33.56 31.60

SSIM↑
HexPlane (Cao & Johnson, 2023) - - - - - - -

Real-Time4DGS (Yang et al., 2024)∗ - - - - - - -
STG (Li et al., 2024) - - - - - - -

4DGS (Wu et al., 2024) 0.905 0.949 0.957 0.917 0.954 0.957 0.939
MEGA (Zhang et al., 2025) - - - - - - -

ADC-GS (Huang et al., 2025) - - - - - - -
GIFStream (Li et al., 2025) 0.905 0.950 0.947 0.916 0.957 0.958 0.938

Ours–L 0.910 0.952 0.954 0.916 0.958 0.958 0.941
Ours–S 0.907 0.950 0.950 0.086 0.956 0.956 0.939

LPIPS↓
HexPlane (Cao & Johnson, 2023) - 0.082 0.080 0.078 0.066 0.070

Real-Time4DGS (Yang et al., 2024)∗ - - - - - - -
STG (Li et al., 2024) 0.069 0.037 0.036 0.063 0.029 0.030 0.044

4DGS (Wu et al., 2024) - - - - - - -
MEGA (Zhang et al., 2025) 0.077 0.047 0.048 0.073 0.053 0.040 0.056

ADC-GS (Huang et al., 2025) - - - - - - -
GIFStream (Li et al., 2025) - - - - - - -

Ours–L 0.085 0.049 0.049 0.080 0.458 0.458 0.059
Ours–S 0.091 0.054 0.055 0.086 0.049 0.049 0.064
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