Advancing Compositional Awareness in CLIP with
Efficient Fine-Tuning

Amit Peleg* Naman Deep Singh* Matthias Hein
Tiibingen Al Center, University of Tiibingen

Abstract

Vision-language models like CLIP have demonstrated remarkable zero-shot capabil-
ities in classification and retrieval. However, these models often struggle with com-
positional reasoning — the ability to understand the relationships between concepts.
A recent benchmark, SugarCrepe++ [11], reveals that previous works on improving
compositionality have mainly improved lexical sensitivity but neglected semantic
understanding. In addition, downstream retrieval performance often deteriorates, al-
though one would expect that improving compositionality should enhance retrieval.
In this work, we introduce CLIC (Compositionally-aware Learning in CLIP), a
fine-tuning method based on a novel training technique combining multiple images
and their associated captions. CLIC improves compositionality across architectures
as well as differently pre-trained CLIP models, both in terms of lexical and se-
mantic understanding, and achieves consistent gains in retrieval performance. This
even applies to the recent CLIPS [33], which achieves SOTA retrieval performance.
Nevertheless, the short fine-tuning with CLIC leads to an improvement in retrieval
and to the best compositional CLIP model on SugarCrepe++. All our models and
code are available at https://clic-compositional-clip.github.io.

1 Introduction

Recent advances combining multiple modalities via large models have propelled us toward sys-
tems with greater capabilities. In the vision-language domain, models like CLIP [45], BLIP [24],
FLAVA [24] and ALIGN [20] have been particularly transformative, by training on image-text paired
datasets. These Vision-Language models (VLMs) showcase not only enhanced performance on
native tasks like retrieval, captioning, etc., but also enable remarkable zero-shot capabilities in image
classification [26, 33], segmentation [59], human-level perception of images [13], and similar other
tasks. This suggests that CLIP like models are good at associating individual concepts with images.
However, several works have shown [56, 52, 11] that CLIP models struggle in understanding how
concepts combine to form complex meanings, i.e., compositionality.

As initially highlighted in [56], these models tend to learn a “bag of words” representation of the
multimodal data, making them incapable of solving simple compositional tests. For instance, when
given an image of “a man in a red shirt next to a gray horse", CLIP models have been shown to choose
“aman in a gray shirt next to a red horse" as the more similar of the two captions (see [11] for more
such examples). To this end, several new benchmarks (WinoGround [52], VALSE [39], Crepe [36],
SugarCrepe [18], SugarCrepe++ [11]) have been created to test compositionality in VLMs.

While SugarCrepe [18] mainly tests whether a model can distinguish between lexically similar but
semantically different texts (P;: “The dog is chasing a car” vs. N: “The cat is chasing a dog”), it
has been pointed out in SugarCrepe++ [11] that this is not sufficient for true understanding. Given
an image of a dog chasing a cat, models should attach higher similarity of the image to both P;

*Equal contribution. Correspondence: amit.peleg @uni-tuebingen.de

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://clic-compositional-clip.github.io/
mailto:amit.peleg@uni-tuebingen.de

and a semantically equivalent but lexically dissimilar text P, (“The cat is being chased by a dog”)
than to the wrong text, N. Surprisingly, it turns out that improving compositionality on Sugar-
Crepe++ is non-trivial. As can be seen in Table 1, previous works perform very well on SugarCrepe
(e.g., DAC [9]), but their performance on SugarCrepe++ is even worse than the pre-trained model.
Since capturing semantic similarity is crucial for

the downstream performance of CLIP models,

in particular retrieval, we focus on the evaluation DAC-SAM
of compositionality with SugarCrepe++.

TSVLC-R
I Image-Ret.
[Text-Ret.
= SC++ (Swap)

In this paper, we introduce Compositionally-
aware Learning in CLIP (CLIC). This tech-
nique fine-tunes CLIP models by leveraging al- TripletcLIP ERSISC ial(Rep ace)
ready available high-quality captioned datasets
like PixelProse [50] or common text-image

1 1 1 1 -18 .15 -12 9 6 -3 0 3 6 9 12 15 18
ggltralzetcsolgll\(fLIIC/[al[%g][4I6J]S’111v;h2101?0\‘::,§ ti:eccli?lt(;?lg Deviation from Pretrained-CLIP (Better —)

of combining images and captions allows us to Fjgure 1: Performance of fine-tuning techniques
generate positives as well as hard-negatives with for improving compositionality compared to the
minimal additional overhead, e.g., we do not pre-trained CLIP ViT-B/32-model. Previous tech-
require an LLM for generating hard-negatives piques neither yield consistent improvements on
[9], nor do we need to generate synthetic images SugarCrepe++ (SC++) [11] nor for the retrieval
[41]. In Figure 1, we show that CLIC consis- tasks (R@5 of COCO). CLIC is the only method

.tently improves both on SugarCrep§++ and on which shows enhanced compositionality and re-
image-to-text and text-to-image retrieval bench- trieval performance.

marks compared to the pre-trained CLIP-ViT-
B/32 model [45], whereas existing methods do
not achieve consistent gains. To summarize, our contributions are as follows.

CON-CLIP

CLIC(Ours)

1. We propose an efficient fine-tuning method, CLIC, with little overhead, which improves composi-
tionality and retrieval performance of pre-trained CLIP models across different sizes (ViT-B/32,
ViT-B/16 and ViT-L/14) and pre-training approaches (CLIP [45], CLIPA [26], CLIPS [33]).

2. We use CLIC to improve CLIPS [33], a recent version of CLIP trained to enhance retrieval perfor-
mance. Our fine-tuned model, CLIPS + CLIC, yields SOTA numbers for CLIP-like models, with
a +9% average improvement on Image-to-Text (ITT) set of SugarCrepe++ and even improving
on their already SOTA results in text- and image-retrieval, (+1.3%/4+2.2%).

3. Finally, we show that fine-tuning the large vision language model in LLaVA-1.5-7b [32] with
CLIC vision encoder enhances it’s compositional ability as measured by VQAScore [30] while
maintaining its ability on tasks like question answering, captioning and chain-of-thought reasoning.

2 Methods and benchmarks for improving compositionality

Recent studies on VLMs have revealed significant limitations in their compositional abilities [56, 18,
52, 36, 42] via specially designed benchmarks. Throughout these works, several types of image-text
models have been shown to lack compositional reasoning, ranging from those using just contrastive
loss (CLIP [45], LaCLIP [12], SigLiP [57]) to the ones using different losses or architectures like
CoCa [55], FLAVA [48], CLIPA [32], BLIP [16]. In this section, we introduce our notation for
standard contrastive learning and provide details on methods to improve compositionality and the
associated benchmarks.

2.1 Contrastive learning and baselines

The contrastive loss is the backbone for training VLMs like CLIP. In contrastive training, image-text
paired data (z;,y;) is embedded into a joint embedding space via the text and vision encoders.
Formally, let ¢(-) and ¢(-) define the normalized embeddings of the vision- and text-encoder of the
CLIP model. Then, given a batch of m image-caption pairs, the model is trained using an average of
image-to-text and text-to-image contrastive losses,

Lcon = _% z_:l (10g = exp((¥ (i), #(yi))) +log TSXP(W(%)’(?(%»)) M

i=1 exp((¥ (@), 6(y;))) > =1 exp((¥(x5), o))

p1: WA man wearing a black hat.
(WA water feature in garden.

p2: WA water feature in garden.
(WA man wearing a black hat.

Ps3:
- , @The image contains a watermark.
e ‘
. ‘ _ Pa: . e ooy
MA man wearing a (WA water feature in p; : Positive captions ;
black hat. garden. @The image n: Hard negative
contains a watermark. captions
The water flows ove n: WAman water wearing a black hat.
fe (WA water-man feature in garden.
. 7

Figure 2: Data generation scheme for CLIC. For every image, we sample an additional image and
concatenate the two. This concatenated image is the input to the model alongside five captions: p1,
a concatenation of the first sentence from each image. p, is a sentence-shuffled version of p;. p3
and p4 are concatenations of two additional sentences from each caption, and n is a hard negative
constructed by swapping one word from each sentence of p;.

Since training batches rarely include hard negative samples that challenge the “bag of words"
representation, previous methods add hard negatives by slightly modifying captions to change their
meaning, encouraging the model to recognize compositional cues. Denoting by ;' the hard-negative
augmentation of the caption y;; methods such as NegCLIP [56] and TripletCLIP [41] adapt the
image-to-text loss as follows,

B . exp((v (i), #(y:)))
LNeg = — Zl g(Z * L exp((0(z2), b(y)>)+E ., exp <1b Zi),)>)> @

This loss is different from the image-to-text loss used in SVLC [10] and DAC [9], which introduce
an additional loss term to the CLIP loss in Eq. (1), denoted as the Single Negative (S-Neg) loss,

_ 1, exp(((:), 6(3:))
Eana = =5 2 s (exp«wm),qb(ym) - exp<<w<xi>,¢<y;l>>>> |

3)

2.2 Compositionality enhancing methods

Using hard negatives to enhance compositionality in VLMs was first introduced in NegCLIP [56],
which employs spaCy [17] to swap words and phrases within a sentence. Similarly, SVLC [10]
generates hard-negatives with two configurations: (i) SVLC-R, which uses a rule based generation
with a lookup table and (ii) SVLC-R+L, which additionally uses an LLM based masked input
completion, where masking is done for specific concepts using spaCy [17].

Dense and Aligned Captions (DAC) [9] uses the same method to create hard negatives, but first
generates higher quality captions by passing the image through BLIP-2 [25]. In DAC-LLM, the
enhanced captions are used as input to GPT-Neo-2.7B [14] for detailed and dense captions, and in
DAC-SAM, segments of the original image, created using SAM [21], are captioned via BLIP-2.
The model is then fine-tuned using a combination of Lcon (Eq. (1)), Ls-neg (Eq. (3)) and MIL-loss
adapted from [38], which uses multiple negatives for each image.

TripletCLIP [41] uses rewritten captions from LaCLIP [12] and utilizes an LLM to generate hard-
negatives by changing concepts such as objects, attributes, and relationships that change the meaning
of the original caption while slightly distorting it. Afterward, a synthetic image is generated for the
hard-negative captions using a text-to-image diffusion model. Finally, training is done by using a
sum of image-text and text-image based Ly, from Eq. (2).

2.3 Compositionality benchmarks

Several benchmarks have been proposed to measure the lack of compositionality in VLMs. These
benchmarks usually add a negative caption (semantically different) and measure cross-modal Image-

to-Text (ITT) similarities across different captions. Among them is WinoGround [52], which uses
two images and two corresponding captions that differ only in word order. The task of the model is to
assign to each image the corresponding text and vice versa. However, it has been shown in [8] that
models might fail on this benchmark for reasons other than compositionality, such as the ability to
locate small and out-of-focus objects. SugarCrepe [18] measures image to text similarity and is built
on the MS-COCO validation set. For each image, it requires the model to identify the correct caption
from a pair of lexically similar, but semantically different captions (P; and N).

Recently, SugarCrepe++ [11] extended this idea by introducing P», an additional positive caption that
is semantically similar to P;, but lexically different from both P; and /N. We note that SugarCrepe++
uses the additional positive caption P, for the same images, original positive captions, and plausible
negative captions from SugarCrepe. To answer correctly, the model needs to assign a higher score
to P; and P, compared to the score assigned to /N. This makes SugarCrepe++ harder and more
meaningful than SugarCrepe, as the model can no longer rely solely on lexical differences but has
to instead understand the semantic differences between the captions. Therefore, we predominantly
focus on SugarCrepe++ in this work.

On top of ITT, SugarCrepe++ also measures the uni-modal Text-to-Text (TOT) scores between the
original, the semantically different, and the lexically different captions. The TOT is interesting for
measuring the compositionality of the text encoder, but the ITT is arguably more important for the
cross-modal downstream tasks for which CLIP models are used. Nonetheless, we report TOT for
all experiments conducted in this work. Furthermore, we would also like to remark here, that many
methods like [56, 49] train on MS-COCO, which may lead to knowledge leakage, as the captions and
images in benchmarks like SugarCrepe and SugarCrepe++ come from the same data source.

3 Compositionally-aware learning in CLIP

Large-scale web-crawled datasets are known to be noisy, with many captions not reflecting their
corresponding images [27, 3, 59]. This can be detrimental to compositional learning, which relies on
minor modifications that alter semantic meaning. To improve the compositionality, we opt for captions
that better align with the images and describe the images in detail. For this, we use approximately 1M
sample subsets taken from different data sources, like, RedCaps and CC12M from PixelProse [50],
and our CogVLM [53] recaptioned Laion. Details about the datasets can be found in Appendix B.
We train several versions of CLIC using each dataset to demonstrate the generalizability of our
approach across data sources. Additionally, since some baselines are trained using MS-COCO, for a
fair comparison, we train another version on this dataset, the details of which are in Section 4.

3.1 Generation of positives and hard-negatives: concatenation of images and captions

To overcome the “bag of words" limitation, we aim for the model to distinguish between captions that
are lexically similar but semantically different. In order to achieve this, we construct hard negatives
that retain the same words in the caption but no longer correctly describe the image. For efficiency
and diversity, we create these examples by concatenating pairs of images and swapping words across
their two captions, ensuring that the resulting caption does not represent the concatenated images.
To help the model learn that different lexical or syntactic sentences can represent the same image,
we create multiple positives. For this, we use dense captions that provide varied descriptions of
each image. The concatenation enables the number of combinations to grow quadratically with the
dataset size, allowing CLIC to generalize better than other methods, see discussion in Appendix B.3.
We detail our data preparation strategy based on concatenating random image-caption pairs in the
following section. The process is illustrated in Figure 2 and described in Algorithm | in Appendix C.
See Appendix B.4 for a discussion on a non-random approach.

During training, in each iteration, we sample a batch of m image-caption pairs, {z;,y;}7,. We
then randomly select additional m pairs {z;, y; }2™ . 11> and ensure that each selected image ;1
has the same orientation as x;. We denote by Concat(-, -) the process of concatenating two images
or sentences and by RandomConcat(+,) the process of randomly shuffling the order of the two
images or sentences before concatenation. We start by concatenating the images in a random order to
mitigate potential biases and term the new image u; = RandomConcat(x;, Z;,). Then, from the
two associated captions y; and y;,,, we create five new captions for the image u; — four positive

captions and one negative. As each original caption y; consists of several sentences, in the following,
we denote by yf the kg, sentence of the 4y, caption.

* p1: We concatenate the first sentence of each caption and term this caption ¢t = Concat(y}, y} tm)-
This choice is based on the observation that the first sentence of a caption generally provides a
high-level description of the image, whereas subsequent sentences describe more specific details,
as demonstrated in the examples in Appendix B.1.

* p2: We shuffle the order of the two sentences t!> = Concat(y},,,,y;). We do this as both
concatenated captions describe the corresponding concatenated image, irrespectively of the order
of the sentences; thus, the model should be invariant to the order of the sentences.

* p3,ps: We then sample (without repetition) two additional sentences from each caption
and concatenate them in a random order ¢* = RandomConcat(yfl,yfjm), and 7" =

RandomConcat(yf% yf_ﬁm) for random indices k1, ko, k3, k4. This step reinforces the model’s
ability to distinguish incorrect captions from correct ones, even when the incorrect caption presents
a general description of the image while the correct caption describes only a specific part. This is
different from previous works, such as DAC [9], where multiple positives exist, but each caption
faces its own hard-negative. An ablation on the number of positives can be found in Table 21.

* n: Next, we leverage the spaCy package [17] to generate hard-negatives. We decompose the first
two sentences into individual words and identify their respective linguistic categories using spaCy.
A table detailing these categories, along with examples, is provided in Table 7 in Appendix B.
To construct hard-negatives, we randomly select a linguistic category that is common to both
sentences and choose two words from that category — one from each image. If no common category
exists, we randomly select a word from each image and swap them. Certain categories, such as
punctuation, are excluded from this process (see Appendix B.2 for details). To prevent over-fitting
to specific benchmarks, we do not impose constraints on the selection of particular categories or
word positions. As a result, the generated sentence no longer accurately represents the concatenated
image unless, by chance, the swapped words share the same meaning.

3.2 Training of CLIC

The concatenated image is fed into the model along with the five captions. We employ a combination
of different loss functions, each targeting a specific desired property of the model.

Contrastive loss: The standard CLIP loss (1) extended to handle the four positive captions,

L EG e e L exp((u). 6(E)
Lo =~ 2 3 (198 S oo,) % ST, explfita, 6)

where ¢ is the positive caption of an image u; forl € {1,2,3,4} andi € {1,...,m}.

(2

Hard-negative loss: We compute a hard-negative loss between each of the positive captions and the
negative caption of the same image, similar to Eq. (3),

m

1L &y exp((th(us), (7))
Lones = 4m221°g<exp<<w<ui>,¢<t€l>>>+exp<<w<uz->,¢<tz’>>>>’ ®)

i=1 [=1

where t7' is the hard-negative text of u;. We use a separate loss for the hard-negatives fo ensure they
always influence the training and are not “masked” by other terms in the standard clip loss.

Uni Modal loss: The l>-distance between the first positive ¢/ and its shuffled version ¢*:
1 m
Ly = — Py — ()], - 6
i = g 2) = ol ©

Since the first two positives are simply shuffled versions of each other and the concatenated images
are unrelated, there is no inherent difference between the positives (except for biases in the pre-trained
model). Thus, we use this loss to teach the model to be invariant to syntactic alterations that do
not change the meaning of the texts. This approach differs from the text-text similarity loss used in
SVLC, where the loss is between two different descriptions of the same image, one of which was
generated by a language model.

Table 1: Previous methods ITT results on SugarCrepe do not generalize to SugarCrepe++.
Comparison of methods on SugarCrepe and SugarCrepe++ compositionality benchmarks. While the
improvements of previous methods on SugarCrepe do not generalize to SugarCrepe++, all versions
of CLIC show strong improvements on SugarCrepe++, and also on WinoGround and SugarCrepe.
Best number for each column is in bold, second best in underlined. Exact details on fine-tuning data
for each method can be found in Appendix D.3.

SugarCrepe++ [11] ‘WinoGround [52] SugarCrepe [18]
Replace Swap Text Image Group | Add Replace Swap
Method | ITT TOT ITT TOT | Score Score Score | ITT ITT ITT
CLIP [45] 69.5 605 457 259 31.2 11.0 8.7 72.9 80.0 62.7

NegCLIP [56] 705 741 564 448 | 30.2 11.0 8.0 87.6 854 176.5
DAC-LLM [9] 537 596 322 181 22.5 10.5 4.7 93.7 894 746
DAC-SAM [9] 523 602 307 184 | 212 122 7.5 915 87.0 736
SVLC-R [10] 640 695 514 284 | 252 8.5 6.7 853 789 68.8
SVLC-R+L [10] | 61.8 700 459 264 | 28.0 8.2 5.7 784 758 654
CoN-CLIP [49] 69.0 70.8 48.0 325 | 295 10.0 72 83.0 797 653
TripletCLIP [41] | 735 7277 434 332 | 30.7 11.2 8.2 86.6 88.0 69.6
CLIC-COCO 735 794 529 472 | 31.0 13,5 100 | 855 838 0693
CLIC-LAION 756 60.1 61.1 279 | 315 115 9.2 845 84.0 737
CLIC-CC12M 744 625 606 30.0 | 31.0 11.8 9.5 89.7 853 743
CLIC-RedCaps 760 576 615 231 | 322 122 107 | 865 848 726

The final objective function we use is a weighted combination of these three losses:
L=)\Cont£Com +)\S»NegLS—Neg +)\UniEUnh @)

where Acont, As-Neg» and Ay are hyperparameters controlling the contribution of each loss term.
To prevent the model from deviating too much from the pretrained CLIP when training only on
concatenated images, we employ the standard clip training every second iteration, using a single
image, the first sentence, and the standard clip loss as in Eq. (1).

3.3 Differences between CLIC and other methods

Other approaches for generating hard text negatives differ from ours in computational cost and
methodology. In DAC [9] and SVLC [10], hard-negatives tailored explicitly for specific composi-
tionality tasks (e.g., replacing specific categories like colors, actions, etc.) are either found through
look-up tables or created with computationally expensive LLM-based generation. Similarly, Triplet-
CLIP uses an LLM to generate hard-negatives; for details, see Section 2.2. Closest to our work is
NegCLIP, which also uses word swapping. However, NegCLIP focuses on specific word classes such
as adjectives, adverbs, verbs, and nouns as described in Appendix D. We allow a swap of any two
random words as long as they are from the same class, e.g., prepositions, numbers, and pronouns,
as seen in Appendix B.2. Our approach offers two main advantages: cheaper computational cost
compared to LLM-based generation and a design that doesn’t target specific benchmarks, reducing
the risk of over-fitting on existing benchmarks. Other methods also add hard-negative images, further
increasing overall computational complexity. NegCLIP and CoN-CLIP search for hard images to add
to the batch, and TripletCLIP generates hard images using a diffusion model. In addition, none of the
methods use a combination of image pairs and corresponding text descriptions as in our method.

4 Experiments and evaluation

4.1 Experimental setup

Dataset. For CLIC, we fine-tune models either with CogVLM [53] recaptioned Laion images, or
PixelProse [50] recaptioned images from RedCaps and CC12M (see Appendix B for details). We
stress that this approach keeps our training data independent of MS-COCO, which is the basis for

Table 2: Downstream retrieval/classification performance. Most methods degrade zero-shot
classification/retrieval performance. CLIC improves retrieval and shows minimal degradation for
classification. * is not zero-shot on MS-COCO. Column-best and second-best are higlighted.

Fine-Tuning Classification Text-Ret. Image-Ret.
Method Data IMNET ZS-10 |COCO F30k |COCO F30k
CLIP [45] - 633 614 | 741 951 | 546 835
NegCLIP*[56] MS-COCO 609 60.7 | 83.6 964 | 722 917
DAC-LLM [9] CC3M 51.1 543 | 633 793 | 58.1 883
DAC-SAM [9] CC3M 523 539 | 573 85.6 | 58.6 822
SVLC-R [10] CC3M 58.8 584 | 704 930 | 61.1 87.0
SVLC-R+L [10] CC3M 59.7 59.0 | 689 904 | 61.1 87.0
CoN-CLIP*[49] CC3M,MS-COCO 632 613 | 714 90.7 | 555 845
TripletCLIP [41] CC3M,CCI12M 548 523 | 723 915 | 56.8 85.1
CLIC-COCO* MS-COCO 627 60.7 | 829 971 | 682 902
CLIC-LAION Laion 61.7 610 | 759 950 | 60.0 86.7
CLIC-CC12M CCI2M 622 60.6 | 769 958 | 60.8 879
CLIC-RedCaps RedCaps 62.3 60.2 | 76.0 956 | 595 86.3

benchmarks like SugarCrepe, SugarCrepe++, and retrieval evaluations. By that, we ensure CLIC
always functions as a zero-shot model. However, to fairly compare with the ViT-B/32 model of
NegCLIP, which is trained on MS-COCO, we also fine-tune one model on the MS-COCO [29]
dataset. In our experiments, we denote each model by the respective dataset it was trained on, i.e.,
CLIC-COCO, CLIC-LAION, CLIC-RedCaps, or CLIC-CC12M.

Models. To be comparable with previous compositionality enhancing methods, we base the majority
of our experiments and the ablations on ViT-B/32 models pre-trained by OpenAl [45]. However,
to highlight the adaptability and scalability of our approach, we also fine-tune other commonly
used pre-trained architectures, such as ViT-B/16 and ViT-L/14 from [45]. Up to our knowledge,
among methods improving compositionality, only CoN-CLIP [49] provides checkpoints for these
architectures. Additionally, we fine-tune more recent ViT-L equivalent VLMs, including CLIPS and
CLIPA to show that our method can enhance compositionality even in models that already possess
compositional abilities and are pre-trained on varying datasets such as Re-DataComp (CLIPS), WIT
(CLIP) and DataComp (CLIPA). More model specific details can be found in Appendix D.1.

Training details. In all of our experiments for CLIC, we keep the vision encoder frozen and fine-tune
only the text encoder at an image resolution of 224 x 224. An ablation showing that this works better
than fine-tuning the entire model can be found in Table 20 in the appendix. Only for experiments
associated with LLaVA [32], we fine-tune the complete model at a higher resolution of 336 x 336. We
defer other training details like LR, loss parameters in Eq. (7), etc, and a discussion on our NegCLIP
baselines (denoted everywhere with a 1), used whenever no checkpoints are available to Appendix D.

Evaluation. We evaluated the models on the compositionality benchmarks SugarCrepe++ [11],
WinoGround [52], and SugarCrepe [18]. Additionally, we assess the effects of fine-tuning on
downstream tasks such as classification on IMAGENET [6] and on ZS-10, which computes the
average score across ten standard classification datasets, detailed in Appendix D.2. In addition, we
report image (1" — I) and text retrieval (I — T") Recall@35 scores on MS-COCO (Val2017) [29] and
Flickr30k [43]. We show Recall@ 1 numbers for retrieval and detailed SugarCrepe and SugarCrepe++
numbers for all the models in Appendix E.

4.2 Comparing to other methods

Given that most publicly available checkpoints of compositionality methods use ViT-B/32 based
CLIP, we first focus on this architecture. From Table 1, we observe that most methods perform
worse than the pre-trained CLIP on SugarCrepe++. Notably, only NegCLIP, CoN-CLIP, and the
CLIC models improve or are on par with the pre-trained baseline. Among these, CLIC-COCO is
better than NegCLIP and CoN-CLIP (all three were trained on MS-COCO), while CLIC-RedCaps

Table 3: CLIC improves different Large (ViT-L/14) CLIP models. CLIC improves several versions
of CLIP, across architectures and pre-training datasets.* is not zero-shot for MS-COCO evaluations.
WinoGround results for these models are in Table 27. Detailed retrieval, SugarCrepe++, SugarCrepe
results and more architectures can be found in Appendix E.

| Downstream Evaluations | Sugarcrepe++ \ Sugarcrepe
Method Classification COCO Ret. Rep. Swap Add Rep. Swap
IMNET ZS-10 |I - T T — 1| ITT TOT ITT TOT | ITT ITT ITT
CLIP [45] 75.5 72.3 79.0 60.0 | 70.7 58.7 447 227 | 749 795 o614
NegCLIPT 73.9 70.6 77.7 659 | 70.6 63,5 505 358 | 83.6 828 70.0

CoN-CLIP*[49] | 759 724 | 784 63.1 | 722 713 46.0 30.5 | 839 813 0642
CLIC-LAION 742 718 80.1 654 | 790 591 598 263 | 877 856 713
CLIC-RedCaps 752 721 81.3 639 | 76.0 554 552 200 | 843 838 66.1

CLIP-A [26] 796 783 | 8.4 705 | 748 748 458 308 | 85.8 829 63.8
CLIC-LAION 784 780 | 848 715 | 784 663 551 30.7 | 929 882 716
CLIC-RedCaps 789 783 | 852 712 | 802 628 612 228 | 934 859 715

CLIPS [33] 784 765 | 904 773 | 793 742 60.6 SL1 | 894 880 796
CLIC-LAION 767 762 | 90.4 794 | 843 719 73.0 494 | 967 924 857
CLIC-RedCaps | 772 766 | 917 795 | 849 714 751 502 | 953 9l.1 845

has lower TOT with a higher ITT (10.2% gain on pre-trained model across replace and swap). We
also evaluate all models on the WinoGround benchmark, where, apart from CLIC, no other method
improves on the pre-trained model, highlighting the effectiveness of CLIC. Moreover, CLIC improves
in compositionality regardless of the fine-tuning dataset, showing that CLIC works for different
sources of captions and images used for fine-tuning. An interesting finding in Table | is that many
models perform well on ITT in SugarCrepe but struggle on SugarCrepe++ ITT, an extended version
including lexically different but semantically similar positives. This stark difference for methods like
DAC (achieves 89.4% on SugarCrepe replace ITT but only 53.7% on SugarCrepe++) suggests these
models detect lexical changes rather than truly learning compositional relations. This likely stems
from their over reliance on hard-negatives tuned for previous benchmarks (see Appendix D.4).

Downstream tasks. We evaluate models on standard retrieval benchmarks (MS-COCO, Flickr30k)
and classification tasks (IMAGENET, ZS-10) in Table 2. While TripletCLIP performs well on
SugarCrepe++ and WinoGround, it exhibits significant degradation on IMAGENET and ZS-10. In
contrast, our CLIC models show minimal performance degradation on classification tasks, with CLIC-
CC12M achieving the highest text retrieval performance among models not trained on MS-COCO
while also improving image retrieval over the pre-trained baseline.

4.3 Ablation Study for CLIC

In Table 4 we ablate the components of CLIC in steps (C1-C5) and present the analogous non-
concatenated, single image version of CLIC (B1-B4). The CLIC baseline (C1) is fine-tuning on
the concatenated images with caption p; and in (C2) we add our single hard negative. These two
steps are sufficient to improve on SugarCrepe but not on SugarCrepe++. This suggests that the
hard-negative distractor helps the model to detect lexical changes, but not to distinguish between
semantically similar sentences and ones with different meaning. Adding multiple positives (C3) and
the uni-modal loss (C4) improves significantly on SugarCrepe++ while performance on SugarCrepe
slightly reduces. Thus, adding diverse positives and enforcing invariance of semantically identical
captions lets the model identify semantically similar captions while being sensitive to lexically similar
but semantically dissimilar captions. In the last step (C5) we add the iterates with single images for
standard contrastive loss, which further improves compositionality and downstream task performance
by eliminating the potential concatenated image biases. The non-concatenated, single-image variant
of CLIC shows similar but smaller improvements in compositionality while being significantly worse
in retrieval. Here, the NegCLIPT variant (similar to B2, but employing Lneg (2) in place of Lg.neg (3))
was used to compare CLIC to NegCLIP on a dataset other than MS-COCO, in order to avoid potential
test data leakage from MS-COCO during training, as discussed in Section 2.3.

Table 4: Effects of different components in CLIC. The non-concat baselines represent single-image
versions of CLIC. Rows : standard fine-tuning on our 1M Laion set with either a concatenated or a
single image and a single caption. Rows present standard one hard negative training. In the single

image case, with either the Ly, (2) for NegCLIP' or the Ls-Neg (3) for B2. Finally, [rows feature
CLIC (with all the components as presented in Section 3) with its analogous single-image version.

Downstream Evaluations ‘ Sugarcrepe++ ‘ Sugarcrepe

Method Classification | COCO Ret. Rep. Swap Add Rep. Swap

IMNET ZS-10 | Text Image| ITT TOT ITT TOT|ITT ITT ITT

Al CLIP [45] 63.3 614 | 741 546 |69.5 60.5 457 259|729 80.0 62.7

NegCLIP 610 605 | 720 59.7 | 679 647 545 36.1|824 809 70.7
Single image Baselines (Non-Concat)

B1 Fine-tuned 62.1 618 | 76.4 604 |69.6 69.2 498 359|834 80.7 68.8

B2 + Single hard-negative 60.6 59.8 | 704 579 |66.6 63.8 550 36.2|81.9 80.5 70.6

B3+ Multi Positives 585 592 | 582 56.6 |70.2 485 585 23.1|77.7 76.0 64.7

B4 Single-Img Baseline 613 60.6 | 67.3 58.0 |74.1 539 60.2 27.8|81.0 799 69.7
Ablating CLIC (Concat)

C1 Fine-tuned Concat 62.6 612 | 76,5 59.1 |69.8 66.7 49.3 359|827 819 682
C2 +Single hard-negative ~ 60.9 60.0 | 73.9 57.8 |68.7 63.6 53.7 342|842 838 732
C3 +Multi Positives 61.3 59.6 | 613 548 |742 474 59.0 195|842 819 709
C4 +Uni-Modal Loss 609 593 | 599 545 |742 50.7 59.1 203|834 81.6 703

C5 +CLIP iterate (CLIC) 61.7 61.0 | 759 60.0 |75.6 60.1 61.1 27.9|845 84.0 737

Table 5: Comparison to SOTA models for SugarCrepe++ and WinoGround. CLIPS fine-tuned
with CLIC-RedCaps attains on average the strongest compositionally aware model, especially among

CLIP variants, as seen on both SugarCrepe++ and WinoGround.

| | SugarCrepe++ | WinoGround

Model Params (M) Replace Swap Average Score

ITT TOT ITT TOT ITT TOT \ Text Image Group
FLAVA [48] 358 744 750 56.8 515 673 655 | 322 205 142
BLIP-Base [24] 225 73.8 739 540 421 661 61.1 | 358 158 133
BLIP-Large [24] 470 81.7 - 59.8 - 72.9 - 37.7 135 105
ViT-H/14 [46] 986 73.8 721 488 39.1 637 588 | 335 127 105
ViT-bigG/14 [46] 2540 76.6 732 515 402 666 59.7 | 355 150 120
CLIPS [33] 427 793 742 606 51.1 719 646 | 362 160 125
CLIPS + CLIC 427 849 714 751 502 810 629 | 417 175 152

4.4 Generalization to larger architectures and models

Next, we measure the generalization of the method to larger architectures such as ViT-L/14 across
models pre-trained on different datasets (CLIPA and CLIPS). Results on ViT-B/16 can be found
in Table 24 in the appendix. We fine-tune each of the pre-trained models, CLIP, CLIPA, and
CLIPS, on our 1M Laion subset and on RedCaps (PixelProse) subset using CLIC. As most other
compositionality enhancing methods do not explore larger architectures, the only baselines we have
are CoN-CLIP and our NegCLIP' (the details of which can be found in Appendix D). In Table 3, we
can see that for all types of pre-trained models, CLIC-RedCaps shows consistent improvements on
the ITT score for SugarCrepe++: +7.4% for CLIP, +9.4% for CLIPA, and 49.2% for CLIPS when
averaged across replace and swap. These improvements are on a similar scale as the ones for the
ViT-B/32 model, suggesting that even for larger architectures, CLIC can attain substantial gains.

What we find even more remarkable are the improvements for image and text retrieval attained by
CLIC. Specifically, for CLIPS (which has to the best of our knowledge SOTA retrieval numbers
of a CLIP model), CLIC further improves text retrieval by 1.3% and image retrieval by 2.2% on

MS-COCO. These gains come at a tiny fraction (0.01%) of the pre-training cost, as we only see 850k
(RedCaps) resp. 1M (Laion) samples compared to 13B samples seen during pre-training of CLIPS.

Constrasting again SOTA. In Table 5, we pitch our best model in CLIPS + CLIC against the SOTA
CLIP like and other models on SugarCrepe++. To the best of our knowledge, CLIPS + CLIC
attains the best available ITT numbers on SugarCrepe++ across all architectures. We note
that CLIPS in itself is already good for ITT on SugarCrepe++ but our short fine-tuning enhances it
significantly further in terms of compositional understanding. For TOT, among CLIP like models
CLIPS + CLIC performs similarly to the best model (CLIPS) in this category. We were unable to
evaluate BLIP-Large for TOT, since the individual BLIP-Large encoders are not publicly available.
The WinoGround results for CLIPS + CLIC are the best in text and group score, while the image score
is the best among CLIP-like models. As far as we know, CLIPS + CLIC attains SOTA WinoGround
scores among CLIP based models.

4.5 CLIC vision encoder in LLaVA

Unlike our previous experiments, we fine-tune the CLIP model with CLIC at 336 x 336 resolution
while unfreezing both the vision and text encoders. We then replace the CLIP vision encoder in
LLaVA-1.5-7b (Vicuna) [31] with our CLIC version and fine-tune the full LLaVA model following
standard projector pre-training (full details in Appendix D.5). As shown in Table 6, CLIC enabled
LLaVA-1.5 achieves notable compositional reasoning improvements. For SugarCrepe++, we observe
gains across most categories with marginal degradation for swap object, while WinoGround scores
improve for text and group sets by more than 6% and 3% respectively. Crucially, these gains preserve
performance on standard VLM benchmarks (GQA, TextVQA, SQA-I), with MME (perception)
improving from 1441.0 to 1465.3. These results show that even short compositional fine-tuning
via CLIC can significantly enhance fine-grained visual-linguistic understanding while maintaining
general vision-language capabilities, as further illustrated by qualitative examples in Figure 6.

Table 6: Comparing standard LLaVA-1.5-7b (CLIP) with it’s CLIC enabled version. Using the
VQAScore metric from [30], we evaluate compositionality via SugarCrepe++ (ITT) and WinoGround,
while showing results for some benchmarks (VLM-tasks) native to LLaVA. Across compositionality
tasks, CLIC enabled LLaVA-1.5 is almost always better than CLIP based LLaVA while maintaining
the same performance on nominal VLM tasks. Task-wise best compositional model is highlighted.

| SugarCrepe++ (ITT) | WinoGround | VLM-tasks

Model Replace Swap
Obj Att Rel Obj Att |Text Img Grp | GQA TextVQA SQA-I MME (P)

LLaVA-1.5 (CLIP) | 94.3 80.4 733 66.9 69.8|36.7 382 232]| 60.6 57.1 69.2 1441.0
LLaVA-1.5 (CLIC) | 94.3 80.8 73.8 66.5 71.2|43.5 42.0 26.2| 62.1 577 68.2 14653

5 Conclusion

We introduce CLIC, a simple, low-cost, and scalable method for boosting compositionality in vision-
language models, as measured by SugarCrepe++. Notably, this improvement comes with a minimal
degradation in downstream tasks like zero-shot classification and enhanced text and image retrieval
performance. CLIC works across different good caption quality datasets. We further illustrate the
generalization of CLIC to variedly (dataset/training-scheme) pre-trained models, architectures. Lastly,
we show that CLIC even improves performance on models already exhibiting strong compositional
and retrieval abilities like CLIPS and yields SOTA results on SugarCrepe++ as well as image retrieval.
From our initial experiments, CLIC powered LLaVA improves in compositional reasoning over the
standard version. We believe compositionally aware vision encoders can further help large VLMs
like LLaVA on more tasks, a detailed study of this is left for future work.

10

Acknowledgements

The authors thank the International Max Planck Research School for Intelligent Systems (IMPRS-IS)
for supporting AP and NDS. We acknowledge support from the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) under Germany’s Excellence Strategy (EXC number 2064/1,
project number 390727645), as well as in the priority program SPP 2298, project number 464101476.
We are also thankful for the support of Open Philanthropy and the Center for Al Safety Compute
Cluster. Any opinions, findings, and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the sponsors. We thank the reviewers
for the discussions and suggesting additional experiments.

References

(1]

(2]

(3]

[4

—_

(5

—

[6

—_

(71

[8

—_—

[9

—

[10]

(11]

[12]

[13]

(14]

[15]

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre Passos, Siamak
Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, et al. Palm 2 technical report. arXiv preprint
arXiv:2305.10403,2023. 7

Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101 — mining discriminative components
with random forests. In ECCV, 2014. 6

Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Conghui He, Jiaqi Wang, Feng Zhao, and Dahua Lin.
Sharegpt4v: Improving large multi-modal models with better captions. In ECCV, 2024. 4

Mircea Cimpoi, Subhransu Maji, lasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. Describing
textures in the wild. In CVPR, 2014. 6

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit Dhillon,
Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the frontier with ad-
vanced reasoning, multimodality, long context, and next generation agentic capabilities. arXiv preprint
arXiv:2507.06261, 2025. 3

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In CVPR, 2009. 7

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidi-
rectional transformers for language understanding. In Proceedings of the 2019 conference of the North
American chapter of the association for computational linguistics: human language technologies, volume
1 (long and short papers), 2019. 6,7

Anuj Diwan, Layne Berry, Eunsol Choi, David Harwath, and Kyle Mahowald. Why is winoground
hard? investigating failures in visuolinguistic compositionality. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing, 2022. 4

Sivan Doveh, Assaf Arbelle, Sivan Harary, Roei Herzig, Donghyun Kim, Paola Cascante-Bonilla, Amit
Alfassy, Rameswar Panda, Raja Giryes, Rogerio Feris, et al. Dense and aligned captions (dac) promote
compositional reasoning in vl models. In NeurIPS, 2023. 2, 3,5, 6,7, 18

Sivan Doveh, Assaf Arbelle, Sivan Harary, Eli Schwartz, Roei Herzig, Raja Giryes, Rogerio Feris,
Rameswar Panda, Shimon Ullman, and Leonid Karlinsky. Teaching structured vision & language concepts
to vision & language models. In CVPR, 2023. 3,6, 7, 18

Sri Harsha Dumpala, Aman Jaiswal, Chandramouli Sastry, Evangelos Milios, Sageev Oore, and Hassan
Sajjad. Sugarcrepe++ dataset: Vision-language model sensitivity to semantic and lexical alterations. In
NeurlIPS,2024. 1,2,4,6,7, 8

Lijie Fan, Dilip Krishnan, Phillip Isola, Dina Katabi, and Yonglong Tian. Improving clip training with
language rewrites. In NeurIPS, 2023. 2, 3,7

Stephanie Fu, Netanel Tamir, Shobhita Sundaram, Lucy Chai, Richard Zhang, Tali Dekel, and Phillip Isola.
Dreamsim: Learning new dimensions of human visual similarity using synthetic data. In NeurIPS, 2023. 1

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of diverse text for language
modeling. arXiv preprint arXiv:2101.00027, 2020. 3

Gregory Griffin, Alex Holub, and Pietro Perona. Caltech-256 object category dataset. 2007. 6

11

(16]

(17]

(18]

(19]

[20]

(21]

(22]

(23]
[24]

[25]

[26]

[27]

(28]

(29]

(30]

(31]

(32]

(33]

[34]

[35]

(36]

[37]

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena Buchatskaya,
Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar, et al. Bootstrap your
own latent-a new approach to self-supervised learning. In NeurIPS, 2020. 2

Matthew Honnibal, Ines Montani, Sofie Van Landeghem, Adriane Boyd, et al. spacy: Industrial-strength
natural language processing in python. 2020. 3, 5, 21

Cheng-Yu Hsieh, Jieyu Zhang, Zixian Ma, Aniruddha Kembhavi, and Ranjay Krishna. Sugarcrepe: Fixing
hackable benchmarks for vision-language compositionality. In NeurIPS, 2023. 1,2,4,6,7, 8

Drew A Hudson and Christopher D Manning. Gga: A new dataset for real-world visual reasoning and
compositional question answering. In CVPR, 2019. 7

Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-Hsuan Sung,
Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning with noisy text
supervision. In /ICML, 2021. 1

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao,
Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dolldr, and Ross Girshick. Segment anything.
arXiv:2304.02643,2023. 3

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
categorization. In CVPR Workshops, 2013. 6

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009. 6

Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-training
for unified vision-language understanding and generation. In ICML, 2022. 1, 9

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image pre-training
with frozen image encoders and large language models. In /ICML, 2023. 3, 6, 7

Xianhang Li, Zeyu Wang, and Cihang Xie. An inverse scaling law for clip training. In NeurIPS, 2023. 1,
2,8,15,17

Xianhang Li, Haoqin Tu, Mude Hui, Zeyu Wang, Bingchen Zhao, Junfei Xiao, Sucheng Ren, Jieru Mei,
Qing Liu, Huangjie Zheng, et al. What if we recaption billions of web images with llama-3? arXiv preprint
arXiv:2406.08478, 2024. 4

JiLin, Hongxu Yin, Wei Ping, Pavlo Molchanov, Mohammad Shoeybi, and Song Han. Vila: On pre-training
for visual language models. In CVPR, 2024. 1

Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dolldr,
and C. Lawrence Zitnick. Microsoft COCO: common objects in context. In ECCV, 2014. 7

Zhiqiu Lin, Deepak Pathak, Baiqi Li, Jiayao Li, Xide Xia, Graham Neubig, Pengchuan Zhang, and Deva
Ramanan. Evaluating text-to-visual generation with image-to-text generation. In ECCV, 2024. 2, 10, 7

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In NeurIPS, 2023.
10, 1

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
tuning. In CVPR, 2024. 2,7

Yanqing Liu, Xianhang Li, Zeyu Wang, Bingchen Zhao, and Cihang Xie. Clips: An enhanced clip
framework for learning with synthetic captions. arXiv preprint arXiv:2411.16828, 2024. 1,2, 8,9, 15, 17

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In ICLR, 2018. 6
Pan Lu, Swaroop Mishra, Tony Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind Tafjord, Peter
Clark, and Ashwin Kalyan. Learn to explain: Multimodal reasoning via thought chains for science question

answering. In NeurIPS, 2022. 7

Zixian Ma, Jerry Hong, Mustafa Omer Gul, Mona Gandhi, Irena Gao, and Ranjay Krishna. Crepe: Can
vision-language foundation models reason compositionally? In CVPR, 2023. 1, 2

Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-grained visual
classification of aircraft. arXiv preprint arXiv:1306.5151, 2013. 6

12

(38]

[39]

(40]

[41]

[42]

[43]

[44]

[45]

[46]

(47]

(48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

Antoine Miech, Jean-Baptiste Alayrac, Lucas Smaira, Ivan Laptev, Josef Sivic, and Andrew Zisserman.
End-to-end learning of visual representations from uncurated instructional videos. In CVPR, 2020. 3

Letitia Parcalabescu, Michele Cafagna, Lilitta Muradjan, Anette Frank, Iacer Calixto, and Albert Gatt.
VALSE: A task-independent benchmark for vision and language models centered on linguistic phenomena.
In ACL, 2022. 1

Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and C. V. Jawahar. Cats and dogs. In CVPR, 2012.
6

Maitreya Patel, Naga Sai Abhiram Kusumba, Sheng Cheng, Changhoon Kim, Tejas Gokhale, Chitta Baral,
et al. Tripletclip: Improving compositional reasoning of clip via synthetic vision-language negatives. In
NeurlPS, 2025. 2,3,6,7, 18

Wujian Peng, Sicheng Xie, Zuyao You, Shiyi Lan, and Zuxuan Wu. Synthesize diagnose and optimize:
Towards fine-grained vision-language understanding. In CVPR, 2024. 2

Bryan A. Plummer, Liwei Wang, Chris M. Cervantes, Juan C. Caicedo, Julia Hockenmaier, and Svetlana
Lazebnik. Flickr30k entities: Collecting region-to-phrase correspondences for richer image-to-sentence
models. In ICCV, 2015. 7

PyTorch. Country-211 dataset. 6

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning
transferable visual models from natural language supervision. In ICML, 2021. 1,2,6,7, 8,9, 4, 13, 14, 15,
16,17, 18

Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi Cherti,
Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-5b: An open large-scale
dataset for training next generation image-text models. In NeurIPS, 2022. 2,9, 1

Amanpreet Singh, Vivek Natarjan, Meet Shah, Yu Jiang, Xinlei Chen, Devi Parikh, and Marcus Rohrbach.
Towards vqa models that can read. In CVPR, 2019. 7

Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus
Rohrbach, and Douwe Kiela. Flava: A foundational language and vision alignment model. In CVPR, 2022.
2,9

Jaisidh Singh, Ishaan Shrivastava, Mayank Vatsa, Richa Singh, and Aparna Bharati. Learn" no" to say"
yes" better: Improving vision-language models via negations. In WACYV, 2025. 4,6, 7, 8, 15, 16, 17, 18

Vasu Singla, Kaiyu Yue, Sukriti Paul, Reza Shirkavand, Mayuka Jayawardhana, Alireza Ganjdanesh, Heng
Huang, Abhinav Bhatele, Gowthami Somepalli, and Tom Goldstein. From pixels to prose: A large dataset
of dense image captions. arXiv preprint arXiv:2406.10328,2024. 2,4,6, 1,7, 11

Quan Sun, Yuxin Fang, Ledell Wu, Xinlong Wang, and Yue Cao. Eva-clip: Improved training techniques
for clip at scale. arXiv preprint arXiv:2303.15389, 2023. 15, 17

Tristan Thrush, Ryan Jiang, Max Bartolo, Amanpreet Singh, Adina Williams, Douwe Kiela, and Candace
Ross. Winoground: Probing vision and language models for visio-linguistic compositionality. In CVPR,
2022.1,2,4,6,7,8

Weihan Wang, Qingsong Lv, Wenmeng Yu, Wenyi Hong, Ji Qi, Yan Wang, Junhui Ji, Zhuoyi Yang, Lei
Zhao, Song XiXuan, et al. Cogvlm: Visual expert for pretrained language models. In NeurlPS, 2024. 2, 4,
6,1,7,11

Shukang Yin, Chaoyou Fu, Sirui Zhao, Ke Li, Xing Sun, Tong Xu, and Enhong Chen. A survey on
multimodal large language models. National Science Review, 11(12):nwae403, 2024. 7

Jiahui Yu, Zirui Wang, Vijay Vasudevan, Legg Yeung, Mojtaba Seyedhosseini, and Yonghui Wu. Coca:
Contrastive captioners are image-text foundation models. Transactions of Machine Learning Research,
2022. 2

Mert Yuksekgonul, Federico Bianchi, Pratyusha Kalluri, Dan Jurafsky, and James Zou. When and why

vision-language models behave like bags-of-words, and what to do about it? In /CLR, 2023. 1,2, 3,4, 6, 7,
18

13

[57] Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language image
pre-training. In ICCV, 2023. 2, 1

[58] Beichen Zhang, Pan Zhang, Xiaoyi Dong, Yuhang Zang, and Jiaqi Wang. Long-clip: Unlocking the
long-text capability of clip. In ECCV, 2024. 9

[59] Kecheng Zheng, Yifei Zhang, Wei Wu, Fan Lu, Shuailei Ma, Xin Jin, Wei Chen, and Yujun Shen. Dreamlip:
Language-image pre-training with long captions. In ECCV, 2024. 1, 4

14

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We provide empirical results in Section 4 and in Appendix E to back up the
contributions of the paper.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of the paper in the limitations section, Appendix A.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

15

Justification: This is an empirical paper.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The algorithm is described in Appendix C and the hyper-parameters are given
in Appendix D.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

16

Answer: [Yes]
Justification: Code will be released upon acceptance of the paper under MIT license.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/pu
blic/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Evaluation is done on standard compositionally benchmarks WinoGround,
SugarCrepe, SugarCrepe++ and on standard classification and retrieval benchmarks for
CLIP models (IMAGENET, ZS-10, MS-COCO, Flickr30k). The different parameters are
justified in the ablation tables in Appendix D.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Error bars and multiple repetitive experiments are have been added for the
baseline experiments of this work. We also demonstrate the generalization of results across
different architectures, pertaining strategies, and fine-tuning datasets.

Guidelines:

» The answer NA means that the paper does not include experiments.

¢ The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: See Appendix D.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper uses standard datasets, and models (Laion, MS-COCO, RedCaps,
CC12M, CLIP, CLIPS, etc.) that are licensed to be used openly for academic purposes.
There is no research on human subjects.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper deals with a method improving compositionality of CLIP models
while keeping or even improving standard abilities of CLIP models like zero-shot classifica-
tion or retrieval tasks. Thus we see no possible negative social impact of this work.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

18

https://neurips.cc/public/EthicsGuidelines

11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper finetunes existing models to improve their results. We see no risk of
misuse.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All of the models and the data we use are publicly available under MIT or
cc-by-4.0 licenses. We appropriately credit the original authors by citing the corresponding
papers and list the models and their checkpoints at Table 22.

Guidelines:
* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

19

13.

14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We will release new fine-tuned models under the original model licenses if
available, else under the MIT license with documentation.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

20

paperswithcode.com/datasets

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: We are using spaCy [17] to extract the POS tags of captions as described
in Appendix B.2. We use a VLM for creating captions, but the same results can be achieved
with standard datasets, as corroborated by our experiments.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

21

https://neurips.cc/Conferences/2025/LLM

Contents

1. Appendix A ...Limitations
Appendix B ... Dataset preparation
Appendix C ... Algorithmic details

Appendix D ... Experimental details and discussions

A

Appendix E ... Additional experiments

A Limitations

Our work considers only a fraction of contrastive models, we believe CLIC should work similarly for
other models like SigLLIP [57], which we were unable to test due to compute and time constraints.
Moreover, we were only able to test LLaVA [31], whereas other large VLMs like VILA [28] and
CogVLM [53] might also benefit from CLIC, which we leave for future work.

B Data preparation

In this section, we describe the data preparation process in detail. Appendix B.1 showcases randomly
selected images and captions from the PixelProse [50] dataset and from the Laion [46] dataset,
along with captions generated for these images by CogVLM [53]. This part also presents further
details on these datasets. In Appendix B.2, we explain the hard-negative generation procedure. In
Appendix B.3 we show examples of the limitations of using a single image for generating negatives
as done in [56]. Appendix B.4 shows ablations regarding other ways of combining images for CLIC.

B.1 Training datasets

In this section, we present our data generation process. To show that CLIC performs well across
diverse datasets, we train models from three different sources. We took a subset of 1M images from
Laion with captions that were generated by CogVLM [53], using the query presented in Figure 3.
We also used a recently proposed high-quality caption dataset in PixelProse [50], which contains
850k available samples from the RedCaps subset. In order to compare faithfully to our baselines
in Table 1 who use CC3M, we also use a 1.2M subset of CC12M that comes from the same data
stream as CC3M to train a ViT-B/32 model. Since our method requires detailed captions, we use
the recaptioned version of CC12M from PixelProse. These two datasets come from a different
stream of internet data than Laion. A selection of random image-caption pairs from both kinds
of datasets is provided in Figure 4. As can be seen from the examples, the first sentence in each
caption usually provides a general description of the image, while the other part of the caption often
captures more specific details. To clean the data, we removed the starting strings like “This picture
depicts/shows/demonstrates:”. Then, since the generated captions tend to be longer than those in the
standard datasets like Laion and DataComp (the average caption length in our recaptioned dataset
is 78 words), we split the captions into individual sentences as done in [33, 59]. This results in an
average sentence length of 16 words for captions generated by CogVLM [53]. We retain only images
whose captions contain more than one sentence, which is more than 99% of the 1M set for Laion.
This approach favors captions that provide both general context and specific details about the images.
For a fair comparison with NegCLIP, we also train CLIC with MS-COCO, the details of which are
in Section 4.

Query: Can you please describe this image in a long and detailed paragraph? Please keep your descrip-
tions factual and terse but complete. DO NOT add any unnecessary speculation about the things that are
not part of the image. The description should be purely factual, with no subjective speculation.

Figure 3: Query used for re-captioning for the CogVLM model [53].

Table 7: List of Universal POS Tags with their Meaning and Examples. Examples are taken from
ChatGPT. For further information, refer to https://universaldependencies.org/u/pos/.

POS Tag Meaning Example Words
ADJ Adjective happy, blue, large
ADP Adposition (preposition) in, on, under, with
ADV Adverb quickly, very, well
AUX Auxiliary verb is, was, will, do
CCONJ Coordinating conjunction and, but, or

DET Determiner the, a, an, this
INTJ Interjection wow, oh, hey
NOUN Noun (common & proper) dog, city, John
NUM Numeral one, two, 100
PART Particle not, ’s (as in John’s)
PRON Pronoun he, she, it, they
PROPN Proper noun London, Microsoft
PUNCT Punctuation L2

SCONJ Subordinating conjunction because, although, if
SYM Symbol $, %, &

VERB Verb run, eat, write

X Other (foreign words, typos) jdhfk, asdfg

B.2 Hard negative creation

Our hard negative creation process utilizes the spaCy package to identify the part-of-speech (POS)
of words in a sentence. We consider only the coarse-grained POS level, which is universal and not
language-specific. The complete list of universal POS tags is provided in Table 7. For each sentence,
we classify all words, group them by their POS, and determine eligible categories for swapping.
A valid swap nomination requires at least two words from the same POS category, excluding the
following: “AUX", “CCONIJ", “DET", “INTJ", “PART", “PUNCT", “SCONIJ", “SYM" and “X".
Once a valid category is identified, we randomly select it and swap two randomly chosen words
within that category. We deliberately did not select specific tags to avoid overfitting to current
compositionally benchmarks. If no category falls into these cases, we swap two words at random.

B.3 In-scene vs across-scene swaps

Creating negatives by swapping words between sentences from different scenes offers several
advantages over swapping within a single scene:

1. Swapping words within a single sentence can lead to negatives due to the changes in word order.
For example, the sentence from NegCLIP: “The horse is eating the grass" can become “The grass
is eating the horse". However, swapping words across sentences from different images greatly
increases the diversity of negative examples. Taking the example from the paper (Section 1),
concatenating the “The horse is eating the grass" image with an image of a dog chasing a cat
may lead to the new negative: "The horse is chasing the cat. The dog is eating the grass". Since
each image can be paired with each of the other images, this scales the diversity of negatives
quadratically and helps the generalization of the method.

2. Creating negatives from a single scene, like in NegCLIP, may result in a modified sentence that
still accurately describes the image. This might happen as in many sentences, changing the order of
the words does not change the semantic meaning of the sentence. This is different from changing
words across scenes, where the concatenated sentence will reflect the concatenated image only if
we by chance swap words that have the same meaning (we remind the reader that we do not allow
swaps of the same word, i.e., ‘man’ can not be swapped with ‘man’). Here are a few examples
from the CC12M subset from PixelProse:

* “In the top left corner, a person wearing a green jacket” — switching left and top does not change
the meaning.

https://universaldependencies.org/u/pos/

“there is a tuna salad with celery, onion, and mayonnaise” — changing onion and celery does not
change the meaning.

“Bugs Bunny, Taz, Lola Bunny, and Daffy Duck are standing on either side” — changing Lola
and Bugs.

“The Jeep has a black bumper, black wheels” — changing bumper and wheels.
“A dining room and living room" — changing dining and living.
“A black and gray backpack” — changing gray and black.

B.4 Non-random image concatenation

Combining images at random offers several advantages, such as computational efficiency and reduced
risk of overfitting to specific benchmarks. However, to examine whether generating more plausible
or grammatically correct negatives leads to better results (at the expense of higher computational
resources), we construct negatives in a non-random manner using two strategies:

1. Combining images that share a common noun.

2. Swapping words with different semantic meanings and selecting images accordingly.

Common nouns

We begin by extracting all the nouns from the first sentence of each image using spaCy. For each
image, we then sample up to five other images (without repetition) that share a common noun and use
this to concatenate the images. We then continue as usual by swapping random words (excluding the
common noun). Although we witnessed a higher 5,4 loss (Eq. (5)), indicating that the hard negatives
are indeed harder, the results on the downstream tasks remained largely unchanged (see Table 8, row
SAME NOUN).

LLM swaps

To test the impact of non-meaningful or ungrammatical negatives, we made the following modification
to our method to construct negatives that are grammatically correct by leveraging LLM based swaps:

1. We extracted the fine-grained Part-of-Speech (POS) tags for each word in the first sentence
using spaCy’s most computationally expensive model, which took around 5 hours. In con-
trast, the version used for the random image-caption pairs employed a more computationally
efficient model and took only a few minutes.

2. For each word, we queried Gemini 2.5-flash [5] to generate up to five replacement candidates
from the same POS category, such that replacing the word changes the meaning of the
caption, while keeping the sentence coherent. Note: these queries to Gemini via API calls
took over 24 hours of compute time to find word replacements for the 1M Laion subset. In
comparison, fine-tuning a CLIP model with CLIC only takes around 40 minutes.

3. During training, for each caption, we randomly selected a POS category and then randomly
chose a word from that category. The second image and word replacement were selected
based on the candidates from step 2.

This significantly more expensive variant of CLIC (LLM SWAPS in Table 8) results in harder
negatives (as evidenced by a higher loss during training) and leads to improvements in Replace (ITT)
for SugarCrepe++ but degrades Swap (ITT) and TOT. While at first surprising, we hypothesize that
the lower diversity of negatives compared to our original computationally cheap version of CLIC,
with random replacement of words from the same POS category, could be a reason for this.

To check the quality of the negatives, we hand-labelled 75 negative samples from both LLM SWAPS
and the random negatives used to train CLIC-LAION. This process yielded 69% meaningful,
grammatically correct negatives with distinct semantic meanings from LLM SWAPS, compared to
28% from the CLIC-LAION. We include below 5 coherent and grammatically correct hard negatives
examples, and 5 nonsensical or grammatically incorrect ones. While there are some errors, the overall
quality is sufficient to prevent the model from relying solely on shortcuts, as many examples remain
meaningful and grammatically correct, and the errors are relatively subtle.

Correct hard negative examples:

(postcard <> telegram)
N: a collage of various telegram marketing materials. a vintage postcard.
(stripes < swirls)

N: a black satin jacket with white swirls on the collar and cuffs. a graphic design element that features
a large red heart at the center surrounded by intricate golden stripes and patterns

(short <> thick)

N: a portrait of a woman with thick textured hair that has a mix of brown and blonde colors. an
indoor setting possibly a café or a bakery with a man pouring a short brown liquid which appears to
be chocolate onto a white countertop.

(plain <> fancy)

N: a woman standing against a fancy background. a scrapbooking paper pack titled ‘sunny memories’
by plain pants designs.

(corners < hearts)

N: a pair of red envelopes with intricate gold embroidery on the hearts. two wooden objects that are
shaped like corners.

Nonsensical or grammatically incorrect samples:

(whistle <> shout)

N: a red kettle with a shout attached to its spout. a man in a dramatic pose seemingly in the middle of
a punch or a whistle

(made < destroyed)

N: a hand-destroyed card with a floral design. a scene of destruction with a building that appears to
have been damaged or made.

(printed <> removed)

N: a black bag with white lines and the word ‘thule’ removed on it. one of the nuts is shown with its
cap printed revealing the coiled thread inside.

(setting <> breaking)

N: this image captures a moment in an outdoor park breaking where two individuals are engaged in a
playful activity. a bear’s face that appears to be setting through a shattered glass surface.

(appears <+ disappears)

N: it disappears to be a motorized treadmill with a digital display on the top. the headline reads
‘german billionaire appears on matterhorn’ and it is dated april 11 2018 at 11:35 am cdt.

Table 8: Comparing with non-random image concatenation. All methods use LAION data
captioned by CogVLM and the ViT-B/32 architecture. Although training with non-random image
concatenation leads to higher Ls.neg 10ss (Eq. (5)), the performance of the model remains the same.

Downstream Evaluations SugarCrepe++ SugarCrepe
Classification Text Ret. Image Ret. Replace Swap Add Rep. Swap
Method [IMNET ZS-10|COCO F30k |COCO F30k | ITT TOT ITT TOT | ITT ITT ITT
CLIP[45] | 63.3 614|741 951|546 835|695 605 457 259|729 800 627

CLIC-LAION | 61.7 61.0 759 950|600 867|756 60.1 61.1 279|845 840 737

SAME NOUN 61.7 60.7 | 759 95.0 | 60.0 86.6 | 75.0 60.1 61.8 285|843 833 73.0
LLM SwAPS 61.8 61.1 |76.1 94.7|59.8 86.7| 767 599 60.7 240|833 839 721

C Algorithmic details

Algorithm 1 Training Procedure with Concatenated Images and Hard Negatives

1: function GENERATEPOSNEG(image pair (x;, ;.), caption pair (y;, Yitm))
2: u; = RandomConcat(x;, ;ym)

3 Extract the sentences from the captions y;, 7, ..., Y\, Yo, ---

4: % Positive Generation

5 Ckeak:tfl:::Concaﬂy},y}+nJ % Concatenate first sentences

6 Create t!* = Concat(y;,,,,y;) % Shuffle order

7

Create tI* = RandomConcat(yfl , yfjm) for random k1, ko 7’ Random order of random
sentence pair

8: Create t!* = RandomConcat(yi”7 yf_‘ﬁm) for random k3,k4 % Random order of random
sentence pair
9: % Hard Negative Generation
10: Extract linguistic categories for words in 3} and y} +m using spaCy
11: if common category exist then
12: Select a random common category CAT (e.g. NOUN, AD]J, ...)
13: Randomly select CAT words w;, w4, from y}, yl, . respectively
14: else
15: Randomly select words w;, w;n, from y},yi, . respectively
16: end if
17: Swap w; and w4, in t; to create t} = Swap(t;, Wi, Witm)
18: return u;, t* 92 4% P4 4

19: end function

Require: Training images I, captions T', hyperparameters Acont; As-Neg, AUni
20: for each iteration do

21: Sample a batch of images and corresponding captions {z;, y; }1*,
22: if iteration % 2 = 0 then

23: % Concatenated training images

24: for each image caption pair x;, y; in the batch do

25: wi, 102 4% P4 4" —GeneratePosNeg((z, Titm), (Yis Yitm))
26: end for

27: % Compute loss (Contrastive, Hard Negative, Uni Modal)
28: L = AcontLcont + /\S-NegES—Neg + AuniLuni

29: else

30: % Standard CLIP training

31: for each image caption pair z;, y; in the batch do

32: Extract first sentence of caption y;

33: end for

34: Compute standard CLIP contrastive loss

35: end if

36: Update model parameters

37: end for

In this section, we present a pseudo-code of our algorithm, as discussed in Section 3 in the main
paper. The pseudo-code can be found in Algorithm 1.

D Experimental details and discussions

In this section, we give a detailed description of various training and baseline design choices.

D.1 Further training details and discussions

As stated in the main paper, we train with alternating steps of CLIP loss (Eq. (1)) and the pro-
posed loss (Eq. (7)). This decision is made to help the fine-tuned model retain its performance on
downstream tasks, evident from the ablations in Table 4.

Computational resources. All the work was carried out on A100 40G GPUs. The training runs are
across 4 GPUs. Running CLIC on smaller architectures like ViT-B/32 and ViT-B/16 took less than 30
minutes for the Laion dataset. Datasets such as RedCaps took longer due to high-resolution images.
The larger ViT-L/14 models took around 1 hour per dataset. The evaluation time is negligible, in the
order of 20 minutes per model for all datasets on a single GPU.

Training parameters and details. In all of the experiments, the loss parameters in Eq. (7) are set to
Acont = 1/2, AsNeg = 1 /2 and Ayy; = 1. We train for one epoch on our 1M Laion subset and on our
850k PixelProse dataset, while for MS-COCO, we trained for five epochs; ablation on the number of
epochs can be found in Table 19. All experiments are conducted at an image resolution of 224 x 224.
Our effective batch size is 200 x 4, and we use a cosine scheduler, where the warm-up phase is 20%
of the training time. The learning rate (LR) starts at 1e — 7, peaks at 1e — 6, and arrives at 1le — 8 at
the end. We used the standard AdamW [34] optimizer with beta parameters (0.9,0.98) and e set to
le — 8 with a weight decay of 0.1.

Training with COCO. Although for most of the experiments, we use our 1M Laion subset or
the PixelProse dataset, we also train with MS-COCO to be comparable to the original NegCLIP
checkpoint from [56]. Note that due to training on MS-COCO all retrieval numbers on MS-COCO for
NegCLIP from [56], and CLIC-COCO are no longer zero-shot. The same is also true to CoN-CLIP,
who use COCO images as distractor in their method.

Our NegCLIP baselines. To have a baseline for all models considered in this work, we train our
own version of NegCLIP (denoted everywhere with T). It is used only when there are no available
checkpoints (Table 3, Table 24 and Table 25), and in our ablation study (Table 20). This version of
NegCLIP differs from the NegCLIP [56] as follows:

1. We do not use hard negative images that are added to the batch.

2. We use the same categories as in our method, while the NegClip paper employs six tags:
two from the coarse-grained POS level (“ADV" and “ADIJ"), two from the fine-grained level
(“NN" for singular nouns and “NNS" for plural nouns), and two phrase-level categories
(verb phrases and noun phrases).

3. The vision encoder is frozen during training.

We use their negative loss calculation (see Eq. (2)), where the hard negatives are part of the standard
clip loss.

D.2 Zero-shot datasets

The 10 zero-shot classification datasets we use are a subset from the CLIP_benchmark’. Specif-
ically, we use 1k images of each of the following datasets: Country-211 [44], Caltech-101 [15],
OxfordPets [40], DTD [4], FGCV Aircrafts [37], StanfordCars [22], Cifar-10,100 [23], Food-101 [2].

D.3 Dataset from other methods

To improve compositionality, many methods use re-labelled/captioned versions of standard datasets.
The details of these recaptions can be found in Table 9. TripletCLIP uses recpationed data from
LaCLIP and DAC uses BLIP2 [25] to create better captions. Methods like CoN-CLIP and SVLC-R+L
use the original captions and PaLM-2 and BERT [7] to generate hard-negatives for their base datasets.

D.4 Other methods do not generalize

From the results on SugarCrepe++ and SugarCrepe, one sees that other compositionality enhancing
methods like SVLC-R, DAC, etc., perform relatively well on SugarCrepe but fail to generalize to
SugarCrepe++. We believe this is due to the way these methods operate. Specifically, most of these
methods create hard-negatives aimed at certain attributes such as color, position, or size (for example,
modifying P1: "a woman plays a black guitar" to N: "a woman plays a green guitar"). This aligns
closely with what benchmarks like ARO, and SugarCrepe evaluate (with SugarCrepe generating more
fluent and sensical negatives).

*https://github.com/LAION-AI/CLIP_benchmark

https://github.com/LAION-AI/CLIP_benchmark

Table 9: Recaptioning/negative generation for different methods. We show the different datasets
and the respective re-captioning model used by compositionally enhancing methods.

Base Re-caption
Method Source Dataset Method
NegCLIP [56] MS-COCO -
DAC-LLM [9] CC3M BLIP2 [25]
DAC-SAM [9] CC3M BLIP2 [25]
SVLC-R [10] CC3M -
SVLC-R+L [10] CC3M BERT [7]
CoN-CLIP [49] CC3M PaLM-2 [1]
TripletCLIP [41] CC3M, CC12M LaCLIP [12]
CLIC-COCO Ours MS-COCO -
CLIC-LAION Ours Laion CogVLM [53]
CLIC-CC12M Ours CC12M PixelProse [50]
CLIC-RedCaps Ours RedCaps PixelProse [50]

While such approaches can indeed improve performance on lexical understanding, they fail to
capture word replacements that are not in the dictionary and fall outside of a predefined structure.
More importantly, we believe these changes do not foster a deeper, more nuanced understanding of
compositionality within the model. True compositional reasoning requires distinguishing between
examples that differ not only lexically but also syntactically and semantically, for instance, recognizing
that N2: “a woman plays a plastic guitar” is negative, whereas P2: ““a guitar is being played by a
woman” is positive. These cases involve more complex syntactic and semantic variations and move
beyond lexical differences.

For SugarCrepe++, in addition to the evaluation in SugarCrepe, an additional lexically different text is
introduced, and since these methods do not account for general compositional/structural variations in
their hard-negative, they fall short on SugarCrepe++. On the other hand, the random word swapping
in CLIC makes our method focus not on the specific attributes but the general composition of
different words in the text. This makes our method generalize better and work equally well for both
SugarCrepe++ and SugarCrepe.

D.5 Detailing the LLaVA experiment

As LLaVA uses only the vision encoder from CLIP models trained at a higher image resolution
(336 x 336 pixels), we performed an additional fine-tuning of ViT-L/14 with CLIC, this time also
unfreezing the vision encoder. We employed the PixelProse dataset and reduced the effective batch
size to 40 x 8, while keeping all other settings identical to those in Appendix D.I.

Subsequently, we fine-tuned LLaVA-1.5 using Vicuna-7b as the LLM. Initially, only the multi-modal
projector was fine-tuned, followed by fine-tuning of both the projector and the LLM. This procedure
follows the standard setup from the official LLaVA codebase’. To ensure a fair comparison, we
conducted these experiments using both the original CLIP and our CLIC vision encoders. Hence, the
two resulting models in Table 6 are both fine-tuned by us, making the subsequent comparison fair.

For the evaluation reported in Table 6, we adopt the VQAScore from Lin et al. [30] for both
SugarCrepe++ and WinoGround. For standard VLM benchmarks, we select a subset of tasks from the
original LLaVA codebase. Specifically, we assess question answering using accuracy on GQA [19]
and TextVQA [47], chain-of-thought reasoning with ScienceQA-Images (SQA-I) [35], and perception
via MME [54]. For all evaluations we use the default setup from the original LLaVA codebase.

E Additional experiments

In this section, we present more detailed results of the experiments in Section 4 in the main paper and
provide additional experiments.

*https://github.com/haotian-1iu/LLaVA/tree/main

https://github.com/haotian-liu/LLaVA/tree/main

Extension of results from the main paper As we only show averaged ITT and TOT numbers across
different sets of SugarCrepe++ and SugarCrepe in the main paper, the full versions for ViT-B/32
models can be found in Table 17 and Table 18 resp. Similarly, for ViT-B/16 (omitted in the main
part) and ViT-L/14, detailed results are shown in Table 24 and Table 25, respectively. Detailed
compositionality results for the newer CLIP versions in CLIPA, EVA02-CLIP and CLIPS with their
respective better versions achieved via CLIC can be found in Table 26. In Table 23, we give dataset
wise accuracy of all the large models for the ZS-10 setting. WinoGround results for large model
can be found in Table 27. The pre-trained checkpoints used for fine-tuning with CLIC are listed
in Table 22.

Improvements across architectures In Table 3 in the main part of the paper, we show how CLIC
improves compositionality and retrieval for differently pre-trained models. We visualize these
improvements in Figure 5. Fine-tuning with CLIC yields improvements on all models for ITT on
SugarCrepe++ and SugarCrepe. The improvements in case of CLIP are as high as 7% and as much as
9% for CLIPS.

Ablating training steps In Table 19, we show how the proposed CLIC changes with more training
steps. Here, we use MS-COCO for training which means 5 epochs corresponds to 2.5 Laion epochs
of our dataset. From the table, we see increasing gains in SugarCrepe++ numbers when increasing the
number of training step. However, this comes with a marginal degradation in zero-shot classification,
which goes down from 63.2% to 62.7% on IMAGENET as we move from 2 to 5 epochs. The same
trend holds for our 1M set of Laion, where training for more than 1 epochs led to decay on IMAGENET
and ZS-10 numbers with marginal gains on SugarCrepe++. Hence, for our runs in the main part of
the paper with Laion (CLIC-LAION) we only train for 1 epoch.

Ablating freezing of model components In Table 20, we show how the proposed CLIC (frozen vision
encoder) yields, on average, the best compositionality without sacrificing downstream performance.
From the table, it is clear that freezing just the text encoder leads to the least amount of improvement
on compositional benchmarks. Fine-tuning the whole model works better (in terms of retrieval) but
the gains on SugarCrepe++ are smaller than freezing the vision encoder and it also degrades zero-shot
classification performance. From these results, we infer that the most improving configuration is
freezing the vision encoder, which is the final setting for CLIC. This also highlights that substantial
gains can be made by improving the text encoder alone.

Ablating number of additional positives In Table 21, we show the impact of adding additional
positives for each concatenated image (ps and p4 from Section 3.1). Notably, increasing the number
of positives has opposing effects on the TOT and ITT scores. In addition, after two positives, the
effects on ITT in SugarCrepe++ become minimal, so we chose to add only two positives.

Error bars To show the resilience to randomness of CLIC, we conduct three runs for two versions of
CLIC presented in Table 1 and Table 2 (CLIC-LAION and CLIC-RedCaps). We report the mean and
standard deviation in Table 10 and Table 11, respectively. The standard deviation is small, particularly
when considering that the results in the paper are rounded to one decimal place.

Table 10: Small standard deviation across runs. Results are reported as mean + std over three
independent runs on compositionality benchmarks with the ViT-B/32 architecture.

SugarCrepe++ [11] WinoGround [52] SugarCrepe [18]
Replace Swap Text Image Group | Add Replace Swap
Method | ITT TOT ITT TOT | Score Score Score | ITT ITT ITT
CLIP 69.5 60.5 45.7 259 31.2 11.0 8.7 72.9 80.0 62.7

CLIC-LAION [75.34 + 60.10 = 61.55 &+ 27.86 £|31.75 & 11.83 £ 9.33 £ |84.56 & 83.84 £ 73.79 +
0.18 0.11 0.38 0.08 0.20 0.31 0.31 0.09 0.14 0.12
CLIC-RedCaps [76.18 + 57.82 + 61.60 & 23.34 £|32.00 &+ 11.67 £ 10.08 £|86.27 & 84.80 £ 72.54 £
0.16 0.17 0.07 0.19 0.61 0.12 0.24 0.15 0.04 0.04

Long captions retrieval To evaluate the influence of exploiting superficial artifacts such as potential
abrupt topic changes, generated by our concatenation scheme, we compared the retrieval performance
on longer captions (up to 200 tokens) between the original model, other compositionality-enhancing
methods, and our fine-tuned models (CLIC) on the ViT-B/32 architecture. This setup is adapted

Table 11: Small standard deviation across runs. Results are reported as mean =+ std over three
independent runs on downstream tasks with the ViT-B/32 architecture.

| Classification | I—T | T 1
Method | IMNET 7s10 | coco F30K | coco F30K
CLIP 63.3 61.4 74.1 95.1 54.6 83.5

CLIC-LAION | 61.72 £0.02 60.89 £0.06 | 75.92 £ 0.17 95.10 £ 0.08 | 60.32 £ 0.64 86.70 = 0.03
CLIC-RedCaps | 62.41 £0.09 60.22 £ 0.03 | 76.00 £ 0.09 95.67 £ 0.05 | 59.42 £ 0.04 86.27 &+ 0.02

from long-retrieval as previously done in [58]. We truncate the caption to the nearest punctuation
(within context-length) as CLIP has a context length of 77. It is important to note that these longer
captions describe a single scene but consist of multiple sentences. This design choice was deliberate:
it helps us determine if our CLIC models have inadvertently overfit to abrupt topic changes or even to
concatenation with punctuation. As can be seen in Table 12, only CLIC and TripletCLIP outperform
the base model for both image and text retrieval, whereas DAC-LLM and SVLC-R+L are worse.

Table 12: CLIC does not overfit to abrupt topic changes. Evaluation of long-caption retrieval task
for the ViT-B/32 architecture.

Method I-T T—1I
CLIP 83.2 79.5
NegCLIP 82.6 80.7
DAC-LLM 67.6 72.5
SVLC-R+L 75.0 74.8
TripletCLIP 84.1 81.5

CLIC-COCO 859 814
CLIC-LAION 839 79.6
CLIC-RedCaps 847 79.9

More retrieval results In the main part of the paper, all results on MS-COCO and Flickr30k retrieval
are reported with Recall@5. In Table 28, we additionally report Recall@1 for all ViT-B/32 models
from Table 1. The overall ordering of methods is similar to Recall@5. Similarly, in Table 27, we
additionally report Recall@1 for all ViT-L/14 models from Table 3.

Visual examples and failure case analysis To illustrate the strengths and limitations of the method
and the compositionality task in general, we selected four of the SugarCrepe++ categories: Replace
attribute, Replace relation, Swap attribute, and Swap object. For each, we examined the first instance
in which the pretrained model’s prediction changed from incorrect to correct with CLIC-RedCaps,
and vice versa. The results show that CLIC has lower absolute cosine similarity values compared to
the pretrained model.

Table 13: Visual examples illustrating cases where the pretrained model’s prediction changed: from
incorrect to correct with our CLIC-RedCaps version, and from correct to incorrect in the replace
attribute class of SugarCrepe++. v/ marks correct predictions and X marks incorrect predictions.

Py A person holding up a chocolate doughnut P A tan toilet and sink combination in a small

with a face drawn on it. room.
Ps5: A chocolate doughnut with a face drawn on P»: A small room with a tan toilet and sink
it is being held up by a person. combination positioned in close proximity to

one another.
N A person holding up a vanilla doughnut with ~ N: A white toilet and sink combination in a

a face drawn on it. small room.
Algorithm cos(P;) cos(P2) cos(N) Algorithm cos(P;) cos(P2) cos(N)
CLIP (X) 0.323 0.306 0.309 CLIP (v) 0.325 0.341 0.319
CLIC(/) 0280 0285 0.263 CLIC (X) 0260 0256 0.262

Table 14: Visual examples illustrating cases where the pretrained model’s prediction changed: from
incorrect to correct with our CLIC-RedCaps version, and from correct to incorrect in the replace
relation class of SugarCrepe++. v/ marks correct predictions and X marks incorrect predictions.

Py A pizza covered in lots of greens on top of a P;: A zebra is standing in an open field.
table.

P5: A table has a pizza on top of it covered in P>: On an open field, stands a zebra.

lots of greens.

N: A pizza covered in lots of greens next to a N: A zebra is running across an open field.
table.

Algorithm cos(Py) cos(P;) cos(N) Algorithm cos(P;) cos(P) cos(N)

CLIP (X) 0.300 0.280 0.293 CLIP (v) 0.311 0.312 0.298
CLIC (v) 0.276 0.275 0.272 CLIC (X) 0.283 0.254 0.270

10

An elderly man wearing
glasses and a suit standing
behind a lectern with a golden
eagle design. He appears
to be in a formal setting
possibly delivering a speech or
presentation. The background
is dimly lit and there are some
decorative elements such as
flowers visible behind him.

In the foreground, there is a
long bridge with a train on it.
The bridge is made of metal
and has a brown color. The
train is red and white. Be-
hind the bridge, there is a large
body of water. The water is
a blue-green color. There are
some clouds in the sky. The
image displays the Pamban
Bridge, which is a still active
train bridge located in Ramesh-
waram, India.

Laion re-captioned images

A dimly lit cave or under-
ground setting. The cave has
various elements such as sta-
lactites rocks and a chalkboard
with some drawings on it. The
atmosphere seems mysterious
and adventurous suggesting
that the characters might be on
a quest or exploration.

PixelProse images

A pink and white frangipani
flower. The flower is made
up of five petals, with the pink
petals on the outside and the
white petals on the inside. The
flower is surrounded by green
leaves.

A bar chart that represents the
average sales price of homes
in Centerville Georgia over
a 12-month period from Jan-
uary 2010 to December 2010.
The chart shows two sets of
data: the average sales price
of homes and the average sales
price to list price ratio.

A small Bengal cat with brown
fur and black stripes. The cat
is lying on a cat tree, with
its front paws hanging off the
edge of the platform. The cat
is looking at the camera with a
curious expression.

Figure 4: Random images from Laion and PixelProse, after re-captioning with CogVLM [53]
and re-captions from Singla et al. [50]. For each caption, the first sentence and another two
randomly sampled sentences are presented. The first sentence often describes the entire image,
while the additional sentences highlight specific details. As can be seen, the captions generated
by CogVLM [53] exhibit high quality similar to the PixelProse dataset. Note these models still
hallucinate (e.g. train on the bridge) sometimes and not all captions are 100% correct.

11

Table 15: Visual examples illustrating cases where the pretrained model’s prediction changed: from
incorrect to correct with our CLIC-RedCaps version, and from correct to incorrect in the swap
attribute class of SugarCrepe++. v/ marks correct predictions and X marks incorrect predictions.

P;: One apple and several oranges sit in a P, : Two giraffe and a zebra are standing in a
bowl. field.

P5: several oranges and an apple are P5: In a field, two giraffes and a zebra are
positioned in a bowl. standing.

N: Several apples and one orange sit in a N: A giraffe and two zebras are standing in a
bowl. field.

Algorithm cos(P;) cos(P,) cos(N) Algorithm cos(P;) cos(Py) cos(N)

CLIP (X) 0.306 0.315 0.309 CLIP (V) 0.316 0.316 0.315
CLIC (v) 0.276 0.298 0.270 CLIC (X) 0.305 0.290 0.295

Table 16: Visual examples illustrating cases where the pretrained model’s prediction changed: from
incorrect to correct with our CLIC-RedCaps version, and from correct to incorrect in the swap object
class of SugarCrepe++. v marks correct predictions and X marks incorrect predictions.

P;: Girls wash a motorcycle while men look P;: A painting of a vase with a sunflower on

on. a table.

P5: The motorcycle is being washed by girls P»: A vase containing a sunflower is

while men observe. positioned on a table in a painting.

N: Men wash a motorcycle while girls look N: A painting of a sunflower with a vase on
on. a table.

Algorithm cos(P;) cos(P2) cos(N) Algorithm cos(Py) cos(P;) cos(N)

CLIP (X) 0.365 0.356 0.358 CLIP (V) 0.378 0.381 0.378
CLIC (v) 0.364 0.371 0.362 CLIC (X) 0.317 0.321 0.322

12

Table 17: Extended results for SugarCrepe++ for ViT-B/32 architecture. This table is an extension

of Table 1.
Method Replace-obj Replace-att Replace-rel Swap-obj Swap-att AVG
ITT TOT ITT TOT ITT TOT ITT TOT ITT TOT ITT TOT
CLIP 86.8 83.7 656 593 562 38.6 46.1 192 452 327 60.0 46.7
NegCLIP 89.6 945 695 764 523 514 547 33.1 58.8 56.7 648 62.5
DAC-LLM 657 768 4777 595 476 423 314 114 329 248 451 430
DAC-SAM 643 758 439 56.1 486 486 277 114 33.6 254 43.6 435
SVLC-R 829 895 615 674 476 515 494 204 533 363 589 53.0
SVLC-R+L 809 916 571 67.0 473 513 428 184 489 344 554 525
CoN-CLIP 88.1 915 666 694 523 516 441 224 519 42,6 60.6 555
TripletCLIP 86.8 923 71.7 740 619 51.7 388 241 479 423 615 569
CLIC-COCO 90.2 973 723 81.6 580 593 48.6 33.5 572 60.8 653 66.5
CLIC-LAION 90.0 845 758 579 610 38.0 612 224 61.0 334 69.7 472
CLIC-RedCaps 90.1 843 75.1 524 629 363 608 179 624 282 703 34.6

Table 18: Extended results for SugarCrepe for ViT-B/32 architecture. This table is an extension

of Table 1.

Methods | IMAGENET| Add Replace Swap

\ | Obj. Att. Obj. Att. Rel. Obj. Att.
CLIP 63.3 772 686 909 80.1 69.1 612 643
NegCLIP 60.9 88.8 847 938 877 739 755 764
DAC-LLM 51.1 89.6 977 944 893 844 751 742
DAC-SAM 52.3 87.5 955 912 859 839 71.8 754
SVLC-R 58.8 794 912 913 812 642 68.6 69.1
SVLC-R+L 59.7 758 81.1 88.1 768 62.6 64.1 66.7
CoN-CLIP 63.2 879 780 918 810 663 637 67.0
TripletCLIP 54.7 87.3 858 944 86.7 828 665 727
CLIC-COCO 62.7 88.8 824 936 859 71.6 657 728
CLIC-LAION 61.7 81.6 874 934 863 724 731 742
CLIC-RedCaps 62.3 842 887 933 869 740 71.8 733

Table 19: Witnessing the effect of training steps on CLIC. Although with more training steps,
SugarCrepe++ numbers improve, it comes at the marginal degradation in downstream classification
tasks. Hence, we do not train for more steps. * are not zero-shot for MS-COCQO evaluations.

Downstream Evaluations SugarCrepe++ SugarCrepe
Fine- | Classification = Text Ret. = Image Ret. | Replace =~ Swap | Add Rep. Swap
tuning
Method Epochs |[IMNET ZS-10{COCO F30k |[COCO F30k |ITT TOT ITT TOT| ITT ITT ITT
CLIP [45] - 633 614|741 951|546 83.5(69.560.545.7 259729 80.0 62.7
CLIC-COCO* 2 632 609 | 81.7 96.6 | 66.3 89.8 |73.0 78.3 53.0 45.4|85.6 83.3 69.9
CLIC-COCO* 3 629 609 | 823 97.1 |67.5 903 |73.5 78.7 52.6 45.8|85.2 83.5 70.1
CLIC-COCO* 5 62.7 60.7 | 829 97.1 | 682 90.2 |73.5 79.4 52.9 47.2|85.6 83.7 69.3

13

Table 20: Effect of freezing/unfreezing different model components on CLIC for ViT-B/32. All
these runs are done with the CLIC-LAION version, and overall CLIC with frozen vision encoder
works the best.

‘ Downstream Evaluations SugarCrepe++ ‘ SugarCrepe
Method Frozen | Classification Text Ret. Image Ret. Repl. Swap Add Repl. Swap

IMNET ZS-10 |COCO F30k |[COCO F30k | ITT TOT ITT TOT|ITT ITT ITT
CLIP [45] 633 614 | 741 95.1 | 546 835|695 60.5 457 259 (729 80.0 62.7
CLIC None | 60.5 60.8 | 77.7 947 |62.1 874|722 60.0 60.0 25.1|84.5 83.6 71.9
CLIC Text | 602 60.3 | 75.8 934 | 61.1 86.5|72.5 60.5 498 259|76.8 80.1 64.4
CLIC Vision | 61.7 61.0 | 759 95.0 | 60.0 86.7 |75.6 60.1 61.1 27.9|84.5 84.0 73.7

Table 21: Effect of adding additional positives on CLIC for ViT-B/32. All experiments use the
CLIC-LAION version, with the negative caption (n). The column “Positives” reports addition of
more positives (p2, p3, p4, ps) from Section 3.1. Beyond four positives, changes are marginal, so we
chose this configuration.

‘ Downstream Evaluations ‘ SugarCrepe++ SugarCrepe

Method Positives| Classification | Text Ret. Image Ret. | Replace Swap Add Replace Swap
IMNET ZS-10 |COCO F30k |COCOF30k | ITT TOT ITT TOT|ITT ITT ITT

CLIP [45] 633 614 | 741 951 |54.6 835 |69.5 60.5 457 259|729 80.0 62.7
CLIC D1 620 613 | 755 944 |60.0 86.4 |69.0 67.1 51.8 358|859 83.1 709
CLIC +p2 | 61.8 612 | 755 946 |599 865 |69.7 68.6 533 353|856 828 723
CLIC +p3 | 61.7 608 | 75.8 949 [59.8 86.6 |73.8 61.7 58.7 30.2|84.5 838 72.6
CLIC +ps | 61.7 61.0 | 759 950 [60.0 86.7 |75.6 60.1 61.1 279|845 84.0 73.7
CLIC +ps | 61.7 60.7 | 762 951 |59.8 86.7 |75.6 59.3 615 27.0|84.1 83.6 73.0

Table 22: Pre-training/Evaluation checkpoint locations. Key values for the pre-trained models,
taken from different sources.

Model Source Key

ViT-B/32 OpenClip openai

ViT-B/16 OpenClip openai

ViT-L/14 OpenClip openai

NegCLIP GitHub mertyg/vision-language-models-are-bows
DAC-SAM GitHub SivanDoveh/DAC

SVLC-R+L GitHub SivanDoveh/TSVLC

CoN-CLIP GitHub jaisidhsingh/CoN-CLIP

TripletCLIP GitHub tripletclip/TripletCLIP

EVA-CLIP OpenClip eva02_large_patchl4_clip_224

CLIPA HF-Hub UCSC-VLAA / hf-hub:UCSC-VLAA/ViT-L-14-CLIPA-datacomplB
CLIPS HF-Hub UCSC-VLAA / ViT-L-14-CLIPS-224-Recap-DataComp-1B

14

Table 23: Zeroshot image classification. We report the zero-shot image classification performance
for different models.

S = £ " 5 8 B
S = @ Q =]

2T & & g 2z B g £ & % &

Model Source = @) @) o = @) ~ @) = @} =
CLIP [45] 93.6 964 763 76.5 304 54.6 949 864 80.6 33.1 723
CoN-CLIP [49] 939 96.0 794 76.3 304 56.8 93.6 86.8 78.1 330 724
CLIC-LAION ours 933 964 783 750 34.1 56.5 89.6 86.6 75.1 33.6 71.8
CLIC-RedCaps ours 92,5 96.3 78.0 76.0 30.8 56.6 91.7 87.3 78.6 329 72.1
CLIPA [26] 949 98.7 88.7 92.7 422 69.5 95.0 885 81.8 31.3 783
CLIC-LAION ours 939 98.8 884 929 43.1 67.8 957 884 80.7 30.8 78.0
CLIC-RedCaps ours 945 984 88.0 933 419 69.5 959 89.3 80.6 31.5 783
EVA-CLIP [51] 94.1 99.7 90.6 89.7 374 61.8 947 88.6 77.0 327 76.6
CLIC-LAION ours 94.1 99.7 90.6 89.7 374 61.8 947 88.6 77.0 327 76.6
CLIC-RedCaps ours 929 994 89.9 88.8 334 62.6 923 89.1 774 325 758
CLIPS [33] 932 98.2 869 91.6 394 662 949 869 782 294 76.5
CLIC-LAION ours 91.8 98.1 87.1 90.6 37.6 64.2 93.8 86.8 78.1 272 755
CLIC-RedCaps ours 92.7 98.0 86.8 91.2 37.7 67.1 94.5 87.8 80.8 30.0 76.7

Table 24: Compositionality and downstream results for ViT-B/16. We present a detailed set of
results for the pre-trained CLIP, our version of NegCLIP, CLIP fine-tuned by CoN-CLIP, CLIC-
LAION and CLIC-RedCaps (using pre-trained CLIP). For SugarCrepe++, we report only the ITT
scores in detail. We note here that models with * are not zero-shot for MS-COCO evaluations.

ZS-Class. Text-Ret. Image-Ret.
Model Source | IMNET Avg. \ COCO F30k COCO F30k
CLIP [45] 68.3 65.5 76.2 96.4 57.6 85.6
NegCLIP' Ours 64.5 64.0 74.2 94.7 65.8 89.7
CoN-CLIP* [49] 68.9 69.1 73.9 93.5 60.1 88.1
CLIC-LAION Ours 66.5 62.3 71.6 96.9 63.6 88.9
CLIC-RedCaps Ours 67.3 64.4 79.0 97.0 62.0 88.0
Compositionality: SugarCrepe++
Model Source ‘ Rep-obj Rep-Att Rep-Rel Swap-obj Swap-Att | Avg-ITT Avg-TOT
CLIP [45] 89.6 67.5 53.1 39.6 483 59.6 45.7
NegCLIP! Ours 88.7 66.0 46.9 473 53.7 60.5 519
CoN-CLIP [49] 88.1 66.6 523 441 51.9 60.5 55.5
CLIC-LAION Ours 91.6 75.9 62.5 55.9 62.0 69.6 45.7
CLIC-RedCaps Ours 91.5 76.0 64.5 55.9 61.1 69.8 38.6

Compositionality: SugarCrepe
‘ Add-obj Add-Att Rep-Obj Rep-Att Rep-Rel Swap-Obj Swap-Att

CLIP [45] 78.4 66.8 93.5 81.0 66.6 60.0 65.0
NegCLIP Ours 80.0 87.3 93.9 82.2 68.1 69.0 70.1
CoN-CLIP [49] 87.3 79.6 93.6 81.0 53.3 59.2 65.2
CLIC-LAION Ours 88.4 91.0 95.6 86.5 75.5 71.0 73.9
CLIC-RedCaps Ours 87.2 88.6 949 85.7 73.3 69.0 71.3

15

Table 25: Comparison of Sugarcrepe and Sugarcrepe++ along with Downstream Retrieval/-
Classification Performance for ViT-L/14. We present in this table a detailed set of results for
the pre-trained CLIP, our version of NegCLIPT, CLIP fine-tuned by CoN-CLIP, CLIC-LAION and
CLIC-RedCaps (using pre-trained CLIP). For SugarCrepe++, we report only the ITT scores in detail.

Compositionality: SugarCrepe++

Model Source ‘ Rep-obj Rep-Att Rep-Rel Swap-obj Swap-Att ‘ Avg-ITT Avg-TOT
CLIP [45] 90.6 67.5 54.0 43.6 45.6 60.3 50.3
NegCLIP! Ours 90.5 68.9 523 46.5 54.5 62.5 52.4
CoN-CLIP [49] 922 68.6 55.6 44.1 47.9 61.7 54.9
CLIC-LAION Ours 94.6 79.6 62.8 59.6 60.0 71.3 46.1
CLIC-RedCaps Ours 93.5 75.0 59.5 54.7 55.7 67.7 41.3

Compositionality: SugarCrepe
‘ Add-obj Add-Att Rep-Obj Rep-Att Rep-Rel Swap-Obj Swap-Att

CLIP [45] 78.3 71.5 94.1 79.2 65.1 60.4 62.3
NegCLIPJr Ours 81.2 86.0 94.3 83.1 71.1 69.4 70.6
CoN-CLIP [49] 90.2 77.6 95.2 81.7 67.0 65.3 63.1
CLIC-LAION Ours 86.1 89.3 96.5 86.4 73.8 71.0 71.6
CLIC-RedCaps Ours 85.8 82.8 95.4 82.9 70.0 64.5 67.7
95.0 mm CLIP mmm CLIPA EVA-CLIP mmm CLIPS + Improvements with CLIC
87.0 +4.8
g
g 79.0
g
5 71.0
] (494 +8.5
63.0 +7.4
55.0

SugarCrepe SugarCrepe++(ITT) COCO Text-Retr. COCO Image-Retr.

Compositionality Benchmarks Retrieval Benchmarks

Figure 5: CLIC improves differently pre-trained CLIP models. We show for varied CLIP models,
using CLIC (PixelProse) gives consistent improvements on both compositionality and downstream
evaluation benchmarks. Specifically, to the best of our knowledge, CLIPS +CLIC-RedCaps yields
SOTA numbers SugarCrepe++ for CLIP-like models.

16

Table 26: Comparison of SugarCrepe and SugarCrepe++ performance for newer CLIP style
models. We present in this table a detailed set of results for the pre-trained CLIPA, EVA-CLIP,
CLIPS, and their respective versions fine-tuned with CLIC. For SugarCrepe++, we report only the
ITT scores in detail.

Compositionality: SugarCrepe++

Model Source ‘ Rep-obj Rep-Att Rep-Rel Swap-obj Swap-Att| Avg-ITT Avg-TOT

CLIPA [26] 94.5 73.6 56.3 412 50.4 63.2 57.2
CLIC-LAION Ours 93.9 79.1 62.1 522 579 69.1 52.1

_ CLIC-RedCaps Ours | 950 806 648 604 622 | 726 468

EVA02-CLIP [51] 93.2 73.5 59.3 43.7 46.7 63.3 52.7
CLIC-LAION Ours 93.8 79.7 61.8 559 61.1 70.4 452

_ CLIC-RedCaps OQurs | 952 807 638 592 600 | 718 419

CLIPS [33] 95.5 77.8 64.9 514 69.8 71.9 65.1
CLIC-LAION Ours 95.5 84.8 72.6 66.1 80.0 79.8 62.3
CLIC-RedCaps Ours 95.9 85.1 73.7 68.6 81.7 81.0 62.9

Compositionality: SugarCrepe
‘ Add-obj Add-Att Rep-Obj Rep-Att Rep-Rel Swap-Obj Swap-Att

CLIPA [26] | 888 82.6 968 830 688 624 651
CLIC-LAION ~ Ours | 935 92.2 97.1 893 783 722 709

_CLICRedCaps _Ours | 945 923 _ _970 __869 __178_ _ 68 __73_

EVA02-CLIP [511 | 923 82.8 959 849 716 653 640
CLIC-LAION Ours | 855 91.3 9%.4 865 727 706 705

_ CLIC-RedCaps Ours | 907 906 97 87 732 702 703

CLIPS 331 | 925 86.3 974 886 781 74.3 85.0
CLIC-LAION Ours | 96.6 96.8 987 930 855 820 893
CLIC-RedCaps Ours | 95.1 95.5 979 922 832 812 878

Table 27: Retrieval@1 and WinoGround for ViT-L/14 models. In addition to retrieval results
with Recall@5 in Table 3, we report retrieval scores at Recall@ 1 and WinoGround results. * are not
zero-shot for MS-COCO. The improvements made by CLIC here are consistent with Recall@5.

‘ Retrieval WinoGround
Method Text Image
COCO F30k COCO F30k | Text Image Group

CLIP [45] 56.0 85.1 352 64.7 28.7 11.0 8.5

CoN-CLIP* [49] | 55.8 825 378 693 29.5 11.0 8.0

CLIC-LAION 56.8 854 402 704 | 30.2 10.7 8.2

CLIC-RedCaps 583 869 39.0 6838 322 12.2 9.0
CLIPA 644 904 462 738 32.7 8.0 7.0

CLIC-LAION 63.0 86.7 46.8 736 | 28.7 8.7 6.7

CLIC-RedCaps 632 89.1 46,6 739 | 32.0 11.2 7.2
EVA-CLIP 63.7 905 468 7713 32.7 12.5 10.2

CLIC-LAION 63.6 905 465 774 | 31.7 12.7 8.7

CLIC-RedCaps 632 898 464 767 | 360 11.7 8.2

CLIPS 73.6 957 542 826 | 362 16.0 125
CLIC-LAION 71.0 953 56.6 857 | 375 160 132
CLIC-RedCaps 74.6 963 56.6 843 | 417 175 15.2

17

Table 28: Retrieval @1 for ViT-B/32 models. In addition to retrieval results with Recall @5 in Table 2,
we report retrieval scores at Recall@1. * are not zero-shot for MS-COCO.

Retrieval

Method Text Image

COCO F30k COCO F30k
CLIP [45] 495 785 30.1 59.1
NegCLIP* [56] 60.8 851 451 709
DAC-LLM [9] 330 649 367 532
DAC-SAM [9] 330 615 332 584
SVLC-R [10] 450 735 354 645

SVLC-R+L [10] 428 704 356 637
CoN-CLIP* [49] 485 757 303 597
TripletCLIP [41] 469 737 323 602
CLIC-COCO* 60.0 84.7 41.1 683
CLIC-LAION 522 799 352 626
CLIC-RedCaps 525 794 338 628

18

Prompt: Can you describe this image in detail?

Input Image

Prompt: Can you describe this image in detail?

Prompt: Can you describe this image in detail?

Input Image

Prompt: Can you describe this image in detail?

Figure 6: Comparing response quality of different LLaVA-1.5-7b versions on random
WinoGround validation images. We compare the open-ended prompt (Can you describe this
image in detail?) based image captioning of LLaVA with CLIP’s vision encoder to that of
CLIC. Overall, we believe the responses from CLIC enabled LLaVA to be marginally better than the
standard LLaVA, but both models show aspects of hallucinations. Incorrect parts are highlighted and

LLaVA-1.5-7b (CLIP)

LLaVA-1.5-7b (CLIC)

The image features a small dog with a curly coat,

standing on a sandy beach. The dog appears to be
enjoying itself as it runs around on the sand. There
are two people in the scene, one standing closer to the
left side of the dog and the other person further back
on the right side. The beach setting is complemented
by the presence of a backpack, likely belonging to
one of the people, placed on the sand near the center
of the scene.

The image features a small brown and white dog
running on a sandy beach. The dog appears to
be enjoying itself as it runs through the sand,
kicking up some dust. There is another person
in the background, possibly observing the dog
or engaging in their own activities. In the scene,
there are also two handbags, one near the person
in the background and another closer to the dog.

LLaVA-1.5-7b (CLIP)

LLaVA-1.5-7b (CLIC)

In the image, there are two people in a gym setting.

A woman is standing on a machine, holding a pair of
dumbbells, and appears to be working out. A man

is standing nearby, also holding a pair of dumbbells.

They are both focused on their workout routines. The
gym is equipped with various pieces of equipment,
including a bench, a treadmill, and a car. The bench
is located in the background, while the treadmill is
positioned towards the right side of the scene. The car
is situated on the far right side of the image, possibly
indicating that the gym is located in a parking area.

The image features a woman in a pink shirt and
black pants working out in a gym. She is holding
a pair of dumbbells and is in the process of lifting
them above her head. The woman appears to
be focused on her workout, demonstrating her
strength and determination. In the background,
there is another person who seems to be observing
the woman’s workout. A car is visible in the far
right corner of the image, possibly parked outside
the gym. Additionally, there is a bench located
near the center of the scene.

LLaVA-1.5-7b (CLIP)

LLaVA-1.5-7b (CLIC)

The image features a man and a woman sitting on a
rooftop, both performing handstands. The man is on
the left side of the scene, while the woman is on the
right side. They are both balancing on their hands,
showcasing their impressive strength and flexibility.
In the background, there are two cars visible, one
on the left side and the other on the right side of the
rooftop. The cars are parked at a distance, providing
a sense of depth to the scene.

LLaVA-1.5-7b (CLIP)

The image features a woman and a man perform-
ing a handstand on a rooftop. The woman is
sitting on the rooftop, while the man is standing
on his hands, doing a handstand. They are both
enjoying their time outdoors, showcasing their im-
pressive balance and strength. In the background,
there are several cars parked, adding to the urban
setting of the scene. The cars are scattered around
the rooftop, with some closer to the foreground
and others further away.

LLaVA-1.5-7b (CLIC)

The image features a small dog wearing a red and
white checkered shirt, standing next to a cat. They
are both positioned in a d, with the dog on
the left side and the cat on the right side of the scene.
In the background, there are two potted plants, one
located on the left side and the other on the right side
of the yard. A bench can be seen in the middle of the
yard, providing a place for people to sit and enjoy the
outdoor space.

the respective corrections (if available) are also highlighted.

19

The image features a small brown and white dog
standing next to a large orange and white cat in a
yard. Both animals appear to be looking at each
other, possibly er ing in a playful interaction.
The dog is positioned on the left side of the scene,
while the cat is on the right. In the background,
there are two potted plants, one located near the
left side of the scene and the other on the right
side. A bench can also be seen in the yard, situ-
ated towards the right side of the scene.

	Introduction
	Methods and benchmarks for improving compositionality
	Contrastive learning and baselines
	Compositionality enhancing methods
	Compositionality benchmarks

	Compositionally-aware learning in CLIP
	Generation of positives and hard-negatives: concatenation of images and captions
	Training of CLIC
	Differences between CLIC and other methods

	Experiments and evaluation
	Experimental setup
	Comparing to other methods
	Ablation Study for CLIC
	Generalization to larger architectures and models
	CLIC vision encoder in LLaVA

	Conclusion
	Limitations
	Data preparation
	Training datasets
	Hard negative creation
	In-scene vs across-scene swaps
	Non-random image concatenation

	Algorithmic details
	Experimental details and discussions
	Further training details and discussions
	Zero-shot datasets
	Dataset from other methods
	Other methods do not generalize
	Detailing the LLaVA experiment

	Additional experiments

