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Abstract
Scarcity of labeled data, especially for rare events, hinders training

effective machine learning models. This paper proposes SYNAPSE-

G (Synthetic Augmentation for Positive Sampling via Expansion

on Graphs), a novel pipeline leveraging Large Language Models

(LLMs) to generate synthetic training data for rare event classifi-

cation, addressing the cold-start problem. SYNAPSE-G generates

synthetic rare event examples using an LLM, which then serve as

seeds for semi-supervised label propagation on a similarity graph

constructed between the seeds and a large unlabeled dataset. This

identifies candidate positive examples, subsequently labeled by an

oracle (human or LLM). The expanded dataset then trains/fine-

tunes a classifier. We theoretically analyze how the quality (validity

and diversity) of the synthetic data impacts the precision and re-

call of our method. Experiments on the imbalanced SST2 dataset

demonstrate SYNAPSE-G’s effectiveness in finding positive labels,

outperforming baselines including nearest neighbor search. We

use publicly available synthetic data to focus on evaluating our

method’s efficacy.
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• Computing methodologies→ Supervised learning; Learn-
ing paradigms; Unsupervised learning.
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1 Introduction
The rapid emergence of new trends on social media and the internet,

such as misinformation [29], fraud [10], and hate speech [20, 26],

necessitates the development of effective classifiers for timely detec-

tion and mitigation [2]. However, the dynamic nature and novelty

of these trends often results in scarcity of labeled data for train-

ing supervised models [25]. This research tackles this “cold-start”

problem by introducing a pipeline that leverages LLMs and semi-

supervised learning for collecting labeled data for training robust

classifiers. Our method, SYNAPSE-G, offers a practical and general-

izable solution for addressing emerging online threats.

SYNAPSE-G augments real labeled data with LLM-generated

synthetic data in three stages: (1) Synthetic Data Generation: An
LLM generates synthetic rare event examples (e.g., hate speech),

creating a seed set. (2) Label Propagation: This seed set is used

in semi-supervised label propagation, expanding the labeled set

by connecting seeds to similar unlabeled instances on a similarity

graph. (3) LLM-Based Refinement (Optional): An LLM rater can

refine propagated labels, mitigating errors.
1
The augmented dataset

then trains/fine-tunes a classifier. This paper makes the following

key contributions:

• We propose SYNAPSE-G, a novel pipeline combining LLM-

based synthetic data generation with graph-based semisu-

pervised learning for rare event classification.

• We provide a theoretical analysis of how the quality of the

synthetic data (validity and diversity) influences the preci-

sion and recall of the label propagation process.

• We empirically demonstrate the effectiveness of SYNAPSE-G

on an artificially imbalanced SST2 dataset, showing signifi-

cant performance improvements over baselines.

The remainder of this paper is organized as follows: Section 2

reviews related work, Section 3 formally defines the problem, Sec-

tion 4 details our proposedmethod (SYNAPSE-G), Section 5 presents

1
Human annotators can also be used.



Proceedings of MLoG-GenAI Workshop (KDD ’25), August 4th, 2025, Toronto, ON, Canada Tavakkol et al.

a theoretical analysis, Section 6 discusses experimental results, and

7 concludes.

2 Related Work
Our work relates to several areas: retrieval, diversity sampling,

positive mining, and label propagation on graphs.

Retrieval. Retrieval methods aim to identify relevant items from

a large dataset based on a given query. Traditional approaches rely

on lexical matching techniques such as BM25 [23], which score doc-

uments based on term frequency and inverse document frequency

(TF-IDF). While effective for keyword-based search, these meth-

ods fail to capture semantic meaning limiting their performance

on more complex retrieval tasks. To overcome these limitations,

dense retriever methods have emerged, leveraging neural embed-

dings to map both queries and documents into a shared vector

space where relevance can be measured with standard similarity

metrics [13, 14, 18, 33].

Closely related to our work is that of Hypothetical Document

Embeddings (HyDE) [8], which bypasses the need for relevance

labels. This method generates a synthetic document which is then

used to retrieve similar (real) documents from a dataset, allowing

for effective search without fine-tuning or task-specific supervision.

Diversity Sampling. Obtaining high-quality data from humans

can be challenging or even impractical due to high costs and privacy

concerns [16]. Several studies have further showcased that human-

generated data, being inherently prone to biases or errors, may

not even be ideal for model training on all tasks in general [9, 12,

27]. In mitigating these issues, a burgeoning area of research has

explored the task of generating data which more diversely samples

the training space [7, 19]. In the current problem, data samples of

interest are rare and a simpler randomized selection of data points

will struggle to recover a diverse set of examples which encompass

the rare event. As such, to carefully pull out a diverse set of (rare)

positive examples, we leverage synthetic data to guide our graph

theoretic approaches towards the known small subset.

Positive Mining. Positive (or negative) mining seeks to identify

instances that are likely to belong to a target (our non-target) class,

often used to help refine decision boundaries in the data space es-

pecially when labeled data is scarce or imbalanced [21]. Traditional

approaches, such as hard negative mining in contrastive learn-

ing [33], select negatives that are close to the decision boundary

to improve model generalization [11]. In our setting, positive min-

ing is at the core of detecting rare events within a large unlabeled

dataset.

Label Propagation on Graphs. Our work falls in the domain of

“label propagation”, a fundamental approach in semi-supervised

learning that leverages the structure of data to infer labels for unla-

beled instances. This method assumes that similar points should

have similar labels, enforcing smoothness in the label distribu-

tion [3]. However, label propagation relies on the presence of an

initial labeled dataset and assumes that the underlying graph struc-

ture accurately captures class boundaries [1, 22, 31].

Algorithm 1 Active Learning Framework for Rare Event Detection

Require: Unlabeled dataset D𝑈 , iterations 𝑇 , batch size 𝐵

1: Initialize 𝑖 ← 1

2: while 𝑖 ≤ 𝑇 do
3: Select a batch B𝑖 ⊂ D𝑈 of size 𝐵 using selection strategy

(based on the current state of the algorithm).

4: Obtain labels L𝑖 = {(𝑥,𝑦) |𝑥 ∈ B𝑖 } from the oracle (human

labelers or an LLM rater).

5: Update the algorithm’s internal model based on L𝑖 and po-

tentially previous labeled sets

⋃𝑖−1
𝑗=1 L 𝑗 .

6: 𝑖 ← 𝑖 + 1
7: end while

In contrast, our approach addresses a fundamentally different

problem: identifying rare, positive, instances within a large unla-
beled dataset without an existing set of labeled examples. Rather

than relying on label propagation from known labels, we generate

synthetic instances for the rare event and use their embedding to

identify similar real instances. This removes the need for model

training or iterative graph-based updates. This distinction makes

our approach particularly suitable for applications where positive

instances are extremely rare and must be identified without prior

ground truth labels.

3 Preliminaries & Problem Definition
The detection of rare events amidst a vast expanse of routine occur-

rences is a critical task across a multitude of real-world domains.

From identifying fraudulent transactions in financial systems to

pinpointing equipment malfunctions in industrial settings and di-

agnosing rare diseases in healthcare, these infrequent yet impactful

events demand accurate and timely identification. This work tack-

les the problem of binary classification in such domains, where the

“rare event" class is significantly underrepresented.

Formally, letD denote the data domain. Each observation is rep-

resented by a feature vector 𝑥 , and the data distribution is denoted

by Pr(𝑥,𝑦), where 𝑦 ∈ {0, 1} is the class label (𝑦 = 1 is the rare

event).

Our setting departs from traditional supervised learning. Instead

of a readily available labeled dataset, we confront a complete
absence of labeled data initially. We operate within an active

learning framework, tailored for iterative label acquisition. The

algorithm begins with a completely unlabeled dataset, denoted by

D𝑈 = {𝑥 𝑗 }𝑛𝑈𝑗=1. The full active learning process, including detailed

descriptions of selection strategies and model updates, is presented

in Algorithm 1.

The objective is to maximize the cumulative precision and recall

across all queried batches up to each step 𝑖 . Formally, at each step

𝑖 , let 𝑃𝑖 and 𝑅𝑖 represent the precision and recall, respectively, cal-

culated over the union of all labeled sets acquired up to that point:⋃𝑖
𝑗=1 L 𝑗 . The algorithm aims to maximize both 𝑃𝑖 and 𝑅𝑖 for all

𝑖 ∈ {1, ...,𝑇 } as we increase the ratio of queried data, or the fraction
of data we obtain labels from through the oracle,

|∪𝑖
𝑗=1
L 𝑗 |

|D𝑈 | . This

reflects the goal of efficiently identifying as many rare events as

possible with minimal false positives. The core challenges are the

cold start (no initial labeled data) and the severe class imbalance.
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4 Methodology
Our method addresses rare event classification with limited labeled

data by generating and leveraging synthetic data. The core is a three-

stage pipeline integrating LLMs with semi-supervised learning to

augment a small (or non-existent) initial set of labeled real data.

Figure 1 provides an overview.

4.1 Synthetic Data Generation (Seed Set
Creation)

To address the cold start problem (absence of initial labeled data),

we use an LLM to generate an initial seed set of labeled data, D𝑆 .

This synthetic dataset bootstraps the learning process. In practice,

one should use carefully crafted prompts to guide the LLM towards

generating examples representative of the rare event class. However,

we omit this step here as it is outside the scope of this research, and

instead focus on selecting the best data points from a pool of syn-

thetically generated data. We will compare two selection methods

in the experiments: random sampling and the Adaptive Coverage

Sampling (ACS) approach of [32] which selects 𝑘 points that collec-

tively cover a 𝑐-portion of the dataset, maximizing diversity within

the synthetic data.

4.2 Label Propagation to Unlabeled Data
This stage expands the labeled dataset by propagating labels from

the selected synthetic seed data (D𝑆 ) to the unlabeled data (D𝑈 )

via semi-supervised learning. We assume access to a large corpus

of unlabeled data, D𝑈 , representative of the target domain and

containing both rare event and non-event instances. Both synthetic

and unlabeled data are transformed into numerical embeddings

(e.g., using BERT [5] or Gecko [17]) so that semantically similar

data points are close in the embedding space. We propose two semi-

supervised propagation approaches which we denote as Iterative
Bipartite Graph (IBG) and Graph-Based Label Expansion (GBLE).

Iterative Bipartite Graph (IBG). IBG iteratively refines a bipartite

graph between known positives (𝑉𝑃 , initially D𝑆 ) and unlabeled

data (𝑉𝑈 ). Edges are created based on cosine similarity exceeding

a threshold, then pruned to retain only the top 𝑑𝑚𝑎𝑥 connections

per node in 𝑉𝑃 . Connected 𝑉𝑈 nodes are queried for labels. New

positives are added to 𝑉𝑃 , and the process repeats. See Algorithm 2

for details.

Graph-Based Label Expansion (GBLE). This approach utilizes a

more global graph structure in conjunction with a standard propa-

gation technique [22, 34]. The specific algorithm is detailed Algo-

rithm 3. In brief, a similarity graph is constructed over the entire

real dataset and the initial synthetic seed data. The known labels

(positive and negative) are then propagated through this graph.

The algorithm assigns a learned weight to each real data point (its

likelihood of being positive) based on a convex objective function

for propagation that is stemming from a multi-class generalization

of the quadratic cost criterion of [3] and [30] for structured predic-

tion, and the top 𝐾 points are selected as candidates for labeling.

𝐾 is dynamically adjusted each iteration: 𝐾 = 𝐾0/𝑝𝑝𝑟𝑒𝑣 , where
𝑝𝑝𝑟𝑒𝑣 is the precision from the previous iteration, aiming to find

approximately 𝐾0 new positives per round.

Algorithm 2 Iterative Bipartite Graph (IBG)

Require: Unlabeled data D𝑈 , Initial positive seeds D𝑆 , Similarity

threshold 𝜏 , Maximum degree 𝑑𝑚𝑎𝑥 , Number of iterations 𝑇 .

Ensure: Labeled data L.
1: Initialize 𝑉𝑃 = D𝑆 , L = D𝑆 .

2: for 𝑡 = 1 to 𝑇 do
3: 𝑉𝑈 = D𝑈 // Remaining unlabeled data

4: Construct bipartite graph 𝐺𝐵 = (𝑉𝑃 ,𝑉𝑈 , 𝐸𝐵).
5: for 𝑣𝑖 ∈ 𝑉𝑃 do
6: for 𝑣 𝑗 ∈ 𝑉𝑈 do
7: Calculate cosine similarity 𝑠𝑖𝑚(𝑣𝑖 , 𝑣 𝑗 ).
8: if 𝑠𝑖𝑚(𝑣𝑖 , 𝑣 𝑗 ) > 𝜏 then
9: Add edge 𝑒𝑖 𝑗 to 𝐸𝐵 .

10: end if
11: end for
12: Sort neighbors of 𝑣𝑖 in 𝑉𝑈 by similarity (descending).

13: Keep only top𝑑𝑚𝑎𝑥 neighbors, removing other edges from

𝐸𝐵 .

14: end for
15: B𝑡 ← Nodes in 𝑉𝑈 connected to 𝑉𝑃 in 𝐺𝐵 .

16: Obtain labels L𝑡 for B𝑡 from the oracle.

17: 𝑉𝑃 ← 𝑉𝑃 ∪ {𝑣 ∈ B𝑡 | label(𝑣) = positive}. // Add new

positives

18: L ← L ∪ L𝑡
19: D𝑈 ← D𝑈 \ B𝑡
20: end for
21: return L

Algorithm 3 Graph-Based Label Expansion

Require: Similarity graph 𝐺 = (𝑉 , 𝐸), initial labels 𝑌0 (partially
labeled), iterations 𝑇 .

Ensure: Final label assignments 𝑌𝑇 .

1: Initialize 𝑌 (0) = 𝑌0.
2: for 𝑡 = 1 to 𝑇 do
3: Construct the normalized adjacency matrix𝑊 from 𝐺 :

𝑊𝑖 𝑗 =

{
1

deg(𝑣𝑖 ) if (𝑣𝑖 , 𝑣 𝑗 ) ∈ 𝐸
0 otherwise

4: Propagate labels: 𝑌 (𝑡 ) =𝑊𝑌 (𝑡−1) .
5: Reinforce initial labels: For all nodes 𝑣𝑖 with initial labels in

𝑌0, set 𝑌
(𝑡 )
𝑖

= 𝑌0,𝑖 .

6: end for
7: return 𝑌 (𝑇 ) .

5 Theoretical Analysis
To understand how prompt quality (validity and diversity of synthe-

sized data) impacts algorithm performance, we analyze a simplified,

single-iteration version of our algorithm. We model data and rela-

tionships using an undirected, simple, 𝑑-regular graph 𝐺 = (𝑉 , 𝐸).
Each node 𝑣 ∈ 𝑉 is a data point with a binary label 𝑦 (𝑣) ∈ {0, 1}
(1: positive, 0: negative). Let 𝑆 ⊆ 𝑉 represent the LLM-generated

synthesized data. The algorithm queries 𝑆 and then the neighbors
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Figure 1: Overview of the SYNAPSE-G pipeline for rare event classification. The pipeline integrates synthetic data generation (top branch)
with real data processing (bottom branch). LLM-generated synthetic data, after adaptive sampling and embedding, forms a set of positive seeds.
Unlabeled real data is also embedded. A similarity graph connects seeds and real data, enabling label propagation to identify top candidates.
An oracle rates these candidates, creating a labeled hybrid dataset for model training. The iterative nature is shown by the feedback loop from
"Rate w/ Oracle" to "Create Set of Seeds".

of positive seeds, 𝑁 (𝑆+). In proving theoretical results on our algo-

rithms expected guarantees, we first invoke a few careful assump-

tions on the input which hold in practice.

Assumption 1 (Diversity of Synthesized Data). 𝑆 exhibits two

properties. (1) Independence: 𝑆 forms an independent set on the

graph. (2) Limited Overlap: No vertex in 𝑉 is adjacent to more than

two vertices in 𝑆 .

Define 𝑁 (𝑣) := {𝑢 ∈ 𝑉 | (𝑢, 𝑣) ∈ 𝐸} ∪ {𝑣} and 𝑁 (𝑆) :=⋃
𝑣∈𝑆 𝑁 (𝑣). The vertex expansion ratio is ℎ(𝑆) := |𝑁 (𝑆 ) ||𝑆 | ≥ 1, quan-

tifying the coverage of 𝑆 .

Assumption 2 (Partition and Proportion of Positive Examples). 𝑆
is partitioned into 𝑆+ = {𝑣 ∈ 𝑆 | 𝑦 (𝑣) = 1} and 𝑆− = {𝑣 ∈ 𝑆 | 𝑦 (𝑣) =
0}. Thus, we define 𝑝 =

|𝑆+ |
|𝑆 | is the proportion of positive examples

(validity).

Assumption 3 (Labeling Probabilities). If 𝑢 ∈ 𝑉 is adjacent to

exactly 𝑛 positive vertices in 𝑆 , then denote the probability that 𝑢

is labeled by 𝑞𝑛 for 𝑛 = 1, 2. Assume 0 < 𝑞1 < 𝑞2 < 2𝑞1.
2

Stemming from these assumptions, we obtain the following

proposition with the proof deferred to Appendix A due to space

constraints.

Proposition 1. Let 𝑄 := 𝑆 ∪ 𝑁 (𝑆+) denote the queried vertices
and 𝑃 be the number of positive examples in 𝑄 . Then,

E
[
𝑃

|𝑄 | | 𝑆
]
= (2𝑞1 − 𝑞2) +

1 + 𝑞2
(
𝑑 + 1

𝑝

)
− 𝑞1

(
𝑑 + 2

𝑝

)
1−𝑝
𝑝 + ℎ (𝑆+)

E
[
𝑃

|𝑉 | | 𝑆
]
=
𝑝 |𝑆 |
|𝑉 | ((1 − 2𝑞1 + 𝑞2) + (𝑞2 − 𝑞1)𝑑 + (2𝑞1 − 𝑞2)ℎ(𝑆+))

where 𝑃
|𝑄 | is the precision and 𝑃

|𝑉 | is the recall.

This result explores how two key dimensions of synthesized

data quality – validity (𝑝) and diversity (ℎ(𝑆+)) – impact precision

and recall. Intuitively, this first equality proves that recall increases

with both 𝑝 (higher probability of synthesized seeds being truly

positive) and ℎ(𝑆+) (greater diversity, allowing exploration of more

2
Justification: Each link from a positive example independently assigns a positive label

to its neighbor with probability 𝑞1 . Then 𝑞2 = 1 − (1 − 𝑞1 )2 = 2𝑞1 − 𝑞2
1
, satisfying

𝑞1 < 𝑞2 < 2𝑞1 .

examples). This aligns with intuition. The relationship between pre-

cision and diversity, however, is more nuanced. Precision always

increases with 𝑝 , as expected, but the impact of diversity (ℎ(𝑆+))
on precision depends on the magnitude of 𝑝 relative to a threshold

determined by 𝑞1, 𝑞2, and 𝑑 . This threshold,
2𝑞1−𝑞2

1+(𝑞2−𝑞1 )𝑑 , is increas-
ing in 𝑞1 and decreasing in 𝑞2. In segregating the results based on

this thresholding, we can conclude the following important facts:

• High Validity Regime
(
𝑝 >

2𝑞1−𝑞2
1+(𝑞2−𝑞1 )𝑑

)
: When the valid-

ity of the synthesized positives is sufficiently high (large 𝑝 ,

small 𝑞1, and/or large 𝑞2), precision decreases with increas-

ing diversity. Intuitively, if neighbors of single positive seeds

are unlikely to be positive (low 𝑞1), then maximizing preci-

sion requires focusing on regions with overlapping neighbor-
hoods (lower ℎ(𝑆+)), increasing the chance of finding nodes

adjacent to multiple positive seeds (higher 𝑞2).

• Low Validity Regime
(
𝑝 <

2𝑞1−𝑞2
1+(𝑞2−𝑞1 )𝑑

)
:When the validity

is low (small 𝑝 , large 𝑞1, and/or small 𝑞2), precision increases
with diversity. In this case, even nodes adjacent to a single
positive seed are sufficiently likely to be positive, making

greater coverage (higher ℎ(𝑆+)) beneficial for precision.

This analysis reveals a crucial interplay between the validity and

diversity of synthesized data and their combined effect on pre-

cision, offering valuable insights for designing effective prompt

engineering and data selection strategies.

6 Experimental Results
We here validate our methods on two representative datasets: the

Stanford Sentiment Treebank 2 (SST2 [28]) and Measuring Hate

Speech (MHS [15, 24]). We proceed to define the experimental

framework for each dataset and results which demonstrate the

considerable improvement of SYNAPSE-G.

6.1 SST2 Dataset
The SST2 dataset is a standard sentiment analysis benchmark com-

prised of movie review sentences with positive/negative labels. We

augment this data with a public synthetic SST2 dataset generated

using GPT [6].
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Figure 2: Experimental results on the imbalanced SST2 dataset. (a) Precision vs. Recall, comparing ACS and random seed selection. (b) Recall
vs. Query Ratio, showing the benefit of ACS seeds. (c) Precision vs. Query Ratio, illustrating the impact of parameters. (d) F1 Score vs. Query
Ratio, showing the impact of parameters. ACS consistently outperforms random seed selection across all metrics. Figures (b), (c), and (d)
demonstrate the impact of varying similarity thresholds and maximum degree constraints. Curves above the expected random performance
(diagonal in (b) and horizontal/curve in (c)/(d) respectively) indicate a benefit of the graph-based approach.

To simulate a rare event, we create a class-imbalanced SST2

training set, keeping all negative examples and subsampling pos-

itive examples to 10% of the modified set. We select 100 positive

synthetic examples as seeds. Table 1 summarizes dataset statistics.

We focus on single-shot (one iteration) and iterative evaluations,
using the imbalanced SST2 “train” split. The 100 positive seeds are

selected from the synthetic dataset (randomly or via ACS [32] with

coverage 𝑐 = 0.5). We construct a bipartite graph connecting seed

and training examples, using cosine similarity of pre-trained Gecko

embeddings [17] for edge creation.

Baselines. We compare our approach against the following meth-

ods:

• Random Selection (Theoretical): expected values, calcu-

lated analytically

• Random Seeds + Bipartite Graph: 100 random positive

seeds; bipartite graph constructed as above and connected

real data points are labeled

• ACS Seeds + Bipartite Graph: Identical to (2), but using

ACS for seed selection [32].

• Graph Based Label Expansion: Similarity graph on the

entire real dataset + 100 initial ACS seeds. GBLE (Algorithm

3) propagates labels. Top 𝐾 points (highest positive weights)

are candidates; 𝐾 = 100/𝑝𝑝𝑟𝑒𝑣 (𝑝𝑝𝑟𝑒𝑣 : previous iteration’s
precision).

ACS and GBLE are included as baselines as they utilize data point

relationships.

Results and Discussion. We evaluate performance using precision-

recall curves, recall vs. query ratio, precision vs. query ratio, and F1

score vs. query ratio, analyzing the impact of similarity threshold

and maximum degree (𝑑𝑚𝑎𝑥 ).

Dataset All Pos. Neg.

Original SST2 Train 67349 37569 29780

Original Synthetic 5000 2488 2512

Imbalanced SST2 Train 33088 3308 29780

Synthetic Seeds (Positive) 100 100 0

Table 1: Dataset statistics for SST2.

Figure 2a shows that ACS seed selection consistently achieves

higher precision for any given recall compared to random seed

selection. This highlights the benefit of diverse and representative

seed sets.

Figure 2 depicts the recall, precision, and F1 score vs. query ratio.

Varying similarity thresholds (0.7, 0.8) and 𝑑𝑚𝑎𝑥 are analyzed.

Figure 2b plots the recall versus query ratio. The dashed line

depicts expected recall from random performance. All methods here

achieve a recall of 1.0 when querying all data. Crucially, ACS seeds

consistently achieve higher recall than random seeds for a given

query ratio. We note that a higher 𝑑𝑚𝑎𝑥 allows more connections in

the bipartite graph, generally increasing recall, but with diminishing

returns. A higher similarity threshold (0.8) generally results in better

performance but limits reachability and consequently the recall.

Figure 2c show the precision versus query ratio, with the dashed

line representing the base positive rate (10%). Both graph-based

methods (ACS and random seeds) achieve significantly higher pre-

cision than random selection, particularly at low query ratios. ACS

consistently outperforms random seed selection. Higher similarity

thresholds and increasing 𝑑𝑚𝑎𝑥 (up to a point) generally improve

precision.

Lastly, Figure 2d shows the F1 score, with the black line rep-

resenting expected random performance. The F1 score, balancing

precision and recall, initially increases with the query ratio, peaks,

and then decreases. ACS-selected seeds generally outperform ran-

dom seeds. A higher similarity threshold leads to higher peak F1

scores. Increasing 𝑑𝑚𝑎𝑥 initially improves the F1 score, with dimin-

ishing returns and potential slight performance decreases at very

high 𝑑𝑚𝑎𝑥 and high query ratios. The best F1 scores are below 0.6,

highlighting the difficulty of the rare event detection problem.

As we see in the above, ACS consistently outperforms random

seed selection. Crucially, higher similarity thresholds generally im-

prove performance, especially at lower query ratios. Additionally,

increasing 𝑑𝑚𝑎𝑥 improves performance up to a point, with dimin-

ishing returns. These results highlight the importance of strategic

seed selection (ACS) and parameter tuning.

Figure 3 compares two iterative strategies, Iterative Bipartite

Graph (IBG) and Graph-Based Label Expansion (GBLE), within an

“ideal” scenario (precision = 1). GBLE significantly outperforms IBG,

achieving much higher recall for a given query ratio. Notably, IBG

plateaus quickly while GBLE leverages the full graph structure and

both positive/negative labels.
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6.2 MHS Dataset
To further evaluate SYNAPSE-G on a naturally occurring rare event

task with real-world relevance, we utilized the MHS dataset [15, 24].

This dataset contains 39,565 comments with annotations from 7,912

annotators (135,556 total rows).

Whereas the SST2 dataset is more straightforward in its labeling,

the MHS dataset is more complex and relies on further preprocess-

ing to define a specific rare event. Specifically, the dataset comprises

social media comments (YouTube, Reddit, Twitter) annotated across

10 ordinal labels to derive a continuous “hate speech score”, with

each sentence also being labeled according to the specific groups

or demographics targeted. As such, we here define a specific rare

event binary label for MHS: hate speech targeting transgender

individuals. Concretely, we create a label which is positive if any

annotator marked a comment as targeting any of the sub-categories:

transgender men, transgender women, or unspecified transgender

individuals. We do this by applying a logical OR across the three

noted subcategory annotations. This resulted in 2,598 comments

(6.5%) being labeled positive, representing an organically imbal-

anced dataset relevant to real-world challenges.

For the cold-start scenario, we used 1,000 LLM (Llama-2) gener-

ated comments related to the dataset’s topics, sourced from [4].

Within this synthetic set, only 19 comments were positive for

our 𝑡𝑎𝑟𝑔𝑒𝑡_𝑔𝑒𝑛𝑑𝑒𝑟_𝑡𝑟𝑎𝑛𝑠𝑔𝑒𝑛𝑑𝑒𝑟 label. These 19 synthetic exam-

ples served as the initial positive seeds for SYNAPSE-G to identify

real positive instances in the unlabeled data pool. Consistent with

our SST2 experiments, we used pre-trained Gecko embeddings to

represent comments for constructing the similarity graph.

Baselines. We further design a practical baseline, “LR-Baseline”,

which adopts an iterative active learning approach using a simple

classifier. We establish the baseline using a logistic regression model

(initialized with scikit-learn’s default parameters) trained on an

initial set comprising 19 positive synthetic seeds augmented with

19 randomly sampled known negative instances from the dataset.

These examples are represented using pre-trained Gecko embed-

dings. The iterative refinement process then proceeds as follows:

In each iteration, a subset of unlabeled data points, constrained by

an inference budget (𝐵) to ensure practical feasibility by avoiding

inference over the entire dataset, is selected. The current logistic

regression model predicts positivity probabilities for this subset,
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Figure 3: Recall vs. Ratio of Queried Data for iterative rare event
detection on the imbalanced SST2 dataset. “Ideal” is perfect precision.
The graph-Based Label Expansion (GBLE) significantly outperforms
Iterative Bipartite Graph (IBG).

Figure 4: Recall vs. Ratio of Queried Data for iterative rare event
detection on the imbalanced MHS dataset.

and the top 𝐾 candidates with the highest predicted probabilities

are chosen for labeling via an oracle (𝐾 is dynamically adjusted

as 𝐾 = 𝐾0/𝑝𝑝𝑟𝑒𝑣 , where 𝐾0 = 100, consistent with SYNAPSE-G).

These newly labeled instances are then incorporated into the train-

ing set, and the logistic regression model is retrained. The inference

budget (𝐵) is a critical parameter for maintaining the practicality

of the approach.

Results and Discussion. Figure 4 summarizes SYNAPSE-G’s recall

performance using the default parameters (𝐾0 = 100) and com-

pares it to LR-Baseline’s recall for different Inference Budgets (𝐵 =

[1000, 4000, 8000, 16000]) and without a budget (𝐵 = 39, 565). Cru-

cially, both SYNAPSE-G (via graph construction) and LR-Baseline

(as input features) leverage the same Gecko embedding space, en-

suring a fair comparison in terms of input features.

It is important to note, however, that the LR-Baseline was ini-

tialized with access to 19 known true negative labels in addition

to the 19 synthetic positive seeds. This provides the LR-Baseline

with an information advantage compared to SYNAPSE-G’s strict

cold-start setting, which assumes access only to synthetic positives

and unlabeled data. Despite this initial advantage for LR, comparing

their performance (see Figure 4) reveals a clear trade-off between

computational budget and recall. SYNAPSE-G remains highly effi-

cient at discovering rare positive instances, achieving substantial

recall with minimal labeling effort. For example, by labeling only

2.4% of the data, SYNAPSE-G successfully identifies 28.6% of the

true positive comments. Increasing the labeling budget to just 5%

allows SYNAPSE-G to retrieve 40.8% of the positives. In contrast,

LR-Baseline requires a large inference budget (𝐵 = 8000, inferring

on 20% of the data per round) to reach similar recalls. Furthermore,

only with very large or unlimited budgets (𝐵 = 16𝑘 or Full), involv-

ing significant computational cost per iteration, does LR-Baseline

outperform SYNAPSE-G in terms of recall.

Dataset All Pos. Neg.

MHS Train 39565 2598 36967

Synthetic 1000 19 981

Synthetic Seeds (Positive) 19 19 0

Table 2: Dataset statistics for MHS.
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This comparison highlights SYNAPSE-G’s practical advantages

for real-world large-scale applications involving extreme rarity.

While the current dataset exhibits moderate imbalance (6.5% pos-

itive), real-world scenarios often present much more severe chal-

lenges (e.g., identifying a few thousand target posts among billions).

In such extreme cases, the LR-baseline’s need to infer over massive

subsets (large 𝐵) or the entire dataset to find a handful of posi-

tives becomes computationally infeasible, potentially leading to

complete failure. SYNAPSE-G, however, is designed to handle such

scenarios more effectively. By leveraging the graph structure to

focus exploration around known positive seeds (synthetic or newly

discovered real ones) and their neighbors, it can maintain a high ac-

tion rate (precision among queried candidates) even when positives

are extremely sparse. This targeted approach makes SYNAPSE-G

a significantly more scalable and practical solution for discover-

ing truly rare events in massive datasets where methods requiring

broad dataset inference at each step are not viable.

7 Conclusion
In conclusion, SYNAPSE-G, our proposed framework leveraging

synthetic data generation and graph-based semi-supervised learn-

ing, offers a compelling approach to the challenging task of rare

event classification. Our theoretical underpinnings illuminate the

critical balance between the fidelity and diversity of the synthe-

sized data, providing insights into the method’s efficacy. Empirical

evaluations on benchmark datasets demonstrate the practical effec-

tiveness of SYNAPSE-G, showcasing its superiority over established

baseline techniques.

While these initial results are encouraging, we recognize several

avenues for future refinement. The performance of our method is

inherently linked to the quality of the constructed similarity graph,

which in this study relied on pre-trained Gecko embeddings [17]

and a thresholding strategy. We believe that further exploration

and optimization of graph construction techniques, including al-

ternative embedding spaces and graph building algorithms, hold

the potential for significant performance gains. Furthermore, the

generation of representative synthetic data via prompt engineering

is a crucial aspect, and while our current implementation demon-

strates effectiveness, we anticipate that more sophisticated prompt-

ing strategies could yield even higher-quality synthetic examples,

thereby further enhancing the overall performance of SYNAPSE-G.

Finally, to solidify the generalizability of our findings, future work

will involve a more extensive evaluation across a diverse range of

datasets and rare event types. These directions, including investi-

gations into more scalable graph learning approaches, represent

promising next steps in advancing the capabilities of synthetic data-

augmented semi-supervised learning for rare event classification.
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A Omitted Proofs
A.1 Proof of Proposition 1
We first reprint the proposition for readability.

Proposition 2. Let 𝑄 := 𝑆 ∪ 𝑁 (𝑆+) denote the queried vertices
and 𝑃 be the number of positive examples in 𝑄 . Then,

E
[
𝑃

|𝑄 | | 𝑆
]
= (2𝑞1 − 𝑞2) +

1 + 𝑞2
(
𝑑 + 1

𝑝

)
− 𝑞1

(
𝑑 + 2

𝑝

)
1−𝑝
𝑝 + ℎ (𝑆+)

E
[
𝑃

|𝑉 | | 𝑆
]
=
𝑝 |𝑆 |
|𝑉 | ((1 − 2𝑞1 + 𝑞2) + (𝑞2 − 𝑞1)𝑑 + (2𝑞1 − 𝑞2)ℎ(𝑆+))

where 𝑃
|𝑄 | is the precision and 𝑃

|𝑉 | is the recall.

Proof. 𝑄 = 𝑆∪𝑁 (𝑆+) = 𝑆+∪𝑆− ∪𝑁 (𝑆+) = 𝑆− ∪𝑁 (𝑆+). Since 𝑆
is an independent set (Assumption 1), 𝑆− ∪ 𝑁 (𝑆+) is disjoint. Thus,

|𝑄 | = |𝑆− | + |𝑁 (𝑆+) |
= (1 − 𝑝) |𝑆 | + ℎ(𝑆+)𝑝 |𝑆 |
= (1 − 𝑝 + 𝑝ℎ(𝑆+)) |𝑆 |.

Let 𝑆1 ⊆ 𝑁 (𝑆+) \ 𝑆+ be vertices in 𝑁 (𝑆+) \ 𝑆+ adjacent to exactly

one vertex in 𝑆+, and 𝑆2 be those adjacent to exactly two. Let 𝑃1,

𝑃2 be the number of positive examples in 𝑆1, 𝑆2, respectively.

E[𝑃 | 𝑆] = E[|𝑆+ | + 𝑃1 + 𝑃2 | 𝑆]
= |𝑆+ | + 𝑞1 |𝑆1 | + 𝑞2 |𝑆2 |.

We have:

|𝑆+ | + |𝑆1 | + |𝑆2 | = |𝑁 (𝑆+) | (1)

𝑑 |𝑆+ | + |𝑆+ | − |𝑆2 | = |𝑁 (𝑆+) | (2)

|𝑁 (𝑆+) | = |𝑆+ |ℎ(𝑆+). (3)

Equation (1) counts vertices in 𝑁 (𝑆+). Equation (2) counts edges

between 𝑆+ and 𝑁 (𝑆+), subtracting |𝑆2 | once (as each is counted

twice). Equation (3) is from the definition of ℎ(𝑆+). Solving (1)-(3):

|𝑆1 | = (2ℎ(𝑆+) − 𝑑 − 2) |𝑆+ |
|𝑆2 | = (𝑑 + 1 − ℎ(𝑆+)) |𝑆+ |

E[𝑃 | 𝑆] = |𝑆+ | (1 + 𝑞1 (2ℎ(𝑆+) − 𝑑 − 2)
+ 𝑞2 (𝑑 + 1 − ℎ(𝑆+)))

= 𝑝 |𝑆 | ( (1 − 2𝑞1 + 𝑞2)
+ (𝑞2 − 𝑞1)𝑑 + (2𝑞1 − 𝑞2)ℎ(𝑆+)) .

Therefore,

E
[
𝑃

|𝑄 | | 𝑆
]

=
𝑝 |𝑆 | ( (1 − 2𝑞1 + 𝑞2) + (𝑞2 − 𝑞1)𝑑 + (2𝑞1 − 𝑞2)ℎ(𝑆+))

(1 − 𝑝 + 𝑝ℎ(𝑆+)) |𝑆 |

= (2𝑞1 − 𝑞2) +
1 + 𝑞2

(
𝑑 + 1

𝑝

)
− 𝑞1

(
𝑑 + 2

𝑝

)
1−𝑝
𝑝 + ℎ(𝑆+)

.

If 1 + 𝑞2
(
𝑑 + 1

𝑝

)
− 𝑞1

(
𝑑 + 2

𝑝

)
> 0, then we must have that

𝑝 >
2𝑞1 − 𝑞2

1 + (𝑞2 − 𝑞1)𝑑

and E
[

𝑃
|𝑄 | | 𝑆

]
decreases with ℎ(𝑆+). Now, we compute the deriv-

ative of E
[

𝑃
|𝑄 | | 𝑆

]
with respect to 𝑝:

𝜕

𝜕𝑝
E
[
𝑃

|𝑄 | | 𝑆
]

=
(1 − 𝑞1 (2 + 𝑑) + 𝑞2 (1 + 𝑑)) + ℎ(𝑆+) (2𝑞1 − 𝑞2)

(1 − 𝑝 + 𝑝ℎ(𝑆+))2

=
1 + 𝑑 (𝑞2 − 𝑞1) + (ℎ(𝑆+) − 1) (2𝑞1 − 𝑞2)

(1 − 𝑝 + 𝑝ℎ(𝑆+))2
.

Since ℎ(𝑆+) ≤ 𝑑 + 1, 𝑑 ≥ ℎ(𝑆+) − 1. Thus,
𝜕

𝜕𝑝
E
[
𝑃

|𝑄 | | 𝑆
]

≥ 1 + (ℎ(𝑆+) − 1) (𝑞2 − 𝑞1) + (ℎ(𝑆+) − 1) (2𝑞1 − 𝑞2)
(1 − 𝑝 + 𝑝ℎ(𝑆+))2

=
1 + (ℎ(𝑆+) − 1)𝑞1
(1 − 𝑝 + 𝑝ℎ(𝑆+))2

> 0.

Therefore, E
[

𝑃
|𝑄 | | 𝑆

]
is strictly increasing with respect to 𝑝 .

Finally,

E
[
𝑃

|𝑉 | | 𝑆
]
=
𝑝 |𝑆 |
|𝑉 |

(
(1 − 2𝑞1 + 𝑞2)

+ (𝑞2 − 𝑞1)𝑑 + (2𝑞1 − 𝑞2)ℎ(𝑆+)
)
.

Since 𝑞2 < 2𝑞1, E
[
𝑃
|𝑉 | | 𝑆

]
increases with 𝑝 and ℎ(𝑆+). □
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