
Dataset Generation Patterns for
Evaluating Knowledge Graph Construction

Markus Schröder, Christian Jilek, and Andreas Dengel

1 Smart Data & Knowledge Services Dept., DFKI GmbH, Kaiserslautern, Germany
2 Computer Science Dept., TU Kaiserslautern, Germany

{markus.schroeder, christian.jilek, andreas.dengel}@dfki.de

Abstract. Confidentiality hinders the publication of authentic, labeled
datasets of personal and enterprise data, although they could be useful
for evaluating knowledge graph construction approaches in industrial
scenarios. Therefore, our plan is to synthetically generate such data in a
way that it appears as authentic as possible. Based on our assumption that
knowledge workers have certain habits when they produce or manage
data, generation patterns could be discovered which can be utilized
by data generators to imitate real datasets. In this paper, we initially
derived 11 distinct patterns found in real spreadsheets from industry
and demonstrate a suitable generator called Data Sprout that is able to
reproduce them. We describe how the generator produces spreadsheets
in general and what altering effects the implemented patterns have.

Keywords: Pattern Language · Generator · Synthetic Data

1 Introduction and Motivation

Personal and enterprise data is usually produced and managed by knowledge
workers during their work. One of our research efforts3 is concerned with the
construction of enterprise knowledge graphs from such datasets. Although, in the
past we worked with various data assets, we were not allowed to publish them
(together with labeled data) because of usual confidentiality reasons in personal
and enterprise data. Even if this would be possible under certain circumstances,
there is still a high effort to label such data with intended knowledge graphs to
conduct meaningful evaluations. Therefore, our plan is to synthetically generate
datasets in such a way that they appear as authentic as possible.

When knowledge workers work with data, we observe that they show certain
behaviors. We assume that whenever data is entered or modified, a user tends to
do it in a way the person is used to. This also includes habits or workarounds which
may result in rather messy datasets, especially, if data management strategies are
neglected. A particular way in which something is done or organized is usually
called a pattern. By exploring enterprise data and interviewing its users, such
reoccurring patterns may be collected and cataloged.

3 https://comem.ai/SensAI

https://comem.ai/SensAI


2 Markus Schröder, Christian Jilek, and Andreas Dengel

This emerging pattern language could then be utilized by data generators that
reproduce these patterns to imitate real datasets. Such synthetically generated
data, if authentic enough, would appear like knowledge workers had produced
them in the first place. By mixing patterns in various ways, generators are
able to produce arbitrary large and complex data assets – even with pattern
combinations which have not been observed before. That is why the construction
of knowledge graphs from such data can easily become a non-trivial task: since
patterns and especially their combinations will typically introduce ambiguities, a
simple pattern recognition procedure may not be sufficient enough.

Our envisioned generators take two inputs: the generation patterns and a
given knowledge graph. Since generators know what statements resulted in what
data, the provenance information can be used to measure the performance of
construction approaches on that data. Researchers are also able to generate syn-
thetic datasets that matches just those patterns present in their non-publishable
real-world ones. Computational results are expected to be on the same level for
both the real and the synthetic datasets (due to identical complexity as expressed
by the underlying patterns), thus making the synthetic-based results valid.

Generation patterns are usually dependent on a given domain (such as chem-
istry, biology, healthcare) and a given data format in focus. In this paper, we
would like to present our idea using the example of spreadsheets.

2 A Pattern Language and Generator for Spreadsheets

Spreadsheets are widely used, especially in the industrial sector. They can model
complex workbooks containing multiple sheets with meta data rich cells (content
and appearance). We observed several of such workbooks in industry projects
and learned from their authors why they modeled and designed spreadsheets in
certain ways. From that, we derived for now 11 distinct patterns which form a
pattern language for spreadsheets4. The structure of these patterns are heavily
inspired by Alexander’s patterns in the architectural domain [1], however with the
difference that our patterns describe for given circumstances (situations, issues,
facts) concrete possibilities how to model them using spreadsheets. Typically,
such a pattern comes with a title and a context hinting to a specific issue. This
circumstance is described in more detail followed by a solution how to store the
containing facts in a spreadsheet. After that, an example illustrates with an
image how the pattern could be applied. Some patterns provide links to related
ones and they are grouped in categories.

On the basis of the proposed pattern language, a data generator called “Data
Sprout” was implemented5. An online demo6 lets users generate diverse Microsoft
Excel spreadsheets with desired generation patterns from a given RDF graph.
Parts of the graph will be differently represented in sheets, depending what
generation patterns are activated. Patterns introduce noise in data by uniformly

4 http://www.dfki.uni-kl.de/~mschroeder/pattern-language-spreadsheets
5 https://github.com/mschroeder-github/datasprout
6 http://www.dfki.uni-kl.de/~mschroeder/demo/datasprout

http://www.dfki.uni-kl.de/~mschroeder/pattern-language-spreadsheets
https://github.com/mschroeder-github/datasprout
http://www.dfki.uni-kl.de/~mschroeder/demo/datasprout


Dataset Generation Patterns for Evaluating Knowledge Graph Construction 3

or randomly pick different options for each cell, sheet or workbook. In the
following, we will describe how Data Sprout produces spreadsheets in general
and what altering effects the implemented patterns have (mentioned in italic).

Layout. Broadly, the graph’s terminology (i.e. classes and properties) deter-
mines how sheets are structured while assertions are used to populate cells with
data. In Data Sprout’s default configuration, each RDF class corresponds to a
sheet, whereas each class property (i.e. properties having a domain of that class)
corresponds to a column in the sheet. Class instances (i.e. resources which are
type of that class) are listed per row, meaning that at respective property columns
their objects (resources or literals) are mentioned in cells. The Multiple Entities
in one Cell pattern allows that multiple objects are listed in a single cell which
is useful since RDF graphs are usually multi-edged graphs (i.e. one property
has multiple objects). Some generation patterns change the default behavior for
structuring tables: Multiple Types in a Table makes sure that some randomly
picked sheets correspond to two classes. This way, we naturally find instances of
different types in one table. Intra-Cell Additional Information ensures that some
randomly selected columns are related to two or three properties. This means
that a single cell can contain multiple RDF nodes (resources and/or literals) from
different properties.

Modelling. Storing a literal value in a cell can be done in more than one
way. Usually, spreadsheets provide in guidelines an intended way, for example,
that dates should be stored as numeric values. However, the pattern Numeric
Information as Text also allows that some literals will be stored using a textual
representation instead. In case of resources, the generator has to decide how to
mention them in cells, usually by using their labels. Instead of naming them
consistently, the pattern Multiple Surface Forms ensures that different labeling
variations are considered (see [4] in case of persons). Additionally, the generation
pattern Acronyms or Symbols also ensures the use of short acronym labels and
that symbols may represent Boolean literals (e.g. “!” stands for true).

Formatting. Instead of a cell’s content, its formatting can also convey
meaning. Background and foreground color (more precisely: a cell’s font color)
can be used to encode certain property values, as described in Property Value as
Color. To carry out this pattern, our generator searches for appropriate property-
value-pairs and randomly assigns colors to them. Because colors alone now provide
enough information, the corresponding property columns are removed from the
sheet. Additionally, spreadsheets allow to format individual parts in texts by using
rich text. In case of the Outdated is Formatted pattern, our generator ensures
that once preselected properties are involved that refer to outdated information,
mentioned resources will be crossed out. As soon as multiple objects come from
different properties and their relations are not distinguishable anymore, the
pattern Partial Formatting Indicates Relations can be applied. In this case, our
generator randomly allocates colors or styles (like bold, italic or underlined) to
properties in order to make the property recognizable again.

Since the generator completes every cell in a sheet, it knows the corresponding
statements which were involved during the generation. This provenance infor-



4 Markus Schröder, Christian Jilek, and Andreas Dengel

mation describes the intended statements that should be rediscovered when
analyzing a cell’s content. Such ground truth labels are essential for evaluating
approaches that construct knowledge graphs from this data.

3 Related Work

In former work [2, Section 3.7] we discussed in more detail the problem of missing
publicly available Personal Information Model (PIM) dataset and that pseudo
desktop collections do not meet our needs. The most related datasets seem to be
test cases for KG construction tools, like the ones provided for RDF Mapping
Language (RML) approaches7. However, such test sets are far too small and
simple, since they are made with a testing purpose in mind. That is why data
generation might be a reasonable option. However, after investigating several
generator approaches (for a recent survey see [3]), we did not find a suitable one
that would produce similar datasets we typically deal with in practice.

4 Conclusion and Outlook

For evaluating knowledge graph construction results, we propose the idea to
synthetically generate appropriate datasets. Based on our observation that knowl-
edge workers show certain behaviors when creating data, an initial catalog of
generation patterns in the domain of spreadsheets was derived. A demonstrator
was presented that generates from a given knowledge graph diverse sheets by
reproducing such patterns.

In the future, we will extend our pattern language with more patterns and
investigate how authentic the generated data appears to users. Moreover, we
would like to show that evaluations, whether with real or synthetic data, yield
similar results.

Acknowledgements This work was funded by BMBF (gr. no. 01IW20007).

References

1. Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-King, I., Angel,
S.: A Pattern Language - Towns, Buildings, Construction. Oxford Univ. Press (1977)

2. Jilek, C., Runge, Y., Niederée, C., Maus, H., Tempel, T., Dengel, A., Frings, C.: Man-
aged forgetting to support information management and knowledge work. Künstliche
Intell. 33(1), 45–55 (2019)

3. Popic, S., Pavkovic, B., Velikic, I., Teslic, N.: Data generators: a short survey of
techniques and use cases with focus on testing. In: 9th IEEE Int’l. Conf. on Consumer
Electronics, ICCE, Berlin, Germany. pp. 189–194. IEEE (2019)

4. Schröder, M., Jilek, C., Schulze, M., Dengel, A.: The person index challenge: Extrac-
tion of persons from messy, short texts. In: Proceedings of the 9th Int’l. Conf. on
Agents and Artificial Intelligence, ICAART 2021. pp. 531–537 (01 2021)

7 https://github.com/RMLio/rml-test-cases

https://github.com/RMLio/rml-test-cases

	Dataset Generation Patterns forEvaluating Knowledge Graph Construction

