

OPTIMIZED MINIMAL 4D GAUSSIAN SPLATTING

Anonymous authors

Paper under double-blind review

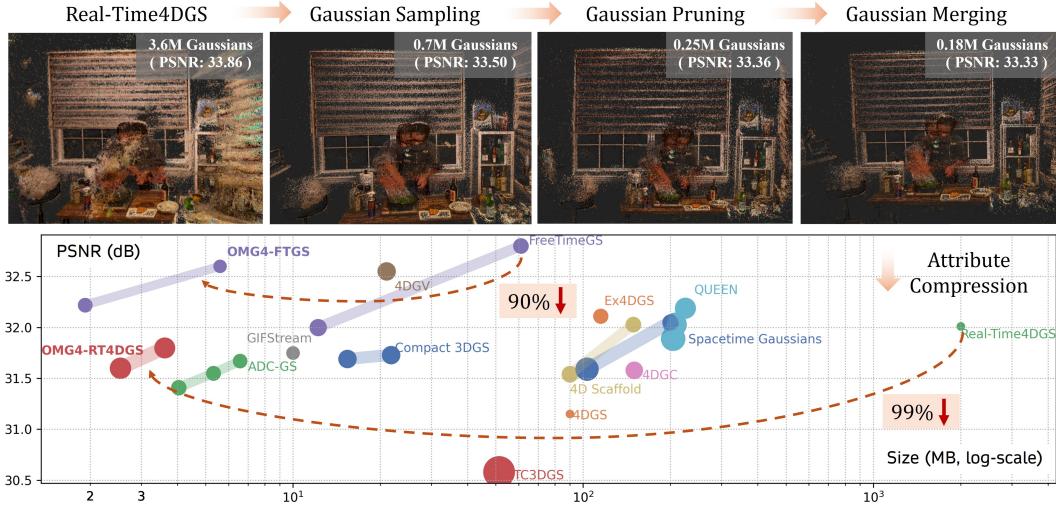


Figure 1: The overall *OMG4* pipeline and performance comparison. *OMG4* is a multi-stage 4DGS compression framework, progressively identifying important Gaussians (*Gaussian Sampling*), pruning unnecessary Gaussians (*Gaussian Pruning*), and merging similar Gaussians (*Gaussian Merging*), followed by attribute compression. The rate-distortion curve shows that *OMG4* achieved significant improvements over recent state-of-the-art methods (larger circles indicate higher FPS).

ABSTRACT

4D Gaussian Splatting has emerged as a new paradigm for dynamic scene representation, enabling real-time rendering of scenes with complex motions. However, it faces a major challenge of storage overhead, as millions of Gaussians are required for high-fidelity reconstruction. While several studies have attempted to alleviate this memory burden, they still face limitations in compression ratio or visual quality. In this work, we present *OMG4* (Optimized Minimal 4D Gaussian Splatting), a framework that constructs a compact set of salient Gaussians capable of faithfully representing 4D Gaussian models. Our method progressively prunes Gaussians in three stages: (1) *Gaussian Sampling* to identify primitives critical to reconstruction fidelity, (2) *Gaussian Pruning* to remove redundancies, and (3) *Gaussian Merging* to fuse primitives with similar characteristics. In addition, we integrate implicit appearance compression and generalize Sub-Vector Quantization (SVQ) to 4D representations, further reducing storage while preserving quality. Extensive experiments on standard benchmark datasets demonstrate that *OMG4* significantly outperforms recent state-of-the-art methods, reducing model sizes by over 60% while maintaining reconstruction quality. These results position *OMG4* as a significant step forward in compact 4D scene representation, opening new possibilities for a wide range of applications.

1 INTRODUCTION

3D Gaussian Splatting (Kerbl et al., 2023) has recently achieved remarkable success, becoming a backbone for diverse 3D vision tasks ranging from 3D novel view synthesis and reconstruction to

054 downstream applications such as visual odometry (Keetha et al., 2024; Yan et al., 2024), 3D scene
055 editing (Wang et al., 2025b; Lee et al., 2025a), and degradation-aware rendering (Lee et al., 2024a;
056 Yu et al., 2024; Wan et al., 2025), to name a few. Building on this success, 4D Gaussian repres-
057 entations that explicitly model space and time have emerged as a new paradigm for dynamic scene
058 reconstruction (Yang et al., 2024; Wu et al., 2024; Yang et al., 2023; Wang et al., 2025a). By aug-
059 menting each Gaussian primitive with temporal parameters, these approaches can effectively capture
060 object motion and appearance variations over time, enabling photorealistic novel view synthesis in
061 real time. This capability opens the door to a wide range of applications, such as free-viewpoint
062 video (Girish et al., 2024b; Li et al., 2025; Sun et al., 2024), autonomous driving simulation Khan
063 et al. (2024); Zhou et al. (2024), and VR/AR Pan et al. (2025); Jiang et al. (2024); Xu et al. (2023),
064 where spatio-temporal coherence and real-time rendering are crucial.

065 Modeling the dynamic scenes using Gaussian primitives has evolved in two directions. Deformation-
066 based methods employ a canonical set of 3D Gaussians and learns a deformation field that predicts
067 per-primitive displacement and maps canonical primitives to each time step (Wu et al., 2024; Yang
068 et al., 2023). The other approach treats the space-time as a single volume and optimizes a set of
069 4D Gaussian primitives, extending 3D Gaussians to the time axis for temporally varying appear-
070 ance (Yang et al., 2024). By encoding motions within primitives rather than through warping, it can
071 naturally handle complex non-rigid dynamics and occlusions, yielding higher-fidelity reconstruc-
072 tions.

073 Nevertheless, current 4D Gaussian representations often carry a substantial computational cost and
074 memory footprint. The number of primitives can grow to millions (e.g., Real-Time4DGS (Yang
075 et al., 2024) produces millions of 4D Gaussians, consuming over a gigabyte of memory), with each
076 primitive carrying high-dimensional attributes that evolve over time. As a result, storage require-
077 ments frequently exceed practical limits, particularly under real-time constraints, on mobile devices,
078 or in streaming scenarios. This overhead further complicates various downstream tasks, highlighting
079 the need for effective storage reduction techniques that preserve both visual fidelity and rendering
080 speed.

081 Several works have attempted to alleviate the significant storage requirement of explicit 4D repres-
082 entations (Yuan et al., 2025; Zhang et al., 2025; Li et al., 2025). 4DGS-1K (Yuan et al., 2025) presents
083 a lifespan-based importance score to prune short-lived Gaussians, reducing the number of primitives
084 and compressing the representation to hundreds of megabytes. GIFStream (Li et al., 2025) performs
085 motion-aware pruning using feature streams and further mitigates storage overhead. On the other
086 hand, Light4GS (Liu et al., 2025) leverages a deep context model, and ADC-GS (Huang et al., 2025)
087 adopts an anchor-based structure and hierarchical approach for modeling motions at various scales
088 to compress a deformation-based approach (e.g., (Wu et al., 2024)). Despite these advances, exist-
089 ing methods still require tens of megabytes to represent only a few seconds of dynamic scenes (e.g.,
090 10 sec in N3DV (Li et al., 2022b)), limiting their practicality for long-duration and high-resolution
091 dynamic contents.

092 In this paper, we propose *OMG4* (Optimized Minimal 4D Gaussian Splatting), a novel framework
093 designed to reconstruct dynamic scenes with high fidelity and compact model size. Our approach
094 is primarily based on Real-Time4DGS (Yang et al., 2024), which represents a dynamic scene as
095 a 4D volume parameterized by a set of millions of 4D primitives, demanding substantial storage.
096 We introduce a multi-stage optimization pipeline that progressively reduces the number of Gaus-
097 sians, consisting of *Gaussian Sampling*, *Gaussian Pruning*, and *Gaussian Merging*. Furthermore,
098 we incorporate implicit appearance modeling and generalize the Sub-Vector Quantization (SVQ)
099 framework (Lee et al., 2025b), originally developed for static scenes, to dynamic 4D representations
100 for additional compression.

101 We begin by analyzing the spatio-temporal properties of each Gaussian through its contribution to
102 the rendered image. This analysis motivates *Gaussian Sampling*, which employs gradient-based
103 scores to capture the impact of Gaussians in both static and dynamic regions, retaining only the
104 salient ones. To further refine the representation, *Gaussian Pruning* eliminates redundant Gaussians,
105 while *Gaussian Merging* leverages inter-Gaussian correlations to identify and fuse Gaussians with
106 similar attributes, yielding a more compact set of primitives. These steps collectively provide a
107 compact yet expressive Gaussian representation of dynamic scenes. Once we construct a compact
108 Gaussian set through these steps, we encode high-dimensional appearance attributes of Gaussians

108 using a small MLP. We subsequently apply the SVQ that we extend for 4D representation to other
109 attributes, compressing the model size.
110

111 We conduct comprehensive experiments on the N3DV (Li et al., 2022b) and MPEG (Li et al., 2025)
112 datasets and evaluate the proposed method under various metrics. To the best of our knowledge,
113 we achieve state-of-the-art performance under a strict memory budget of around 3 MB, significantly
114 reducing the volume of the baseline model by three orders of magnitude. Notably, compared to
115 GIFStream (Li et al., 2025), a recent state-of-the-art approach, our method reduces storage size by
116 approximately 65% (from 10.0 MB to 3.61 MB in the N3DV dataset) while maintaining comparable
117 reconstruction quality. We believe that the proposed approach represents a promising step for the
118 field, opening new avenues for various research directions and practical applications.
119

120 To sum up, our contributions are as follows:
121

- 122 • We propose a novel multi-stage framework, progressively reducing the number of Gaus-
123 sians, *Gaussian Sampling*, *Gaussian Pruning*, and *Gaussian Merging*, while maintaining
124 the reconstruction quality.
- 125 • We generalize Sub-Vector Quantization (SVQ) for 4D representations together with im-
126 plicit appearance compression, enabling highly compact yet high-fidelity models.
- 127 • To the best of our knowledge, we achieve state-of-the-art performance around a 3 MB
128 memory budget, and negligible visual quality loss compared to the baseline model while
129 condensing the model size from gigabytes to a few megabytes.

130 2 RELATED WORK 131

132 2.1 3D GAUSSIAN SPLATTING AND COMPRESSION 133

134 3D Gaussian Splatting (3DGS) (Kerbl et al., 2023) enables high-fidelity scene reconstruction with
135 real-time rendering, using 3D Gaussians as fundamental primitives. However, it typically requires
136 millions of primitives, which incurs substantial memory costs, urging the need for effective com-
137 pression solutions. Several studies (Fan et al., 2024; Girish et al., 2024a; Shin et al., 2025; Lee et al.,
138 2024c; 2025b) have proposed primitive pruning and attribute compression. LocoGS (Shin et al.,
139 2025) proposes a locality-aware compact representation that encodes locally coherent Gaussian at-
140 tributes with a multi-scale hash grid. Compact 3DGS (Lee et al., 2024c) adopts a learnable mask
141 to remove unnecessary Gaussians and vector quantization (VQ) to condense geometry attributes.
142 OMG (Lee et al., 2025b) further aims for a more compact representation, introducing sub-vector
143 quantization (SVQ) that splits the vectors into multiple small sub-vectors and applies VQ, achiev-
144 ing significant performance improvement. Other works, on the other hand, present anchor-based
145 approaches to address Gaussian redundancy (Lu et al., 2023; Chen et al., 2024). Scaffold-GS (Lu
146 et al., 2023) organizes local Gaussians around the learned anchor points and predicts their attributes
147 with lightweight MLPs, while HAC (Chen et al., 2024) leverages a hash grid to capture spatial
148 consistencies among the anchors. Although these approaches effectively reduce the storage require-
149 ments of 3DGS, they do not straightforwardly generalize to 4D representations.
150

151 2.2 DYNAMIC 3D GAUSSIAN SPLATTING AND COMPRESSION 152

153 Early efforts to extend static scene reconstruction to dynamic settings (Cao & Johnson, 2023;
154 Fridovich-Keil et al., 2023; Wang et al., 2023; Pumarola et al., 2020; Li et al., 2022a) were primarily
155 based on neural volumetric rendering, but suffered from high computational costs. More recently,
156 many studies have sought to extend 3DGS to dynamic scenes, which can be broadly categorized into
157 two approaches: (1) representing dynamic scenes with 4D Gaussian primitives that jointly encode
158 spatial and temporal dimensions (Yang et al., 2024; Li et al., 2024), or (2) deforming 3D Gaussians
159 at each timestamp via a deformation field (Kratimenos et al., 2024; Bae et al., 2024; Wu et al., 2024;
160 Yang et al., 2023). Among them, Real-Time4DGS (Yang et al., 2024) achieves high-fidelity model-
161 ing of dynamic scenes by parameterizing the 4D volume with a set of 4D Gaussians. Most recently,
162 FreeTimeGS (Wang et al., 2025a) has shown promising performance by moving 3D Gaussians over
163 time, leveraging motion vectors.
164

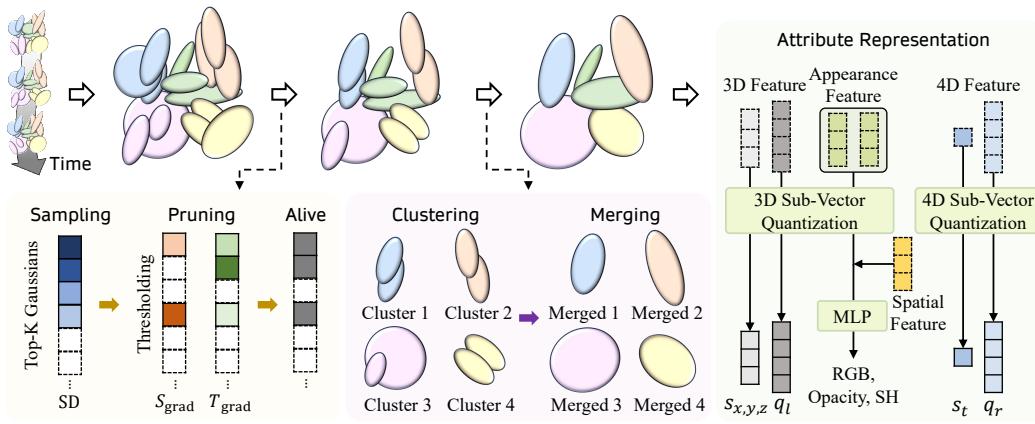


Figure 2: The overall architecture of the proposed *OMG4*.

Similar to 3DGS, dynamic extensions also require a significant number of primitives, motivating the development of lightweight methods. Within the first category, which employs 4D Gaussian primitives, CSTG (Lee et al., 2024b), MEGA (Zhang et al., 2025), and 4DGS-1K (Yuan et al., 2025) have been proposed. Among them, 4DGS-1K (Yuan et al., 2025) reduces storage by discarding Gaussians with short lifespans, achieving a model size of around 50 MB after post-processing. In contrast, other works (Liu et al., 2025; Huang et al., 2025; Chen et al., 2025; Li et al., 2025) focus on compressing deformable 3DGS. In this paper, we primarily target Real-Time4DGS (Yang et al., 2024), which demands an extremely large number of primitives (approximately 2 GB per scene), and aim to drastically reduce its memory footprint while preserving its strength in photorealistic dynamic scene reconstruction.

3 PRELIMINARY

Our framework is primarily built upon Real-Time4DGS (Yang et al., 2024)¹, which treats a dynamic scene as a 4D volume, parameterized with a set of 4D Gaussian primitives defined by a 4D mean at spatio-temporal space, an anisotropic 4D covariance, an opacity, and spherical harmonics (SH) coefficients. During rendering, 4D Gaussians are conditioned at timestamp t , yielding 3D position and covariance. For further details, please refer to the original paper.

We denote the set of Gaussians of pretrained Real-Time4DGS model by $\mathcal{P} = \{(x_i, f_i, a_i)\}_{i=1}^N$, where x_i is a spatial mean (i.e., $\mu_{1:3}$), $f_i \in \mathbb{R}^3$ is the zero-th order of the SH coefficient, and a_i denotes the remaining per-primitive attributes such as opacity, scale, and rotation.

4 METHODS

We propose a novel framework for high-fidelity dynamic scene representation with a minimal number of Gaussians consisting of Gaussian Sampling (Sec. 4.1), Gaussian Pruning (Sec. 4.2), Gaussian Merging (Sec. 4.3), and Gaussian attributes compression (Sec. 4.4). An overview of the entire pipeline is provided in Fig. 2.

4.1 GAUSSIAN SAMPLING

Prior methods typically rely on an excessive number of Gaussians for high-quality dynamic scene reconstruction, incurring significant storage overhead. Although recent studies observed that many Gaussians contribute only marginally to reconstruction quality, this challenge has yet to be fully addressed. In this section, we propose the Static–Dynamic Score (SD-Score), which combines a Static Score and a Dynamic Score to quantify each Gaussian’s contribution. Static regions are often characterized by temporally persistent and spatially dispersed Gaussians, whereas dynamic regions tend to contain temporally short-lived and spatially concentrated Gaussians. Exploiting

¹We also applied *OMG* to the recently proposed FreeTimeGS (Wang et al., 2025a). Due to space limits, we are unable to provide the details and kindly refer to the original paper for a full description.

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
Figure 3: A comparison of rendered images. (Left) Real-Time4DGS (Yang et al., 2024) with 3.6M Gaussians. (Right) 1K optimization after Gaussian Sampling with 0.7M Gaussians.

these properties, our method identifies the salient Gaussians, as shown in Fig. 3, retaining only 20% of those from a pre-trained Real-Time4DGS model (Yang et al., 2024) is sufficient to reconstruct the scene with negligible quality loss.

SD Score. The proposed Static–Dynamic Score (SD-Score) to calculate the importance of each Gaussian is defined as follows:

$$SD^{(i)} = S_{\text{grad}}^{(i)} \cdot T_{\text{grad}}^{(i)}, \quad S_{\text{grad}}^{(i)} = \sum_{j=1}^N \|\nabla_{u_{i,j}} L_j\|_2, \quad T_{\text{grad}}^{(i)} = \sum_{j=1}^N \nabla_{t_i} L_j, \quad (1)$$

where N is the number of input images (# of input views \times # of frames), i is the Gaussian index, L_j is the reconstruction loss of the input image j , $u_{i,j} \in \mathbb{R}^2$ denotes the projected 2D coordinate of the i -th Gaussian for the j -th image, and $t_i \in \mathbb{R}$ is the time coordinate of i -th Gaussian.

Static Score. The static score for the i -th Gaussian, $S_{\text{grad}}^{(i)}$, is defined as an accumulation of the view-space gradients across all timesteps, capturing the overall rendering sensitivity with respect to the Gaussian’s projected coordinates. In static regions, Gaussians are temporally long-lived yet relatively sparse (i.e., fewer Gaussians per unit area), so even small positional perturbations can influence the rendering loss across many timesteps, yielding higher static scores. In contrast, Gaussians associated with dynamic regions are often active only at specific time steps and are spatially dense (e.g., a larger number of Gaussians per unit area). Consequently, the effect of a single Gaussian’s positional change on the overall reconstruction loss is diluted, resulting in lower static scores.

Dynamic Score. The dynamic score for the i -th Gaussian, $T_{\text{grad}}^{(i)}$, is a sum of time gradients that measures the sensitivity of the reconstruction loss with respect to the time coordinate of each Gaussian. Gaussians with a high dynamic Score often imply that they play a pivotal role in representing dynamic regions, as these areas are sensitive to temporal changes, capturing the motion of the objects. We accumulate the signed time gradients rather than their magnitudes to capture consistent temporal trends. This avoids assigning high scores to Gaussians with frequent sign flips (i.e., flickering), enhancing the robustness of the score.

By combining the complementary Static and Dynamic Score, the SD-Score can provide a balanced evaluation of the overall contribution of each Gaussian. We subsequently sample the Gaussians with high SD values with a sampling ratio of τ_{GS} , forming a set of sampled Gaussians, \mathcal{P}_{GS} , and optimize it for T_{GS} iterations.

4.2 GAUSSIAN PRUNING

While the first Gaussian sampling stage with the SD-Score yields a set of critical Gaussians, \mathcal{P}_{GS} , it may still include redundant Gaussians. In response, we introduce a Gaussian Pruning strategy that further refines the set by eliminating superfluous Gaussians that remain after the first stage.

Fig. 4 illustrates the space defined by S_{grad} and T_{grad} , where the curve $T_{\text{grad}} = c/S_{\text{grad}}$ denotes the selection boundary from the first Gaussian sampling stage. Within this space, we identify Gaussians that are likely redundant, and our empirical analysis shows that those with both $S_{\text{grad}}^{(i)}$ and $T_{\text{grad}}^{(i)}$ values being small can be safely filtered out (gray regions in Fig. 4). To this end, we apply thresholding to

Figure 4: Illustration of *Gaussian Pruning*. (Left) Space defined by Static and Dynamic score and *Gaussian Sampling* Boundary. (Middle) A rendered image with unique Gaussians that satisfy both unique static and dynamic thresholds, and one after 1K optimization. (Right) A rendered image with redundant Gaussians that are not included in a unique area.

both scores, with each threshold defined as follows:

$$\mathcal{P}_{GP} = \{G_i \in \mathcal{P}_{GS} \mid (S_{\text{grad}}^{(i)} \geq \tau_S) \vee (T_{\text{grad}}^{(i)} \geq \tau_T)\}, \quad \tau_S = Q_p(\{S_{\text{grad}}^{(i)}\}), \quad \tau_T = Q_p(\{T_{\text{grad}}^{(i)}\}), \quad (2)$$

where τ_S and τ_T are the thresholds for S_{grad} and T_{grad} respectively, and $Q_p(\cdot)$ denotes the p -quantile value, reflecting the relative distribution of Gaussians. As shown in Fig. 4, the pruned set, \mathcal{P}_{GP} , can still represent the scene with fine details and we optimize \mathcal{P}_{GP} for T_{GP} iterations.

One may question the necessity of employing two distinct stages, since, in principle, sampling and pruning could be integrated into a single process. Nevertheless, our experiments indicate that separating these stages proves to be more effective, as evidenced by the ablation study in Sec. 5.2. We hypothesize that this advantage arises from the intermediate optimization performed between the two stages, which further refines the representation and ultimately results in a more compact set.

4.3 GAUSSIAN MERGING

The first two stages, Gaussian Sampling and Gaussian Pruning, are effective in preserving a compact and salient set of Gaussians. However, both stages evaluate the importance of each Gaussian individually, without considering similarities across Gaussians. To further reduce redundancy, we introduce a Gaussian Merging technique that clusters highly similar Gaussians and fuses them into single representative Gaussians.

Gaussian Clustering. We define a Similarity Score to quantify the similarity among Gaussians and identify clusters. We first divide space into a 4D grid and compute the Similarity Score among the Gaussians within the same grid cell. Such a spatio-temporal grid can group Gaussians with temporal proximity, preventing the merging of temporally mismatched Gaussians and preserving temporal coherence, while reducing computational complexity. We define the Similarity Score $S(G_i, G_j)$ between two Gaussians as a sum of spatial proximity and appearance similarity:

$$S(G_i, G_j) = -\|x_i - x_j\|_2^2 + \lambda \|f_i - f_j\|_2^2, \quad (3)$$

where λ is a fixed balancing weight, $x_i \in \mathbb{R}^3$ is the position, and $f_i \in \mathbb{R}^3$ is the zero-th order spherical-harmonics (RGB) coefficient of G_i . A higher score indicates a greater spatial-appearance similarity. For each Gaussian G_i , we construct a cluster of Gaussians C_i by thresholding the Similarity Score with τ_{sim} :

$$C_i = \{i\} \cup \{j \in \mathcal{P}_i \mid S(G_i, G_j) \geq \tau_{\text{sim}}\}, \quad (4)$$

where \mathcal{P}_i denotes a set of Gaussian indices within the spatio-temporal grid cell that contain the Gaussian G_i . We then deduplicate identical clusters and remove subset ones, yielding a final set of maximal clusters, $\mathcal{C} = \{C_q\}_{q=1}^{N_C}$. Gaussians not included in any clusters remain as singletons.

Gaussian Merging. Within each cluster, we assign learnable per-Gaussian weights $w_i^x \in \mathbb{R}$ and $w_i^f \in \mathbb{R}$ to the position and appearance attributes, respectively. During training-time rendering, all Gaussians in a cluster C_q are replaced by a single proxy whose elements are defined as follows:

$$\bar{x}_q = \sum_{i \in C_q} w_i^x x_i, \quad \bar{f}_q = \sum_{i \in C_q} w_i^f f_i, \quad \bar{a}_q = a_{r(C_q)}, \quad r(C_q) = \arg \max_{i \in C_q} w_i^x, \quad (5)$$

324
 325 Table 1: Quantitative results on N3DV (Li et al., 2022b) dataset. All results without * mark are
 326 sourced from the original paper. \dagger denotes post-processed models. \bullet denotes the results excluding
 327 *Coffee Martini* scene.

Method	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	FPS \uparrow	# Gaussians \downarrow	Storage (MB) \downarrow
1352 \times 1014 Resolution						
HexPlane (Cao & Johnson, 2023)	31.70	0.987	0.075	0.2	-	250
DyNeRF (Li et al., 2022a)	29.58	0.980	0.083	0.015	-	28
Real-Time4DGS (Yang et al., 2024)*	31.96	0.946	0.051	57	3,397,510	2087
STG (Li et al., 2024)	32.05	0.946	0.044	140	-	200
4DGS (Wu et al., 2024)	31.15	-	0.049	82	-	18
MEGA (Zhang et al., 2025)	31.49	-	0.057	77.42	-	25.05
ADC-GS (Huang et al., 2025)-L	31.67	0.981	0.061	110	-	6.57
ADC-GS (Huang et al., 2025)-S	31.41	0.972	0.066	126	-	4.04
GIFStream (Li et al., 2025)	31.75	0.938	0.051	95	-	10.0
CSTG (Lee et al., 2024b) \dagger	31.69	0.945	0.054	186	-	15.4
Ours-L	31.80	0.941	0.059	246	171,136	3.61
Ours-S	31.60	0.939	0.064	258	137,414	2.54
1024 \times 768 Resolution						
Real-Time4DGS (Yang et al., 2024)*	32.21	0.950	0.040	96	277,0350	1701
4DGS-1K (Yuan et al., 2025) \dagger	31.87	0.944	0.053	805	666,632	49.50
Light4GS (Liu et al., 2025) \bullet -L	31.69	-	0.053	37	-	5.46
Light4GS (Liu et al., 2025) \bullet -S	31.48	-	0.064	40	-	3.77
Ours-L	32.09	0.946	0.047	253	147,153	3.15
Ours-S	31.81	0.944	0.051	246	120,513	2.25
Ours \bullet -L	32.80	0.951	0.044	259	139,320	2.99
Ours \bullet -S	32.58	0.950	0.047	244	113,862	2.13

347 where the both weights w_i^x, w_i^f are normalized per cluster. The position and appearance are the
 348 weighted sum of the Gaussians within the cluster, and the attributes of the representative Gaussian
 349 is used for \bar{a}_q . We optimize both weights w_i^x, w_i^f for T_{GM} iterations and repeat the Gaussian Merg-
 350 ing M times, progressively increasing the grid size. The detailed process of Gaussian Merging is
 351 provided in appendix A.3.

353 4.4 ATTRIBUTE COMPRESSION

355 Given the compact Gaussian set, we compress attributes by adapting the OMG architecture (Lee
 356 et al., 2025b), which is initially designed for static 3DGS, to the 4DGS setting with explicit time
 357 conditioning. Concretely, we follow OMG’s compression pipeline, which employs an MLP to ex-
 358 tract spatial features and three additional small MLPs that take the spatial features and position as
 359 inputs, producing opacities, static colors, and view-dependent colors, respectively. We extend these
 360 MLPs to also take the time coordinate, enabling time-varying opacity and appearance.

361 Furthermore, OMG introduced Sub-Vector Quantization (SVQ), which partitions an input vector
 362 into sub-vectors and quantizes each with a small codebook, demonstrating both high efficiency and
 363 reconstruction quality. In this work, we extend SVQ to dynamic 3D scene representations. Specifi-
 364 cally, we retain the 4D Gaussian means in full precision for stability, while applying SVQ to other
 365 attributes, including the additional rotation quaternion and temporal-axis scales introduced in Real-
 366 Time4DGS (Yang et al., 2024) to model scene motion. However, quantizing both static and dynamic
 367 attributes simultaneously leads to unstable optimization. To mitigate this, we propose a staged SVQ
 368 scheme: SVQ is first applied only to 3D attributes and optimized for T_{3D} iterations, after which
 369 SVQ is activated for 4D attributes. This staged approach decouples temporal and appearance sensi-
 370 tivities from static components, resulting in stable optimization. Finally, we compress the quantized
 371 elements using Huffman encoding (Huffman, 1952) followed by LZMA compression (Pavlov).

373 5 EXPERIMENTS AND RESULTS

374 5.1 IMPLEMENTATION DETAILS

375 For each stage, we optimize for 1,000 iterations ($T_{GS} = T_{GP} = T_{GM} = 1,000$). Starting from a
 376 pretrained model, we first perform *Gaussian Sampling*, followed by *Gaussian Pruning* at the 1,000th

378
379 Table 2: Quantitative results on *Bartender* scene of MPEG (Li et al., 2025) dataset. All results without
380 * mark are sourced from the original paper.

Method	PSNR↑	SSIM↑	LPIPS (VGG)↓	FPS↑	# Gaussians↓	Storage (MB)↓
Real-Time4DGS (Yang et al., 2024)*	32.44	0.895	0.1579	115	2,653,870	1630
GIFStream (Li et al., 2025)-L	31.94	0.879	0.190	-	-	5.3
GIFStream (Li et al., 2025)-S	31.35	0.872	0.207	-	-	2.3
Ours-L	32.19	0.892	0.175	203	319,906	6.33
Ours-S	31.91	0.887	0.190	238	196,319	4.00

386
387 Table 3: Quantitative results on applying *OMG4* to FTGS (FreeTimeGS) (Wang et al., 2025a),
388 evaluated on N3DV (Li et al., 2022b) dataset (*We reproduced FTGS models since the codes and
389 pretrain models are not publicly available).

Method	PSNR↑	SSIM↑	LPIPS↓	FPS↑	# Gaussians↓	Storage (MB)↓
FTGS-L*	32.80	0.9579	0.0398	129	500,000	61.04
FTGS-S*	32.00	0.9504	0.0559	160	100,000	12.21
Ours (FTGS-L, AC Only)	32.59	0.9568	0.0405	73	500,000	9.66
Ours (FTGS-S, AC Only)	32.15	0.9496	0.0551	107	100,000	2.12
Ours (FTGS-L)	32.62	0.9562	0.0411	91	283,977	5.60
Ours (FTGS-S)	32.22	0.9516	0.0491	112	90,227	1.92

397 iteration. *Gaussian Merging* is then applied twice, at the 2,000th and 3,000th iterations, respectively.
398 After merging, attribute compression begins. We train the MLPs at the 4,000th iteration and keep
399 training until the end. We start applying SVQ to 3D attributes at the 9,000th iteration, and then SVQ
400 to 4D attributes at the 10,000th iteration. The sampling ratio is set to $\tau_{GS} = 0.2$, and a 0.6-quantile
401 threshold is used for *Gaussian Pruning*. We perform *Gaussian Merging* twice, increasing the spatial
402 grid size by a factor of 1.2, while keeping a constant temporal grid size of 2.0. We used all identical
403 hyperparameters across the dataset. Learning rates, codebook sizes, and other hyperparameters
404 follow Real-Time4DGS (Yang et al., 2024) and OMG (Lee et al., 2025b). All experiments are
405 conducted on a single RTX 3090 GPU.

406 5.2 RESULTS AND ANALYSIS

408 We conduct experiments on N3DV (Li et al., 2022b) and *Bartender* data² of the MPEG (Li et al.,
409 2025) dataset. As shown in Tab. 1 and Fig. 5, we effectively reduce the model size of the baseline
410 Real-Time4DGS (Yang et al., 2024), from 2 GB to around 3 MB, while preserving comparable visual
411 quality. Notably, *OMG4* can reduce the storage requirement of the original Real-Time4DGS (Yang
412 et al., 2024) by **99%**. In addition, compared to a recent state-of-the-art method GIFStream (Li et al.,
413 2025), *OMG4* achieved **65%** reduction in storage (from 10MB to 3.61) while even improving the
414 PSNR (31.75 vs. 31.80).

415 4DGS-1K (Yuan et al., 2025) achieves the highest FPS due to its visibility mask, which identifies
416 the visible Gaussians at a given timestamp t , and only those Gaussians are involved in rasterization,
417 thereby dramatically reducing computational costs. Although we do not employ any visibility
418 masks, as improving FPS is outside our scope, we can still improve the FPS of the baseline model
419 by $4.31 \times$, thanks to our compact representation. We additionally conduct experiments on *Bartender*
420 data of the MPEG (Li et al., 2025) dataset, which exhibits more complex motions than the N3DV (Li
421 et al., 2022b) dataset. Following GIFStream (Li et al., 2025), we use the first 65 frames for our ex-
422 periment. *OMG4* consistently outperforms the state-of-the-art methods, efficiently reconstructing
423 the scene with minimal storage overhead, as reported in Tab. 2.

424 **Application on FreeTimeGS.** We further extend *OMG4* to FreeTimeGS (Wang et al., 2025a),
425 comprehensively evaluating the proposed method beyond Real-Time4DGS (Yang et al., 2024). We
426 begin with the pretrained FreeTimeGS models³ with 500K Gaussians (FTGS-L) as our backbone
427 model and apply *OMG4*, progressively pruning Gaussians from 500K to around 280K (Ours (FTGS-
428 L)) and 90K (Ours (FTGS-S)) primitives. To see the effectiveness of the proposed multi-stage
429 frameworks, we also provided the results of Ours (FTGS-L, AC only) and Ours (FTGS-L, AC

430 ²Other data from the MPEG dataset were not publicly available.

431 ³We reproduced FreeTimeGS models since the codes and pre-trained models are not publicly available.

Figure 5: Qualitative results on N3DV dataset (Li et al., 2022b).

Table 4: Ablation study on each module of the proposed method where *GS*, *GP*, *GM*, *AC* refers to *Gaussian Sampling*, *Gaussian Pruning*, *Gaussian Merging* and *Attribution Compression*, respectively. *GS+GP* means applying *GS* and *GP* simultaneously at the first iteration.

	Modules				PSNR↑	SSIM↑	LPIPS↓	FPS↑	# Gaussians↑	Storage (MB)↓
	GS+GP	GS	GP	GM	AC					
				✓	31.96	0.9459	0.0506	57	3,397,510	2126
				✓	32.07	0.9454	0.0518	126	679,502	13.26
		✓	✓	✓	31.89	0.9429	0.0559	244	235,027	4.83
	✓			✓	31.68	0.9407	0.0606	217	171,214	3.61
	✓	✓	✓	✓	31.80	0.9414	0.0594	246	171,136	3.61

only), where we apply only the proposed attribute compression technique to the pretrained FreeTimeGS models (FTGS-L: 500K Gaussians, FTGS-S: 100K Gaussians). As Tab. 3 shows, *OMG4* can significantly reduce the storage of FreeTimeGS **by 90%**. Even under the stricter memory budget of around 2 MB, *OMG4* still remains effective, benefiting from its prior. This result highlights the versatility of *OMG4*, showing that it can be effectively applied to diverse 4D representation methods.

Ablation Studies. In this section, we present ablation studies on each module of *OMG4*, summarized in Tab. 4. First, directly applying *Attribution Compression* to Real-Time4DGS (Yang et al., 2024) incurs out-of-memory failure, due to a larger number of Gaussians. When we implement *Gaussian Sampling* only, we can remove 80% of Gaussians, even outperforming Real-Time4DGS. We assume this is because *Gaussian Sampling* can act as a regularizer by eliminating noisy Gaussians, hence raising visual quality. Adding *Gaussian Pruning* can reduce the memory footprint from gigabytes to a few megabytes, and *Gaussian Merging* achieves the minimal number of Gaussians, integrating highly correlated Gaussians. It may appear possible to perform *Gaussian Sampling* and *Gaussian Pruning* simultaneously. However, our ablation study (fifth row, *GS+GP* in Tab. 4) shows that doing so results in a PSNR drop of 0.12 dB. This finding highlights the importance of the proposed multi-stage pipeline: by first stabilizing the optimization with *Gaussian Sampling* and then progressively reducing the number of Gaussians through *Gaussian Pruning*, we are able to maintain reconstruction quality while ensuring stable training. One possible explanation is that T_{GS} iteration training before *Gaussian Pruning* stabilizes the whole optimization process. Therefore, our pipeline separates *Gaussian Sampling* and *Gaussian Pruning* with a sufficient optimization term.

6 CONCLUSION

We introduce *OMG4*, a compact dynamic-scene representation that progressively reduces the number of primitives and compresses the Gaussian attributes. We present *Gaussian Sampling* and *Gaussian Pruning*, which reduce the number of Gaussians significantly and further leverage the correlation of Gaussians to fuse the similar Gaussians in the *Gaussian Merging* stage. Lastly, we couple these Gaussian minimization techniques with implicit appearance encoding and 4D extension of Sub-Vector Quantization (SVQ). Consequently, *OMG4* compresses Real-Time4DGS by three orders of magnitude at comparable fidelity. *OMG4* also transfers to the recent state-of-the-art method, FreeTimeGS, achieving 90% storage reduction while maintaining high reconstruction quality. With its significant performance improvement, we believe *OMG4* marks an important advance in 4D scene representation, opening new opportunities for research and various practical applications.

486 REFERENCES

487

488 Jeongmin Bae, Seoha Kim, Youngsik Yun, Hahyun Lee, Gun Bang, and Youngjung Uh. Per-
489 gaussian embedding-based deformation for deformable 3d gaussian splatting, 2024. URL
490 <https://arxiv.org/abs/2404.03613>.

491 Ang Cao and Justin Johnson. Hexplane: A fast representation for dynamic scenes, 2023. URL
492 <https://arxiv.org/abs/2301.09632>.

493 Yihang Chen, Qianyi Wu, Weiyao Lin, Mehrtash Harandi, and Jianfei Cai. Hac: Hash-grid as-
494 sisted context for 3d gaussian splatting compression, 2024. URL <https://arxiv.org/abs/2403.14530>.

495 Zicong Chen, Zhenghao Chen, Wei Jiang, Wei Wang, Lei Liu, and Dong Xu. 4dgs-cc: A contextual
496 coding framework for 4d gaussian splatting data compression, 2025. URL <https://arxiv.org/abs/2504.18925>.

497 Pinxuan Dai, Peiquan Zhang, Zheng Dong, Ke Xu, Yifan Peng, Dandan Ding, Yujun Shen, Yin
498 Yang, Xinguo Liu, Rynson WH Lau, et al. 4d gaussian videos with motion layering. *ACM
499 Transactions on Graphics (TOG)*, 44(4):1–14, 2025.

500 Zhiwen Fan, Kevin Wang, Kairun Wen, Zehao Zhu, Dejia Xu, and Zhangyang Wang. Lightgaussian:
501 Unbounded 3d gaussian compression with 15x reduction and 200+ fps, 2024. URL <https://arxiv.org/abs/2311.17245>.

502 Sara Fridovich-Keil, Giacomo Meanti, Frederik Warburg, Benjamin Recht, and Angjoo Kanazawa.
503 K-planes: Explicit radiance fields in space, time, and appearance, 2023. URL <https://arxiv.org/abs/2301.10241>.

504 Sharath Girish, Kamal Gupta, and Abhinav Shrivastava. Eagles: Efficient accelerated 3d gaussians
505 with lightweight encodings, 2024a. URL <https://arxiv.org/abs/2312.04564>.

506 Sharath Girish, Tianye Li, Amrita Mazumdar, Abhinav Shrivastava, David Luebke, and Shalini De
507 Mello. Queen: Quantized efficient encoding of dynamic gaussians for streaming free-viewpoint
508 videos, 2024b. URL <https://arxiv.org/abs/2412.04469>.

509 He Huang, Qi Yang, Mufan Liu, Yiling Xu, and Zhu Li. Adc-gs: Anchor-driven deformable
510 and compressed gaussian splatting for dynamic scene reconstruction, 2025. URL <https://arxiv.org/abs/2505.08196>.

511 David A Huffman. A method for the construction of minimum-redundancy codes. *Proceedings of
512 the IRE*, 40(9):1098–1101, 1952.

513 Ying Jiang, Chang Yu, Tianyi Xie, Xuan Li, Yutao Feng, Huamin Wang, Minchen Li, Henry Lau,
514 Feng Gao, Yin Yang, et al. Vr-gs: A physical dynamics-aware interactive gaussian splatting
515 system in virtual reality. In *ACM SIGGRAPH 2024 Conference Papers*, pp. 1–1, 2024.

516 Nikhil Keetha, Jay Karhade, Krishna Murthy Jatavallabhula, Gengshan Yang, Sebastian Scherer,
517 Deva Ramanan, and Jonathon Luiten. Splatam: Splat track & map 3d gaussians for dense rgb-d
518 slam. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,
519 pp. 21357–21366, 2024.

520 Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splatting
521 for real-time radiance field rendering, 2023. URL <https://arxiv.org/abs/2308.04079>.

522 Mustafa Khan, Hamidreza Fazlali, Dhruv Sharma, Tongtong Cao, Dongfeng Bai, Yuan Ren, and
523 Bingbing Liu. Autosplat: Constrained gaussian splatting for autonomous driving scene recon-
524 struction, 2024. URL <https://arxiv.org/abs/2407.02598>.

525 Agelos Kratimenos, Jiahui Lei, and Kostas Daniilidis. Dynmf: Neural motion factorization for real-
526 time dynamic view synthesis with 3d gaussian splatting, 2024. URL <https://arxiv.org/abs/2312.00112>.

540 Byeonghyeon Lee, Howoong Lee, Xiangyu Sun, Usman Ali, and Eunbyung Park. Deblurring 3d
541 gaussian splatting. In *European Conference on Computer Vision*, pp. 127–143. Springer, 2024a.
542

543 Dong In Lee, Hyeongcheol Park, Jiyoung Seo, Eunbyung Park, Hyunje Park, Ha Dam Baek,
544 Sangheon Shin, Sangmin Kim, and Sangpil Kim. Editsplat: Multi-view fusion and attention-
545 guided optimization for view-consistent 3d scene editing with 3d gaussian splatting, 2025a. URL
546 <https://arxiv.org/abs/2412.11520>.

547 Joo Chan Lee, Daniel Rho, Xiangyu Sun, Jong Hwan Ko, and Eunbyung Park. Compact 3d gaussian
548 splatting for static and dynamic radiance fields, 2024b. URL <https://arxiv.org/abs/2408.03822>.

549

550 Joo Chan Lee, Daniel Rho, Xiangyu Sun, Jong Hwan Ko, and Eunbyung Park. Compact 3d gaussian
551 representation for radiance field, 2024c. URL <https://arxiv.org/abs/2311.13681>.

552

553 Joo Chan Lee, Jong Hwan Ko, and Eunbyung Park. Optimized minimal 3d gaussian splatting,
554 2025b. URL <https://arxiv.org/abs/2503.16924>.

555 Hao Li, Sicheng Li, Xiang Gao, Abudouaihati Batuer, Lu Yu, and Yiyi Liao. Gifstream: 4d gaussian-
556 based immersive video with feature stream, 2025. URL <https://arxiv.org/abs/2505.07539>.

557

558 Tianye Li, Mira Slavcheva, Michael Zollhoefer, Simon Green, Christoph Lassner, Changil Kim,
559 Tanner Schmidt, Steven Lovegrove, Michael Goesele, Richard Newcombe, and Zhaoyang Lv.
560 Neural 3d video synthesis from multi-view video, 2022a. URL <https://arxiv.org/abs/2103.02597>.

561

562 Tianye Li, Mira Slavcheva, Michael Zollhoefer, Simon Green, Christoph Lassner, Changil Kim,
563 Tanner Schmidt, Steven Lovegrove, Michael Goesele, Richard Newcombe, et al. Neural 3d video
564 synthesis from multi-view video. In *Proceedings of the IEEE/CVF conference on computer vision
565 and pattern recognition*, pp. 5521–5531, 2022b.

566

567 Zhan Li, Zhang Chen, Zhong Li, and Yi Xu. Spacetime gaussian feature splatting for real-time
568 dynamic view synthesis, 2024. URL <https://arxiv.org/abs/2312.16812>.

569

570 Mufan Liu, Qi Yang, He Huang, Wenjie Huang, Zhenlong Yuan, Zhu Li, and Yiling Xu. Light4gs:
571 Lightweight compact 4d gaussian splatting generation via context model, 2025. URL <https://arxiv.org/abs/2503.13948>.

572

573 Zhenling Liu, Yingdong Hu, Xinjie Zhang, Jiawei Shao, Zehong Lin, and Jun Zhang. Dynamics-
574 aware gaussian splatting streaming towards fast on-the-fly training for 4d reconstruction. *Train-
575 ing*, 101:102, 2024.

576

577 Tao Lu, Mulin Yu, Linning Xu, Yuanbo Xiangli, Limin Wang, Dahua Lin, and Bo Dai. Scaffold-
578 gs: Structured 3d gaussians for view-adaptive rendering, 2023. URL <https://arxiv.org/abs/2312.00109>.

579

580 Seungjun Oh, Younggeun Lee, Hyejin Jeon, and Eunbyung Park. Hybrid 3d-4d gaussian splatting for
581 fast dynamic scene representation, 2025. URL <https://arxiv.org/abs/2505.13215>.

582

583 Zipeng Pan, Yuan Zhang, and Tao Lin. Telegs: End-to-end monocular gaussian head for immersive
584 telepresence. In *Proceedings of the 3rd Workshop on Emerging Multimedia Systems*, pp. 37–42,
585 2025.

586

587 Igor Pavlov. Lzma compression algorithm. <https://www.7-zip.org/sdk.html>.

588

589 Albert Pumarola, Enric Corona, Gerard Pons-Moll, and Francesc Moreno-Noguer. D-nerf: Neural
590 radiance fields for dynamic scenes, 2020. URL <https://arxiv.org/abs/2011.13961>.

591

592 Seungjoo Shin, Jaesik Park, and Sunghyun Cho. Locality-aware gaussian compression for fast and
593 high-quality rendering, 2025. URL <https://arxiv.org/abs/2501.05757>.

594

595 Jiakai Sun, Han Jiao, Guangyuan Li, Zhanjie Zhang, Lei Zhao, and Wei Xing. 3dgstream: On-the-
596 fly training of 3d gaussians for efficient streaming of photo-realistic free-viewpoint videos, 2024.
597 URL <https://arxiv.org/abs/2403.01444>.

598

594 Yecong Wan, Mingwen Shao, Yuanshuo Cheng, and Wangmeng Zuo. S2gaussian: Sparse-view
595 super-resolution 3d gaussian splatting. In *Proceedings of the Computer Vision and Pattern Recog-*
596 *nition Conference*, pp. 711–721, 2025.

597

598 Feng Wang, Sinan Tan, Xinghang Li, Zeyue Tian, Yafei Song, and Huaping Liu. Mixed neural
599 voxels for fast multi-view video synthesis, 2023. URL <https://arxiv.org/abs/2212.00190>.

600

601 Yifan Wang, Peishan Yang, Zhen Xu, Jiaming Sun, Zhanhua Zhang, Yong Chen, Hujun Bao, Sida
602 Peng, and Xiaowei Zhou. Freetimegs: Free gaussian primitives at anytime and anywhere for
603 dynamic scene reconstruction, 2025a. URL <https://arxiv.org/abs/2506.05348>.

604

605 Yuxuan Wang, Xuanyu Yi, Zike Wu, Na Zhao, Long Chen, and Hanwang Zhang. View-consistent
606 3d editing with gaussian splatting, 2025b. URL <https://arxiv.org/abs/2403.11868>.

607

608 Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xiaopeng Zhang, Wei Wei, Wenyu Liu, Qi Tian,
609 and Xinggang Wang. 4d gaussian splatting for real-time dynamic scene rendering, 2024. URL
610 <https://arxiv.org/abs/2310.08528>.

611 Lining Xu, Vasu Agrawal, William Laney, Tony Garcia, Aayush Bansal, Changil Kim, Samuel
612 Rota Bulò, Lorenzo Porzi, Peter Kortscheder, Aljaž Božič, et al. Vr-nerf: High-fidelity virtual-
613 ized walkable spaces. In *SIGGRAPH Asia 2023 Conference Papers*, pp. 1–12, 2023.

614

615 Chi Yan, Delin Qu, Dan Xu, Bin Zhao, Zhigang Wang, Dong Wang, and Xuelong Li. Gs-slam:
616 Dense visual slam with 3d gaussian splatting. In *Proceedings of the IEEE/CVF Conference on*
617 *Computer Vision and Pattern Recognition*, pp. 19595–19604, 2024.

618 Zeyu Yang, Hongye Yang, Zijie Pan, and Li Zhang. Real-time photorealistic dynamic scene repre-
619 sentation and rendering with 4d gaussian splatting, 2024. URL <https://arxiv.org/abs/2310.10642>.

620

621 Ziyi Yang, Xinyu Gao, Wen Zhou, Shaohui Jiao, Yuqing Zhang, and Xiaogang Jin. Deformable
622 3d gaussians for high-fidelity monocular dynamic scene reconstruction, 2023. URL <https://arxiv.org/abs/2309.13101>.

623

624 Zehao Yu, Anpei Chen, Binbin Huang, Torsten Sattler, and Andreas Geiger. Mip-splatting: Alias-
625 free 3d gaussian splatting. In *Proceedings of the IEEE/CVF conference on computer vision and*
626 *pattern recognition*, pp. 19447–19456, 2024.

627

628 Yuheng Yuan, QiuHong Shen, Xingyi Yang, and Xinchao Wang. 1000+ fps 4d gaussian splatting for
629 dynamic scene rendering, 2025. URL <https://arxiv.org/abs/2503.16422>.

630

631 Xinjie Zhang, Zhenling Liu, Yifan Zhang, Xingtong Ge, Dailan He, Tongda Xu, Yan Wang, Zehong
632 Lin, Shuicheng Yan, and Jun Zhang. Mega: Memory-efficient 4d gaussian splatting for dynamic
633 scenes, 2025. URL <https://arxiv.org/abs/2410.13613>.

634

635 Xiaoyu Zhou, Zhiwei Lin, Xiaojun Shan, Yongtao Wang, Deqing Sun, and Ming-Hsuan Yang. Driv-
636 inggaussian: Composite gaussian splatting for surrounding dynamic autonomous driving scenes,
637 2024. URL <https://arxiv.org/abs/2312.07920>.

638

639

640 **A APPENDIX**

641

642 **A.1 USING LLM FOR POLISHING WRITING**

643

644 We made limited use of a large language model (LLM) to assist with paper preparation, specifically
645 for refining wording, improving clarity, and providing light proofreading. Its role was restricted to
646 suggesting alternative phrasings and correcting minor grammatical issues, while all technical content
647 and substantive writing were carried out by the authors. As this partial assistance helped improve
readability and logical flow, we disclose it here in accordance with the ICLR policy.

648
649

A.2 ADDITIONAL IMPLEMENTATION DETAILS

650
651
652
653
654
655
656
657
658

In this section, we describe the implementation details and experimental settings in detail. As mentioned, we follow the Sub-Vector Quantization (SVQ) setup of OMG (Lee et al., 2025b), where codebook size of scale b_s , rotation b_r , and encoded appearance feature b_f are 2^9 , 2^{13} , and 2^{10} , respectively. Real-Time4DGS (Yang et al., 2024) introduces new attributes, s_t , scale along the time axis, and q^l , an additional quaternion to define the rotation matrix. We set their codebook size to 2^9 and 2^{13} , respectively. In terms of our small model, we decrease the size of the codebooks for 3D attributes to $b_s = 2^8$, $b_r = 2^{13}$, and $b_f = 2^{10}$, while keeping those for the two 4D attributes as they are. We use the same codebook setup to both N3DV (Li et al., 2022b) and MPEG (Li et al., 2025) datasets. We set $\tau_{GS} = 0.4$ and 0.6-quantile for MPEG (Li et al., 2025) dataset.

659
660
661
662
663
664

For our FreeTimeGS (Wang et al., 2025a) experiment, we use $\tau_{GS} = 0.7$ and the quantile at level 0.6 for *Gaussian Pruning*, for the large model, while τ_{GS} is set to 0.3 and a 0.4-quantile is adopted for the small model, to aggressively prune the primitives. Similar to the Real-Time4DGS (Yang et al., 2024) implementation, we also sub-vector quantize the origin attributes that FreeTimeGS introduces, velocity and duration. We keep the identical codebook size for both scales of the model, and we use the codebook size 2^{10} for the velocity and duration.

665

A.3 ANALYSIS ON METHOD

666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681

SD Score. In this section, we analyze the proposed *SD* score in *Gaussian Sampling* stage. *Gaussian Sampling* aims to extract a subset of Gaussians that can faithfully represent both static and dynamic regions. Previous work (Oh et al., 2025) has attempted to leverage the variance of time distribution, Σ_t , as a cue to detect separate static and dynamic regions. Gaussians located at the regions with various motions tend to have relatively smaller values of Σ_t compared to those lying on the stationary area, as rapid changes in appearance or geometry restrict each primitive to have a short lifespan, being temporally localized. However, using Σ_t alone to select a subset with a limited budget can be biased toward extremes because sampling dynamic Gaussians by taking the bottom Σ_t subset focuses on a few high-velocity regions (e.g., moving hands in Fig. 6), while neglecting other dynamic structures such as secondary body motion. This is because Σ_t is agnostic to the visual contribution, oversampling transients that are temporally sharp. On the other hand, our *SD* Score addresses this by combining gradient-based contribution with temporal support. Under the same sampling budget, it can distribute the budget across multiple dynamic regions while keeping enough static structures, as shown in Fig. 6, producing better perceptual fidelity with the same number of Gaussians.

682
683
684
685
686
687
688
689
690
691

Moreover, some online 4D reconstruction approaches (Dai et al., 2025; Liu et al., 2024) adopts 2D optical flow to distinguish dynamic and static Gaussians using 2D optical flow. To further examine whether such approach can benefit our pipeline, we adopt the optical-flow-based dynamic region estimation proposed in (Liu et al., 2024) and use it as a Dynamic Score. While streaming-based methods typically compute optical flow of each streamed frame, our method requires evaluating each Gaussian’s contribution to the entire scene globally. To this end, we accumulate optical-flow magnitudes across all frames. We then project each Gaussian onto the image plane and accumulate the flow magnitudes of pixels that fall within the corresponding 2D dynamic regions, thereby assigning an optical flow magnitude to each 4D Gaussian. If the accumulated optical flow exceeds a threshold τ_{flow} , we mark such Gaussians as dynamic Gaussians.

692
693
694
695
696
697
698
699
700
701

The segmented results are provided in Fig. 7 and quantitative results on the N3DV dataset are delivered in Tab. 5. The optical flow-based variant performs noticeably worse than our temporal gradient-based Dynamic Score in terms of both reconstruction quality and compression efficiency. We assume this is because optical flow is highly sensitive to frame-to-frame pixel changes and thus primarily highlights a few extremely fast-moving regions, rather than Gaussians that are essential for maintaining the global scene structure. As illustrated in Fig. 7, the top 10% Gaussians ranked by optical flow predominantly capture highly dynamic parts, but fail to select representative dynamic Gaussians necessary for preserving the overall scene, similar to using Σ_t (Oh et al., 2025). In other words, optical flow mainly measures how much a Gaussian move and does not guarantee sufficient coverage of the entire dynamic region under a tight sampling budget. In contrast, our temporal gradient-based Dynamic Score directly measures how much each Gaussian contributes to the reconstruction loss over time, leading to far more stable and reliable selections.

702

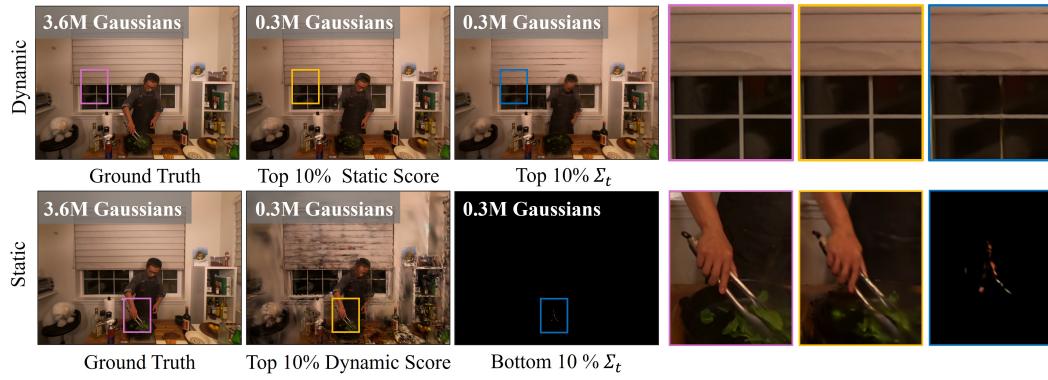
703 Table 5: Comparison of replacing the Dynamic Score with optical flow.

Methods	PSNR↑	SSIM↑	LPIPS↓	# Gaussians↓	Storage (MB)↓
Optical flow	27.19	0.840	0.156	150,889	3.20
Temporal gradient (Ours)	31.60	0.939	0.064	137,414	2.54

707

708

Gaussian Merging. Algorithm. 1 describes a detailed process of *Gaussian Merging*. As mentioned earlier, our *Gaussian Merging* performs correlation-considered Gaussian removal based on the locality of Gaussians, while *Gaussian Sampling* and *Gaussian Pruning* rather aim to identify the salience or contribution of a single Gaussian.



726

Figure 6: Effect of the sampling criterion under a fixed sampling budget. (Left) Rendered images with the full model. (Middle): Our *SD* Score selection using top 10% Static score and Dynamic Score. (Right) Σ_t -based sampling with the same sampling ratio.



740

Figure 7: Visualization of 2D optical flow-based Dynamic score. (Left) Predicted 2D optical flow. (Middle-Left): Optical flow thresholded with τ_{flow} . (Middle-Right) Rendered image with the Gaussians projected on high-optical flow region. (Right): Rendered image with the Gaussians of top 10% Dynamic score.

744

745

Ablation Studies. We further conduct ablation studies on the proposed method, evaluated on *cook spinach* and *sear steak* data of N3DV dataset (Li et al., 2022b). We compare each hyperparameter of the Gaussian removal stage. Tab. 6 and Tab. 7 show the comparison on different pruning ratio p and the number of *Gaussian Merging* implementation, respectively. As expected for Gaussian-based models, the reconstruction quality increases monotonically with the number of Gaussians. We experimentally set these hyperparameters, considering the storage and image fidelity tradeoff.

752

753

A.4 PER-SCENE RESULTS

754

755

In this section, we provide per-scene results of N3DV dataset (Li et al., 2022b) in Tab. 8

756 **Algorithm 1** Gaussian Merging

757 **Require:** Gaussian set \mathcal{P}_{GP} ; clusters $\mathcal{C} = \{C_q\}_{q=1}^{N_C}$; training steps T_M
758 Initialize per-member logits $\ell_i^x \leftarrow 0$, $\ell_i^f \leftarrow 0$ for all i
759 **for** $t = 1$ **to** T_M **do**
760 **for all** clusters C_q **do**
761 $w_i^x \leftarrow \sigma(\ell_i^x) / \sum_{j \in C_q} \sigma(\ell_j^x)$ for $i \in C_q$ ▷ Position weights
762 $w_i^f \leftarrow \sigma(\ell_i^f) / \sum_{j \in C_q} \sigma(\ell_j^f)$ for $i \in C_q$ ▷ Appearance weights
763 $\bar{x}_q \leftarrow \sum_{i \in C_q} w_i^x x_i$; $\bar{f}_q \leftarrow \sum_{i \in C_q} w_i^f f_i$
764 $\bar{a}_q \leftarrow a_{r(C_q)}$, $r(C_q) = \arg \max_{i \in C_q} w_i^x$
765 **end for**
766 $\mathcal{P}_{\text{proxy}} \leftarrow \{(\bar{x}_q, \bar{f}_q, \bar{a}_q)\}_{q=1}^{N_C} \cup \{(x_i, f_i, a_i) : i \notin \bigcup_q C_q\}$
767 Render $\mathcal{P}_{\text{proxy}}$, compute loss \mathcal{L} , and update $\{\ell_i^x, \ell_i^f\}$ by backprop
768 **end for**
769 **return** pruned set $\mathcal{P}_{\text{proxy}}$

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

773 Table 6: Ablation study on the quantile level of p of *Gaussian Pruning*.

774

Methods	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	# Gaussians \downarrow	Storage (MB) \downarrow
$p = 0.6$	33.51	0.956	0.045	225,286	4.65
$p = 0.7$	33.47	0.956	0.046	172,193	3.95
$p = 0.8$	33.40	0.955	0.048	143,030	3.07
$p = 0.9$	33.05	0.950	0.055	83,052	1.91

773 Table 7: Ablation study on the number of *Gaussian Merging* execution M .

774

Methods	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	# Gaussians \downarrow	Storage (MB) \downarrow
$M = 1$	33.44	0.955	0.047	161663	3.43
$M = 2$	33.40	0.955	0.048	143030	3.07
$M = 3$	33.32	0.954	0.049	130320	2.82
$M = 4$	33.26	0.954	0.0501	120347	2.63

788 Table 8: Quantitative results on N3DV (Li et al., 2022b) dataset. All results without * mark are
789 sourced from the original paper. \dagger denotes post-processed models.

790

Method	Coffee Martini	Cook Spinach	Cut Roasted Beef	Flame Salmon	Flame Steak	Sear Steak	Average
PSNR \uparrow							
HexPlane (Cao & Johnson, 2023)	-	32.04	32.54	29.47	32.08	32.38	-
Real-Time4DGS (Yang et al., 2024)*	28.33	32.93	33.85	29.38	33.51	33.51	32.01
STG (Li et al., 2024)	28.61	33.18	33.52	29.48	33.64	33.89	32.05
4DGS (Wu et al., 2024)	27.34	32.46	32.90	29.20	32.51	32.49	31.15
MEGA (Zhang et al., 2025)	27.84	33.08	33.58	28.48	32.27	33.67	31.49
ADC-GS (Huang et al., 2025)-L	-	32.34	31.88	29.01	32.65	32.48	31.67
GIFStream (Li et al., 2025)	28.14	33.03	33.19	28.51	33.76	33.83	31.75
Ours-L	28.10	33.12	33.61	28.70	33.57	33.69	31.80
Ours-S	27.98	32.93	33.30	28.40	33.42	33.56	31.60
SSIM \uparrow							
HexPlane (Cao & Johnson, 2023)	-	-	-	-	-	-	-
Real-Time4DGS (Yang et al., 2024)*	-	-	-	-	-	-	-
STG (Li et al., 2024)	-	-	-	-	-	-	-
4DGS (Wu et al., 2024)	0.905	0.949	0.957	0.917	0.954	0.957	0.939
MEGA (Zhang et al., 2025)	-	-	-	-	-	-	-
ADC-GS (Huang et al., 2025)	-	-	-	-	-	-	-
GIFStream (Li et al., 2025)	0.905	0.950	0.947	0.916	0.957	0.958	0.938
Ours-L	0.910	0.952	0.954	0.916	0.958	0.958	0.941
Ours-S	0.907	0.950	0.950	0.086	0.956	0.956	0.939
LPIPS \downarrow							
HexPlane (Cao & Johnson, 2023)	-	0.082	0.080	0.078	0.066	0.070	-
Real-Time4DGS (Yang et al., 2024)*	-	-	-	-	-	-	-
STG (Li et al., 2024)	0.069	0.037	0.036	0.063	0.029	0.030	0.044
4DGS (Wu et al., 2024)	-	-	-	-	-	-	-
MEGA (Zhang et al., 2025)	0.077	0.047	0.048	0.073	0.053	0.040	0.056
ADC-GS (Huang et al., 2025)	-	-	-	-	-	-	-
GIFStream (Li et al., 2025)	-	-	-	-	-	-	-
Ours-L	0.085	0.049	0.049	0.080	0.458	0.458	0.059
Ours-S	0.091	0.054	0.055	0.086	0.049	0.049	0.064