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Abstract: Generalist robot policies trained on large-scale datasets such as Open
X-Embodiment (OXE) demonstrate strong performance across a wide range of
tasks. However, they often struggle to generalize beyond the distribution of their
training data. In this paper, we investigate the underlying cause of this limited
generalization capability. We identify shortcut learning—the reliance on task-
irrelevant features—as a key impediment to generalization. Through comprehen-
sive theoretical and empirical analysis, we uncover two primary contributors to
shortcut learning: (1) limited diversity within individual sub-datasets, and (2)
significant distributional disparities across sub-datasets, leading to dataset frag-
mentation. These issues arise from the inherent structure of large-scale datasets
like OXE, which are typically composed of multiple sub-datasets collected inde-
pendently across varied environments and embodiments. Our findings provide
critical insights into dataset collection strategies that can reduce shortcut learn-
ing and enhance the generalization ability of generalist robot policies. Moreover,
in scenarios where acquiring new large-scale data is impractical, we demonstrate
that carefully selected robotic data augmentation strategies can effectively reduce
shortcut learning in existing offline datasets, thereby improving generalization ca-
pabilities of generalist robot policies, e.g., π0, in both simulation and real-world
environments. More information at our website1.

Keywords: Generalist Robot Policies, Shortcut Learning, Large-Scale Robot
Datasets

1 Introduction

The recent advancements in machine learning, particularly in domains such as computer vision and
natural language processing, can be largely attributed to the scaling up of both data and model
sizes. Notably, scaling laws in these domains [1, 2, 3] indicate a consistent trend of performance
improvement and emergent generalization capabilities as the number of model parameters and the
volume of data are increased.

It is anticipated that analogous trends will emerge in the field of robotics. Consequently, re-
cent research efforts in the field of robot learning have concentrated on the development of in-
creasingly large-scale robot datasets [6, 5, 8, 9, 10, 11] and the training of high-capacity models
[6, 12, 13, 14, 15, 7, 16, 17] on these datasets, which directly map observations to actions, e.g.,
Vision-Language-Action (VLA) models [12]. The hope is that, by feeding abundant web and robot
data, we can develop a generalist robot policy capable of addressing a wide spectrum of tasks and,
more importantly, generalizing to novel tasks and environments out of box.

Despite advancements in training models on large-scale datasets like Open X-Embodiment (OXE)
[10], these models continue to demonstrate limited generalization capabilities across multiple axes,

∗: denotes equal contribution. †: denotes corresponding author.
1Poject page: https://lucky-light-sun.github.io/proj/shortcut-learning-in-grps/

9th Conference on Robot Learning (CoRL 2025), Seoul, Korea.

https://lucky-light-sun.github.io/proj/shortcut-learning-in-grps/


Octo OpenVLART-1-X

Episode Start

Episode End

Environment: RT-1 environment + Coke can

Instructed Task : Put the spoon on the towel (from Bridge Dataset)
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Figure 1: Demonstrations of shortcut learning in generalist robot policies. Left: Three generalist
robot policies trained on the OXE dataset exhibit shortcut behavior in the SIMPLER environment
[4]. Despite being tasked with “put the spoon on the towel”, a task present in the Bridge sub-dataset
[5], all models consistently perform the task “pick up the coke” which is exclusive to the RT-1 sub-
dataset [6]. Right: π0 [7] policy after finetuning on real-world data exhibits shortcut behavior. The
policy was finetuned on two distinct data subsets: (Viewpoint A, Instruction C) and (Viewpoint B,
Instruction D). When tasked with instruction D from the novel configuration of Viewpoint A, the
policy incorrectly executes Instruction C. This indicates that the policy has learned to associate the
viewpoint with the action, ignoring the provided instruction.

including visual, semantic, and behavioral aspects [18]. This limitation cannot be ascribed to a
deficiency in data, as the scale of OXE—comprising over one million episodes—surpasses that of
datasets typically employed for training vision-language models, which generally consist of fewer
than one million images and yet exhibit strong generalization capabilities [19]. So, what hinders
generalization in robot policies?

In this paper, we identify shortcut learning—a model’s reliance on spurious correlations between ac-
tions and task-irrelevant components of observations—as a significant contributor to this limitation
in generalization. As illustrated in Figure 1, by learning from confounding factors such as viewpoint,
background, and texture, the model fails to capture the true causal relationships between observa-
tions and actions. Consequently, it may overlook essential elements like language instructions and
target objects, thereby restricting its ability to generalize beyond the training distribution.

To investigate the root causes of shortcut learning in generalist robot policies, we conduct a detailed
analysis of the widely used OXE dataset. Our visual and textual feature analysis reveals two crit-
ical issues: (1) limited diversity within sub-datasets, and (2) significant disparities between them,
resulting in dataset fragmentation. Through theoretical analysis and controlled experiments, we
demonstrate that both characteristics contribute to shortcut learning. Based on these findings, we
derive key insights for improved robot dataset collection strategies, summarized below:

1. Ensure diversity in both task-relevant and task-irrelevant observation factors within each sub-
dataset (Figure 6), while maintaining factor independence during data collection (Figure 7).

2. Maintain substantial overlap in the most important factors across sub-datasets (Figure 6), pre-
serving consistency for less critical factors (Section 5).

3. Allow slightly larger distributional disparities for task-relevant factors between sub-datasets,
while minimizing disparities in task-irrelevant factors (The last paragraph in Section 3.2).

Furthermore, we give suggestions on how to alleviate the shortcut learning in existing offline
datasets, facilitating scenarios where collecting new data is infeasible. We demonstrate that care-
fully selected robotic data augmentation strategies can effectively increase the diversity within sub-
datasets and decrease their differences. Our experiments, conducted in SIMPLER [4] and real-world
environment, confirm that these augmentation strategies can significantly alleviate shortcut learning
in Generalist Robot Policies like π0, and improve generalization performance.
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Figure 2: Comparison of visual (left) and text (right) diversity (log scale) between OXE Sub-Datasets
and vision/multimodal Datasets. OXE sub-datasets exhibit significantly lower diversity compared to their
vision and multimodal counterparts. We simply chose t = 20 as it does not influence the general trend.

2 Analysis of Dataset Diversity and Fragmentation of Robot Datasets

In this section, before delving into the details of shortcut learning, we analyze the sub-dataset di-
versity and fragmentation of current large-scale robot datasets. Our discussion centers on the OXE
dataset [10], the largest open-source robot dataset utilized for the pretraining of generalist robot poli-
cies [10, 13, 14, 7, 16, 20]. Specifically, we focus on OXE Magic Soup++ [13], which comprises 27
sub-datasets from OXE that have been carefully selected to ensure high quality and have been used
in several models [13, 14, 7, 16]. Given that current robot datasets for large-scale pretraining simi-
larly consist of diverse sub-datasets [15, 21, 22, 20], the insights derived in this section are broadly
applicable.

As most generalist robot policies use vision observations and language instructions for making ac-
tions, we utilize visual and language features of the datasets to measure the diversity within sub-
datasets and disparities between them, as also suggested by [18]. For visual features, we use the
concatenation of features from pretrained DINOv2 [23] and SigLIP [24] as they are shown to give
complementary information about images [25, 26]. We focus solely on the initial visual observation
of each episode, as subsequent frames typically exhibit minimal variation. Language features are
extracted using CLIP [27] for its strong vision-language alignment. To quantify the diversity within
a sub-dataset Di, we adopt the uniformity metric proposed by [28]:

SDi

diversity ≜
1

Eu,v∼Di

[
e−t∥u−v∥2

2

] ,
which is maximized when the feature vectors within the sub-dataset are uniformly distributed on the
unit sphere [28], indicating maximum diversity (we normalize all features before calculation). This
aligns with the entropy measure used in Section 3 to quantify diversity. As illustrated in Figure 10,
the temperature parameter t serves as a soft threshold, modulating the influence of pairwise distances
∥u − v∥22 on the diversity metric. A larger t sharpens the effective influence range, ensuring only
highly similar vectors contribute significantly.

Similarly, the disparity metric is defined as the inverse of the expected pairwise similarity between
datasets:

Sdisparity ≜
m(m− 1)∑

i̸=j Eu∼Di,v∼Dj

[
e−t∥u−v∥2

2

] ,
where we assume there are m sub-datasets. In the followings, we derive insights by comparing
Sdiversity and Sdisparity metrics obtained from the OXE dataset with those from commonly used vi-
sion and multimodal datasets for pretraining large-scale vision models and vision-language models.

Large-scale robot datasets exhibit limited diversity within individual sub-datasets. As depicted
in Figure 2, the visual and textual diversity across all sub-datasets within OXE is markedly lower
than that of vision and multimodal datasets. Even the most recent dataset, DROID [9], which aims
to improve diversity, remains significantly less diverse by several orders of magnitude. This limited
diversity within sub-datasets primarily stems from intrinsic constraints in the collection process of
robot datasets. Factors such as scenes and viewpoints are challenging to vary significantly across
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Vision and multimodal datasets OXE Magic Soup++

Figure 3: Comparison of t-SNE visualizations for vision/multimodal datasets (left) versus OXE Magic
Soup++ (right). The figure shows the clear data fragmentation in the OXE dataset, in contrast to the more
intertwined data structure observed in the visual and multimodal datasets.

episodes, resulting in a lack of portability compared to web-based vision-language datasets. An-
other reason is that, as shown in Figure 13, the robotic skills within each sub-dataset are typically
predefined, restricting them to a narrow spectrum of tasks.
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Figure 4: Comparison of the
visual disparity metric Sdisparity

(top) and the combined metric
Sdisparity

Sdiversity
(bottom) between OXE

and vision/multimodal datasets at
different temperatures.

Large-scale robot datasets are fragmented across sub-datasets.
We present the visualization of visual features using t-SNE in Fig-
ure 3. Unlike vision and multimodal datasets, where different
datasets are often intertwined, the sub-datasets of OXE exhibit dis-
tinct separations with minimal overlap. Furthermore, some sub-
datasets have several separated clusters, effectively fragmenting the
whole dataset into more sub-datasets with smaller size. We show
examples in Appendix C and further discuss this in Section 3.3.

The top plot in Figure 4 presents the disparity metric Sdisparity for
OXE. Notably, it is higher than that of vision/multimodal datasets
at higher temperatures and lower at lower temperatures. This char-
acteristic is typical of robot datasets: distances between data points
from different OXE sub-datasets are concentrated within a specific
range. Conversely, distances between data points from different vi-
sion and multimodal datasets are more dispersed. Two key factors
contribute to this pattern: (1) Robotic scenarios are usually confined
to limited in-room tabletop domains, which restricts the maximum
possible distances and results in overall high similarity, thus lower disparity at lower temperatures.
(2) Fragmentation of data across sub-datasets prevents distances from falling below a certain thresh-
old, establishing a lower bound, which leads to higher disparity when only close data points are
considered at higher temperatures.

The bottom plot in Figure 4 illustrates the ratio Sdisparity

Sdiversity
, which integrates both diversity and dis-

parity metrics to assess the extent of dataset fragmentation. Both a deficiency in diversity within
sub-datasets and an increase in disparity between them result in sub-datasets behaving like isolated
“points” scattered across the space, rather than forming a cohesive, interconnected dataset.

Task instructions are distinct but similar across sub-datasets. Despite the lack of overlap in
task instructions between sub-datasets, as shown in the left plot of Figure 12 and Table 3, text fea-
tures from different sub-datasets are closer in space compared to those from vision and multimodal
datasets. This similarity arises from shared robotic skills, such as pick-and-place and open/close
tasks, and the consistency of text instructions within the same domain.

3 The Role of Dataset Diversity and Fragmentation in Shortcut Learning

In this section, we prove that both of the lack of diversity within sub-datasets and a large disparity
(fragmentation) between them lead to shortcut learning. We first describe shortcut learning in detail.
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3.1 Shortcut Learning

In the standard supervised or imitation learning framework, we aim to learn a model πθ(y|x) that
maps an observation x to a target y. Following prior work [29], we assume that any observa-
tion x is generated from a set of underlying “observation factors.” These factors can be divided
into two groups: task-relevant factors (u), such as object positions or language instructions, which
causally determine the target y (i.e., p(y|x) = p(y|u)); and task-irrelevant factors (v), such as im-
age backgrounds, viewpoints, or robot arm type. Shortcut learning is characterized as the scenario
where the learned model πθ improperly relies on these irrelevant factors, meaning its prediction is
not conditionally independent of v given u (πθ(y|x) ̸= πθ(y|u)). This critical issue arises when,
within the training distribution, the task-relevant and task-irrelevant factors are not independent, i.e.,
ptrain(u, v) ̸= ptrain(u)ptrain(v). This statistical dependency induces a spurious correlation be-
tween the irrelevant factor v and the target y, which the model may exploit. Consequently, a model
that learns via such shortcuts will exhibit poor performance on out-of-distribution data where these
spurious correlations are no longer present.

3.2 The Reasons Behind Shortcut Learning on Robot Data

We first establish a mathematical framework to analyze how correlations can arise in a dataset com-
posed of multiple distinct sub-datasets. Consider a dataset D characterized by two random vari-
ables, u ∼ pu(u) and v ∼ pv(v), with supports U, V ⊂ R. We model D as a mixture of m sub-
datasets, {D1, D2, . . . , Dm}, where each sub-dataset Di has its own distributions ui ∼ pui(ui) and
vi ∼ pvi(vi) with supports Ui and Vi. The overall supports are thus U = ∪mi=1Ui and V = ∪mi=1Vi.

We make the following simplifying assumptions for our analysis:

1. Intra-dataset Independence: Within any given sub-dataset Di, the variables ui and vi are
independent, i.e., pi(u, v) = pui

(u)pvi(v).

2. Uniform Mixture: The overall dataset D is a uniform mixture of the sub-datasets, such that
pu(u) =

1
m

∑m
i=1 pui(u) and pv(v) =

1
m

∑m
i=1 pvi(v).

The first assumption is approximately valid, as each sub-dataset is collected under controlled con-
ditions, minimizing the introduction of dependencies between factors. To quantify the correlation
between u and v across the entire dataset D, we use the normalized mutual information:

I(u, v) =
2I(u, v)

H(u) +H(v)
,

where I(u, v) is the standard mutual information and H(·) is the Shannon entropy. For simplicity,
the following propositions are presented for the case of m = 2 sub-datasets.
Proposition 3.1 (Mutual information in disjoint sets). Given two sub-datasets where the supports for
both variables are disjoint, i.e., U1 ∩U2 = ∅ and V1 ∩ V2 = ∅, the normalized mutual information
between u and v is given by:

I(u, v) =
4

Cdiversity + 4
, (1)

where Cdiversity = H(u1) +H(u2) +H(v1) +H(v2) is the sum of entropies.
Proposition 3.2 (Mutual information in overlapping sets). Given two sub-datasets with potentially
overlapping supports, let U12 = U1 ∩ U2 and V12 = V1 ∩ V2. The normalized mutual information
is bounded by:

I(u, v) ≤ 1− Cdiversity

Cdiversity + (4− Cinterleave)
, (2)

where Cinterleave =
∑

u∈U12
[pu1

(u) + pu2
(u)] +

∑
v∈V12

[pv1(v) + pv2(v)] quantifies the degree
of overlap (interleaving) between the sub-datasets.

The propositions above provide a formal basis for our core claims, resting on two key assumptions:
first, we model task-relevant and task-irrelevant factors as variables u and v, respectively. Second,
we assume that large, multi-source datasets like OXE can be approximated by our mixture model.
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Lack of diversity strengthens spurious correlations. Proposition 3.1 mathematically demon-
strates this intuition. It shows that when sub-datasets are highly fragmented (disjoint supports),
the mutual information (our proxy for spurious correlation) is inversely proportional to Cdiversity

(our proxy for the total diversity within sub-datasets). A robotic model trained on such a dataset
can easily learn to associate a task-irrelevant factor (e.g., a specific viewpoint) with a particular
sub-dataset, which in turn reveals information about the task-relevant factor, creating a shortcut.

Interleaving sub-datasets weakens spurious correlations. Proposition 3.2 provides theoretical
support for this claim. It shows that as the degree of interleaving (Cinterleave) increases, the upper
bound on the mutual information tightens and moves towards zero. Intuitively, when sub-datasets
share common factors (e.g., the same objects appear from multiple viewpoints), it becomes impos-
sible for the model to use those factors as reliable shortcuts to identify the sub-dataset of origin,
forcing it to learn the true causal relationships.

Impact of the disparity between non-overlapping sub-datasets on shortcut learning. While
Proposition 3.2 elucidates how sub-dataset intersections affect shortcut learning, the influence of
distance between non-overlapping sub-datasets remains less clear. As shown in Section 2, the
OXE dataset exhibits minimal interleaving of visual and textual features across sub-datasets, yet
the textual feature distance (u) is notably smaller than the visual distance (v). We hypothesize
that larger sub-dataset distances in task-irrelevant features exacerbate shortcut learning. This stems
from two key observations: (1) neural networks prioritize learning simpler patterns first [30, 31],
and (2) larger feature distances imply greater variance. When task-irrelevant features have sub-
stantially greater between-sub-dataset distances than task-relevant ones, models preferentially learn
these higher-variance features, forming shortcuts. In OXE, this explains the model’s tendency to
rely on visual cues over text instructions (Figure 1). We formalize this intuition through gradient
analysis of linear models in Appendix J.

3.3 Experimental Verification on LIBERO

Sub-dataset A Sub-dataset B

Tr
ai

ni
ng

Ev
al

ua
ti
on

OOD 1 OOD 2

Viewpoint ViewpointPosition

Figure 5: An example of
our LIBERO experiment set-
ting, with only one task (or
equivalently, one object posi-
tion/language) within each sub-
dataset.

To empirically validate our theoretical claims that low intra-dataset
diversity and high inter-dataset disparity foster shortcut learning,
we conduct controlled experiments on the LIBERO-Spatial task
suite [32]. In this setup, featuring a simulated Franka Emika Panda
arm with demonstrations containing camera images and language
instructions, we define the task-relevant factors (u) as the object’s
position and the corresponding language instruction. The camera
viewpoint serves as the primary task-irrelevant factor (v), mirroring
the significant viewpoint variations observed across sub-datasets in
large-scale robot datasets like OXE. We also include a real-world
experimental verification in Appendix D.

To quantify shortcut learning, we construct a training dataset with a
strong spurious correlation between a task-irrelevant viewpoint and
a task-relevant object position, and then evaluate the trained policy
on out-of-distribution (OOD) configurations where this correlation
is broken. We systematically vary the properties of the training data,
such as viewpoint diversity (the radius of the viewpoint range) and viewpoint disparity (the distance
between viewpoint centers), to analyze their impact. Performance is measured by two key metrics:
(1) the OOD success rate, which directly measures generalization, and (2) the degree of shortcut
learning, a human-assessed score quantifying the model’s reliance on the spurious viewpoint cue.
Further experimental details are available in Appendix E.

Models. We evaluate three models: (1) Diffusion Policy [33], a purely visual policy without lan-
guage input, utilizing a ResNet-18 architecture; (2) MiniVLA [34], a VLA with the same autore-
gressive structure as OpenVLA [14], but with fewer than 1 billion parameters; (3) π0 [7], a strong
VLA employing a flow matching objective, pretrained on large-scale robot datasets. While Diffu-
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Figure 6: Impact of sub-dataset diversity and disparity on the degree of shortcut leaning and out-of-distribution
(OOD) performance of robot policies, analyzing task-relevant factors (object position, language) and task-
irrelevant factors (viewpoint). Note: Performance metrics are not directly comparable across models due to
intentionally varied experimental settings (see Appendix E.4).

sion Policy and MiniVLA are trained from scratch, we finetune π0 from the pretrained checkpoints
with LoRA in order to investigate whether pretrained models are still prone to shortcut learning.

Results. As shown in Figure 6, enhancing diversity within sub-datasets and minimizing disparity
between them effectively reduces shortcut dependencies across all evaluated models, aligning with
our theoretical analysis. This improvement holds for both task-irrelevant (e.g., viewpoint) and task-
relevant factors (e.g., object positions and language variations). Notably, when diversity is increased
or disparity decreased, all models transition from complete shortcut reliance (zero success rate) to
shortcut-free performance (nonzero success rates). We also note that, increasing object position
diversity does not mitigate shortcut learning in the diffusion policy, likely due to the absence of lan-
guage input. This suggests that without linguistic cues, the model struggles to identify task-relevant
features from visual observation alone, underscoring the importance of language instructions.

Task 1-5 Task 6-10

Task 1

Viewpoint 1 Viewpoint 2

Viewpoint 1

Task 10

Viewpoint 10Viewpoint 2

Task 2

Training -- 2 Viewpoints

Training -- 10 Viewpoints

MiniVLA

Figure 7: Diversity does not always help. Increasing viewpoint
diversity by assigning each task a distinct viewpoint induces factor
correlations in sub-datasets, aggregating fragmentation.

Diversity does not always help. Pre-
vious results are obtained under the
assumption of independence of fac-
tors within sub-datasets. When di-
versity breaks factor independence
within sub-datasets (e.g., some sub-
datasets of OXE; see Figure 11), frag-
mentation worsens. As illustrated
in Figure 7, increasing viewpoint di-
versity from 2 to 10—while assign-
ing distinct viewpoints to individ-
ual tasks—introduces shortcuts and
drops OOD success of MiniVLA to
zero. Here, viewpoint diversity frag-
ments the original sub-datasets into 10 disjoint subsets, exacerbating fragmentation. This under-
scores the need for controlled diversity that preserves factor independence and avoids sub-
dataset fragmentation during data collection.

4 Alleviating Shortcut Learning in Offline Datasets via Data Augmentation

Given that collecting large-scale, perfectly balanced robot datasets from scratch is often prohibitively
expensive, a practical alternative is to improve existing offline datasets. In this section, we investi-
gate whether targeted data augmentation strategies can effectively increase sub-dataset diversity and
decrease distributional disparities, thereby mitigating shortcut learning.

4.1 Viewpoint Augmentation to Bridge Visual Gaps
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(Right camera, watermelon, None)

Figure 8: Demonstrations of data augmentations used in Section 4. Left: Viewpoint augmentation from one
viewpoint to another. Right: Object augmentation that swaps the positions of objects.

Model Shortcut degree ↓ OOD success rate ↑
π0 baseline 0.6 0.2

+ viewpoint aug 0.15 0.55

Table 1: Viewpoint augmentation experiment.

Spurious correlations between cam-
era viewpoints and specific tasks are
a usual cause of shortcut learning. To
address this, we explore the use of
viewpoint augmentation methods [35, 36]. In our π0 fine-tuning experiment (Setup detailed in
Section D), we synthetically expand each sub-dataset by generating images from the other’s per-
spective. Specifically, we employ the ZeroNVS model [37] to augment viewpoint A to B and vice-
versa for every image, as illustrated in Figure 8. This process effectively breaks the fragmentation
of viewpoint factors across the sub-datasets. As evidenced by the results in Table 1, fine-tuning with
viewpoint-augmented data significantly reduces the degree of shortcut learning in π0 and leads to a
higher OOD success rate.

4.2 Object Augmentation to Unify Task Distributions

Model Shortcut degree

SIMPLER Real-world

π0 1.0 0.8
π0 + aug 0.68 0.25

Table 2: Comparisons between π0 with and
without object augmentations in the SIM-
PLER and real-world environment.

To address shortcuts arising from sub-datasets organized
around distinct target objects, we employ existing ob-
ject augmentation techniques [38, 8, 39]. By program-
matically swapping objects between different scenes, this
method effectively intertwines the object and language
distributions, thus reducing inter-dataset disparities (Fig-
ure 8). We validated this by fine-tuning a pretrained π0

model in both SIMPLER [4] and real-world environment (details in Appendix G). As shown in
Table 2, the results demonstrate a significant reduction in shortcut behavior. In contrast to the base-
line model, which completely fails to follow language instructions in OOD settings, the augmented
version exhibits substantially improved language-following and object-reaching capabilities.

5 Discussion and Conclusion

Our analysis reveals that the limited diversity and severe fragmentation in large-scale robot datasets
like OXE inherently promote shortcut learning, making naive data scaling detrimental to general-
ization. This conclusion is supported by the data curation strategies of recent state-of-the-art poli-
cies. These models achieve strong performance by either heavily filtering and re-weighting OXE’s
fragmented sub-datasets [40] or by abandoning it entirely in favor of meticulously controlled data
collections where some factors are fixed while others are systematically varied [41, 17].

The overarching takeaway is that pursuing generalization across all factors simultaneously is cur-
rently untenable. The most effective path forward is to strategically control the data collection
process: fix non-essential or difficult-to-vary factors while systematically diversifying those of
interest. This disciplined approach is crucial for preventing shortcut learning and provides a clear,
actionable framework for training the next generation of robust generalist policies.
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6 Limitations and Future Work

While this work provides critical insights into shortcut learning in generalist robot policies, we
acknowledge several limitations that open valuable avenues for future research.

Identifying specific shortcuts in large-scale datasets Although our work demonstrates the ex-
istence of shortcut learning, our analysis does not pinpoint the specific spurious correlations ex-
ploited by policies trained on massive, heterogeneous datasets like OXE, nor have we investigated
the hierarchy of these shortcuts. This limitation points to a clear direction for future work, which
should focus on developing fine-grained diagnostic tools and interpretability methods to automati-
cally identify the precise features that models rely on. Such research could involve causal analysis
or counterfactual evaluation on large datasets to understand which shortcuts are most dominant and
how they vary across different model architectures.

Measuring diversity of task-relevant factors Our quantitative analysis of dataset diversity and
disparity primarily focused on task-irrelevant visual features. Due to the significant challenges of
collecting and annotating large-scale behavioral data, we could not precisely measure the diversity
of task-relevant factors, such as the distribution of target object positions or grasp affordances. To
address this, we encourage the development of more sophisticated metrics that can capture the com-
plexity of action-centric and object-centric diversity. Exploring semi-supervised or self-supervised
methods to automatically label these task-relevant factors would enable a more complete under-
standing of data quality. Exploring shortcut learning relevant to other observation modalities like
proprioceptions [42] and tactile observations is also a promising future direction.

Scalability and generalization of data augmentation Our experiments successfully show that
targeted data augmentations can mitigate shortcut learning on a controlled scale, but we have not
demonstrated their effectiveness on extremely large datasets like the full OXE collection. The com-
putational cost and potential for introducing artifacts with current augmentation models remain sig-
nificant challenges at scale. Therefore, a crucial next step is to develop highly efficient, robust,
and automated data augmentation pipelines suitable for millions of trajectories. Future work could
also systematically compare different augmentation strategies to create a practical guide on the best
trade-off between computational cost and performance gain.

Real-world complexity Although we validated our findings in both simulation and real-world
setups, the scale and complexity of our real-world experiments are inherently limited and may not
fully capture all potential failure modes. Consequently, more extensive real-world studies are needed
to validate our findings across a wider range of physical robots, environments, and tasks, including
long-term deployments to observe if new, unforeseen shortcuts emerge over time.

Exploring model-centric solutions Our proposed solutions are primarily data-centric, focusing
on improving the dataset itself. We did not explore model-centric approaches, such as how different
model architectures, training objectives, or regularization techniques might inherently resist shortcut
learning, even when trained on fragmented data. A promising future direction is to conduct a com-
parative analysis of how different model architectures and learning paradigms interact with dataset
biases. Investigating hybrid approaches that combine data-centric enhancements with model-centric
regularization techniques could lead to the most robust and generalizable robot policies.
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A Related Work

Generalist robot policies. Following the trend in machine learning research, multiple works have
developed robotic foundation models [6, 12, 13, 15, 43, 44, 14, 45], in particular Vision-Language-
Action (VLA) models [12, 14, 7, 16, 46, 47, 48, 17, 20, 41, 49, 50, 34, 51]. By pretraining on
increasingly large robot datasets [10, 52, 5, 9, 8, 53, 11], these models produce generalist robot
policies that excel at a wide variety of tasks and exhibit some degree of generalization [12, 13].
However, research by [18] suggests that training on large-scale datasets does not significantly en-
hance the generalization capabilities of these policies. In particular, current models still struggle to
generalize to many environmental changes, including viewpoint, language, object poses, etc. Our
work delves into the problem and shows that limited diversity within individual sub-datasets, and
significant distributional disparities across sub-datasets lead to shortcut learning of policies, which
hinders generalization. Recent VLAs such as π0 [7], π0.5 [41], and Gemini Robotics [17] have
demonstrated enhanced generalization capabilities by collecting diverse, large-scale datasets within
controlled environments, where certain factors such as tasks, scene types, and embodiments are
fixed, while others are varied. This mitigates data fragmentation, supporting our theoretical frame-
work.

Shortcut learning in neural networks. Neural networks are known to exploit spurious correlations
for decision-making, leading to the shortcut learning of non-robust features or confounding factors,
which can significantly hinder generalization [54, 55, 56]. In vision tasks, neural networks have
been observed to rely on multiple task-irrelevant factors, including image backgrounds [57, 58,
59, 60], secondary objects [61, 62, 63, 64, 65, 66], object textures [67] and other confounding
factors [68, 69]. In the language domain, recent studies have demonstrated that large language
models tend to exploit dataset biases as shortcuts for making predictions in various downstream tasks
[70, 71, 72, 73]. While there are a few works discussing shortcut learning in reinforcement learning
[74, 75, 76, 77, 78] and imitation learning [79, 80, 81, 82, 83], to the best of our knowledge, we
are the first to investigate shortcut learning in generalist robot policies developed through imitation
learning on large-scale datasets. Building on this work, recent studies have proposed new methods
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Spatially intertwined Spatially seperated

Figure 9: Experimental setup for object position layouts across 10 tasks. Objects from the same
sub-dataset share the same color. In the left plot, object positions are spatially intertwined between
sub-datasets, whereas in the right plot, they are spatially separated. Unless otherwise specified,
experiments employ the high-disparity configuration (right).

to mitigate shortcut learning in gereralist robot policies, either by modifying the training data [84]
or through training-free approaches [85].

Recent works have also applied information-theoretic concepts to robotics. For instance, Hejna et
al. [86] use mutual information estimators to score the quality of individual demonstration trajecto-
ries for data curation, focusing on intra-trajectory properties like action diversity and predictability.
Separately, Bai et al. [87] apply the Information Bottleneck principle as a regularization technique
during training to mitigate redundancy in the model’s latent representations. Our work is distinct
from both. Rather than using mutual information as a trajectory scoring function or a model reg-
ularizer, we employ it as a diagnostic tool at the dataset-structure level. Our analysis reveals how
properties between sub-datasets—namely fragmentation and limited diversity—give rise to spuri-
ous correlations. We demonstrate that these structural flaws are a root cause of shortcut learning, a
problem orthogonal to the quality of individual trajectories or the redundancy of a model’s learned
representation.

Recent research has increasingly recognized the critical role of data quality in imitation learning,
moving beyond simple heuristics like dataset size. For instance, Belkhale et al. [88] provide a
formalism for data quality through the lens of distribution shift, identifying key intra-trajectory
properties like action divergence and transition diversity as crucial for policy performance. Operat-
ing at the level of entire datasets, Hejna et al. [89] tackle the challenge of composing large-scale,
heterogeneous data mixtures. Their method, Re-Mix, uses distributionally robust optimization to
learn optimal sampling weights for different data domains, demonstrating that the composition of
the training data has an outsized impact on the final policy’s generalization capabilities. While these
works aim to mitigate distribution shift by analyzing trajectory-level properties or by optimizing the
dataset mixture, our work addresses the distinct but related problem of shortcut learning. Our con-
tribution is a novel analysis at the dataset-structure level. We use information-theoretic principles
not as a trajectory scoring function or a mixture optimization objective, but as a diagnostic tool to
reveal how structural flaws—namely high fragmentation and low diversity across sub-datasets—are
a fundamental cause of the spurious correlations that lead to shortcut behaviors. Thus, our focus is
on diagnosing the origin of a specific failure mode rooted in the dataset’s structure, rather than on
general data curation or mixture optimization.

A recent study [90] also investigates generalization across factors in a compositional manner, similar
to the setting we study in Figure 1. However, the primary focus of that work is on optimizing data
collection to cover all possible factors, rather than investigating shortcuts or spurious correlations.

B The Influence of Temperature

In Figure 10, we present a visualization of the similarity metric function e−t∥x∥2
2 , as discussed in

Section 2. This function is examined under varying values of the temperature parameter t. As
t increases, the function’s value approaches zero more rapidly. Consequently, the temperature t
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Figure 10: The similarity metric in [28] when varying the temperature t.

Sub-dataset 1

Berkeley Autolab UR5

Sub-dataset 2

Language Table

CMU Stretch

Figure 11: Three fragmented sub-datasets from OXE, each demonstrating distinct fragmentation
patterns: (1) CMU Stretch, decomposable into disjoint scenes and tasks; (2) Berkeley Autolab UR5,
featuring several factor with time-correlated variations (e.g., background and tasks); (3) Language
Table, with only one sparsely changing factor (e.g., lighting).

effectively establishes a soft threshold, which governs the range of ∥x∥2 over which the function
maintains a value greater than zero.

C Additional Dataset Analysis

Sub-Dataset Fragmentation Analysis Figure 11 illustrates three characteristic fragmentation pat-
terns of sub-datasets in OXE: (1) Language Table exhibits natural clustering due to infrequent light-
ing changes, creating factor-independent subsets without inducing shortcut learning; (2) Berkeley
AutoLab UR5 demonstrates unintended time-correlated variations where task segments coincide
with background changes from human activity, creating spurious task-background correlations that
promote shortcut learning; (3) CMU Stretch (OXE sub-datasets) contains disjoint scenes with si-
multaneously varying environmental factors and tasks, forming strongly correlated subsets that ex-
acerbate shortcut learning. These patterns highlight how different data collection processes of each
sub-dataset can inadvertently create problematic correlations between environmental factors and
tasks, aligning with our experiment results in Figure 7.
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Figure 12: Comparison of the textual disparity metric Sdisparity (left) and the combined metric
Sdisparity

Sdiversity
(right) between OXE and vision/multimodal datasets at different temperatures.
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Figure 13: The number of distinct tasks (languages) within each sub-dataset of OXE. Most sub-
datasets only have less than 10 tasks, which leads to extremely low task diversity.

D Real-World Experimental Verification
Sub-dataset 1:

Viewpoint A + Instruction C

New instruction:  Place paper in basket  

Added to sub-dataset 1:
New instruction + Viewpoint A

Added to sub-dataset 2:
New instruction + Viewpoint B

Sub-dataset 2: 
Viewpoint B + Instruction D

Original

Newly
Added

Figure 14: Building a “bridge” to connect sub-
datasets for the π0 fine-tuning experiment. Data
from a third object is added under both view-
points.

To validate our theoretical conclusions from Sec-
tion 3.2 in a physical environment, we conducted
a real-world experiment. The setup, similar to the
one depicted in Figure 1, utilized an AgileX PIPER
robotic arm and two cameras positioned at differ-
ent viewpoints. Initially, we constructed two distinct
sub-datasets. Each sub-dataset represented a unique
combination of a camera viewpoint (a task-irrelevant
factor) and a target object with its corresponding in-
struction (task-relevant factors). As demonstrated in
our preliminary findings (Figure 1), a π0 model fine-
tuned on these two highly-correlated sub-datasets
exhibited severe shortcut learning; it learned to as-
sociate the viewpoint with the action, ignoring the
language instruction.

To investigate how increasing sub-dataset diversity and reducing inter-dataset disparity could mit-
igate this issue, we introduced new data. Specifically, we added demonstrations involving a third
target object, captured from both camera viewpoints (as shown in the bottom row of Figure 14). This
new data acts as a “bridge” between the original two sub-datasets. By doing so, we simultaneously
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Table 3: Sub-dataset task overlap statistics of OXE
Metric Value

Total tasks 182,158
Total overlapping tasks between datasets 165
Percentage of overlapping sub-dataset pairs 3.70%

increased the instruction diversity within each sub-dataset and decreased the disparity between them,
as they now share a common instruction factor.

Model Shortcut degree ↓ OOD success rate ↑
π0 baseline 0.6 0.2

+ third object 0 0.75

Table 4: “Third object” experiment.

The results, summarized in Table 4,
are compelling. The addition of
the third “bridge” object completely
eliminated the observed shortcut be-
havior, leading to a substantial im-
provement in OOD success rate. By learning from data where the object and instruction were
consistent across different viewpoints, the model successfully learned viewpoint invariance. This
experiment not only confirms our theoretical framework in a real-world setting but also suggests a
valuable strategy for data collection: deliberately creating “bridge” data by varying one factor while
keeping others constant can effectively connect disparate sub-datasets, break spurious correlations,
and enhance the generalization capabilities of robot policies.

E LIBERO Experiment Details

E.1 Model Implementation and Training

For our analysis, we implemented and trained three distinct models, each with specific configura-
tions:

• Diffusion Policy: This model uses a ResNet-18 vision backbone with images resized to
84 × 84. It was trained for 30,000 iterations (batch size 128) using an AdamW optimizer
(learning rate 1 × 10−4, weight decay 1 × 10−6). The model takes a 2-step observation
history as input, excluding proprioception. Training required approximately 5 hours on a
single NVIDIA 3090 GPU.

• MiniVLA: This vision-language-action model uses Vector-Quantized action chunks (hori-
zon=8) and was trained without wrist camera images, proprioception, or historical state
data. It was optimized for 10,000 steps (batch size 128) with a constant learning rate of
2× 10−5. Training was distributed across eight NVIDIA A6000 GPUs and took 5 hours.

• π0: This model integrates a PaliGemma 2B backbone (using LoRA) with a 300M-
parameter action expert (action dimension 32, horizon 50). It was trained for 10,000
steps (batch size 32) using AdamW with a cosine decay learning rate schedule (1,000-step
warmup to a peak LR of 2.5× 10−5, decaying to 2.5× 10−6 over 30,000 steps). Training
took 8 hours across four NVIDIA A6000 GPUs.

E.2 Experimental Environment and Task Setup

Our evaluations were conducted within the LIBERO-Spatial suite. The fundamental goal for all 10
manipulation tasks is to place the target bowl into the red plate.

• Task-Relevant Factors: The 10 distinct tasks are defined by the initial position of the tar-
get bowl (e.g., in a drawer, on a shelf). The corresponding language instruction changes
accordingly to reflect this initial position (e.g., ”pick up the bowl in the top drawer and
place it on the red plate”).
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• Task-Irrelevant Factor: We focused on the camera viewpoint, defined by θ ∈
[−10◦, 90◦], as the primary task-irrelevant factor.

• Scene Simplification: The original LIBERO environment contains two bowls. To better
isolate the factors of interest, we removed one bowl, leaving only a single target object
(marked in red in Figure 5). This simplification also accommodates vision-only models
like Diffusion Policy.

Training and Evaluation Protocol. For each experiment, we construct a training dataset composed
of two distinct sub-datasets, DA and DB . Each sub-dataset is generated to create a strong spuri-
ous correlation between the task-irrelevant viewpoint and the task-relevant position. For instance,
demonstrations in DA exclusively pair a specific range of viewpoints (Viewpoint Range A) with a
specific set of object positions (Position Set A), while DB pairs Viewpoint Range B with Position
Set B. The model is trained on the combination of DA and DB . To quantify shortcut learning, we
evaluate the trained policy on out-of-distribution (OOD) configurations where the learned spurious
correlations are broken. Specifically, the evaluation consists of two controlled settings: (1) tasking
the model with object positions from Set B but from viewpoints within Range A, and (2) the reverse
pairing (positions from Set A, viewpoints from Range B). A model relying on the viewpoint shortcut
would fail, as it would incorrectly associate the viewpoint with the training-time positions, ignoring
the actual object position and instruction.

Experimental Variables and Metrics. We systematically vary the properties of the training data
to analyze their impact. Viewpoint diversity is the radius of the viewpoint range within each sub-
dataset, while viewpoint disparity is the distance between the centers of the two viewpoint ranges.
To study the effect of task-relevant diversity and disparity, we vary the number of object positions
per sub-dataset (from 1 to 5) and their spatial layout (intertwined vs. separated, see Figure 9).
Performance is measured by two key metrics: (1) the OOD success rate, averaged over the two
OOD settings, which directly measures generalization, and (2) the degree of shortcut learning,
a human-assessed score quantifying the model’s tendency to perform the wrong task based on the
irrelevant viewpoint cue (lower is better). To ensure fair comparisons, for a given model, the OOD
evaluation viewpoint is kept consistent within each experimental set (e.g., a curve in one plot), where
we vary data diversity or disparity.

E.3 Data Collection

For each experimental setting shown in Figure 6, we used 200 demonstrations for each task. These
were generated by sampling 4 random viewpoints for each of the 50 base trajectories provided by
LIBERO for that task.

E.4 Protocol for Viewpoint Diversity and Disparity Experiments

• Parameter Selection Strategy: For both the diversity and disparity experiments, the spe-
cific viewpoint centers and radii were not chosen arbitrarily. They were systematically
selected to identify the critical range where the policy’s behavior transitions from ro-
bust to shortcut-reliant. This allowed us to precisely map out the model’s sensitivity to
these dataset properties.

• Diversity Protocol (Fig. 6 Left): We systematically increased the range (radius) of view-
points for each task during training, while holding the centers of the viewpoint distributions
constant. Evaluation was performed at fixed, out-of-distribution viewpoints to fairly assess
generalization.

• Disparity Protocol (Fig. 6 Middle): Conversely, we varied the distance between the cen-
ters of the viewpoint distributions while keeping their radius constant and narrow. To
ensure a challenging test, evaluation points were always selected from the boundaries of
the opposing task’s distribution.
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F Real-world Experiment Setup

This section details the setup for the two distinct real-world experiments presented in the paper. Both
experiments utilize an AgileX PIPER robotic arm and are observed by two cameras from different
viewpoints.

F.1 Experiments in Figure 1

This experiment is designed to test if a model exhibits shortcut learning when task-irrelevant factors
are confounded, even when all objects are present during training.

• Task-Relevant Factors: The identity of the target object (banana or watermelon) and the
corresponding language instruction (”place tissue bag into the plate” or ”place snack bag
into the plate”).

• Task-Irrelevant Factor: The camera viewpoint (left or right camera).

• Training Data Setup: Two sub-datasets were created.

– Sub-dataset 1: The instruction is ”place tissue bag into the plate”, collected exclu-
sively from the left camera.

– Sub-dataset 2: The instruction is ”place snack bag into the plate”, collected exclu-
sively from the right camera.

• Data Collection Details: A key difference from the object augmentation experiment is
that during the collection of each demonstration, both the tissue bag and the snack bag
were present on the table. The only sources of randomness were the minor variations in
the orientation of the objects and the slight shifts in their positions and the position of the
plate. We collected 20 demonstrations for each sub-dataset.

• Evaluation: The model is evaluated on its ability to follow the correct instruction when the
viewpoint is swapped (e.g., given the ”place snack bag...” instruction from the left camera’s
viewpoint). The model’s ability to follow the instruction was measured over 10 trials for
each condition.

F.2 Object Augmentation Experiments

This experiment is designed to create a strong spurious correlation between objects and multiple
visual factors (viewpoint and background) and to test if data augmentation can mitigate the resulting
shortcut behavior.

• Task-Relevant Factors: The identity of the target object (banana or watermelon) and the
corresponding language instruction.

• Task-Irrelevant Factors: The camera viewpoint, the background scene, and the positions
of objects.

• Training Data Setup (Confounded): These irrelevant factors were deliberately con-
founded with the task-relevant object.

– Sub-dataset 1 (”Banana Env”): The task ”put banana into the plate” was collected
exclusively from the left camera with a yellow tablecloth background.

– Sub-dataset 2 (”Watermelon Env”): The task ”put watermelon into the plate” was
collected exclusively from the right camera with no tablecloth.

• Data Collection Details: During training data collection for each sub-dataset, only the
single relevant object (either the banana or the watermelon) was present. The object was
randomly placed either on the plate or to its right. Each sub-dataset consists of 20 demon-
strations.
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Evaluation Example

Training Example

Figure 15: Real-world object augmentation experiment setup. Two cameras are positioned in
front of an AgileX PIPER robotic arm. For training, two distinct sub-datasets were created, each
featuring a single, specific combination of object type (banana or watermelon), camera viewpoint
(left or right), and background (with or without a yellow tablecloth). During evaluation, tests were
conducted on both two original combinations of viewpoints and backgrounds. In these evaluations,
both objects (banana and watermelon) were simultaneously present on the table, and the robot was
guided by language instructions referring to object-scene configurations not explicitly encountered
in the training combinations.

• Evaluation: To test for shortcut learning, the learned correlations were disrupted by in-
troducing out-of-distribution (OOD) objects into the scene (e.g., presenting the banana in
the right-camera, no-tablecloth environment) and providing the corresponding language in-
struction. The model’s ability to follow the instruction was measured over 10 trials for each
condition.

G Object Augmentation Details

G.1 Data Collection and Training Setup

For our experiments involving object augmentation, we established the following datasets and train-
ing protocols:

• SIMPLER Environment: We collected a total of 242 successful trajectories, comprising
116 from the RT-1 environment and 126 from the Bridge environment.

• Real-World Environment: We collected 20 demonstrations for each of the two distinct
sub-datasets.

• Training Protocol: All models, whether using original or augmented data, were fine-tuned
for 2,500 steps to ensure a fair comparison.

G.2 Augmentation Pipeline

Our object augmentation pipeline is designed to decouple objects from their original visual contexts.
It consists of the following three stages:

1. Step 1: Object Mask Library Creation. First, we build a comprehensive object mask
library (D). To do this, we apply Grounded-SAM2 to the initial frame of every episode in
our dataset. This allows us to extract high-quality segmentation masks for all target objects
as seen from various perspectives, creating a rich library of object assets.
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2. Step 2: Scene Preparation (Object Removal and Inpainting). Next, for each image (ot)
in a trajectory, we identify the target object specified by the language instruction (L). Us-
ing Grounded-SAM2 again, we segment this specific object to obtain its mask (morig) and
record its original position (via the bounding box center, corig). The object is then digitally
erased from the image, and an inpainting model seamlessly reconstructs the background
where the object was. This step yields a ”clean” background image, ready for augmenta-
tion.

3. Step 3: Object Swapping and Augmented Dataset Generation. Finally, we create the
augmented image. For a clean scene that originally contained a specific object (e.g., a
banana with mask dorig), we randomly sample a mask of a different object from our library
(e.g., a watermelon, daug ∈ D \ {dorig}). We then paste this new object into the clean
scene, carefully aligning its center with the original object’s location (corig). To create
a more challenging OOD scenario, we then re-introduce the original object into the same
scene to act as a distractor. The placement of this distractor depends on the environment: in
SIMPLER, it is placed at a random valid location, while in our real-world setup, it is placed
in one of the two predefined object locations. By applying this full procedure—swapping
the target and adding a distractor—across all images, we generate the final augmented
dataset where objects are fully decoupled from their contexts.

H Methodology for Human-Assisted Shortcut Scoring

To quantitatively measure the degree to which a policy relies on shortcut learning during out-of-
distribution (OOD) evaluations, we developed a human-assisted scoring methodology. This ap-
proach allows for a nuanced assessment of the robot’s behavior beyond simple binary success/failure
metrics.

The scoring process is conducted as follows:

1. Video Review: Human evaluators are presented with video recordings of every evaluation
trial for a given experimental setup. Each video captures the complete sequence of actions
taken by the robot policy from the start to the end of an episode.

2. Behavioral Judgment: For each video, the evaluator judges whether the policy’s actions
correspond to the given language instruction or if they revert to a “shortcut” behavior
learned from spurious correlations in the training data.

3. Scoring Rubric: A score is assigned to each trial based on a predefined rubric:

• Score = 1.0 (Clear Shortcut): The policy unequivocally ignores the instruction and
performs a clear shortcut action. For example, when instructed to interact with object
A from a viewpoint previously associated with object B, the policy ignores A and
attempts to interact with B.

• Score = 0.5 (Ambiguous or Partial Shortcut): The policy’s behavior is unclear or
appears to be a mix of the correct and shortcut actions. This includes cases where the
robot targets a location midway between the correct object (A) and the shortcut object
(B), or exhibits significant hesitation.

• Score = 0.0 (No Shortcut): The policy correctly attempts to follow the language in-
struction and does not exhibit any observable shortcut behavior, regardless of whether
the attempt is successful or not.

4. Final Score Calculation: The final “Degree of Shortcut Learning” for a model is calcu-
lated by averaging the scores from all of its evaluation trials. A score closer to 1.0 indicates
a strong tendency to rely on shortcuts, while a score closer to 0.0 indicates that the policy
is more robust to the spurious correlations present in the training data.
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I Proofs of Propositions in Section 3

Proof of Proposition 3.1:

Proof. Given the condition pu(u) = 1
2 [pu1

(u) + pu2
(u)] and H(u) = −

∑
u∈U pu(u) log pu(u),

we have

H(u) = −
∑
u∈U1

pu1(u)

2
log

pu1(u)

2
−

∑
u∈U2

pu2(u)

2
log

pu2(u)

2

=
H(u1) +H(u2)

2
+ 1.

The last equation comes from the fact that
∑

u∈U1
pu1

(u) log
pu1

(u)

2 = H(u1) + log 2 and

log22 = 1. Similarly, H(v) = H(v1)+H(v2)
2 + 1. For the mutual information, since the assump-

tion of independence of factors within each sub-dataset, we have I(u1, v1) = I(u2, v2) = 0, and
thus

I(u, v) =
∑

u∈U1,v∈V1

p1(u, v)

2
log

p1(u,v)
2

pu1 (u)

2 · pv1 (v)

2

+
∑

u∈U2,v∈V2

p2(u, v)

2
log

p2(u,v)
2

pu2 (u)

2 · py(v)
2

=
I(u1, v1) + I(u2, v2)

2
+ 1

= 1.

Put together H(u), H(v) and I(u, v), we have

I(u, v) =
2I(u, v)

H(u) +H(v)

=
4

H(u1) +H(u2) +H(v1) +H(v2) + 4

=
4

Cdiversity + 4
,

which completes the proof.

Proof of Proposition 3.2:

Proof. Since both sub-datasets involve probabilities over U12 and V12, we should consider each
region separately. First, we calculate the entropy H(u):

H(u) =−
∑

u∈U1\U12

pu1(u)

2
log

pu1(u)

2
−

∑
u∈U2\U12

pu2(u)

2
log

pu2(u)

2

−
∑

u∈U12

pu1
(u) + pu2

(u)

2
log

pu1
(u) + pu2

(u)

2
.

By applying Jensen Inequality, we have

pu1(u) + pu2(u)

2
log

pu1(u) + pu2(u)

2
≤ pu1(u)

2
log pu1

(u) +
pu2(u)

2
log pu2

(u),
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which gives

H(u) ≥−
∑

u∈U1\U12

pu1(u)

2
log

pu1(u)

2
−

∑
u∈U2\U12

pu2(u)

2
log

pu2(u)

2

−
∑

u∈U12

[
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2
log pu1(u) +
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2
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=
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
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[
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Similarly, for H(v), we have

H(v) ≥1

2

[
H(v1) +H(v2) + 2−

∑
v∈V12

p(v1)−
∑

v∈V12

p(v2)

]
.

Given that Cinterleave =
∑

u∈U12
[pu1

(u) + pu2
(u)] +

∑
v∈V12

[pv1(v) + pv2(v)], we have

H(u) +H(v) ≥ 1

2
[Cdiversity + 4− Cinterleave)] .

Then we calculate the mutual information. We partition the calculation into four terms:

I(u, v) =

2∑
i=1

( ∑
u∈Ui\U12,v∈Vi\V12

pi(u, v)

2
log

2pi(u, v)

pui
(u)pi(v)

)

+
∑

u∈U12,v∈V

p(u, v) log
p(u, v)

pu(u)pv(v)
+

∑
u∈U,v∈V12

p(u, v) log
p(u, v)

pu(u)pv(v)
.

We first calculate the last two terms. Note that∑
u∈U12,v∈V1∪V12

p(u, v) log
p(u, v)

pu(u)pv(v)

=
∑

u∈U12,v∈V1∪V12

1

4

[
p1(u, v)(1 +

pu2
(u)

pu1(u)
)

]
log
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.

Since u and v are independent in the first sub-dataset, we have p1(u, v) = pu1
(u)pv1(v), and thus∑

u∈U12,v∈V1∪V12

p(u, v) log
p(u, v)

pu(u)pv(v)
= 0.

Similarly, we have

∑
u∈U12,v∈V2

p(u, v) log
p(u, v)

pu(u)pv(v)
= 0,

and thus ∑
u∈U12,v∈V

p(u, v) log
p(u, v)

pu(u)pv(v)
= 0,

and similarly, ∑
u∈V12,u∈U

p(u, v) log
p(u, v)

pu(u)pv(v)
= 0.
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Thus, we only need to calculate the first two terms:

I(u, v) =

2∑
i=1

∑
u∈Ui\U12,v∈Vi\V12

pi(u, v)

2
log

2pi(u, v)

pui
(u)pi(v)

=
∑

u∈U1\U12,v∈V1\V12

p1(u, v)

2
+

∑
u∈U2\U12,v∈V2\V12

p2(u, v)

2

=
1

2

 ∑
u∈U1\U12

pu1
(u)

∑
v∈V1\V12

pv1
(v) +

∑
u∈U2\U12

pu2
(u)

∑
V ∈V2\V12

pv2
(v)


≤1

4

 ∑
u∈U1\U12

pu1
(u) +

∑
v∈V1\V12

pv1(v) +
∑

u∈U2\U12

pu2
(u) +

∑
V ∈V2\V12

pv2(v)


=
1

4
(4− Cinterleave) .

Put together, we have

I(u, v) ≤ 4− Cinterleave

Cdiversity + 4− Cinterleave

=1− Cdiversity

Cdiversity + (4− Cinterleave)
,

which completes the proof.

J Linear Model Analysis for the Impact of Disparity Between Sub-datasets
on Shortcut Learning

We consider a simple linear model defined as πθ(x) = πθ([u, v]) = ωT [u, v]+ b = ωT
1 u+ωT

2 v+ b,
where the factor generation model g is assumed to be the identity map. We further assume that
the sum of prediction errors is zero, i.e., E [y − πθ(x)] = 0. This condition can be satisfied by
adjusting the bias term b to E

[
y − ωT [u, v]

]
. Our focus is on the gradient descent optimization of

the parameter ω using the L2 loss function. The gradients with respect to ω1 and ω2 are given by:

[gω1
, gω2

] =
[
−2E(y − ωT

1 u− ωT
2 v − b)u,−2E(y − ωT

1 u− ωT
2 v − b)v

]
.

The magnitudes of these gradients determine the relative importance of the factors u and v in the
model’s decision-making process. For simplicity, we assume Eu = Ev = 0, which does not affect
the gradients (by setting u← u− Eu). Assuming an initial weight of zero, the initial gradient is:

[gω1 , gω2 ] = [−2E((y − Ey)(u− Eu)),−2E((y − Ey)(v − Ev))] .

This expression reveals that the gradients measure the correlations between the factors u, v and the
target variable y. Importantly, these correlations are strongly influenced by the scale of u− Eu and
v−Ev. The distance between the factors of sub-datasets significantly affects these scales. Consider a
scenario where the distance d(U1, U2) is increased to t ·d(U1, U2) without altering the content of u1

and u2. In this case, E((y−Ey)(u−Eu)) will approximately increase to t ·E((y−Ey)(u−Eu)),
as the increased distance increases the scale and variance of the random variable u by the same
extent. Thus, the distances between factors of sub-datasets play a crucial role in determining whether
shortcut learning occurs. If spurious correlations exist and the sub-dataset distance of task-irrelevant
factors d(V1, V2) is significantly greater than that of task-relevant factors d(U1, U2), the model is
more likely to learn shortcuts.

K Vision and Multimodal Datasets

We list the vision and multimodal datasets we use in Section 2:
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ImageNet-1K [91]: ImageNet is a large-scale visual database designed for use in visual tasks. It
contains over 14 million images that have been hand-annotated to indicate what objects are picture,
and ImageNet-1K is a subset that contains more than 1M images with one thousand classes. It has
been widely used for training large-scale vision models, including recent self-supervised models
that have been used as the visual encoder for vision-language models.

Open Images [92]: Open Images is a large-scale dataset for object detection, segmentation, and
visual relationship detection, containing over 9 million images annotated with image-level labels,
object bounding boxes, and visual relationships. It provides a comprehensive resource for develop-
ing and benchmarking models in various computer vision tasks, with a focus on real-world image
diversity and complexity. We use the sixth version of the dataset.

COCO [93]: The Common Objects in Context (COCO) dataset is a large-scale object detection,
segmentation, and captioning dataset. It contains over 330,000 images, with more than 200,000
labeled images and 1.5 million object instances. It has often been used as part of the instruction
tuning dataset for vision-language models [19].

ADE20K [94]: ADE20K is a dataset for semantic segmentation and scene parsing, containing over
20,000 images covering a wide range of scenes and object categories. Each image is densely anno-
tated with objects and stuff categories.

iNaturalist [95]: The iNaturalist dataset is a large-scale species classification dataset, derived from
the iNaturalist community, which is a citizen science project and online social network of naturalists.
It contains millions of images spanning thousands of species.

Flickr30k [96]: Flickr30k is a dataset for multimodal research, consisting of 31,000 images col-
lected from Flickr. Each image is paired with five different captions.

GQA [97]: The GQA (Graph Question Answering) dataset is designed for visual question answering
tasks, featuring 22 million questions about 140,000 images. The dataset has been widely used for
evaluation of vision-language models, and it has also been used as the tuning dataset of some vision-
language models [98].

Visual Genome [99]: Visual Genome is a dataset that connects structured image data with lan-
guage, containing over 100,000 images with region descriptions, object annotations, attributes, and
relationships. It serves as a comprehensive resource for tasks involving scene understanding, object
detection, and relationship modeling, facilitating research in bridging vision and language.

LAION-400M [100]: LAION-400M is a large-scale dataset consisting of 400 million image-text
pairs, collected from publicly available Common Crawl data. It is designed to support research
in large-scale multimodal learning, providing a diverse and extensive resource for training vision-
language models.

CC3M [101]: The Conceptual Captions 3M (CC3M) dataset is a large-scale image captioning
dataset containing approximately 3.3 million images sourced from the web. Each image is paired
with a caption that describes the visual content, offering a valuable resource for training and evalu-
ating models in vision-language tasks.

As there may be overlaps between these datasets, we filter the duplicate data before conducting the
analysis in Section 2.
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