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Abstract

Large Language Models (LLMs) enable various applications on edge devices such as smart-
phones, wearables, and embodied robots. However, their deployment often depends on
expensive cloud-based APIs, creating high operational costs, which limit access for smaller
organizations and raise sustainability concerns. Certain LLMs can be deployed on-device,
offering a cost-effective solution with reduced latency and improved privacy. Yet, limited
computing resources constrain the size and accuracy of models that can be deployed, necessi-
tating a collaborative design between edge and cloud. We propose a fast and cost-effective
speculative edge-cloud decoding framework with a large target model on the server and a
small draft model on the device. By introducing early exits in the target model, tokens are
generated mid-verification, allowing the client to preemptively draft subsequent tokens before
final verification, thus utilizing idle time and enhancing parallelism between edge and cloud.
Using an NVIDIA Jetson Nano (client) and an A100 GPU (server) with Vicuna-68M (draft)
and Llama2-7B (target) models, our method achieves up to a 35% reduction in latency
compared to cloud-based autoregressive decoding, with an additional 11% improvement
from preemptive drafting. To demonstrate real-world applicability, we deploy our method
on the Unitree Go2 quadruped robot using Vision-Language Model (VLM) based control,
achieving a 21% speedup over traditional cloud-based autoregressive decoding. These results
demonstrate the potential of our framework for real-time LLM and VLM applications on
resource-constrained edge devices.

1 Introduction

Large Language Models (LLMs) have become pivotal in advancing artificial intelligence, transforming natural
language processing (NLP), and enabling a wide range of applications such as chatbots, virtual assistants,
robotics, translation, coding, and content generation Zeng et al. (2023); Huang et al. (2024); Sun et al. (2024);
Zhang et al. (2023). Their importance lies in their ability to understand and generate human-like text,
making interactions between humans and machines seamless and suggesting potential emergent capabilities
Wei et al. (2022). Recent advances include large-scale models like OpenAI’s GPT Radford et al. (2019);
Brown (2020); Achiam et al. (2023), Meta’s LLaMA Touvron et al. (2023); Dubey et al. (2024), and Google’s
Gemma Team et al. (2024), driving breakthroughs in applications ranging from personalized assistants to
complex problem-solving across various domains.

However, running large models is costly, requiring extensive computational resources for training, often
spanning thousands of GPU hours, while inference at scale demands specialized hardware to maintain
responsiveness Samsi et al. (2023). This creates significant barriers for smaller organizations and researchers
who rely on expensive cloud-based APIs; for example, GPT-4.1 text generation costs $2.00/1M input tokens
and $8.00/1M output tokens at the time of writing this paper.1

A potential solution is deploying LLMs on edge devices, which offers benefits like low latency, faster
customization, and enhanced privacy in addition to cost-effectiveness. This is especially critical for real-time
robotics applications, where decisions must be made on the fly, and the server cost can add up. For example,

1OpenAI’s API pricing as of May 2025.
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Figure 1: Illustration of traditional cloud-based autoregressive decoding versus cloud-based speculative
decoding, vanilla speculative edge-cloud decoding, and the proposed preemptive drafting mechanism.
Table 1: Cost comparison between cloud autoregressive (AR) decoding and cloud speculative decoding
(SD) and speculative edge-cloud decoding across different API providers on a set of candidate models. The
measurement is based on 1 million requests, each consisting of 100 input tokens and 500 output tokens,
assuming a draft length of γ = 4 tokens and an average of τ = 2.5 accepted tokens per draft.

API Provider Draft/Target Cost (In/Out per 1M tokens) API Cost
Draft Target Cloud AR Cloud SD Edge-cloud SD

Together AI Qwen1.5-0.5B/Qwen1.5-72B $0.1/$0.1 $0.9/$0.9 $540 $360 (33% ↓) $270 (50% ↓)
OpenRouter llama-3.1-8b/llama-3.1-405b $0.02/$0.05 $0.9/$0.9 $540 $312 (42% ↓) $270 (50% ↓)
Groq llama3-8b-8192/llama3-70b-8192 $0.05/$0.08 $0.59/$0.79 $454 $286 (37% ↓) $217 (52% ↓)
OpenRouter Qwen-2-VL-7B/Qwen-2-VL-72B $0.2/$0.2 $0.7/$0.7 $420 $390 (7% ↓) $210 (50% ↓)

robotic platforms such as the Unitree Go2 quadruped are being equipped with language interfaces for
real-world tasks like navigation, object interaction, and instruction following Cheng et al. (2024). However,
such robots typically run on compute-constrained devices, making it infeasible to host large LLMs locally.
For instance, the Unitree Go2 is powered by a Jetson Orin board with 16GB of unified memory, which
is insufficient to run models over 10B parameters that require over 40GB of memory. Efficient decoding
strategies like speculative decoding provide cost-effective solutions to bridge this gap. Speculative decoding
Leviathan et al. (2023) uses a smaller model to generate tokens quickly, which are then verified by a larger
model in parallel, significantly speeding up LLM inference. Despite its success on standalone machines, the
application of speculative decoding on edge devices remains underexplored.

In this work, we propose a novel speculative edge-cloud decoding method to enable fast and cost-effective
LLM inference at the edge. As shown in Fig. 1(a), traditional cloud-based autoregressive decoding takes a
prompt from the client and performs T forward passes on the target model to generate T tokens, incurring
an API cost proportional to T . Speculative decoding on the cloud (Fig. 1(b)) reduces target model calls
by a factor of τ , the number of tokens generated per draft-verify round. However, it introduces additional
draft model calls which comes with a non-negligible cost Yan et al. (2024). Shifting drafting to the edge can
eliminate this cost. Table 1 shows potential savings for example model pairs from various API providers.2
Speculative edge-cloud decoding can reduce costs by up to 52% over cloud autoregressive decoding.

A straightforward edge speculation and cloud verification approach (Fig. 1(c)) suffers from inefficiencies: the
client remains idle during server verification, and the server is unutilized while the client drafts tokens. To
address this, we propose a preemptive drafting mechanism to maximize client-server utilization. As shown
in Fig. 1(d), we introduce early exits in the target model to produce verified tokens before full verification.
These early tokens enable the client to draft the next set preemptively, a process we call pre-drafting. If the
final verification confirms the early tokens, the next set of draft tokens is readily available for verification,
minimizing idle time and keeping both client and server continuously active. Our contributions are summarized
as follows:

2API cost as of May 2025 based on https://www.helicone.ai/llm-cost.
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• We propose a novel framework that splits speculative decoding by hosting the draft model on the
edge and the target model on the server, significantly reducing target model API costs.

• We introduce early exits in the target model to generate verified tokens ahead of full verification,
enabling the client to preemptively draft the next tokens, minimizing idle time for both client and
server.

• We conduct a comprehensive evaluation across 6 generation tasks on 3 sets of models. With Vicuna-
68M as the draft model and Llama2-7B as the target model, we show an average 35% latency
reduction from autoregressive to vanilla edge cloud speculative decoding and a further speedup of
11% with our fast decoding method.

• We demonstrate our approach on a real-world robotics platform (Unitree Go2 equipped with an
NVIDIA Jetson Orin), highlighting the applicability of our method for enabling edge-cloud collabora-
tive inference in embodied intelligence applications.

2 Background

Speculative Decoding: Speculative decoding follows a Draft-and-Verify approach, where each step starts
with generating multiple candidate tokens, which are then verified by the target LLM in parallel, speeding up
inference Leviathan et al. (2023). Formally, given an input prefix x0:t, and a target model Mq, a smaller
draft model Mp generates the next γ tokens xt:t+γ and their corresponding probability distribution pt:t+γ

autoregressively:
xt:t+γ , pt:t+γ = Draft(Mp, x0:t) (1)

The target model Mq verifies these tokens and decides how many to accept denoted by δ (δ ≤ γ), then
produces the next token:

xt:t+δ+1 = Verify(Mq, xt:t+γ , pt:t+γ) (2)

The process repeats with the input prefix extended to t + δ + 1 and passed back to the draft model for the
next round.

Early Exit in Large Language Models: Early exit strategies improve the efficiency of LLMs by terminating
the generation process early if a sufficiently confident output is identified Panda et al. (2016); Chen et al.
(2023). Given an LLM M with L layers and an input sequence x1:t, the hidden state at each layer l is
computed as:

h(l) = f (l)(h(l−1), x1:t), (3)

where h(0) is the input embedding. At each layer l, the model calculates logits by passing the hidden state
through a language model (LM) head, denoted as z(l) = LMHead(h(l)). It also computes a confidence score
S(l) based on the softmax probability:

S(l) = max
(

softmax(z(l))
)

. (4)

The model exits early at layer l′ if the confidence score exceeds a predefined threshold, S(l′) ≥ τ , and the
next token xt+1 is sampled from softmax(z(l′)). We leverage this mechanism to generate early verified tokens
in the target model, which are used to preemptively produce the next set of draft tokens.

3 Methodology

In our distributed speculative decoding setup, the client runs a lightweight draft model, denoted asMp, while
the server hosts a large target model Mq. As shown in Fig. 2, the algorithm takes the following sequence of
steps:

Step 1 : Given a prefix sequence x0:t = {x0, x1, . . . , xt}, the client uses the draft model Mp to predict a
sequence of γ draft tokens (Eq. 1). These draft tokens xt:t+γ , along with their probability distributions pt:t+γ

are transmitted to the server for verification by the target model Mq.
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Figure 2: Illustration of our proposed approach. Given a prefix, the client generates two draft tokens and
sends them to the server. The server verifies them using a target model with early exits, returning verified
tokens and the next generated token. For each early exit, the client pre-drafts the next tokens and stores
them in the pre-draft cache. If the final output matches a cache entry, the draft tokens are sent immediately,
reducing latency.

Step 2 : The target model Mq is designed with multiple early exits, denoted as M(1:n)
q . Each early exit

i ∈ {1, . . . , n} performs a verification step on the draft tokens (Eq. 2) and generates the next token. For
example, if the early exit i accepts δ(i) tokens and generates the next token, the total generated tokens would
be:

x
(i)
t:t+δ(i)+1 = Verify(M(i)

q , xt:t+γ , pt:t+γ) (5)

Here, δ(i) denotes the number of draft tokens accepted by early exit i.

Step 3 : Given that the communication channel is typically the bottleneck, early exit outputs are queued in
the server’s early exit queue as soon as they become available and are transmitted to the client sequentially.
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Figure 3: Illustration of training early exit
adapters.

Step 4 : The client, in turn, stores the early exit outputs
from the server in its own queue and processes each one in
a new thread, preemptively generating the subsequent set of
draft tokens for each early exit. This process is referred to as
pre-drafting. For an early exit i, the newly verified/generated
tokens from the server x

(i)
t:t+δ(i)+1 are concatenated with the

original prefix x1:t, resulting in a new prefix:

y
(i)
0:t′ = Concat(x0:t, x

(i)
t:t+δ(i)+1) (6)

The pre-draft tokens represented as y
(i)
t′:t′+γ and their corre-

sponding probabilities p
(i)
t′:t′+γ , are then computed as:

y
(i)
t′:t′+γ , p

(i)
t′:t′+γ = PreDraft(Mp, y

(i)
0:t′) (7)

These pre-drafted tokens are subsequently stored in a cache
referred to as the pre-draft cache.

Steps 5 & 6 : Once the final output xt:t+δ+1 from the target model is received, the client checks whether
these tokens were already processed in any of the early exits by looking at the pre-draft cache. If there is
a hit, the corresponding pre-draft tokens are retrieved from the pre-draft cache and immediately sent to
the server for the next round of verification, avoiding any delay. If it is a miss, a new set of draft tokens is
generated following the usual drafting process. The server proceeds with the next round of verification over
the new set of draft tokens.

4



Under review as submission to TMLR

Table 2: Early Exit training details. # Params and % Params denote the total number of trainable adapter
parameters and their fraction compared to total model parameters respectively.

Model # Exits # Params % Params Context GPU Hours
lmsys/Vicuna-7B-v1.3 Zheng et al. (2023) 31 101M 1.48 1600 117
lmsys/Vicuna-13B-v1.3 Zheng et al. (2023) 39 158M 1.20 800 122
meta-llama/Llama-2-7B-hf Touvron et al. (2023) 31 101M 1.48 1600 119
Qwen/Qwen2-VL-7B-Instruct Wang et al. (2024) 27 88M 1.02 1600 136

Table 3: Notations used in our analysis.

Notation Description
Tp : Time for a single forward pass of the draft model Mp

Tq : Time for a forward pass of the target model Mq

Tc : Communication latency between the client and server
c : Latency ratio between the draft and target models (Tp/Tq)
γ : Number of draft tokens
τ : Effective number of tokens generated per draft-verify round (# accepted tokens + 1

generated).
n : Total number of tokens generated
r : Cache miss rate

Tr : Latency of thread synchronization on cache hit

This design enhances efficiency by leveraging the client’s idle time for pre-drafting and reducing the server’s
idle time between verification rounds whenever there is a pre-draft cache hit. Importantly, the output is
identical to that of standard speculative decoding since all tokens are verified at the final exit of the target
model, guaranteeing no loss in accuracy. For detailed system design and pseudocode please refer to Appendix
A.

Early Exit Training: We add adapter layers after each layer of the target model to train the early exits, as
shown in Fig. 3. Each adapter connects to the language model (LM) head, and its loss is backpropagated to
update only that adapter. This minimizes trainable parameters while preserving the original model. For
language generation models, we train early exit adapters on the publicly available ShareGPT conversation
dataset (hf:RyokoAI/ShareGPT52K) using a single NVIDIA A100 GPU with 80GB of VRAM. We fine-tune
three models—Vicuna-7B, Vicuna-13B, and Llama2-7B—for 10 epochs each, using a batch size of 1 and
a learning rate of 1e-4. Additionally, we train early exit adapters for a vision-language model based on
Qwen2VL-7B using the Spacellava dataset (hf:remyxai/vqasynth_spacellava) which is generated by open
source implementation of SpatialVLM Chen et al. (2024). Table 2 summarizes the number of early exits,
total training time, and the number of trainable parameters for each model. Note that the context length
was reduced during training to ensure compatibility with the memory limitations of a single A100 GPU.

4 Experiments

Models and Benchmarks: Following the standard speculative decoding literature Li et al. (2024), we
evaluate our method on three model sets: Vicuna-68M/Vicuna-7B, Vicuna-160M/Vicuna-13B, and Vicuna-
68M/Llama2-7B. We show the experiments on 6 standard generative task benchmarks spanning conversation
Zheng et al. (2023), code generation Chen et al. (2021), mathematical reasoning Cobbe et al. (2021), instruction
following Taori et al. (2023), summarization Nallapati et al. (2016), and question-answering tasks Kwiatkowski
et al. (2019).

Server Side Hardware: We utilize a high performance computing cluster node equipped with a single
A100 GPU with 80GB VRAM, 16 CPU cores, and 8GB of CPU memory per core as our server.

Client Side Hardware: We demonstrate our system on two types of client devices:
1. NVIDIA Jetson Nano: A compact AI development board tailored for edge computing. It includes a

quad-core ARM Cortex-A57 CPU, a 128-core Maxwell GPU, and 4GB of LPDDR4 RAM shared
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between the CPU and GPU. With a performance of up to 472 GFLOPs, the Jetson Nano is ideal for
edge applications.

2. Cluster Node with RTX 2080 Ti: This setup features a single RTX 2080 Ti GPU with 12GB VRAM,
an 8-core CPU, and 4GB of RAM per core, providing a more powerful alternative for our experiments.

Communication: Communication between cluster nodes is facilitated by InfiniBand high-speed interconnect.
Ethernet is used for communication between the cluster node and the Jetson Nano.

Table 4: Latency calculation. AR denotes cloud-based au-
toregressive decoding. SD and FSD refer to vanilla and fast
speculative edge-cloud decoding, respectively.

Method Latency
Cloud AR 2Tc + nTq

Edge-Cloud SD n
τ (2Tc + γTp + Tq)

Edge-Cloud FSD n
τ (2Tc + rγTp + (1− r)Tr + Tq)

Latency Calculation: Table 3 summarizes
the notations used in our analysis. Key vari-
ables include Tq, Tp, and Tc, representing la-
tencies of the target model, draft model, and
communication, respectively. Speculative de-
coding metrics include τ , the effective tokens
per draft-verification round. Hyperparameters
are n, the total tokens, and γ, tokens per draft-
verification round. Additional factors for our
fast speculative decoding method include the
cache miss rate r and synchronization latency Tr for cache hits. The latency calculation for autoregressive
(AR) decoding, vanilla speculative edge-cloud decoding (SD), and our fast speculative edge-cloud decoding
(FSD) are presented in Table 4. The latency of FSD method depends on the cache miss rate, r. In case of a
cache hit, threads must synchronize, incurring a latency of Tr. Unless otherwise specified, we use γ = 4 and
n = 200 in our experiments.

4.1 System Metrics

We report the system metrics in Table 5, including drafting latency (γTp) at γ = 4, verification latency (Tq),
the latency ratio c, and communication latency (Tc). On the Jetson Nano, drafting is about three times
slower and communication twice as slow as on a cluster node with an RTX GPU. We report the maximum
GPU VRAM and the number of early-exit threads supported by the system. On the RTX-equipped node, the
system handles up to 30 threads for the Vicuna-68M model, but GPU VRAM (12 GB) limits the Vicuna-160M
model to 15 threads before encountering an out-of-memory (OOM) error. On the Jetson Nano, both CPU
threading and RAM are bottlenecks. The maximum number of threads is capped at 15 for the Vicuna-68M
model, while the 4 GB memory limit allows only 7 threads for the Vicuna-160M model.

Table 5: Average system metrics that are dataset agnostic.

Metric Vicuna-68m/Vicuna-7B Vicuna-160m/Vicuna-13B Vicuna-68m/Llama2-7B
Jetson RTX Jetson RTX Jetson RTX

Drafting Latency (γTp, γ = 4) 334ms 102ms 1596ms 555ms 301ms 99ms
Verification Latency (Tq) 497ms 442ms 616ms 618ms 522ms 467ms
Latency Ratio (c = Tp/Tq) 0.17 0.06 0.65 0.22 0.14 0.05
Communication Latency (Tc) 95ms 42ms 91ms 46ms 96ms 47ms
Max GPU memory 1.7G 3.2G 3.5G 8.9G 1.7G 3.2G
Num EE Threads 15 30 7 15 15 30

4.2 Speedup Results

Evaluation Metrics: Our fast decoding method with early exit is exact, with outputs identical to standard
speculative decoding, ensuring no loss in accuracy. We define the following metrics to evaluate our method.

• Speedup AR → SD: Latency savings of vanilla speculative edge-cloud decoding (SD) compared to
cloud based autoregressive (AR) baseline.

• Speedup SD → FSD: Latency savings of our fast speculative edge-cloud decoding (FSD) compared
to the vanilla speculative edge-cloud decoding (SD).

6



Under review as submission to TMLR

Table 6: Speedup evaluation on standard language benchmark datasets.

Benchmark Metric Vicuna-68m/Vicuna-7B Vicuna-160m/Vicuna-13B Vicuna-68m/Llama2-7B
Jetson RTX Jetson RTX Jetson RTX

MT-bench

Speedup AR → SD 0.70x 1.30x 0.42x 0.97x 1.34x 2.01x
Speedup SD → FSD 1.04x 1.04x 1.05x 1.09x 1.07x 1.02x
Avg Tokens τ 2.30 2.01 2.28 2.98 4.12 3.48
Cache miss rate 60.92% 20.07% 62.49% 16.40% 36.73% 13.38%
Avg EE 8 13 9 15 9 11

HumanEval

Speedup AR → SD 0.79x 1.42x 0.47x 0.85x 1.53x 2.09x
Speedup SD → FSD 1.04x 1.03x 1.06x 1.15x 1.22x 1.07x
Avg Tokens τ 2.04 2.66 2.14 2.04 4.16 3.83
Cache miss rate 64.73% 15.79% 57.64% 25.16% 17.6% 1.75%
Avg EE 7 16 8 14 4 3

GSM8K

Speedup AR → SD 0.63x 1.11x 0.40x 0.77x 1.15x 1.69x
Speedup SD → FSD 1.04x 1.08x 1.06x 1.13x 1.07x 1.06x
Avg Tokens τ 2.08 1.96 2.23 2.29 3.48 3.29
Cache miss rate 61.21% 12.40% 58.04% 18.37% 41.87% 9.55%
Avg EE 8 13 9 14 7 10

Alpaca

Speedup AR → SD 0.63x 1.06x 0.42x 0.74x 1.42x 1.99x
Speedup SD → FSD 1.04x 1.07x 1.05x 1.12x 1.10x 1.18x
Avg Tokens τ 2.09 1.96 2.32 2.36 4.29 3.62
Cache miss rate 64.60% 19.29% 60.94% 25.45% 36.60% 4.28%
Avg EE 8 14 8 14 9 2

CNN/DM

Speedup AR → SD 0.72x 1.20x 0.38x 0.73x 1.41x 1.91x
Speedup SD → FSD 1.03x 1.07x 1.03x 1.07x 1.07x 1.04x
Avg Tokens τ 2.32 1.95 2.08 2.10 4.32 3.43
Cache miss rate 70.70% 29.40% 69.92% 38.09% 47.13% 13.97%
Avg EE 10 15 8 16 14 13

NQ

Speedup AR → SD 0.65x 1.10x 0.46x 0.82x 1.26x 1.93x
Speedup SD → FSD 1.02x 1.06x 1.04x 1.12% 1.05x 1.01x
Avg Tokens τ 2.08 2.05 2.44 2.62 3.83 3.62
Cache miss rate 71.50% 22.59% 63.25% 30.25% 57.11% 14.88%
Avg EE 8 14 8 15 13 14

Average

Speedup AR → SD (↑) 0.69x 1.20x 0.42x 0.94x 1.35x 1.94x
Speedup SD → FSD (↑) 1.04x 1.06x 1.05x 1.10x 1.11x 1.06x
Avg Tokens τ (↑) 2.15 2.10 2.25 2.40 4.03 3.54
Cache miss rate (↓) 65.61% 19.59% 62.05% 27.95% 39.94% 9.63%
Avg EE (↓) 8 14 8 14 9 9

• Cache miss rate (lower the better): Frequency of cache misses, that indicates how often we fail
to find the final output in one of the early exits.

• Average Early Exit (lower the better): The average early exit that produces the same output
as the final exit.

Table 6 presents the evaluation metrics on the benchmark datasets. In addition to the aforementioned
evaluation metrics, the effective number of generated tokens per verification (τ) is also reported. Note, τ
remains identical to that of vanilla SD as our FSD method produces identical outputs but it highlights the
reduction in API call costs.

AR → SD: On average, using RTX, vanilla SD achieves a 1.2x and 1.94x speedup over autoregressive
decoding with the Vicuna-68M/Vicuna-7B and Vicuna-68M/Llama2-7B models, respectively. However, it
results in a marginal slowdown with Vicuna-160M/Vicuna-13B. Jetson, being slower at drafting coupled
with higher communication cost, reduces the speedup relative to autoregressive decoding, making it slower
for Vicuna-68M/Vicuna-7B and Vicuna-160M/Vicuna-13B models, though it achieves a 1.34x speedup with
Vicuna-68M/Llama2-7B. The speedup from autoregressive to SD primarily depends on c, τ , and Tc, with
ideally requiring low values of c and Tc and a high τ . Since Jetson has a high c and Tc, it underperforms
compared to autoregressive on Vicuna-68M/Vicuna-7B and Vicuna-160M/Vicuna-13B models. In contrast,
for Vicuna-68M/Llama2-7B, a lower c combined with a higher τ yields a 1.35x speedup.

SD → FSD: Our FSD provides consistent speedup over vanilla SD across all datasets on both RTX and
Jetson. On the RTX client, it achieves average speedups of 1.06x, 1.10x, and 1.06x for Vicuna-68M/Vicuna-7B,
Vicuna-160M/Vicuna-13B, and Vicuna-68M/Llama2-7B, respectively. Similarly, on Jetson Nano, the speedups
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(a) Effect of number of early exit threads. (b) Effect of number of draft tokens (γ).

Figure 4: Ablation studies: (a) Effect of varying the number of early exit threads, (b) Effect of varying the
number of draft tokens (γ).

are 1.04x, 1.06x, and 1.11x for the same model pairs. The primary benefit of FSD lies in its pre-drafting
mechanism, which enables these improvements over vanilla SD. This mechanism’s impact is reflected in the
cache miss rate, indicating how often the final output is available through early exits, allowing pre-drafting
of the next set of tokens. The average early exit metric further highlights how quickly verified tokens are
obtained, enabling efficient generation of subsequent draft tokens.

4.3 Ablation Studies

Effect of Number of Threads: In Figure 4a, we show the speedup of our FSD relative to vanilla SD and
the cache miss rate as the number of early exit threads increases up to 30. Using the GSM8K dataset with
the Vicuna-68M/Vicuna-7B models on an RTX client, we find that the cache miss rate decreases as more
threads are added, improving speedup. However, after around 15 threads, the speedup begins to plateau,
and further increases in thread count yield minimal additional speedup. This is because the priority queues
process the most promising early exits first, making it more likely to match the final output with the initial
threads rather than the later ones.

Effect of γ: The number of tokens, γ, significantly influences the efficiency of speculative decoding. In Fig.
4b, we plot speedup between SD and FSD, and between autoregressive (AR) and SD, as γ increases up to 10.
We use the GSM8K dataset with the Vicuna-68M/Vicuna-7B models on an RTX-based client. Our FSD
method shows greater latency improvements compared to vanilla SD as γ increases, enhancing the benefits of
pre-drafting. However, an excessively large γ can hinder the speculative decoding process, causing the overall
speedup to decrease. As shown, the speedup of SD relative to AR falls below 1x when γ exceeds 5.

Table 7: Ablation study of client-server queue strategies.
r indicates the average response time (lower is better)
for different queue lengths.

Client Server r (3T) r (5T) r (10T)

Priority Priority 79.85 62.93 27.57
FIFO 80.40 63.48 27.73

Random Priority 82.32 63.25 26.92
FIFO 84.56 65.36 27.68

FIFO Priority 82.61 64.43 27.69
FIFO 85.43 65.67 27.84

Importance of Priority Queue: Since our sys-
tem is asynchronous, we need queues for graceful
operation. Further, we organize the queues in pri-
ority, determined by the confidence score of the
generated token (Eq. 4). This prioritization is es-
pecially beneficial when the number of threads is
limited. Table 7 presents an ablation study compar-
ing different queue configurations. On the server
side, we use either a priority queue or a FIFO queue,
while on the client side, we also include a random
queue as an option. We report the cache miss rate
(r) for systems with 3, 5, and 10 threads, denoted
as 3T, 5T, and 10T, respectively.

Our findings indicate that when the server uses a
priority queue, it significantly improves performance for any given queue type on the client, although this
benefit decreases with a higher thread count. On the client side, a priority queue consistently outperforms
both the random and FIFO queues.
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Figure 5: Example run of the Unitree Go2 robot performing an object-finding task using vision-language-based
control. The robot receives the instruction “find the silver bottle” and navigates the environment while
distinguishing the correct object from a similar distractor.
Table 8: System-level evaluation metrics for our edge-cloud speculative decoding setup on the Unitree Go2
robot (Jetson Orin) and A100 server. (a) Reports core system and latency metrics. (b) Summarizes the
performance gains with our FSD method.

Metric Value
Drafting Latency (γTp, γ = 4) 288ms
Verification Latency (Tq) 620ms
Latency Ratio (c = Tp/Tq) 0.11
Communication Latency (Tc) 120ms
Max GPU Memory 12.4G
Num EE Threads 6

(a) System and latency metrics

Metric Value
Avg Tokens (τ) (↑) 2.92
Cache Miss Rate (↓) 55.63
Avg EE (↓) 8
Speedup AR → SD (↑) 0.90x
Speedup SD → FSD (↑) 1.34x

(b) FSD speedup and performance metrics

4.4 Robotics Case Study: Vision-Language Navigation on Unitree Go2

To evaluate the real-world applicability of our approach, we deploy the edge-cloud speculative decoding
system on the Unitree Go2 EDU quadruped robot. This platform features an onboard NVIDIA Jetson
Orin board, which includes an 8-core ARM Cortex-A78AE v8.2 64-bit CPU and 16GB of 128-bit LPDDR5
unified memory, offering up to 157 TOPS of compute. Communication between the robot and the server is
established over Wi-Fi 6.

The robot receives natural language instructions such as “go to the red chair” or “turn left at the hallway”
and uses its front-facing RGB camera to perceive the environment. A vision-language model (VLM) processes
the visual observations and language commands to generate mid-level navigation actions (e.g., move forward
small/medium/large), following the approach of Cheng et al. (2024). These actions are then executed by
the robot’s onboard controller. To enhance decision quality and interpretability, we additionally prompt the
VLM to provide reasoning alongside its action outputs.

We deploy a quantized version of Qwen-2-VL-2B as the on-device draft model and offload token verification
to the full-size Qwen-2-VL-7B model hosted on an A100 GPU in the cloud. Figure 5 illustrates an example
scenario in which the robot is instructed to locate a specific object—in this case, a silver bottle. To test the
model’s reasoning and grounding capabilities, we introduce a distractor object of similar appearance. The
robot successfully navigates the environment and identifies the correct object, demonstrating the effectiveness
of our method on a vision-language-based control task.

Table 8(a) reports key system-level metrics from our deployment, including drafting and verification latencies,
communication overhead, and peak GPU memory usage. Table 8(b) highlights the performance improvements
enabled by our method, showing speedups from standard autoregressive decoding (AR) to edge-cloud
speculative decoding (SD) and further to Fast Speculative Decoding (FSD). It also includes average accepted
tokens per round, cache miss rate, and average early exits. Overall, our system achieves a 21% speedup over
conventional cloud-based autoregressive decoding, validating the practicality of our approach for real-time,
language-conditioned robot control on resource-constrained edge platforms.

5 Related Work

There is a significant interest in enabling edge devices to run LLMs. The deployment of collaborative AI
inference systems across the edge and the cloud introduces unique challenges such as latency constraints,

9



Under review as submission to TMLR

bandwidth limitations, and inconsistent network conditions. One straightforward approach is to design
smaller models Lu et al. (2024). While all the popular class of models such as OPT Zhang et al. (2022),
Llama Touvron et al. (2023); Dubey et al. (2024), and Gemma Team et al. (2024) have smaller scale models,
they are either not small enough to run on an edge device or not accurate enough to reliably deploy in
practical applications. Quantization is one of the heavily focused methods to enable on-device LLMs Lin
et al. (2024). Yu et al. (2024) aim to compress the models with layer-wise pruning and quantization to enable
edge LLMs. Qu et al. (2024) discuss an approach of enabling LLMs to run on 6g edge devices. On system
side, Xu et al. (2024a) focus on leveraging on-device Neural Processing Unit (NPU).

Early exit strategies, which allow intermediate layers of deep networks to make predictions without waiting for
the full forward pass, have been extensively explored for resource-constrained devices. Pioneering works such
as Conditional Deep Learning Panda et al. (2016) and BranchyNet Teerapittayanon et al. (2016) introduced
the idea of adding multiple exit points to deep neural networks to reduce computation time. Recent research
has also explored layer skipping in LLMs for enhanced efficiency Fan et al. (2024), with dynamic compute
allocation based on tokens Raposo et al. (2024). In terms of multi-device speculative decoding, McDanel (2024)
has recently shown that asynchronous speculative decoding over multiple GPUs can be beneficial. However, it
uses shared memory to communicate between devices, so it is not directly applicable to edge-cloud scenarios.
To the best of our knowledge, this is the first work to show end-to-end speculative decoding with models split
between edge and cloud. Further, we comprehensively analyze and demonstrate the system-level trade-offs
during the implementation of collaborative edge-cloud decoding, which no prior work has investigated.

6 Conclusion and Discussion

We introduced a novel speculative edge-cloud decoding framework, offering a cost-effective alternative to
traditional cloud-based deployment. By distributing the draft and target models between edge and server
environments, our solution significantly reduces high API costs. Early exits and pre-drafting allow us to
enhance parallelism by leveraging idle client time and reducing server idle time. Our comprehensive end-to-end
evaluation on the NVIDIA Jetson Nano highlights the feasibility of efficient edge-cloud collaborative LLM
inference on resource-limited edge devices. On Jetson Nano, speculative edge-cloud decoding achieves up to
a 35% speedup over cloud-based autoregressive decoding, with up to an additional 11% performance gain
enabled by pre-drafting and early exits. Further, we validate our approach with execution of vision language
models on the Unitree Go2 quadruped robot. We achieve an overall 21% speedup over standard cloud-based
autoregressive decoding, demonstrating the effectiveness and real-world applicability of our framework for
robotics use cases.

Our method operates effectively without making assumptions about communication delays, and we show
that it remains practical under real-world conditions. While communication latency can be a limiting
factor in extreme cases, our use of priority queues helps optimize bandwidth usage. For scenarios with
constrained network conditions, further tuning and adaptive scheduling policies offer promising avenues to
enhance performance. Similarly, while pre-drafting leverages idle client time for parallelism, it introduces
modest compute overhead on the client. This is manageable for most edge platforms, and the ability to
scale the number of threads provides a flexible trade-off between latency and energy efficiency, especially for
battery-powered devices.

Our proof-of-concept is implemented in Python, which, while convenient for experimentation, leaves room for
further optimization. A low-level C++ implementation with shared memory could substantially improve
performance, making the system even more suitable for latency-sensitive applications. Currently, our system
supports single-client interaction with the server, but extending it to support multi-client concurrency is a
natural next step. We envision future work enabling scalable, concurrent edge-cloud inference with early
exits, making our approach even more applicable to real-world deployment scenarios.
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A System Design

Client: On the client side, the primary goal is to maximize idle time usage and increase cache hit rates. As
shown in Algorithm 1, the client maintains a priority queue Qp, a pre-draft cache C, and a Receiver thread.
After sending draft tokens to the server for verification, the Receiver thread listens for server callbacks,
which provide outputs from early exits.

Since the client’s bottleneck lies in the processing power required for generating pre-draft tokens, it is essential
to prioritize the handling of early exit outputs. The priority queue Qp organizes these outputs according
to their confidence levels (Eq. 4), prioritizing the most promising ones for pre-drafting. It is populated
asynchronously as early exit outputs are received by the client. If the client’s device has multiple available
threads, it can process several early exits in parallel to generate more pre-draft tokens. All the pre-draft
tokens are stored in the pre-draft cache. Once the client receives the final exit output, it checks the pre-draft
cache for the corresponding tokens. If there is a cache hit, the pre-drafted tokens are sent to the server
immediately for the next verification round.

Server: As detailed in Algorithm 2. the server consists of two asynchronous threads: Listener and Sender.
The Listener processes the verification requests from the client. It takes in the prefix x1:t, draft tokens
xt:t+γ , and their corresponding probability distribution p1:γ .

As shown in Fig. 2, communication typically becomes the bottleneck in the server as early exit outputs are
produced faster than the network can transmit. Early exit outputs are placed in a queue on the server side
and transmitted sequentially to handle this. Let Qe represent the server-side queue storing the early exit
outputs:

Qe = {x(1)
t:t+δ(1)+1, . . . , x

(L)
t:t+δ(L)+1}. (8)

Asynchronously, the Sender thread sends the early exit outputs from the queue based on priority determined
by the confidence score (Eq. 4).
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Algorithm 1 Client-Side Algorithm
1: Initialize: Draft model Mp, Queue Qp, Cache C, Receiver
2: Input: Prefix x1:t, # Total Tokens T , # Draft tokens γ
3: Output: Final tokens xt+1:T
4: for i = 1 to γ do
5: xt+i, pi ← Draft(Mp, x1:t+i−1)
6: end for
7: Send(x1:t+γ , p1:γ)
8: while t < T do
9: while Qp not empty do

10: x′
t+1:t+δ′+1, s′ ← Qp.pop()

11: if x′
t+1:t+δ′+1 not in C then

12: C[x′
t+1:t+δ′+1]← PreDraft(x1:t, x′

t+1:t+δ′+1)
13: end if
14: end while
15: y1:t′ ← Concat(x1:t, xt+1:t+δ+1)
16: if xt+1:t+δ+1 ∈ C then
17: yt′:t′+γ , p1:γ ← C[xt+1:t+δ+1]
18: else
19: for i = 1 to γ do
20: yt′+i, pi ← Draft(Mp, y1:t′+i−1)
21: end for
22: end if
23: Send(yt′:t′+γ , p1:γ)
24: t← t′, x← y, C.reset(), Qp.reset()
25: end while

26: function PreDraft
27: Input: Prefix x1:t, Tokens x′

t+1:t+δ′+1
28: y1:t′ ← Concat(x1:t, x′

t+1:t+δ′+1)
29: for i = 1 to γ do
30: yt′+i, p′

i ← Draft(Mp, x′
1:t′+i−1)

31: end for
32: return yt′:t′+γ , p′

1:γ
33: end function

34: function Receiver
35: Input: Tokens x′

t+1:t+δ′+1, Priority s′, isfinalexit
36: if isfinalexit then
37: xt+1:t+δ+1 ← x′

t+1:t+δ′+1
38: else
39: Qp.push(x′

t+1:t+δ′+1, s′)
40: end if
41: end function

B Speedup Projection Analysis

One of the bottlenecks in our system is communication between the devices. In addition to directly adding
to the latency, it also bottlenecks the number of early exit verifications communicated back to the client.
This increases the cache miss rate further increasing the latency. While this is a challenge at present due to
limited communication network capabilities, several works have shown the vision of having edge LLMs on 6g
networks with a projected network speed up to 10 Tbps Banafaa et al. (2023); Lin et al. (2023); Xu et al.
(2024b); Friha et al. (2024); Qu et al. (2024); Zhang et al. (2024). In scenarios where communication latencies
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Algorithm 2 Server-Side Algorithm
1: Initialize: Target Model Mq, Verification criterion Verify, Queue Qe, Listener, Sender
2: function Listener
3: Input: Prefix and draft tokens x1:t+γ , Probs. p1:γ

4: x
(1:L)
t+1:t+δ+1, q

(1:L)
1:δ+1 ← Verify(Mq, x1:t+γ , p1:γ)

5: for all i = 1, . . . , L− 1 do
6: s(i) ← max(q(i)

1:δ+1)
7: Qe.push(x(i)

t+1:t+δ+1, s(i))
8: end for
9: Send(x(L)

t+1:t+δ+1, isfinalexit = True)
10: Qe.reset()
11: end function
12: function Sender
13: while Qe not empty do
14: (x′

t+1:t+δ+1, s′)← Qe.pop()
15: Send(x′

t+1:t+δ+1, s′, isfinalexit = False)
16: end while
17: end function

Figure 6: Estimated speedup per round of our FSD relative to vanilla SD method assuming no communication
latency. We emphasize the contours for speedups of 1.1x, 1.2x, 1.5x, 2x, and 5x, and we indicate the position
of our models within this landscape. Additionally, we highlight the operating range for the larger models
OPT-66B and Llama-65B.

Tc is negligible relative to drafting and verification time, and ignoring thread synchronization latency (Tr) for
simplicity, we can approximate the speedup SD → FSD as:

Speedup (SD→ FSD) = γc + 1
r(γc) + 1 (9)

This formula reduces the final speedup to be affected by two factors—Cache miss rate r and Latency Ratio c.
Cache miss rate r depends on the redundancy in the target model and how well the early exit adapters are
trained. On the other hand, c is highly dependent on the compute capability of the edge device. Since edge
devices are often slower, this pushes the c to be higher.

We visualize Eq. 9 as a heatmap in Fig. 6 for γ values 4, 7 and 10. For reference, we plot the measured c and
r values based on the Jetson implementation of our current set of models within this landscape. Naturally,
having a lower r will improve speedup, but the usefulness of our FSD method becomes more pronounced as
we get to higher c and γ. For model sets with a latency ratio greater than 0.5 and well-trained early exit
adapters that achieve a cache miss rate of less than 10%, we can anticipate a speedup over 5x.
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Extending our analysis to larger models, specifically OPT-66B and Llama-65B with draft models OPT-125M
and NoFT-Wide-796M, we use reported latencies from Yan et al. (2024) (6.6 ms for draft, 67 ms for target)
and factor in a 3x slowdown on Jetson, arriving at c ≈ 0.3. This value is illustrated by the yellow line in Fig.
6. For instance, to achieve a 2x speedup with γ values of 4, 7, and 10, the cache miss rate must remain below
10%, 25%, and 35%, respectively.

C Batch Processing

Table 9 shows latency analysis for Vicuna-7B (A100) and Vicuna-68M (Jetson Nano). Batch processing
improves throughput but not always latency; e.g., batch size 32 increases A100 latency by over 5x. However,
API providers often offer discounts for batch processing (e.g., OpenAI provides 50% discount OpenAI Pricing),
making it a cost-saving approach. On the client, batch processing shows a smaller latency increase—batch
sizes of 1 and 8 differ by 15%. A batched pre-drafting approach could reduce latency but requires waiting to
accumulate multiple early exits, introducing a trade-off.

Table 9: Server and client latency for different batch sizes.

Batch Server Latency Client Latency
Size (Vicuna-7B) (Vicuna-68M)

(A100) (Jetson)
1 17.94 7.76
2 21.75 8.02
3 24.35 7.57
4 24.63 7.87
8 30.73 8.97
12 44.52 9.71
16 45.79 10.63
32 96.94 14.49
64 258.79 OOM
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