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ABSTRACT

Prevailing methods for relation prediction in heterogeneous graphs including
knowledge graphs aim at learning the latent representations (i.e., embeddings)
of observed nodes and relations, and are thus limited to the transductive setting
where the relation types must be known during training. In this paper, we pro-
pose ANalogy SubGraph Embedding Learning (GraphANGEL), a novel relation
prediction framework that predicts relations between each node pair by checking
whether the subgraphs containing the pair are similar to other subgraphs containing
the considered relation. Each graph pattern explicitly represents a specific logical
rule, which contributes to an inductive bias that facilitates generalization to un-
seen relation types and leads to more explainable predictive models. Our model
consistently outperforms existing models in terms of heterogeneous graph based
recommendation as well as knowledge graph completion. We also empirically
demonstrate the capability of our model in generalizing to new relation types while
producing explainable heat maps of attention scores across the discovered logics.

1 INTRODUCTION

Relation modeling aims to learn the relations between nodes, leading to advances in a wide range
of applications, e.g., recommender systems (Koren et al., 2009), knowledge graphs (Bordes et al.,
2013), and biology (Yasunaga et al., 2021). As most relational data in the real world is hetero-
geneous, a principal way is to organize it into a heterogeneous graph. The dominant paradigms
for relation prediction can be categorized into matrix factorization techniques (Nickel et al., 2011;
2012), statistical relational learning approaches (Richardson & Domingos, 2006; Singla & Domingos,
2005), and neural-embedding-based methods (Bordes et al., 2013; Dettmers et al., 2018). Among
these, neural-embedding-based methods which learn to encode relational information using low-
dimensional representations of nodes and relations, have shown good scalability (Bordes et al., 2013)
and inductive learning capability (Battaglia et al., 2018) in terms of validating unseen nodes.

Results of such methods show that graph neural networks (GNNs) are able to condense the neigh-
borhood connectivity pattern of each node into a node-specific low-dimensional embedding and
successfully exploit such local connectivity patterns and homophily. Recent advances further reveal
the logical expressiveness of GNNs (Barceló et al., 2019) and support their inductive ability to
generalize to unseen nodes (Teru et al., 2020; Zhang & Chen, 2019).

In contrast, a limited study has been conducted (Yang et al., 2014) on the inductive learning capability
for unseen relation types. Such inductive ability, if successfully exploited, can directly improve logical
expressiveness of GNNs and enable them to effectively capture the underlying logical semantics (e.g.,
logical rules). Note that this is more challenging than unseen nodes, since it is usually hard to define
the “neighborhood” of a relation type topologically.

In this paper, we propose ANalogy SubGraph Embedding Learning (GraphANGEL), a new relation
prediction paradigm that holds a strong inductive bias to generalize to unseen relation types. Given a
pair of nodes to predict the existence of a specific relation between them, the core idea is to extract
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some analogy subgraphs containing the pair, and compare them against other subgraphs sharing
similar shapes. We call these shapes graph patterns.

Taking Figure 1 as an example, the task is to predict whether Person E lives in London. We
construct three patterns involving the relation live. The first is target pattern containing the source
and target nodes, i.e., Person E and London, for which we are to predict the existence of the
relation live. The second is supporting pattern that includes live as evidence supporting the
existence. The third is refuting pattern that does not include live as a baseline for comparison. If
an edge does exist between the two nodes, the subgraphs matching the target pattern should be more
similar to those matching supporting patterns than the refuting patterns. Following the above intuition,
we find a set of subgraphs that match each of the patterns. Then we compare the first set against the
set matching supporting patterns, and also against the set matching refuting patterns, using a neural
network. As shown in the bottom part of the figure, the subgraphs in the second set share the higher
similarity with the one in the first set, so the prediction result in this case is that there exists a live.

Figure 1: An illustrative example of motivation.

Given a triplet 〈s, r, t〉, GraphANGEL consists
of the following stages: (1) determining target
patterns from s, t as well as supporting and re-
futing patterns from r, (2) retrieving subgraphs
matching each pattern, (3) computing the rep-
resentations of each set and then the similarity
between the subgraph set matching target pat-
tern and the set matching supporting/refuting
patterns, and the final prediction based on the
similarities. For the first stage, our architecture
design only involves the graph patterns in pair,
3-cycle, and 4-cycle shapes, which is efficient to
match and already shows good results. For the
second stage, we introduce efficient searching
and sampling techniques to find the subgraphs
matching the patterns. We use a GNN with at-
tention in the third stage to combine the sets of
subgraphs as well as their node features. The
attention module can simultaneously produce an explainable heat map across the discovered patterns.
Notably, none of the above stages requires explicitly learning a representation of r, the relation we
are predicting, thus, GraphANGEL naturally generalizes to modeling unseen relation types.

We benchmark GraphANGEL on heterogeneous graph based recommendation and knowledge graph
completion tasks with the state-of-the-art methods. For the evaluation of inductive capabilities, we
construct several new inductive benchmarks by either removing or adding relations from knowledge
graph datasets. Extensive experimental comparisons on these benchmarks exhibit the superiority of
our method under both transductive and inductive settings.

2 BRIDGING LOGICAL EXPRESSIONS AND GRAPH PATTERNS

We begin with bridging logical expressions and graph patterns based on two intuitions/assumptions:

• A relation can often be inferred from other relations with a combination of simple logical rules
that do not involve too many nodes.

• One can predict relation existence by finding whether the subgraphs containing the pair are similar
to the subgraphs containing an edge with the same relation.

Take Figure 1 as an example where we wish to predict whether Person E lives in London.
An example of the first intuition goes as follows: if Person E watches the soccer matches
with club Arsenal, which is based in London, then Person E may also live in London.
However, such logical rules (so called chain-like logic rules in (Yang et al., 2017)) may not always
hold, requiring probabilistic inference. For instance, Person G watches the matches with FC
Barcelona, which is Based in Barcelona, but he does not live in the same city. To make
more accurate predictions, we need to combine other possible logical rules, such as “Friends often live
in the same city” - in this case, Person E and Person H are friends, and Person H lives
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Figure 2: Illustration of GraphANGEL’s relation prediction workflow, where different edge colors in the graph G
represent different relation types, and dashed edges in G represent the triplet 〈s, r, t〉 we wish to predict. The left
box shows the patterns considered in our implementation, where black edges mean matching edges irrespective
of relation types. The bottom boxes show the logical function of the three patterns.

in London (some of them construct certain patterns are called tree-like logic rules (Yang & Song,
2019) or graph-like rules (Shi et al., 2020)).

The second intuition tells us that we can predict whether Person E lives in London by checking
if the subgraphs containing the pair (Person E, London) (named target subgraphs, e.g. Person E
- Arsenal - London) are similar to the subgraphs containing a live relation (named supporting
subgraphs, e.g. Person I - Chelsea - London). Similarity computation is done by a neural
network. To determine whether the two sets of subgraphs are similar, we additionally compare the
target subgraphs against another set of subgraphs that do not contain the relation (named refuting
subgraphs, e.g. Person E - Person G - Barcelona) as a baseline. A variety of options exist for
selecting the refuting subgraphs, ranging from selecting those having the same topology regardless of
the actual relation types, to those having both the same shape and relation types.

In addition, we do not include the edge of live in the supporting subgraphs to avoid information
leakage. We also require the supporting subgraphs and refuting subgraphs to have the same shape as
that of the target subgraphs in order to make similarity computation focus more on the node features
and relation types rather than the topology, and that is why we call both supporting subgraphs and
refuting subgraphs analogy subgraphs. This enables us to predict live relation with the pipeline
above without learning an explicit embedding for live relation, unlike prior works. The reason is
that the information of live relation can be implicitly expressed by the other relations found in the
supporting and refuting subgraphs, e.g. live can be expressed by watch and based. This serves
as the basis for our model’s generalizability to relations that have no occurrence in the training set.

We can describe what kind of subgraphs we are looking for in the above example with logical
expressions. The target subgraphs above will have the logical expression Source(x) ∧ Target(y) ∧
Edge(x, z) ∧ Edge(z, y), where Source(x) means if node x is the source node s, Target(y) means
if node y is the target node t, and Edge(x, z) means if there exists an edge regardless of relation
type between x and z. Our task is to determine whether an edge of relation type r exists between
s and t. The supporting subgraphs will have Edge(x, z) ∧ Edge(z, y) ∧ Edger(x, y), meaning that
the subgraph can be any 3-cycle except that there must be an edge with relation type r. The refuting
subgraphs will have Edge(x, z) ∧ Edge(z, y) ∧ ¬Edger(x, y), meaning that it can be any 2-path
except that the starting node and ending node must not have an edge with relation r in between. This
leads to the concept of graph patterns, defined as follows:

Definition 1 (Graph Pattern). A graph pattern is a logical function that takes in a subgraph as input
and returns a boolean value, consisting of logical operators (¬,∧,∨) as well as indicator operators
determined by the existence of nodes and edges, the latter includes:

• Source(x) and Target(x), returning true iff x is the source node and target node, respectively.
• Edge(x, y), returning true iff there exists an edge between node x and y.
• Edger(x, y), returning true iff there exists an edge of relation r between node x and y.

We call a subgraph S matches a graph pattern Π if true is returned when S is applied to Π. Such
operation is already well supported in graph databases (Francis et al., 2018), and in the following
sections we give more efficient algorithms that perform matching with simple patterns.
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Table 1: A summary of how to construct target, supporting, and refuting patterns.

Base Pattern Πp Target Pattern Π∗p Supporting Pattern Π+
p Refuting Pattern Π−p

Πp Source(x) ∧ Target(y) ∧Πp Edger(x, y) ∧Πp ¬Edger(x, y) ∧Πp

3 MODELING RELATION WITH ANALOGY SUBGRAPH EMBEDDINGS

For each graph G = (V, E ,R) where V denotes node set, E denotes edge set and R is relation
set, as Figure 2 shows, we outline how GraphANGEL works for each triplet 〈s, r, t〉 to predict the
existence for the edge of type r connecting source node s and target node t as follows. (a) We
start by determining P target patterns denoted as Π∗1, · · · ,Π∗P . For each Π∗p we also determine
its corresponding supporting pattern Π+

p and refuting pattern Π−p . (b) We then sample a set of
K target subgraphs {S∗p,k}Kk=1 matching Π∗p, Q supporting subgraphs {S+

p,q}
Q
q=1 matching Π+

p ,
and Q refuting subgraphs {S−p,q}

Q
q=1 matching Π−p . (c) For each pattern Πp, we next compute the

representation of each sampled subgraph and obtain the set of target subgraph embeddings {e∗p,k}Kk=1,
supporting subgraph embeddings {e+

p,q}
Q
q=1 and refuting subgraph embeddings {e−p,q}

Q
q=1. (d) We

finally compute a similarity score between the set {e∗p,k}
P,K
p=1,k=1 and the set {e+

p,q}
P,Q
p=1,q=1, as well

as {e∗p,k}
P,K
p=1,k=1 and {e−p,q}

P,Q
p=1,q=1, to get the relation prediction result.

We summarize the notations in Appendix A1, show the training algorithm in Algorithm 1, describe
the details in the following subsections, and provide the overall time complexity in Appendix A3.

Algorithm 1: GraphANGEL
Input: Graph G, Patterns Π1, . . . ,ΠP .
for each tuple 〈s, r, t〉 do

for each pattern Πp do
Construct Π∗p, Π+

p , Π−p .
Retrieve K subgraphs {S∗p,k}Kk=1 matching Π∗p.
Retrieve Q subgraphs {S+

p,q}
Q
q=1 matching Π+

p .
Retrieve Q subgraphs {S−p,q}

Q
q=1 matching Π−p .

Compute e∗p,k, e+
p,q , e−p,q via Eq. (1).

end
Compute s+, s− via Eq. (2).
Update parameters according to Eq. (3).

end

Pattern Construction. During train-
ing, we set for each Πp the target pat-
tern Π∗p, the supporting pattern Π+

p ,
and the refuting pattern Π−p using
Table 1. Since pattern matching is
NP-complete like subgraph matching
(Lewis, 1983), we first designate be-
fore training a set of patterns {Πp}Pp=1
whose pattern matching can be com-
puted in manageable time. In practical,
we use Pairs, 3-cycles, and 4-cycles.

Subgraph Retrieval. Although gen-
eral graph pattern matching is sup-
ported in graph databases (Francis
et al., 2018), more efficient solutions
exist for simpler graph patterns, especially when we only consider pairs, 3-cycle and 4-cycle shapes.
Searching and retrieving the subgraphs matching patterns in Pair shape is trivial since it reduces to
finding edges with a given relation, so the following discussion only involves 3-cycle and 4-cycle
patterns. We pre-compute all subgraphs matching 3-cycle patterns and uniformly sample a number of
subgraphs matching 4-cycle patterns, and store them into a buffer by our algorithms, summarized as
follows, with pseudocode, correctness proofs and complexity analysis in Appendix A2.

• 3-cycles. We first partition the node set by the node degrees into two sets V = V1∪V2. V1 contains
the nodes whose degrees are less than |E| 12 , and V2 contains the rest. For each u, v, w ∈ V1, we
check if they form a 3-cycle. Then, for each u ∈ V2, we enumerate all pairs of its neighbors and
see if they are connected. The complexity to find all the subgraphs is O(|E| 32 ).

• 4-cycles. For each node, we find all 2-paths (u, v, w) whose starting node u has the largest degree,
i.e., du = max(du, dv, dw), and then store them in Tuw. Each pair of 2-paths that shares the same
ending node forms a 4-cycle. In this regard, 4-cycles can be uniformly sampled by first sampling
u,w with the probability in proportion to |Tuw| · |Tuw − 1|, and then choosing two distinct nodes
v, x from Tuw. The complexity to sample n4−cycle subgraphs is O(max(n4−cycle, |E|

3
2 )).

Then, we perform pattern matching for 3-cycles and 4-cycles for each subgraph as follows.

• Target patterns. Matching 3-cycle target patterns reduces to finding common neighbors of s and
t, which takes O(ds + dt) time where ds and dt are degrees of s and t. Matching 4-cycle target
pattern reduces to finding whether the neighbors of s and t are connected, taking O(dsdt) time.

4



Published as a conference paper at ICLR 2022

Table 2: Patterns Πp considered in our experiments.
Task Pair 3-cycle (with type) 4-cycle (with type)

Knowledge Graph Completion true Edge(x, z) ∧ Edge(z, y) Edge(x, z) ∧ Edge(z, w) ∧ Edge(w, y)
Heterogeneous Graph Recommendation true Edgea(x, z) ∧ Edgeb(z, y) Edgea(x, z) ∧ Edgeb(z, w) ∧ Edgec(w, y)

• Supporting patterns. Matching supporting patterns reduces to finding a subgraph containing an
edge of type r in the precomputed result. One can efficiently retrieve with a precomputed inverted
map with relation r as key and the actual subgraphs containing it as value.

• Refuting patterns. Matching refuting patterns reduces to random walks, followed by checking
whether the starting node and the ending node has an edge of type r.

We further design a series of novel uniform sampling algorithms such that the time complexity
of sampling n refuting cases of Π3−cycle or Π4−cycle reduces to O(|V| + |E| + n). See detailed
descriptions in Appendix A2.

Representation Computation. We apply a neural network Φ(·) over each subgraph S∗p,k, S+
p,q and

S−p,q to obtain graph-level representations e∗p,k, e+
p,q , e−p,q , following

e∗p,k = Φ
(
S∗p,k

)
, e+

p,q = Φ
(
S+
p,q

)
, e−p,q = Φ

(
S−p,q

)
. (1)

In the implementation, we adopt single layer R-GCN (Schlichtkrull et al., 2018) followed by any
readout function, e.g., Mean(·), Max(·) as Φ(·). We also empirically study the effect of using other
GNNs with different number of propagation layers as Φ(·) in Appendix A6.5.

Similarity Computation. We deploy a neural network Ψ(·) to measure the similarity s+ between
the set of subgraphs matching Π∗1, . . . ,Π

∗
P and the set of subgraphs matching Π+

1 , . . . ,Π
+
P ; and the

similarity s− between the set of subgraphs matching Π∗1, . . . ,Π
∗
P and the set of subgraphs matching

Π−1 , . . . ,Π
−
P , which can be formulated as

s+ = Ψ
(
{e∗p,k, p = 1, . . . , P ; k = 1, . . . ,K}, {e+

p,q : p = 1, . . . , P ; q = 1, . . . , Q}
)
,

s− = Ψ
(
{e∗p,k : p = 1, . . . , P ; k = 1, . . . ,K}, {e−p,q : p = 1, . . . , P ; q = 1, . . . , Q}

)
.

(2)

There are many choices of measuring the similarity between two sets. In the implementation, we
adopt a co-attention mechanism (Lu et al., 2016) as Ψ(·), because even within the same pattern, the
subgraphs having similar node features are more important than others.

We put the concrete formulation of Φ(·) and Ψ(·) in the Appendix A3.3 and A3.4.

Loss Function. For each tuple 〈s, r, t〉, we have the binary label y in the training dataset D to denote
the relation existence. We here train the model by logistic loss with negative sampling:

L = −
∑

〈s,r,t〉∈D

(y log ŷ + (1− y) log(1− ŷ)) , (3)

where ŷ is the final prediction calculated with normalized similarity as ŷ = s+

s++s− .

Inference. We perform pattern matching to find the target, supporting, and refuting subgraphs on the
testing graph, and compute the prediction score ŷ exactly as what we do in training. We predict that
an edge exists if ŷ is larger than a threshold (as a hyper-parameter, 0.5 in our implementation).

Limitations. There are two main limitations of GraphANGEL. The first one is that GraphANGEL
would not work reliably if the assumptions (intuitions) in Section 2 are violated. Examples include
when node s and t are disconnected or topologically far away when 〈s, r, t〉 is removed, so that
one may not be able to find 3-cycle or 4-cycle target subgraphs. The prediction in this case can
only rely on Pair patterns, i.e., comparing if the source-target pair is similar to the incident nodes of
edges with relation r or not. The second one is that current online subgraph sampling algorithms
are slow. To make sampling efficient, the subgraph retrieval stage requires finding and storing all
3-cycles and 4-cycles (See Appendix A3.1 for the space complexity analysis). For static graphs, it is
a one-time preprocessing step, although the results can be stored on external storage. We also provide
the incremental searching and retrieving algorithms to address the dynamic graphs in the real-world
scenario in Appendix A3.2. See further discussions on these limitations in Appendix A4.1.

5



Published as a conference paper at ICLR 2022

Table 3: Result comparisons with baselines on heterogeneous graph recommendation task.

Models LastFM Yelp Amazon Douban Book

AUC ACC F1 AUC ACC F1 AUC ACC F1 AUC ACC F1

HetGNN 0.7936 0.7258 0.7177 0.9083 0.8297 0.8205 0.7744 0.7108 0.7109 0.8737 0.7912 0.7915
HAN 0.8915 0.8337 0.8296 0.9156 0.8488 0.8426 0.8487 0.7682 0.7572 0.9244 0.8501 0.8458

TAHIN 0.8910 0.8463 0.8337 0.9067 0.8490 0.8393 0.8535 0.7718 0.7644 0.9253 0.8497 0.8373
HGT 0.8394 0.7939 0.7882 0.9006 0.8375 0.8334 0.7125 0.6482 0.6296 0.9132 0.8364 0.8222

R-GCN 0.8526 0.8393 0.8341 0.9098 0.8427 0.8323 0.8130 0.7408 0.7366 0.9203 0.8413 0.8271

GraphANGEL3−cycle 0.8934 0.8519 0.8465 0.9167 0.8498 0.8514 0.8601 0.7746 0.7746 0.9256 0.8512 0.8479
GraphANGEL4−cycle 0.8961 0.8514 0.8467 0.9201 0.8506 0.8521 0.8609 0.7752 0.7716 0.9242 0.8502 0.8378

GraphANGEL 0.8979 0.8524 0.8469 0.9231 0.8512 0.8533 0.8611 0.7790 0.7753 0.9311 0.8601 0.8543
GraphANGEL∗ 0.9001 0.8611 0.8589 0.9337 0.8701 0.8577 0.8700 0.7810 0.7813 0.9410 0.8640 0.8591

4 EXPERIMENT

4.1 EXPERIMENT SETUP AND COMPARED ALGORITHMS

Recommendation on Heterogeneous Graph. We evaluate our model on four heterogeneous graph
benchmark datasets in various fields: LastFM (Hu et al., 2018a), Yelp (Hu et al., 2018b), Amazon (Ni
et al., 2019), and Douban Book (Zheng et al., 2017). The baselines we compare against are: HetGNN
(Zhang et al., 2019a), HAN (Wang et al., 2019b), TAHIN (Bi et al., 2020), HGT (Hu et al., 2020),
and R-GCN (Schlichtkrull et al., 2018). As the recommendation task can naturally be regarded as
the relation predictions between each user and item pair, for each triplet, we formulate the task as a
binary classification task. We split each dataset into 60%, 20%, and 20% for training, validation and
test sets, respectively. Following the setting of (Zhang et al., 2019a), we generate an equal number of
negative triplets with the same relation type in the test set, and report Area Under ROC Curve (AUC),
Accuracy (ACC), and F1 score. More details of the datasets and experimental configurations as well
as the implementation details for baselines are reported in Appendix A5.

Knowledge Graph Completion. We compare different methods on two benchmark datasets: FB15k-
237 (Toutanova & Chen, 2015) and WN18RR (Dettmers et al., 2018), which are constructed from
Freebase (Bollacker et al., 2008) and WordNet (Miller, 1995), respectively. The baselines we compare
against are: MLN (Singla & Domingos, 2005), TransE (Bordes et al., 2013), ConvE (Dettmers et al.,
2018), ComplEx (Trouillon et al., 2016), pLogicNet (Qu & Tang, 2019), RotatE (Sun et al., 2019a),
RNNLogic (Qu et al., 2020), ComplEx-N3 (Lacroix et al., 2018), GraIL (Teru et al., 2020) and QuatE
(Zhang et al., 2019b). For each triplet, we mask the source or target node, and let each method predict
the masked node. We use the filtered setting during evaluation on the standard training-validation-test
split, randomly break ties for triplets with the same score (Sun et al., 2019b) and report Mean Rank
(MR), Mean Reciprocal Rank (MRR), and Hit@K (K=1,3,10).

In each task, we implement GraphANGEL as we proposed in Section 3. Concretely, we imply
GraphANGEL with Πp upon the logical patterns shown in Table 2. For further investigations on
the influence of different graph patterns, we here introduce GraphANGEL3−cycle, a variant of
GraphANGEL without using patterns in 3-cycle shapes; and GraphANGEL4−cycle, another variant
without using patterns in 4-cycle shapes. For recommendation tasks on heterogeneous graphs, since
the number of edge types is usually small, we can enumerate all the relation type combination in each
pattern. This allows us to make the pattern Πp specific to relation types. We denote this variant as
GraphANGEL∗. As the main advantage of our model is that it can generalize to relation types unseen
during training without fine-tuning, we both evaluate the overall performance of GraphANGEL
in standard relation prediction tasks and its generalizability to unseen relation types against other
state-of-the-art methods. We exam the robustness of GraphANGEL by adding the Gaussian noise
into the heterogeneous graphs and report the results in Appendix A6.5. We also compare the training
and inference time of GraphANGEL against baseline models and report results in Appendix A6.7.

4.2 RESULT ANALYSIS OF STANDARD TASKS

Heterogeneous Graph Based Recommendation. In recommendation scenarios, edges between
user and item nodes are generally more likely to exist if they share neighboring users or items.
In other words, users close in the graph may share similar interests and items close usually share
similar attributes. Table 3 summarizes the performances of GraphANGEL and baselines on four
different kinds of recommendation tasks. We observe that GraphANGEL significantly outperforms
the baselines across all datasets in terms of AUC, ACC, and F1 metrics. Almost all prevailing baseline
methods on heterogeneous graph are based on sampling through metapath. One explanation is that
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Table 4: Result comparisons with baselines on knowledge graph completion task.

Models FB15k-237 WN18RR

MR MRR Hit@1 Hit@3 Hit@10 MR MRR Hit@1 Hit@3 Hit@10

pLogicNet 173 0.332 0.237 0.367 0.524 3408 0.441 0.398 0.446 0.537
TransE 181 0.326 0.229 0.363 0.521 3410 0.223 0.235 0.401 0.531
ConvE 244 0.325 0.237 0.356 0.501 4187 0.430 0.400 0.440 0.520

ComplEx 339 0.247 0.158 0.275 0.428 5261 0.440 0.410 0.460 0.510
MLN 1980 0.098 0.067 0.103 0.160 11549 0.259 0.191 0.322 0.361

RotatE 177 0.338 0.241 0.375 0.533 3340 0.476 0.428 0.492 0.571
RNNLogic 232 0.344 0.252 0.380 0.530 4615 0.483 0.446 0.497 0.558

ComplEx-N3 159 0.370 0.272 0.400 0.561 3452 0.491 0.440 0.500 0.581
GraIL 205 0.322 0.223 0.361 0.520 3539 0.401 0.352 0.438 0.501
QuatE 87 0.348 0.248 0.382 0.550 2314 0.488 0.438 0.508 0.582

GraphANGEL3−cycle 159 0.366 0.270 0.398 0.560 2919 0.492 0.463 0.497 0.590
GraphANGEL4−cycle 165 0.351 0.239 0.381 0.548 2914 0.493 0.465 0.502 0.587

GraphANGEL 151 0.374 0.275 0.408 0.564 2834 0.504 0.470 0.515 0.598
±3 ±0.003 ±0.002 ±0.004 ±0.004 ±25 ±0.003 ±0.002 ±0.004 ±0.004

given a specific pattern, these metapaths can be roughly regarded as target patterns, but without
constructing supporting and refuting patterns in Table 1.

Knowledge Graph Completion. In knowledge graphs, the connection between two nodes is de-
termined by both logic and node attributes. Table 4 summarizes all experimental results. As can
be seen, GraphANGEL outperforms all baselines across all datasets. One explanation is that most
knowledge graph embedding techniques focus on mining the hidden information in each tuple, which
is similar to only considering the patterns in Pair shapes in Table 1. However, other patterns contain
information involving multiple relations, which enables to model the logics.

In order to better illustrate our performance of these relations with few occurrences in the training
set, we solely report the results of testing each model on the 20% relations with few occurrence in
Table A4 (see Appendix A6.1 for details). From the comparison between Tables 4 and A4, we can
observe that with few shots of relations, GraphANGEL can have a better generalization ability. One
reason is that embeddings of the relations with few occurrences cannot be trained with plenty of data
samples, resulting in low expressive power of the relations. In contrast, GraphANGEL does not learn
the embeddings directly, but learns to represent the relations of the related logics. However, it is still
more challenging to model these relations that lead to a drop in performance.
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Figure 3: Performance change of GraphANGEL with different number of subgraphs in terms of ACC and AUC.

4.3 EFFECT OF DIFFERENT PATTERNS

We systematically investigate the effect of three shapes of patterns used in GraphANGEL. For each
dataset, we evaluate the effect of the patterns in 3-cycle and 4-cycle shapes by the performance
of GraphANGEL3−cycle and GraphANGEL4−cycle. Since different shapes of patterns represent
different composition logical rules, as shown in Table 1, patterns in Pair shape are the most general
but include the least structure information, while those in 4-cycle shape are rich in the structure
but less common. Hence, these patterns have their unique power in representing logics. Although
it is hard to determine whether 3-cycle or 4-cycle shaped patterns is more powerful, as shown in
Tables 3, 4 and A4, GraphANGEL with patterns in all shapes achieves the best performance. Besides
the pattern type, we also investigate how the number of sampled subgraphs affects the performance.
Taking Amazon and Douban Book datasets as examples, we show the performance of GraphANGEL
under different K and Q in terms of ACC and AUC in Figure 3. One explanation is that the subgraphs
following target patterns are constricted within the neighborhood of source and target nodes, the
number of which is much smaller than subgraphs following supporting and refuting patterns.
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Table 5: Result comparisons with baselines on generalization setting by randomly removing 20% relations. See
Appendix A6.2 for full version and Appendix A6.2 for results of dropping 5%, 10%, 15%. The numbers in
brackets show the descent degree.

Models FB15k-237 WN18RR

Hit@1 Hit@3 Hit@10 Hit@1 Hit@3 Hit@10

pLogicNet∗ 0.112(52.7%↓) 0.179(51.2%↓) 0.257(51.0%↓) 0.141(64.6%↓) 0.222(50.2%↓) 0.267(50.3%↓)
TransE∗ 0.101(55.9%↓) 0.163(55.1%↓) 0.246(52.8%↓) 0.072(46.7%↓) 0.200(50.1%↓) 0.260(51.0%↓)
ConvE∗ 0.104(56.1%↓) 0.178(50.0%↓) 0.247(50.7%↓) 0.201(49.8%↓) 0.223(49.3%↓) 0.268(48.5%↓)

ComplEx∗ 0.078(50.6%↓) 0.142(48.4%↓) 0.226(47.2%↓) 0.214(47.8%↓) 0.236(48.7%↓) 0.267(47.6%↓)
MLN∗ 0.031(53.7%↓) 0.049(52.4%↓) 0.070(56.3%↓) 0.092(51.8%↓) 0.154(52.2%↓) 0.178(50.7%↓)

RotatE∗ 0.121(49.8%↓) 0.187(50.1%↓) 0.271(49.1%↓) 0.238(44.3%↓) 0.260(47.1%↓) 0.296(48.2%↓)
RNNLogic∗ 0.124(50.7%↓) 0.172(54.7%↓) 0.240(54.6%↓) 0.244(45.2%↓) 0.260(47.6%↓) 0.281(49.7%↓)

ComplEx-N3∗ 0.142(47.2%↓) 0.208(49.6%↓) 0.289(48.5%↓) 0.250(43.2%↓) 0.269(46.2%↓) 0.311(46.4%↓)
GraIL∗ 0.125(43.9%↓) 0.185(48.8%↓) 0.263(49.4%↓) 0.195(44.7%↓) 0.222(49.3%↓) 0.267(46.8%↓)
QuatE∗ 0.127(48.7%↓) 0.190(50.3%↓) 0.282(48.7%↓) 0.248(43.3%↓) 0.255(49.8%↓) 0.308(47.0%↓)

GraphANGEL3−cycle 0.168(37.6%↓) 0.230(42.2%↓) 0.333(40.5%↓) 0.277(40.2%↓) 0.291(41.4%↓) 0.329(44.3%↓)
GraphANGEL4−cycle 0.147(38.7%↓) 0.222(41.7%↓) 0.328(40.2%↓) 0.278(40.2%↓) 0.291(42.1%↓) 0.326(44.4%↓)

GraphANGEL 0.173(37.2%↓) 0.238(41.5%↓) 0.337(40.1%↓) 0.284(39.5%↓) 0.299(41.8%↓) 0.334(44.1%↓)

4.4 RESULT ANALYSIS OF GENERALIZATION STUDY

We further evaluate these models in a scenario where generalizing from existing relations to unseen
relations is required. Concretely, we use the same datasets with knowledge graph completion and
randomly split R into two partitions Rseen and Runseen. Each model is trained and validated only
with the relations inRseen. During testing, the training and validation triplets inRunseen are added
back to the original graph. We report results on test triples with relations inRunseen only.
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3

QuatE *

pLogicNet *

TransE *

ConvE *

ComplEx *

RotatE *

RNNLogic *

ComplEx-N3 *

GraphANGEL

Figure 4: Illustrations of generalization abil-
ity for GraphANGEL against baselines.

We cannot directly use the baselines above for unseen re-
lations since those relation embeddings are never trained.
Therefore, we combine them with EmbedRule, which es-
timates the relation embedding by finding a number of
most common relation sequences that cooccur with the un-
seen relation, and composing those embeddings thereafter
(Yang et al., 2014). We superscript the name with an as-
terisk for models enhanced by EmbedRule (e.g. TransE∗).

Results in Table 5 illustrate that our model is significantly
less affected than other models when we drop 20% rela-
tions from the training and validation sets. We additionally
report the results of dropping or adding 5%, 10%, 15%
relations in Appendix A6.2. These results on FB15k-237
are summarized in Figure 4, where we see that our model
obtains the better generalization ability.

4.5 RESULT ANALYSIS OF EXPLAINABLE ATTENTION MAP
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Figure 5: Illustrations of generated heat map
of attention scores. See Appendix A6.3 for
the full version with subgraph structure.

Besides the performance, we further show that our model
can produce explainable heat maps of attention scores
across the discovered logic. We here provide an illustration
on the recommendation task based on Douban Book graph,
where we are required to predict the relation existence be-
tween each user and book pair. In Douban Book, we can
define the graph patterns based on the node types, such as
4-cycle shaped patterns: User− Book− Author− Book
denoted as (b, a), User−Book−Year−Book denoted as
(b, y), and User−User−User−Book denoted as (u, u).
In Figure 5, the rows represent the supporting subgraphs
while the columns represent the target subgraphs. Each
cell represents the similarity between a target subgraph (at
the top) and a supporting subgraph (at the bottom). The
color of each cell shows the attention weight for corre-
sponding pair of supporting and target subgraphs. We can
observe that the deep color of the cell located at target and supporting subgraphs following (b, a)
patterns, which indicates that the logic User ∧ Book ∧ Author ∧ Book ⇒ User ∧ Book has high
confidence and can be strong evidence to support the relation prediction.

8



Published as a conference paper at ICLR 2022

5 RELATED WORK

Heterogeneous graphs such as knowledge graphs (Bordes et al., 2013; Schlichtkrull et al., 2018) and
social networks (Zhang et al., 2019a; Jin et al., 2020) that encode facts about the world surrounding
us, have motivated work on automatically predicting new statements based on known ones. Roughly
speaking, existing approaches can be summarized into three main branches, namely matrix factoriza-
tion techniques (Nickel et al., 2011; 2012), statistical relational learning approaches (Richardson &
Domingos, 2006; Singla & Domingos, 2005), and neural-embedding-based methods (Bordes et al.,
2013; Dettmers et al., 2018). Our work focuses on the study of neural-embedding-based models
as they embed nodes and relations into low-dimensional spaces (Bordes et al., 2013; Schlichtkrull
et al., 2018; Trouillon et al., 2016; Yan et al., 2019; Teru et al., 2020), showing good scalability and
strong generalization ability. One dominant paradigm (Ji et al., 2015; Lin et al., 2015) in this branch
is constructed based on translation (Bordes et al., 2013) or rotation (Sun et al., 2019a) assumptions.
The key idea behind this kind of models is that for a positive instance, the source node should be as
close as possible to the target node through the relation, serving as a translation or rotation.

Although there are multiple successful stories in this line of works, these models are all trained on
individual instances, regardless of their local neighborhood structures. As stated in (Schlichtkrull et al.,
2018), explicitly modeling local structure can be an important supplement to help recover missing
relations. Inspired by the success of GNNs in modeling structured neighborhood information, another
line of literature (Schlichtkrull et al., 2018; Zhang & Chen, 2018) learns the relation embedding based
on its neighborhood subgraph using graph convolution layers. With a similar approach, recent work
(Zhang & Chen, 2019; Teru et al., 2020) illustrates the inductive capabilities of generalization to
unseen nodes. However, these approaches fail to generalize to unseen relation types, as it is indirect
to introduce the “neighborhood” for a relation type upon the graph structure.

Meanwhile, our work also relates to previous researches (Qu et al., 2019; Qu & Tang, 2019; Zhang
et al., 2020; Qi et al., 2018; Zheng et al., 2019) studying to effectively combine GNNs techniques
with symbolic logic rule-based approaches (Giarratano & Riley, 1998; Jackson, 1998; Lafferty et al.,
2001; Taskar et al., 2012; Richardson & Domingos, 2006; Singla & Domingos, 2005). However,
these methods, as originally proposed, are transductive in nature. Unlike our method, they still
require learning relation type specific embeddings, whereas we treat the relation prediction as a
graph pattern matching problem, independent of any particular relation type identity. There are
also other work (Yang et al., 2014) that designs a logical rule extraction approach based on the
potential generalization ability of transition-based methods. As this method can incorporate with
various neural-embedding-based models, this set of models constitute our baselines in the inductive
setting. Notably, comparing to the message passing neural network (Gilmer et al., 2017), the current
prevailing GNN framework, as illustrated in Figure A2, GraphANGEL is able to avoid the GNNs’
limitation of using neighbor nodes by using nodes satisfying certain logical patterns (See detailed
discussion in Appendix A4.1).

Another popular link prediction approach is to directly infer the likelihood of relation existence using
a local neighborhood or a local subgraph (Schlichtkrull et al., 2018; Zhang & Chen, 2018; Hu et al.,
2020). A significant difference between those works and our approach is in the formulation of the loss
function. Let fr be any function that maps a vector to a scalar score parametrized by r and `r be a
scalar function, then the prior works’ loss function often take the form L =

∑
〈s,r,t〉∈D `(fr(h∗), y),

meaning that the score computation explicitly depends on the embedding of relation to be predicted.
Ours, in contrast, has the form L =

∑
〈s,r,t〉∈D `(d(h∗,h+), d(h∗,h−), y) where ` is a scalar

function and d is a distance function between two vectors, which are embeddings of a set of subgraphs.
Consequently, our loss function ` does not require representation of r.

6 CONCLUSION

We propose a novel relation prediction framework that predicts the relations between each node pair
based on the subgraph containing the pair and other subgraphs with identical graph patterns, and
has a strong inductive bias for the generalization to unseen relation types. With these graph patterns,
we introduce several graph pattern searching and sampling techniques, which can efficiently find
subgraphs matching the patterns in triangle and quadrangle shapes. In the future, we plan to further
extend GraphANGEL to more complex structures (i.e., compositional logical rules).
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A1 ILLUSTRATIONS OF NOTATIONS
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∧ 𝐄𝐝𝐠𝐞 𝒛,𝒚

Figure A1: An illustrated example of notations in GraphANGEL.

In this paper, we begin by bridging the logical expression and the graph pattern. Taking Fig-
ure A1 as example, we aim to predict the relation live between the source and target nodes
(i.e., Person E and London). We consider the 3-cycle graph pattern. Formally, we use
Πp where p = 1, 2, . . . , P to denote a certain graph pattern. For each Πp, we use Π∗p to de-
note the corresponding target pattern, Π+

p to denote the corresponding supporting pattern, Π−p
to denote the corresponding refuting pattern. Concretely, as shown in Table 1, we can define
Πp = Edge(x, z) ∧ Edge(z, y), Π∗p = Edge(x, z) ∧ Edge(z, y) ∧ Source(x) ∧ Target(y),
Π+

p = Edge(x, z)∧Edge(z, y)∧Edgelive(x, y), Π−p = Edge(x, z)∧Edge(z, y)∧¬Edgelive(x, y).
According to these patterns, we can retrieve the corresponding subgraphs on the graph (as
shown in Figure 1) and construct the corresponding subgraph sets. Figure A1 illustrates a tar-
get subgraph representing the logical expression Watch(Person E, Arsenal)∧Base(Arsenal,
London)∧Source(PersonE)∧ Target(London). We use S∗p,k to denote the k-th sampled target
subgraph following the target pattern Π∗p where k = 1, 2, . . . ,K, S+

p,q to denote the q-th sampled
supporting subgraph following the supporting pattern Π+

p , S−p,q to dentoe the q-th sampled refuting
subgraph following the refuting pattern Π−p where q = 1, 2, . . . , Q.

For each Πp, after applying pattern retrieval and sampling introduced in Appendix A2, we build a set
of target subgraphs denoted as {S∗p,k}Kk=1, a set of supporting subgraphs denoted as {S+

p,q}
Q
q=1, a set of

refuting subgraphs denoted as {S−p,q}
Q
q=1. We then learn a representation for each subgraph, and obtain

a set of corresponding target subgraph embeddings denoted as {e∗p,k}Kk=1, a set of corresponding
supporting subgraph embeddings denoted as {e+

p,q}
Q
q=1, a set of corresponding refuting subgraph

embeddings denoted as {e−p,q}
Q
q=1.

A2 PSEUDOCODE, CORRECTNESS PROOFS, AND COMPLEXITY ANALYSIS
FOR 3-CYCLE AND 4-CYCLE PATTERN RETRIEVAL AND SAMPLING

In this section, we first summarize the complexity of retrieving and sampling subgraphs following the
graph patterns in 3-cycle and 4-cycle with the following theorem:

14



Published as a conference paper at ICLR 2022

Theorem 1. (Time Complexity of Retrieval and Sampling) Given a graph G = (V, E) and a graph
pattern Π3−cycle in 3-cycle and a graph pattern Π4−cycle in 4-cycle, the time complexity of retrieving
all the (supporting) subgraphs satisfying Π3−cycle is O(|E| 32 ), of retrieving all the (supporting) sub-
graphs satisfying Π4−cycle is O(max(|E| 32 , N4−cycle)) where N4−cycle is the number of quadratic
cycles in G and also the trivial lower bound of the time complexity. For uniform sampling algorithms,
the time complexity of sampling n4−cycle supporting cases of Π4−cycle is O(|E| 32 + n4−cycle). As
there are usually more refuting cases than supporting ones, the time complexity of sampling n refuting
cases of Π3−cycle or Π4−cycle is O(|V|+ |E|+ n).

In the following subsections, we show the proof of Theorem 1 by providing the pseudocode of retrieval
and sampling algorithms along with the correctness proof and complexity analysis in Appendix A2.1
and A2.2 respectively.

A2.1 PSEUDOCODE, CORRECTNESS PROOFS, AND COMPLEXITY ANALYSIS FOR 3-CYCLE
AND 4-CYCLE PATTERN RETRIEVAL

In this part, we first provide two algorithms for searching and retrieving supporting subgraphs
following the graph patterns in 3-cycle (i.e., Π3−cycle) in Part 1; and one algorithm for searching and
retrieving supporting subgraphs following the graph patterns in 4-cycle (i.e., Π4−cycle) in Part 2.

Part 1. In Algorithm 2, we present the pseduocode for searching and retrieving all the supporting
subgraphs following the pattern Π3−cycle. The input is a graph G = (V, E) and the output is a set B
containing all the supporting subgraphs satisfying Π3−cycle. We denote the degree of node u by du,
and the set of neighbor nodes of node u in graph G by NG(u).

Algorithm 2: Search and Retrieval Algorithm A for Π3−cycle

V1 ← {u|du > |E|
1
2 }, V2 ← {u|du ≤ |E|

1
2 }

B ← {}
foreach u ∈ V1 do

foreach v ∈ V1 do
foreach w ∈ V1 do

if 〈u, v〉 ∈ E and 〈u,w〉 ∈ E and 〈v, w〉 ∈ E then
B ← B ∪ {(u, v, w)}

end
end

end
end
foreach u ∈ V2 do

foreach v ∈ NG(u) do
foreach w ∈ NG(u) do

if 〈v, w〉 ∈ E then
B ← B ∪ {(u, v, w)}

end
end

end
end

Now, we investigate the correctness and the time complexity of Algorithm 2.

Proof. For any 3-cycle (i.e., 3 nodes connected by 3 edges) (u, v, w), if the degrees of all three
nodes are greater than |E| 12 (i.e., du > |E|

1
2 and dv > |E|

1
2 and dw > |E| 12 ), it will be enumerated

in the first loop. Otherwise, if the degree of any node is not greater than |E| 12 , the 3-cycle will be
enumerated in the second loop.

In order to analyze the time complexity, we first investigate an upper bound of V1 = {u|du > |E|
1
2 }:

2|E| =
∑
u∈V

du ≥
∑
u∈V1

du >
∑
u∈V1

|E| 12 ⇒ |V1| < 2|E| 12 . (4)
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For the first main loop of the algorithm, we have∑
u,v,w∈V1

1 = |V1|3 < 8|E| 32 = O(|E| 32 ). (5)

For the second main loop, we have∑
u∈V2

∑
〈u,v〉∈E

∑
〈u,v〉∈E

1 =
∑
u∈V2

d2
u ≤

∑
u∈V2

|E| 12 du ≤ 2|E| 32 = O(|E| 32 ). (6)

Summarizing the analysis above, we conclude that the overall time complexity is O(|E| 32 ).

Alternatively, we provide another searching and retrieving algorithm for all the supporting subgraphs
following Π3−cycle in Algorithm 3. The inputs and outputs of the algorithm are consistent with
Algorithm 2.

Algorithm 3: Search and Retrieval Algorithm B for Π3−cycle

B ← {}
foreach u ∈ V do

foreach v ∈ NG(u) where dv ≤ du do
foreach w ∈ NG(v) where dw ≤ dv do

if 〈v, w〉 ∈ E then
B ← B ∪ {(u, v, w)}

end
end

end
end

Next, we analyze and prove the correctness and the time complexity of Algorithm 3.

Proof. It is not difficult to find that each 3-cycle (u, v, w) satisfying du ≥ dv ≥ dw is enumerated.

To analyze the time complexity, let us consider how many ws are enumerated:∑
u∈V

∑
〈u,v〉∈E
dv≤du

∑
〈w,v〉∈E
dw≤dv

1 ≤
∑
u∈V

∑
〈u,v〉∈E
dv≤du

∑
〈w,v〉∈E

1 =
∑
u∈V

∑
〈u,v〉∈E
dv≤du

dv. (7)

From Eq. (4), we know that for each v satisfying dv > |E|
1
2 , since du ≥ dv > |E|

1
2 , there are at most

2|E| 12 different us in the outer loop. Hence, we have∑
u∈V

∑
〈u,v〉∈E
dv≤du

dv =
∑
v∈V

dv
∑
〈u,v〉∈E
dv≤du

1

=
∑
v∈V

([
dv ≤ |E|

1
2

]
+
[
dv > |E|

1
2

])
dv

∑
〈u,v〉∈E
dv≤du

1

=
∑
v∈V

[dv ≤ |E| 12 ] dv ∑
〈u,v〉∈E
dv≤du

1 +
[
dv > |E|

1
2

]
dv

∑
〈u,v〉∈E
dv≤du

1


≤
∑
v∈V

([
dv ≤ |E|

1
2

]
|E| 12 dv +

[
dv > |E|

1
2

]
|E| 12 dv

)
=|E| 12

∑
v∈V

dv = 2|E| 32 ,

(8)

where [·] represents the boolean indicator function (i.e., [x] = 1 if x is true; otherwise false).

Therefore, the overall time complexity is also O(|E| 32 ).
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Part 2. In Algorithm 4, we demonstrate the algorithm for searching and retrieving all the supporting
subgraphs following graph patterns in 4-cycles (i.e., Π4−cycle). The inputs, outputs, and notations
are similar to those in Algorithm 2.

Algorithm 4: Search and Retrieval Algorithm for Π4−cycle

B ← {}
foreach u ∈ V do
Tx ← {} for each x ∈ V
foreach v ∈ NG(u) where dv ≤ du do

foreach w ∈ NG(v) where dw ≤ du do
foreach x ∈ Tw do
B ← B ∪ {(u, v, w, x)}

end
Tw ← Tw ∪ {v}

end
end

end

We provide the correctness and the time complexity of Algorithm 4 as follows.

Proof. For correctness, we can see from the algorithm that every 4-cycle (u, v, w, x) satisfying
du ≥ max(dv, dw, dx) is enumerated.

For time complexity, let N4−cycle denote the number of quadratic cycles in G. We first have the time
complexity Θ(N4−cycle) of the innermost loop. For the outer three loops, let us consider how many
ws are enumerated:∑

u

∑
〈u,v〉∈E
du≤dv

∑
〈w,v〉∈E
dw≤du

1 ≤
∑
u

∑
〈u,v〉∈E
du≤dv

∑
〈w,v〉∈E

1 =
∑
u

∑
〈u,v〉∈E
du≤dv

dv. (9)

From Eq. (8), we have ∑
u

∑
〈u,v〉∈E, du≤dv

dv ≤ 2|E| 32 . (10)

Thus, the overall time complexity is O(max(|E| 32 , N4−cycle)).

A2.2 PSEUDOCODE, CORRECTNESS PROOFS, AND COMPLEXITY ANALYSIS FOR 3-CYCLE
AND 4-CYCLE PATTERN SAMPLING

From the subsection above, we know that given a graph G = (V, E), we have different algorithmic
complexities depending on the graph pattern Π. For Π3−cycle (i.e., 3-cycles), the time complexity of
retrieving all supporting subgraphs is O(|E| 32 ). For Π4−cycle (i.e., 4-cycles), the time complexity is
O(max(|E| 32 , N4−cycle)), where N4−cycle is the number of quadratic cycles in G.

However, for large-scale graphs, it is impractical to retrieve all quadratic-cycle graph patterns since
N4−cycle could be too large. In addition, the number of refuting cases for both Π3−cycle and Π4−cycle
may also be large. These problems may lead to the high computational cost of these search algorithms.
Realizing this, we further introduce the technique of uniform sampling to keep the time complexity
within an acceptable level.

Therefore, in the following, we first provide one algorithm for uniformly sampling and retrieving
graph patterns following Π+

4−cycle in Part 1; and two algorithms for uniform sampling and retrieving
graph patterns following the refuting patterns in 3-cycle shape (i.e., Π−3−cycle) and 4-cycle shape
(i.e., Π−4−cycle) in Part 2. As a reminder, while practical, another approach to obtain graph patterns
following Π−3−cycle and Π−4−cycle is random walk, although random walk is often not efficient enough.

Part 1. We present the algorithm for sampling and retrieving all the supporting subgraphs following
Π4−cycle in Algorithm 5. The inputs to the algorithm are a graph G = (V, E) and n4−cycle, rep-
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resenting the number of subgraphs to sample. The output is a set B containing all sampled graph
patterns.

Algorithm 5: Uniform Sampling and Retrieval Algorithm for Π+
4−cycle

B ← {}
foreach u ∈ V do
Tuw ← {} for w ∈ V
foreach v ∈ NG(u) where dv ≤ du do

foreach w ∈ NG(v) where dw ≤ du do
Tuw ← Tuw ∪ {v}

end
end

end
foreach (u,w) where Tuw 6= ∅ do

cuw ← |Tuw|(|Tuw| − 1)
end
c←

∑
uw cuw

foreach (u,w) where Tuw 6= ∅ do
puw ← cuw/c

end
for i← 1 to n4−cycle do

Sample (u,w) where Tuw 6= ∅ with probability puw
Uniformly sample two different nodes u and x from Tuw
if 〈u,w〉 ∈ E then
B ← B ∪ {(u, v, w, x)}

end
end

We provide the correctness and the time complexity of Algorithm 5 as follows.

Proof. For correctness, we can observe from the algorithm that every 4-cycle (u, v, w, x) satisfying
du ≥ max(dv, dw, dx) is counted in Tuw exactly once, where v ∈ Tuw and x ∈ Tuw. We sample
(u,w) with the probability of occurrence of the 4-cycle (u, v, w, x), then sample different v and x
uniformly from Tuw.

For time complexity, it has been proved in Algorithm 4 that the time complexity of computing T is
O(|E| 32 ). Notably, there are O(|E| 32 ) non-empty T s.

Therefore, if we sample (u,w) through Alias Method (Walker, 1977), then the overall time complexity
is O(|E| 32 + n4−cycle).

Part 2. We further provide two path sampling algorithms. In most practical cases, there are many
more refuting examples than supporting ones, and if we assume so, then Algorithm 6 can be used to
sample graph patterns following refuting patterns in 3-cycle shape (i.e., Π−3−cycle), and Algorithm 7
to sample graph patterns following refuting patterns in 4-cycle shape (i.e., Π−4−cycle).

Algorithm 6 displays the algorithm for uniformly sampling n subgraphs following Π−3−cycle in G.
The inputs, outputs, notations are identical to those in Algorithm 5.
We provide the correctness and the time complexity of Algorithm 5 as follows.

Proof. For correctness, as shown in the algorithm, we formulate the sampling of refuting cases
of Π3−cycle into uniformly sampling three-node paths, namely (u, v, w). We first sample the
intermediate node of the path (i.e., v), where there are dv(dv − 1)/2 three-node paths with v
as its intermediate node. Next, we sample v with probability pv to ensure uniformity, where
pv = dv(dv − 1)/

∑
v dv(dv − 1), and then sample its two neighbors to form the path.

Using Alias Method, the overall time complexity is O(|V|+ |E|+ n), where the computation for the
degree requires O(|E|), the first two loops require O(|V|), and the last loop requires O(n).
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Algorithm 6: Uniform Sampling and Retrieval Algorithm for Π−3−cycle

B ← {}
foreach u ∈ V do

cu ← du(du − 1)
end
c←

∑
u cu

foreach u ∈ V do
pu ← cu/c

end
for i← 1 to n do

Sample v with probability pv
Uniformly sample two different neighbor nodes (i.e., u and w) of v
if 〈u,w〉 6∈ E then
B ← B ∪ {(u, v, w)}

end
end

Algorithm 7: Uniform Sampling and Retrieval Algorithm for Π−4−cycle

B ← {}
foreach 〈u, v〉 ∈ E do

if dv = 2 and du = 2 and |NG(u) ∩NG(v)| = 1 then
cuv ← 0

end
else

cuv ← (du − 1) · (dv − 1)
end

end
c←

∑
uv cuv

foreach 〈u, v〉 ∈ E do
puv ← cuv/c

end
for i← 1 to n do

Sample 〈v, w〉 with probability pvw
Uniformly sample a neighbor node u of v
Uniformly sample a neighbor node x of w
if u 6= x and 〈u, x〉 6∈ E then
B ← B ∪ {(u, v, w, x)}

end
end

In Algorithm 7, we present the algorithm for uniformly sampling graph patterns following Π−4−cycle
in G. We provide the correctness and the time complexity of Algorithm 7 as follows.

Proof. Analogous to Algorithm 6, we formulate the sampling of refuting cases of Π4−cycle into
uniformly sampling four-node paths namely (u, v, w, x). To first analyze the correctness of the
algorithm, we first sample the intermediate edge of the path (i.e., 〈v, w〉). There are (dv−1) ·(dw−1)
three-edge paths (including 3-cycles) where the intermediate edge is 〈v, w〉. Hence, we sample 〈v, w〉
with the probability proportional to (dv − 1) · (dw − 1), and then sample a neighbor node u from v
and another one x from w, and reject the case when it forms a 3-cycle.

To guarantee the time complexity, we do not sample the edge 〈v, w〉 when v and w have the only
common neighbor, thus |NG(v)∩NG(w)|

(dv−1)·(dw−1) ≤
1
2 when c 6= 0, i.e., we reject with probability no more

than 1
2 , the expected time complexity is O(|V|+ |E|+ n).
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Algorithm 8: Implementation of GraphANGEL
Input: Graph G, Patterns Π1, . . . ,ΠP , Source-target node dataset D.
Output: Prediction ŷ for each 〈s, r, t〉.
for each pattern Πp do

Construct Π∗p, Π+
p , Π−p .

Search/Sample and retrieve subgraphs following Πp through Algorithms 2,3,4,5,6,7.
Store all the subgraphs in B.

end
for each 〈s, r, t〉 ∈ D do

for each logic Πp do
Sample and retrieve K subgraphs S∗p,k matching Π∗p in B.
Sample and retrieve Q subgraphs S+

p,q matching Π+
p in B.

Sample and retrieve Q subgraphs S−p,q matching Π−p in B.
Compute e∗p,k, e+

p,q , e−p,q according to Eq. (1).
end
Compute s+, s− according to Eq. (2).
Calculate ŷ via ŷ = s+

s++s− .
Re-sample and retrieve subgraphs following Πp through Algorithms 6,7,5.
Update B with the re-sampled subgraphs.
Update parameters by minimizing loss L shown in Eq. (3).

end

Notably, these algorithms are valuable because the number of the refuting cases are considerable in
practice, and they make GraphANGEL more relevant for practical deployment.

A3 IMPLEMENTATION ALGORITHM OF GRAPHANGEL

A3.1 ALGORITHM FOR IMPLEMENTATION OF GRAPHANGEL ON STATIC GRAPHS

For the heterogeneous graph based recommendation task, we follow (Hu et al., 2020; Wang et al.,
2019b; Zhang et al., 2019a) to predict the existence of edge between each given node pair 〈s, t〉,
while in the knowledge graph completion task, we follow (Bordes et al., 2013; Sun et al., 2019a;
Dettmers et al., 2018) to mask head and tail entities instead of relation prediction. As the input of
our model is a triplet 〈s, r, t〉, one can score all the possible triplets no matter either relation r or tail
entity (i.e., node) t is masked. We then rank all these tuples for evaluation.

Overall Time Complexity of Original Algorithm. Theorem 1 shows the time complexity of
searching and retrieving the subgraphs following the pre-defined 3-cycle and 4-cycle shaped patterns:
O(max(|E| 32 , n4−cycle)) for sampling n4−cycle subgraphs satisfying Π+

4−cycle, O(|V|+ |E|+n) for
sampling n refuting cases of Π−3−cycle or Π−4−cycle.

Besides the subgraph retrieval part, the main components of GraphANGEL are the representation
computation part (i.e., Φ) and the similarity computation part (i.e., Ψ). We further analyze the time
complexity of these parts as follows.

For Φ, as described in Section 3, we employ R-GCN (Schlichtkrull et al., 2018) (See Appendix A3.3
for details). One can use other GNN architectures (e.g., R-GAT (Busbridge et al., 2019)). Hence,
without loss of generality, we analyze the time complexity of the general GNNs following the
message passing framework (Gilmer et al., 2017), most of whose update functions can be formulated
as H(l+1) = ReLU((L + I)H(l)W (l)), where H ∈ R|V|×dl+1 is the embedding matrix obtained
after l + 1 steps of propagation, and L represents the Laplacian matrix for the graph, defined by
L = D−

1
2AD−

1
2 , A is the adjacency matrix and D is the diagonal degree matrix, W l ∈ Rdl×dl−1

is the trainable transformation matrix. The l-th propagation layer, the matrix multiplication has
computational complexity O(|L+| · dl × dl−1), where |L+| is the number of nonzero entities in the
Laplacian matrix, and the dl and dl−1 are the current and previous transformation size. Then, the
time complexity of Φ with L layers is O(

∑L
l=1 |L+| · dl × dl−1).
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Figure A2: An illustrated example of nodes and edges involved in GraphANGEL and other existing approaches,
where nodes and edges in grey are not activated while the other colors of nodes and edges represent their types.
As introduced in Table 2, we here show the results of two graph patterns in 3-cycle shape. For clarity and
simplicity, in this case, the number of layers of GNN models are constrained as one.

For Ψ, as Section 3 shows, we use a co-attention mechanism (Lu et al., 2016) (See Appendix A3.4 for
details). Without loss of generality, let Nhead denote the number of heads. Then, the time complexity
of Ψ is O((P ×K) · (P ×Q) · d2 ·Nhead).

Then, the overall time complexity of Algorithm 1 is to sum up all the above computation costs.

In Algorithm 1, we retrieve and sample subgraphs for every source-target node pair, which can be
time-consuming. Algorithm 8 introduces additional steps that precompute all the graph patterns and
their satisfying subgraphs as a data preprocessing step.

The intuition behind this is very straightforward that, as shown in Table 2, the graph patterns
considered in this paper are quite simple, involving at most four nodes. For knowledge graphs,
it’s acceptable to pre-compute all the supporting subgraphs of 3-cycle shaped graph pattern using
Algorithm 2 or 3. We also develop a novel search and retrieval algorithm (as shown in Algorithm 4)
to retrieve all the supporting subgraphs with O(max(|E| 32 , N4−cycle)). However, as the number of
supporting cases of 4-cycle shaped graph pattern (i.e., N4−cycle) is too large (as shown in Table A3),
while practical, we uniformly sample n4−cycle subgraphs following supporting graph patterns in
4-cycle shape using Algorithm 6. n4−cycle is a hyper-parameter, which we set as the number of
3-cycles in graph (i.e., n4−cycle = N3−cycle). All these subgraphs into a buffer B. For heterogeneous
graphs, since the graph schema of these graphs are usually not complex. We can cover all possible
graph patterns by enumerating on the graph schema. Similarly, this enables us to pre-compute the
graph patterns and store all the retrieved and sampled subgraphs following each graph pattern in the
buffer B. We then can build an index of the buffer by the graph patterns as well as the subgraphs
following each graph pattern. During training, we sample and retrieve subgraphs in the buffer instead
of the whole graph for each source-target node pair. Compared with the original one in Algorithm 1,
we reduce the complexity and improve the efficiency. We can further set a update interval to refresh B
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by re-sampling the supporting cases of Π4−cycle and refuting cases of Π3−cycle and Π4−cycle. While
practical, we find that whether refreshing or not would not bring much influence, and establish an
ablation study for the buffer size in Appendix A6.6.

Let n−3−cycle, n−4−cycle denote the number of refuting samples of Π−3−cycle and Π−4−cycle respectively.
In practice, we set n = n−3−cycle = n−4−cycle = 2 ·N3−cycle. We sample n refuting cases of Π3−cycle
and Π4−cycle respectively and store them into B.

Space Complexity of Storing subgraphs. From the above analysis, we know that if we choose to
store all the supporting subgraphs, the space complexity of storing these subgraphs is O(N3−cycle +
N4−cycle). While practical, it is O(N3−cycle). And for the subgraphs of refuting cases, the space
complexity is O(n−3−cycle + n−4−cycle), and O(n) for implementation.

Notably, this space complexity is different from the space complexity of the algorithms in Theorem 1,
which is the same as its time complexity.

Algorithm 9: Search and Retrieval Algorithm for Π+
3−cycle in (a) Shape

V1 ← {u ∈ Vold|du > σ}, V2 ← {u ∈ Vold|du ≤ σ} where σ ← |Eold|
1
2 /(|∆V+

new|
1
4 |Vold|

1
4 )

B ← {}
foreach u ∈ V1 do

foreach v ∈ V1 do
foreach w ∈ ∆V+

new do
if 〈u, v〉 ∈ Eold and 〈u,w〉 ∈ ∆E+

old and 〈v, w〉 ∈ ∆E+
old then

B ← B ∪ {(u, v, w)}
end

end
end

end
foreach u ∈ V2 do

foreach v ∈ NGold(u) do
foreach w ∈ N∆G+

old
(u) do

if 〈v, w〉 ∈ ∆E+
old then

B ← B ∪ {(u, v, w)}
end

end
end

end

A3.2 ALGORITHM FOR IMPLEMENTATION OF GRAPHANGEL ON DYNAMIC GRAPHS

Note that all the algorithms introduced in Appendix A2 mainly focus on searching and retrieving the
subgraphs in the context of the static graphs. However, the graphs used in the real-world scenario
almost are dynamic graphs, which always need to be modified and updated. In the followings, we
show the (incremental) subgraph retrieval algorithms which updates the old buffer (denoted as Bold)
calculated by the old graph (denoted as Gold) to the new buffer (denoted as Bnew) computed by new
graph (denoted as Gnew). Formally, we use Gnew = (Vnew, Enew) and Gold = (Vold, Eold) to denote
the new graph and the old graph respectively, where Vold and Vnew denote node sets, Eold and Enew
denote node sets. We do not introduce the relation sets, as our subgraph retrieval does not consider
the relations. We use Aold and Anew to denote the adjacency matrices of Gnew and Gold regardless of
the edge types (i.e., relations).

Let ∆G− = (∆V−,∆E−) denote a graph including all the nodes and edges removed from Gold
comparing to Gnew; and ∆G+ = (∆V+,∆E+) denote a graph consisting of all the nodes and edges
added to Gold comparing to Gnew. As some edges in ∆G+ may connect the a node in Gold and a new
node, we can further divide ∆G+ into two graphs. One is a graph including all the new nodes and
edges connecting these nodes, denoted as ∆G+

new = (∆V+
new,∆E+

new). And the rest edges together
with corresponding nodes construct another graph denoted as ∆G+

old = (∆V+
old,∆E+

old). Hence,
putting ∆G− aside, the original new graph Gnew can be divided into three parts to consider: Gold,
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Algorithm 10: Generation of Uniform Sampling Rate for Each Node and Edge
# Following is Generation of Uniform Sampling Rate for Each Node
foreach u ∈ V do

cu ← du(du − 1)
end
c←

∑
u cu

foreach u ∈ V do
pu ← cu/c

end
# Following is Generation of Uniform Sampling Rate for Each Edge
foreach 〈u, v〉 ∈ E do

if dv = 2 and du = 2 and |NG(u) ∩NG(v)| = 1 then
cuv ← 0

end
else

cuv ← (du − 1) · (dv − 1)
end

end
c←

∑
uv cuv

foreach 〈u, v〉 ∈ E do
puv ← cuv/c

end

∆Gnew and ∆Gold. Notably, these three parts have overlapping nodes but do not have overlapping
edges, as shown in Figure A3.

(a)

(b)

(c)

(e)

(f)

(g)

(d)

Figure A3: An illustrated example of divid-
ing Gnew (including the nodes and edges in
the black box) into Gold (including the nodes
and edges in the blue circle), ∆Gnew (includ-
ing the nodes and edges in the green circle)
and ∆Gold (including the nodes and edges in
purple color), when putting ∆G− aside. Note
that there is overlapping nodes but no overlap-
ping edges between Gold and ∆Gold, ∆Gnew

and ∆Gold. (a)(b) denote the two types of
3-cycles and (c)-(g) denote five types of 4-
cycles not within either Gold or ∆Gnew.

To efficiently obtain ∆G−, ∆G+
old and ∆G−new from Gold

and Gnew, we can first compute ∆G− by comparing Gnew to
Gold (or comparing Anew to Aold). We can then calculate
∆V+

new consisting of the nodes in Vnew but not in Vold by
∆V+

new = Vnew + ∆V− − Vold. Next, we can calculate
∆E+

new by referring to Anew. And, ∆E+
old can be derived

by ∆E+
old = Enew + ∆E− − Eold −∆E+

new.

From Algorithms 2,3,4,6,7,5, we can see that the buffer B
only store the of nodes (i.e., node IDs) of each subgraph in-
stance. These IDs for subgraphs following the supporting
graph patterns in 3-cycle shape represent all the 3-cycles
in the graph, and the IDs for subgraphs following the sup-
porting graph patterns in 4-cycle shape represent a number
of uniformly sampled 4-cycles in the graph. Therefore, we
are seeking for an efficient way to update the buffer from
Bold, the buffer computed by Gold, to Bnew, the buffer com-
puted by Gnew. From the above analysis, we are required
to search and retrieve all the new subgraphs following
Π+

3−cycle and uniformly sample the new subgraphs fol-
lowing Π+

4−cycle. As the time complexity of sampling
n refuting subgraphs following Π−3−cycle or Π−4−cycle in
Gnew isO(|Vnew|+|Enew|+n) (as shown in Theorem 1), and
thus it’s yet efficient to directly re-compute these refuting
subgraphs.

We summarize the pipeline of updating the buffer B in
Algorithm 11 where [·] denotes the flooring function, and
provide detailed descriptions as follows.

Firstly, we deal with “delete modifications” from Gold to
Gnew (i.e., ∆G−) by removing all the instances that include the nodes in ∆V−. Secondly, for new
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?

?

(a) An instance of Heterogeneous Graph (c) Nodes and edges activated in GraphANGEL

(d) An instance of Homogeneous Graph

(b) Graph pattern considered 
in GraphANGEL

(f) Nodes and edges activated in GraphANGEL(e) Graph pattern considered 
in GraphANGEL

Figure A4: An illustrated example of how GraphANGEL works on both the heterogeneous graph shown in (a)
and the homogeneous graph shown in (d), where the colors of the nodes and edges represent their types in the
heterogeneous graph. For the heterogeneous graph, GraphANGEL can automatically find the graph pattern
by scanning on the graph schema by given shapes (e.g., Pair, 3-cycle, 4-cycle). We show an example graph
pattern in (b). Based on the graph and graph pattern, we show the nodes and edges activated in GraphANGEL
in (c), where the nodes and edges in colors are activated and those in black are not activated. However, for
the homogeneous graph, since there is no graph pattern based on the node and edge type, we design the graph
pattern directly based on the shape (i.e., hexagon shape in (e)). We then show the nodes and edges activated in
(f), where nodes and edges in red construct a subgraph following target pattern and the green ones compose a
subgraph following analogy pattern.

subgraphs following Π+
3−cycle, these 3-cycles might either in ∆G+

new or include the nodes and edges
across Gold and ∆G+

new. For the former one, we can directly apply Algorithm 2 or 3 in ∆G+
new, while

for the latter one, we need to consider two different cases, shown as (a) and (b) in Figure A3. For
searching and retrieving subgraphs in (b) shape, it’s practical to directly enumerate all the edges
in ∆V+

new, as |∆V+
new| is expected to be small. However, |Vold| is large in the most time, and thus

we develop Algorithm 9 to efficiently search and retrieve subgraphs in (a) shape, whose design is
analogous to Algorithm 2.

Thirdly, for Π+
4−cycle, similar to Π+

3−cycle, there are also two classes of subgraphs. For the first one,
we can uniformly sample a number of subgraphs following Π+

4−cycle by directly applying Algorithm 5
in ∆G+

new. For the second one, we need to consider five different cases, shown as (c), (d), (e), (f),
(g) in Figure A3. We can simultaneously deal with (c), (d), (e) by uniformly sampling edges in
∆V+

old where the sample rate of edges can be computed by using Algorithm 10. For (f) and (g), we
first uniformly sample a 3-cycle in one of Gold and G+

new, which is similar to Algorithm 6, and then
uniformly sample one node in the other one of Gold and G+

new. The sample rate in these cases can also
obtain by using Algorithm 10.

For Π−3−cycle and Π−4−cycle, considering Algorithm 7 and 5 only have the linear complexity, we
directly re-sample the refuting cases of Π−3−cycle and Π−4−cycle by running these algorithms on Gnew.

Time Complexity of Incremental Updating Algorithm. As shown in Algorithm 11, there are
mainly four parts: removing the instances including the nodes in ∆V−; searching and retrieving the
supporting cases of Π+

3−cycle; sampling the the supporting cases of Π+
4−cycle; sampling the refuting

cases of Π−3−cycle and Π−4−cycle. Let |B| denote the number of instances in the buffer B.

The first part requires O(|Bold| · |∆V−|) computations, the second part requires O(|∆E+
new|

3
2 +

|∆E+
new| · |Vold|+ |Eold| ·min(|∆V+

new|, [
|Vold|

1
2

|∆V+
new|

1
2

]) computations, the third part requiresO(|∆E+
new|

3
2 +

[
|∆V+

new|
4

|Vold|4 n4−cycle] + |Vold|+ |Eold|+ |∆Vold|+ |∆Eold|+ |∆Vnew|+ |∆Enew|+ [
|∆E+old|

2

|Eold|2 n4−cycle] +
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Table A1: Main statistics of heterogeneous graphs.

Datasets Relations (A-B) #A #B #A-B Datasets Relations (A-B) #A #B #A-B

LastFM

User-Artist 2,101 18,746 92,834

Amazon

User-Item 6,170 2,753 146,230
User-User 2,101 2,101 25,434 Item-View 2,753 3,857 5,694
User-Tag 2,101 12,648 186,479 Item-Brand 2,753 334 2,753
Artist-Tag 18,746 12,648 186,479 User-User 6,170 6,170 37,958

Yelp

User-Business 16,239 14,284 198,397

Douban Book

User-Book 13,024 22,347 598,420
User-User 16,239 16,239 158,590 User-User 13,024 13,024 169,150
User-City 16,239 47 76,875 User-Group 13,024 2,936 1,189,271

Business-City 14,284 47 14,267 Book-Author 22,347 10,805 21,907
Business-Genre 14,284 511 40,009 Book-Publisher 22,347 1,815 21,773

Table A2: Main statistics of knowledge graphs.

Datasets #Entities #Relations #Training #Validation #Test

FB15k-237 14,541 237 272,115 17,535 20,466
WN18RR 40,943 11 86,835 3,304 3,134

[
|∆E+old|

2|∆E+new|
2

|Eold|4 n4−cycle]), the fourth part requiresO(|Vnew|+ |Enew|+[ |Enew|
3

|Eold|3n]), where [·] denote the
floor function. The overall complexity is to sum up the above computations. One can easily conclude
that when the numbers of new nodes and edges are relatively much smaller than the numbers of old
nodes and edges, Algorithm 11 is more efficient than re-running the subgraph retrieval algorithms on
the new graph, which are the common cases in the real-world scenario.

A3.3 DETAILED FORMULATION OF Φ IN GRAPHANGEL

As introduced in Section 3, we apply a neural network Φ(·) over each subgraph. These subgraphs can
be from either target subgraph set {S∗p,k}

P,K
p=1,k=1, supporting subgraph set {S+

p,q}
P,Q
p=1,q=1, or refuting

subgraph set {S−p,q}
P,Q
p=1,q=1, as shown in Eq. (1). Formally, Φ maps each subgraph S∗p,k, S+

p,q or
S−p,q to the corresponding graph-level representations e∗p,k, e+

p,q or e−p,q. In the implementation, we
adopt single layer R-GCN (Schlichtkrull et al., 2018) followed by any readout function (e.g., Mean(·),
Max(·)) as Φ(·).

Taking S∗p,k as an instance, we use hv,p,k to denote the embedding of node v in the subgraph namely
v ∈ S∗p,k, and N r

Sp,k(v) to denote the set of neighbor nodes of node v in Sp,k regarding relation type
r. We compute hv,p,k by

hv,p,k = σ(
∑
r∈R

∑
u∈N r

Sp,k
(v)

Wrxu + W0xv), (11)

where x· denote the input node features or learnable node embeddings, W· denote trainable parame-
ters, and σ is non-linearity function such as ReLU. After updating the embedding vectors of all the
nodes, we further compute e∗p,k by e∗p,k = Mean({hv,p,k|v ∈ S∗p,k}). Computations of e+

p,q and e−p,q
are similar.

Specifically, in the case of Pair shape, R-GCN reduces to an MLP, and thus Φ here generally would
not be worse than what an MLP could achieve.

A3.4 DETAILED FORMULATION OF Ψ IN GRAPHANGEL

As stated in Section 3, we deploy a neural network Ψ(·) to measure the similarity s+ between the
set of subgraphs matching Π∗1,Π

∗
2, . . . ,Π

∗
P and the set of subgraphs matching Π+

1 ,Π
+
2 , . . . ,Π

+
P ; and

the similarity s− between the set of subgraphs matching Π∗1,Π
∗
2, . . . ,Π

∗
P and the set of subgraphs

matching Π−1 ,Π
−
2 , . . . ,Π

−
P .

Take the computation of s+ as an example. We first reshape the subgraph embedding tensors e∗p,k into
matrices: E∗ = CONCAT[{e∗p,k, p = 1, . . . , P ; k = 1, . . . ,K}] ∈ Rd×(P×K), and similarly form
e+
p,q to E+ ∈ Rd×(P×Q), where d is the hidden representation size. We then compute the affinity

matrix as
A = tanh(E∗>WcE

+) ∈ R(P×K)×(P×Q), (12)
where Wc ∈ Rd×d are trainable weights. With the affinity matrix A, one possible way of computing
attention is to simply maximize out the affinity, namely a+[j] = Maxi(Ai,j) and a∗[i] = Maxj(Ai,j).
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Table A3: Main statistics of patterns in heterogeneous and knowledge graphs

Patterns LastFM Amazon Yelp Douban Book FB15k-237 WN18RR

3-cycle 29K 56K 137K 620K 519K 11,590K
4-cycle 28M 52M 81M 62M 51M 2,623M

average coverage of 3-hop neighborhood 78% 72% 78% 79% 78% 68%
average coverage of 4-hop neighborhood 98% 92% 97% 99% 99% 90%

Instead of using the max activation, we follow (Lu et al., 2016), considering this affinity matrix as a
feature and learning the attention map via following:

H∗ = W∗E
∗, H+ = W+E

+ (13)

which are used to compute the attention map among E∗ and E+ through

a∗ = softmax(w>∗ tanh(H∗ + H+A)), a+ = softmax(w>+tanh(H+ + H∗A)), (14)

where W∗ ∈ Rd×d and W+ ∈ Rd×d, w∗ ∈ Rd and w+ ∈ Rd are the weight parameters. a∗ ∈
R(P×K) and a+ ∈ R(P×Q). We finally obtain the set embedding via

h+ = E+a+>, h∗ = E∗a∗>, (15)

which is the weighted average of the subgraph embeddings in matrix E+ and E∗. The similarity of
supporting patterns is s+ = h+>h∗. Computation of s− is similar.

A4 FURTHER ANALYSIS OF GRAPHANGEL

A4.1 LIMITATIONS OF GRAPHANGEL

In order to further analyse the limitations of GraphANGEL, we first compare our framework with
exsiting GNN methods. As shown in Figure A2, we provide an illustrated example of nodes and
edges activated and not activated in various GNN models, including GCN (Kipf & Welling, 2016),
GraphSAGE (Hamilton et al., 2017), GAT (Veličković et al., 2017), SEAL (Zhang & Chen, 2018),
PPNP and APPNP (Approximate PPNP) (Klicpera et al., 2018), and our model GraphANGEL. With
a limited number of GNN layers, one can easily observe that these existing approaches only involve
all context within the “neighborhood”. Instead, GraphANGEL leverages the graph structure by
searching and retrieving the subgraphs in the whole graph, which not only removes the limitation of
neighborhood constriction but also selects pattern (i.e., logic) related information. Figure A2 depicts
an illustrated example of the edges activated in GraphANGEL comparing to other GNNs, where
we can see that our method can be regarded as to restrict the message passing within the subgraphs
satisfying certain pre-defined patterns, (e.g., Π3−cycle, Π4−cycle).

Although from the analysis above, we can see that GraphANGEL can succeed in those cases where
existing GNN models fail; however, leveraging logically-induced graph patterns can also be a
limitation of GraphANGEL, especially when it is hard to find or design such graph patterns. For
example, if the two nodes for the link prediction are far away from each other, the graph patterns
considered in our experiments may be not able to cover the cases, and it is also hard to define what
a graph pattern should be, which is previously pointed out in Section 3. We argue that such cases
are rare in real-world graphs as they are usually scale-free, meaning that the topological distance is
usually small. The topological distance of graphs are well measured by Wiener index, and detailed
theoretical description and empirical study can be found in (Dobrynin et al., 2001). Due to the high
computation costs for shortest path algorithms (Floyd, 1962; Gallo & Pallottino, 1988), in this paper,
instead, we calculate the fraction of 3-hop and 4-hop neighborhoods over all the nodes for every node
in each dataset, average them, and report the results in Table A3, which shows that 3-hop and 4-hop
neighborhoods can cover almost all the nodes in the graph. Since there is no connectivity requirement
between the source and target nodes in the target pattern as shown in Table 1, it is unlikely to fail to
find at least one subgraph satisfying the target patterns.

The other limitation pointed out in Section 3 is the time complexity of Algorithm 1 and the storage
complexity of Algorithm 8. We provide the complexity analysis in Appendix A3 and report the
overall time of training and inference in Appendix A6.7. We argue that there is a recent trend in
building language models (Khandelwal et al., 2019; He et al., 2021; Khandelwal et al., 2020; Zheng
et al., 2021) by searching and storing the representation vectors of neighbor nodes. Comparing to
these methods, our subgraph retrieval only search, retrieve and further store the node IDs, which
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Table A4: Comparable results with baselines, where there are 20% least frequent relations. See Appendix A6.1
for the full version. The numbers in brackets show the descent degree comparing to Table A4.

Models FB15k-237 WN18RR

Hit@1 Hit@3 Hit@10 Hit@1 Hit@3 Hit@10

pLogicNet 0.209(11.8%↓) 0.342(6.81%↓) 0.500(4.58%↓) 0.341(14.3%↓) 0.406(8.97%↓) 0.491(8.57%↓)
TransE 0.197(14.0%↓) 0.339(6.61%↓) 0.494(5.18%↓) 0.123(8.89%↓) 0.367(8.48%↓) 0.487(8.29%↓)
ConvE 0.207(12.7%↓) 0.324(8.99%↓) 0.478(4.59%↓) 0.364(9.00%↓) 0.391(11.1%↓) 0.479(7.88%↓)

ComplEx 0.140(11.4%↓) 0.261(5.09%↓) 0.409(4.44%↓) 0.375(8.54%↓) 0.428(6.96%↓) 0.475(6.86%↓)
MLN 0.051(23.9%↓) 0.077(25.2%↓) 0.143(10.6%↓) 0.166(13.1%↓) 0.285(11.5%↓) 0.333(7.76%↓)

RotatE 0.211(12.3%↓) 0.351(6.34%↓) 0.505(5.32%↓) 0.386(9.83%↓) 0.445(9.57%↓) 0.529(7.38%↓)
RNNLogic 0.219(13.2%↓) 0.333(12.5%↓) 0.499(5.76%↓) 0.407(8.61%↓) 0.444(10.7%↓) 0.511(8.42%↓)

ComplEx-N3 0.242(11.1%↓) 0.361(9.85%↓) 0.534(4.85%↓) 0.407(7.49%↓) 0.456(8.74%↓) 0.539(7.15%↓)
GraIL 0.197(11.5%↓) 0.315(12.8%↓) 0.484(6.84%↓) 0.307(12.7%↓) 0.387(11.6%↓) 0.458(8.52%↓)
QuatE 0.219(11.7%↓) 0.355(7.14%↓) 0.521(5.30%↓) 0.400(8.75%↓) 0.462(9.06%↓) 0.535(8.06%↓))

GraphANGEL3−cycle 0.243(9.87%↓) 0.384(3.53%↓) 0.539(3.80%↓) 0.418(9.78%↓) 0.465(6.42%↓) 0.549(6.93%↓)
GraphANGEL4−cycle 0.215(9.96%↓) 0.366(4.04%↓) 0.526(3.94%↓) 0.421(9.37%↓) 0.467(6.92%↓) 0.549(6.47%↓)

GraphANGEL 0.248(9.62%↓) 0.394(3.27%↓) 0.541(3.84%↓) 0.429(8.74%↓) 0.481(6.21%↓) 0.557(6.75%↓)

Table A5: Comparable results with baselines, where there are 20% least frequent relations. Here we report the
results in term of MR, MRR, Hit@K (K=1,3,10).

Models FB15k-237 WN18RR

MR MRR Hit@1 Hit@3 Hit@10 MR MRR Hit@1 Hit@3 Hit@10

pLogicNet 192 0.284 0.209 0.342 0.500 3891 0.378 0.341 0.406 0.491
TransE 198 0.296 0.197 0.339 0.494 3713 0.203 0.123 0.367 0.487
ConvE 266 0.295 0.207 0.324 0.478 4561 0.391 0.364 0.391 0.479

ComplEx 367 0.226 0.140 0.261 0.409 5709 0.402 0.375 0.428 0.475
MLN 2235 0.087 0.051 0.077 0.143 13056 0.225 0.166 0.285 0.333

RotatE 200 0.302 0.211 0.351 0.505 3630 0.435 0.386 0.445 0.529
RNNLogic 263 0.302 0.219 0.333 0.499 4659 0.438 0.407 0.444 0.511

ComplEx-N3 177 0.334 0.242 0.361 0.534 3481 0.448 0.407 0.456 0.539
GraIL 230 0.281 0.197 0.315 0.484 3949 0.362 0.307 0.387 0.458
QuatE 101 0.296 0.219 0.355 0.521 2705 0.421 0.400 0.462 0.535

GraphANGEL3−cycle 174 0.324 0.243 0.384 0.539 3139 0.445 0.418 0.465 0.549
GraphANGEL4−cycle 181 0.317 0.215 0.366 0.526 3169 0.450 0.421 0.467 0.549

GraphANGEL 167 0.336 0.248 0.394 0.541 3108 0.458 0.429 0.481 0.557

are relatively much more retrieval-efficient and storage-efficient than searching and storing the
representation vectors of nodes.

Besides the above discussions about the limitations pointed out in Section 3, we also provide the
following discussions regarding the assumptions proposed in Section 2.

One of the assumptions introduced in Section 2 is that existing relations is enough to cover unseen
relations by logical inference, which motivates us to not explicitly construct embeddings for the
relation to predict. However, this assumption also disables GraphANGEL to consider the correlations
among unseen relations. In other words, it’s not possible for current GraphANGEL to incorporate
unseen relations as a part of the graph after actually observing them during inference. One possible
solution is to incorporate our model with EmbedRule (Yang et al., 2014) to first generate explicit
embeddings for each unseen relations by EmbedRule, and then apply GraphANGEL to generate the
final predictions. Considering that both EmbedRule and GraphANGEL have strong generalizability
to unseen relations, it is hard to say which one plays a more important role in this case. Hence, we
leave it as future work.

The other one of the assumptions is to bridge the graph patterns with logical rules. Therefore,
GraphANGEL is capable of distinguishing different semantics of the same relation as long as the
local subgraphs, hence contexts, are different.

A4.2 EXTENSIONS OF GRAPHANGEL TO HOMOGENEOUS GRAPH

One may consider that heterogeneous graph may be another potential limitation of GraphANGEL.
However, we note that extending GraphANGEL to homogeneous graphs is possible with graph
patterns that are not type-sensitive, i.e., not containing type-specific indicator operators Edger(x, y).
In other words, the graph patterns will be purely based on topology. For example, we can define
6-cycle for the graph in Figure A4(d).
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Table A6: Result comparisions with baselines on generalization setting by randomly removing 5% relations.
Here we report the results in term of MR, MRR, Hit@K (K=1,3,10).

Models FB15k-237 WN18RR

MR MRR Hit@1 Hit@3 Hit@10 MR MRR Hit@1 Hit@3 Hit@10

pLogicNet∗ 185 0.309 0.220 0.341 0.487 3646 0.410 0.370 0.414 0.500
TransE∗ 191 0.306 0.215 0.338 0.489 3614 0.209 0.230 0.378 0.499
ConvE∗ 268 0.292 0.213 0.320 0.450 4605 0.387 0.361 0.396 0.469

ComplEx∗ 366 0.227 0.145 0.252 0.393 5681 0.404 0.371 0.423 0.472
MLN∗ 2277 0.083 0.056 0.087 0.135 13281 0.220 0.168 0.273 0.306

RotatE∗ 189 0.317 0.227 0.353 0.500 3624 0.439 0.398 0.458 0.531
RNNLogic∗ 248 0.319 0.235 0.353 0.493 4865 0.456 0.419 0.472 0.523

ComplEx-N3∗ 167 0.350 0.256 0.380 0.527 3625 0.466 0.418 0.475 0.551
GraIL∗ 221 0.296 0.205 0.332 0.478 3817 0.372 0.326 0.402 0.459
QuatE∗ 93 0.327 0.233 0.360 0.520 2453 0.461 0.413 0.480 0.547

GraphANGEL3−cycle 166 0.349 0.259 0.379 0.532 3061 0.468 0.441 0.472 0.566
GraphANGEL4−cycle 173 0.335 0.229 0.365 0.525 3049 0.472 0.446 0.480 0.558

GraphANGEL 158 0.357 0.263 0.388 0.537 2948 0.482 0.450 0.492 0.572

Table A7: Result comparisions with baselines on generalization setting by randomly removing 10% relations.
Here we report the results in term of MR, MRR, Hit@K (K=1,3,10).

Models FB15k-237 WN18RR

MR MRR Hit@1 Hit@3 Hit@10 MR MRR Hit@1 Hit@3 Hit@10

pLogicNet∗ 204 0.272 0.194 0.298 0.429 4021 0.361 0.326 0.365 0.440
TransE∗ 215 0.264 0.185 0.294 0.422 4057 0.180 0.109 0.324 0.430
ConvE∗ 290 0.263 0.191 0.285 0.405 4982 0.348 0.324 0.356 0.421

ComplEx∗ 393 0.207 0.132 0.229 0.359 6102 0.369 0.3444 0.386 0.428
MLN∗ 2475 0.007 0.05 0.077 0.120 14436 0.194 0.143 0.241 0.270

RotatE∗ 207 0.279 0.199 0.307 0.437 3941 0.391 0.353 0.403 0.470
RNNLogic∗ 275 0.280 0.206 0.310 0.431 5469 0.395 0.364 0.408 0.452

ComplEx-N3∗ 187 0.304 0.224 0.331 0.462 4084 0.404 0.362 0.412 0.479
GraIL∗ 243 0.261 0.181 0.293 0.423 4208 0.327 0.287 0.359 0.410
QuatE∗ 128 0.286 0.203 0.313 0.452 2731 0.402 0.360 0.417 0.477

GraphANGEL3−cycle 184 0.306 0.226 0.333 0.466 3409 0.412 0.386 0.414 0.490
GraphANGEL4−cycle 192 0.293 0.200 0.319 0.460 3392 0.414 0.388 0.419 0.489

GraphANGEL 176 0.313 0.232 0.343 0.475 3259 0.423 0.398 0.434 0.504

Following the analysis above, although nodes t and v in both Figure A4(a) and (d) have similar
neighborhood structures, our GraphANGEL is able to project these two source-target node pairs (i.e.,
〈s, r, t〉 and 〈v, r, t〉) into different embeddings on both heterogeneous and homogeneous graphs.

A4.3 EXTENSIONS OF GRAPHANGEL TO COMPLEX LOGIC

Another potential limitation of GraphANGEL is that the graph searching stage limits the model’s
capability of exploring more complex graph patterns. We admit that the graph pattern involved in our
paper is simple and rudimentary, but we argue that efficient finding arbitrary graph patterns including
those complex ones should be mainly investigated by graph database and pattern matching literature,
which is definitively not the focus of our paper. Our key idea is general since one can pre-define any
pattern to search and retrieve subgraphs.

Moreover, the following corollary shows that the representations of complex logical formulas can be
derived from those of simpler ones. This, to some extent, provides the theoretical support of only
involving simple graph patterns (e.g., Pair, 3-cycle, 4-cycle) in the implementation.
Lemma 1. (Barceló et al., 2019) (Expressive Power on Logic Expressions of Nodes) Each First-
Order Classifier with 2 variables (FOC2) can be captured by Aggregation and Combination GNN
formulated as

x
(l)
i = COM(x

(l−1)
i , AGG({x(l−1)

j |j ∈ NG(i)})), ∀i ∈ V, (16)

where AGG(X ) =
∑

x∈X x and COM(x,y) = σ(xC + yA + b).

Corollary 1. (Expressive Power on Logic Expressions of Subgraphs) Let ex = {e1, . . . , eP } ∈ RP

be the representation vector of subgraph Sx, where ep = 1 if subgraph Sx matches graph pattern
Πx

p and ep = 0 otherwise, and Πx
1 , · · · ,Πx

P are sub-formulas of Πx, in the order where if Πx
k is a

sub-formula of Πx
l then k ≤ l. Suppose that the representation vectors ex and ey of subgraph Sx and

Sy matching pattern Πx and Πy respectively, are given. If Πz takes either of the following forms:

• Πz = ¬Πx
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Table A8: Result comparisions with baselines on generalization setting by randomly removing 15% relations.
Here we report the results in term of MR, MRR, Hit@K (K=1,3,10).

Models FB15k-237 WN18RR

MR MRR Hit@1 Hit@3 Hit@10 MR MRR Hit@1 Hit@3 Hit@10

pLogicNet∗ 230 0.222 0.158 0.245 0.351 4532 0.295 0.266 0.298 0.359
TransE∗ 249 0.202 0.142 0.224 0.323 4705 0.138 0.083 0.248 0.329
ConvE∗ 324 0.217 0.158 0.236 0.335 5568 0.288 0.268 0.294 0.348

ComplEx∗ 444 0.170 0.109 0.189 0.295 6891 0.303 0.282 0.317 0.351
MLN∗ 2633 0.065 0.044 0.229 0.107 15360 0.173 0.127 0.215 0.241

RotatE∗ 237 0.221 0.160 0.245 0.352 4482 0.319 0.287 0.325 0.376
RNNLogic∗ 311 0.225 0.165 0.249 0.350 6221 0.313 0.292 0.327 0.368

ComplEx-N3∗ 210 0.252 0.185 0.268 0.377 4557 0.334 0.297 0.337 0.392
GraIL∗ 275 0.213 0.147 0.239 0.347 4728 0.267 0.234 0.291 0.334
QuatE∗ 120 0.226 0.169 0.252 0.358 3055 0.312 0.289 0.330 0.361

GraphANGEL3−cycle 210 0.250 0.185 0.273 0.385 3823 0.340 0.319 0.343 0.407
GraphANGEL4−cycle 216 0.243 0.165 0.264 0.381 3797 0.344 0.323 0.349 0.407

GraphANGEL 198 0.259 0.192 0.289 0.391 3684 0.351 0.324 0.354 0.415

Table A9: Result comparisions with baselines on generalization setting by randomly removing 20% relations.
Here we report the results in term of MR, MRR, Hit@K (K=1,3,10).

Models FB15k-237 WN18RR

MR MRR Hit@1 Hit@3 Hit@10 MR MRR Hit@1 Hit@3 Hit@10

pLogicNet∗ 261 0.162 0.112 0.179 0.257 5146 0.216 0.141 0.222 0.267
TransE∗ 280 0.146 0.101 0.163 0.246 5285 0.100 0.072 0.200 0.260
ConvE∗ 366 0.162 0.104 0.178 0.247 6280 0.215 0.201 0.223 0.268

ComplEx∗ 501 0.128 0.078 0.142 0.226 7786 0.228 0.214 0.236 0.267
MLN∗ 3029 0.046 0.031 0.049 0.070 17669 0.121 0.092 0.154 0.178

RotatE∗ 269 0.176 0.121 0.187 0.271 4849 0.218 0.238 0.260 0.296
RNNLogic∗ 349 0.151 0.124 0.172 0.240 6728 0.248 0.244 0.260 0.281

ComplEx-N3∗ 232 0.208 0.142 0.208 0.289 5064 0.259 0.250 0.269 0.311
GraIL∗ 304 0.173 0.125 0.185 0.263 5315 0.212 0.195 0.222 0.267
QuatE∗ 137 0.173 0.127 0.190 0.282 3702 0.251 0.248 0.255 0.308

GraphANGEL3−cycle 223 0.225 0.168 0.230 0.333 4098 0.297 0.277 0.291 0.329
GraphANGEL4−cycle 227 0.206 0.147 0.222 0.328 4146 0.297 0.278 0.291 0.326

GraphANGEL 208 0.227 0.173 0.238 0.337 3956 0.305 0.284 0.299 0.334

• Πz = Πx ∧Πy

• Πz = Πx ∨Πy

Then there exists W x ∈ RP×P , W y ∈ RP×P , and b ∈ RP , such that

ez = min(max(W xex + W yey + b, 0), 1)

is a representation vector of a subgraph Sz matching Πz .

Proof. The entries of the p-th columns of W x, W y, and b depend on the formulas of Πx,y as
follows.

• if Πx,x
p = Πx

i , then W x
ip = 1.

• if Πx,y
p = Πx

i ∧Πy
j , then W x

ip = 1, W x
jp = 1, and bp = −1.

• if Πx,y
p = Πx

i ∨Πy
j , then W x

ip = 1, W x
jp = 1, and bp = 0.

• if Πx,x
p = ¬Πx

i , then W x
ip = −1 and bp = 1.

All other values in the p-th columns of W x, W y, and b are 0. Our proof follows the proof of
Lemma 1 in (Barceló et al., 2019). The only differences are: (1) as the input of the basic logic formula
in (Barceló et al., 2019) is nodes while in our paper is subgraph, thus the basic logic in (Barceló et al.,
2019) is the color of nodes (i.e., Col(·)), but in our setting is the graph pattern for subgraphs; (2) we
only involve the basic logical operators ∧, ∨ and ¬ in our paper.

Besides the prior literature (Barceló et al., 2019) studying the theoretical expressive power of GNNs,
our work is also kind of related to a thread of works (Minervini et al., 2020a;b; Weber et al., 2019)
on Neural Theorem Provers, where they first assume template rules and then find which relations
can satisfy them. In contrast, our work bridges the connection between logical expression and graph
patterns and use the subgraphs to represent the rules. This intuition enables our model empowered by
the expressive power of GNNs, and also allows our work to identify new relation types.
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Table A10: Result comparisions with baselines on generalization setting by randomly adding 5% relations. Here
we report the results in terms of MR, MRR, Hit@K (K=1,3,10).

Models FB15k-237 WN18RR

MR MRR Hit@1 Hit@3 Hit@10 MR MRR Hit@1 Hit@3 Hit@10

pLogicNet∗ 187 0.305 0.218 0.337 0.482 3680 0.405 0.366 0.410 0.494
TransE∗ 197 0.296 0.208 0.330 0.474 3716 0.202 0.122 0.364 0.483
ConvE∗ 275 0.282 0.206 0.309 0.435 4731 0.374 0.348 0.382 0.452

ComplEx∗ 366 0.227 0.145 0.253 0.393 5681 0.404 0.377 0.423 0.469
MLN∗ 2277 0.083 0.056 0.087 0.136 13281 0.220 0.162 0.273 0.306

RotatE∗ 191 0.311 0.222 0.345 0.492 3590 0.438 0.398 0.452 0.526
RNNLogic∗ 252 0.315 0.231 0.347 0.484 5019 0.442 0.411 0.457 0.513

ComplEx-N3∗ 171 0.343 0.253 0.370 0.516 3728 0.369 0.323 0.405 0.462
GraIL∗ 223 0.293 0.213 0.332 0.475 3842 0.368 0.323 0.399 0.457
QuatE∗ 95 0.323 0.231 0.355 0.515 2481 0.458 0.411 0.473 0.543

GraphANGEL3−cycle 170 0.340 0.251 0.373 0.525 3104 0.458 0.434 0.465 0.555
GraphANGEL4−cycle 176 0.329 0.225 0.354 0.514 3109 0.461 0.434 0.470 0.552

GraphANGEL 161 0.349 0.258 0.382 0.527 3004 0.471 0.440 0.480 0.558

Table A11: Result comparisons with different GNNs as subgraph embedding methods (i.e., Φ) on heterogeneous
recommendation task.

Models LastFM Yelp Amazon Douban Book

AUC ACC F1 AUC ACC F1 AUC ACC F1 AUC ACC F1

GraphANGEL∗1GCN 0.860 0.832 0.825 0.918 0.846 0.835 0.843 0.758 0.745 0.917 0.843 0.831
GraphANGEL∗1GAT 0.873 0.843 0.830 0.927 0.855 0.843 0.854 0.767 0.752 0.923 0.849 0.838

GraphANGEL∗1R−GCN 0.900 0.861 0.859 0.934 0.870 0.858 0.870 0.781 0.781 0.941 0.864 0.859
GraphANGEL∗1R−GAT 0.906 0.864 0.861 0.933 0.870 0.856 0.874 0.782 0.783 0.940 0.865 0.858
GraphANGEL∗2R−GCN 0.901 0.860 0.862 0.934 0.871 0.857 0.873 0.784 0.783 0.937 0.860 0.857
GraphANGEL∗2R−GAT 0.907 0.861 0.862 0.933 0.871 0.854 0.874 0.784 0.785 0.940 0.863 0.859

A5 DETAILED EXPERIMENTAL SETTINGS

A5.1 DATASET STATISTICS

The statistics of the datasets of heterogeneous graph based recommendation and knowledge graph
completion used in our paper are displayed in Table A1 and Table A2, respectively. We also report
the statistic of the patterns used in the datasets in Table A3, which can be regarded as the supporting
evidence of using these patterns, since it is unlikely to fail to find at least one subgraph satisfying
these patterns.

A5.2 BASELINES

For the baseline methods, we employ these baseline methods based on Deep Graph Library (DGL)
(Wang et al., 2019a) following their original setting or directly use their original implementations:
(1) HetGNN (Zhang et al., 2019a) is a unified framework that jointly considers heterogeneous
structured information as well as heterogeneous content information. (2) HAN (Wang et al., 2019b)
is a hierarchical attention mechanism designed on heterogeneous graph to capture node-level and
semantic-level information. (3) TAHIN (Bi et al., 2020) is a cross domain model from both source
and target domain, which is then incorporated with three-level attention aggregations to get node
representation. (4) HGT (Hu et al., 2020) is a heterogeneous graph transformer architecture that
characterizes the heterogeneous attention over each relation. (5) R-GCN (Schlichtkrull et al., 2018)
combines graph neural networks with factorization models for link prediction. (6) pLogicNet (Qu
& Tang, 2019) is an EM-based algorithm that simultaneously trains a rule generator as well as
reasoning predictor with logic rules. (7) TransE (Bordes et al., 2013) is a translation-based relation
prediction model. (8) ConvE (Dettmers et al., 2018) is convolution-based relation prediction model.
(9) ComplEx (Trouillon et al., 2016) uses the composition of complex embeddings to handle a large
variety of binary relations. (10) MLN (Singla & Domingos, 2005) leverages domain knowledge to
predict relations. (11) RotatE (Sun et al., 2019a) is a rotation-based relation prediction model. (12)
RNNLogic (Qu et al., 2020) defines the joint distribution of all possible triplets by using Markov logic
network which can be efficiently optimized with the variational EM algorithm. (13) ComplEx-N3
(Lacroix et al., 2018) introduces a regularizer based on tensor nuclear p-norms for relation prediction.
(14) GraIL (Teru et al., 2020) reasons over local subgraph structures and holds a strong inductive
bias to learn entity-independent relational semantics. (15) QuatE (Zhang et al., 2019b) introduces
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Table A12: Result comparisons with different GNNs as subgraph embedding methods (i.e., Φ) on knowledge
graph completion task.

Models FB15k-237 WN18RR

MR MRR Hit@1 Hit@3 Hit@10 MR MRR Hit@1 Hit@3 Hit@10

GraphANGEL∗1GCN 236 0.324 0.222 0.356 0.524 3476 0.410 0.367 0.445 0.511
GraphANGEL∗1GAT 230 0.328 0.226 0.361 0.528 3484 0.402 0.365 0.446 0.510

GraphANGEL∗1R−GCN 151 0.374 0.275 0.408 0.564 2834 0.504 0.470 0.515 0.598
GraphANGEL∗1R−GAT 141 0.376 0.276 0.410 0.564 2836 0.505 0.470 0.514 0.601
GraphANGEL∗2R−GCN 141 0.373 0.275 0.408 0.564 2829 0.505 0.470 0.514 0.597
GraphANGEL∗2R−GAT 153 0.377 0.275 0.408 0.562 2821 0.506 0.469 0.513 0.598

Table A13: Comparable results with baselines on robustness setting by randomly adding 5% noises. See
Appendix A6.5 for detailed configuration on heterogeneous graph recommendation task.

Models LastFM Yelp Amazon Douban Book

AUC ACC F1 AUC ACC F1 AUC ACC F1 AUC ACC F1

HetGNN 0.7756 0.7924 0.6984 0.8897 0.8104 0.7984 0.7532 0.6932 0.6962 0.8511 0.7723 0.7701
HAN 0.8736 0.8186 0.8134 0.8964 0.8313 0.8257 0.8315 0.7543 0.7424 0.9052 0.8335 0.8286

TAHIN 0.8724 0.8323 0.8187 0.8903 0.8334 0.8226 0.8344 0.7553 0.7512 0.9082 0.8354 0.8223
HGT 0.8212 0.7749 0.7718 0.8784 0.8183 0.8142 0.6962 0.6333 0.6150 0.8922 0.8171 0.8032

R-GCN 0.8355 0.8225 0.8173 0.8916 0.8258 0.8156 0.7969 0.7258 0.7218 0.9019 0.8247 0.8107

GraphANGEL3−cycle 0.8808 0.8392 0.8343 0.9036 0.8379 0.8394 0.8490 0.7680 0.7644 0.9126 0.8392 0.8360
GraphANGEL4−cycle 0.8853 0.8411 0.8365 0.9090 0.8403 0.8418 0.8502 0.7650 0.7623 0.9131 0.8391 0.8277

GraphANGEL 0.8808 0.8323 0.8302 0.9022 0.8310 0.8376 0.8462 0.7620 0.7582 0.9084 0.8357 0.8235
GraphANGEL∗ 0.8901 0.8511 0.8492 0.9230 0.8602 0.8481 0.8600 0.7720 0.7710 0.9301 0.8544 0.8492

quaternion embeddings, whose framework can be regarded as a generalization of ComplEx on
hypercomplex space while offering better geometrical interpretations.

A5.3 HYPER-PARAMETERS

We keep all hyper-parameter settings in their original implementations, except the following ones
for fair comparisons. All models involving GNN layers are set to have similar layers (2 or 3
layers, depending on the performance) and are trained for the same number of epochs. We fix
model configurations across all experiments. For all baseline GNN models and GraphANGEL, the
dimension size of the embeddings is set to 128, and the learning rate space is {0.001, 0.0001}. The
dropout of input is set to 0.6, of edge is set to 0.3. Notably, the results reported in our paper are
comparable with those in their original papers. In the implementation of subgraph retrieval, the graph
patterns in the implementation are reported in Table 2, and we search and retrieve all the supporting
cases of 3-cycle and sample the same number of the supporting cases of 4-cycle, whose numbers are
reported in Table A3. The number of the refuting cases of 3-cycle and 4-cycle is twice of the number
of the supporting cases. The number of target subgraphs K is set as 32 and the number of analogy
subgraphs Q (for both supporting and refuting patterns) is set as 64. The experimental comparisons
are conducted with 10 different random seeds.

We report the main statistics of patterns in each datasets in Table A3, which includes the numbers
of 3-cycles and 4-cycles. We further report the buffer sizes of each dataset as follows, which is in
proportion to the numbers of the patterns. The buffer sizes of the supporting subgraphs of 3-cycles
are: 4.5MB for LastFM, 8.7MB for Amazon, 21.2MB for Yelp, 96.2MB for Douban Book, 80.5MB
for FB15k-237, 161.4MB for WN18RR where we sample twice number of the supporting subgraphs
of 3-cycles in FB15k-237 for WN18RR. And, the buffer size of the supporting subgraphs of 4-cycles,
and the refuting subgraphs of 3-cycles and 4-cycles can be easily derived by the above buffer size,
since we store the node IDs into the buffer.

A5.4 HARDWARE SETTINGS

The models are trained under the same hardware settings with an Amazon EC2 p3.8×large instance1,
where the GPU processor is NVIDIA Tesla V100 processor and the CPU processor is Intel Xeon
E5-2686 v4 (Broadwell) processor.

1Detailed setting of AWS E2 instance can be found at https://aws.amazon.com/ec2/
instance-types/?nc1=h_ls.
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Table A14: Comparable results with baselines on robustness setting by randomly adding 5% noises on knowledge
graph completion task. See Appendix A6.5 for detailed configuration.

Models FB15k-237 WN18RR

MR MRR Hit@1 Hit@3 Hit@10 MR MRR Hit@1 Hit@3 Hit@10

pLogicNet 180 0.318 0.229 0.350 0.498 3532 0.427 0.380 0.420 0.518
TransE 187 0.316 0.218 0.346 0.499 3534 0.217 0.231 0.380 0.512
ConvE 253 0.286 0.229 0.326 0.478 4351 0.401 0.378 0.420 0.484

ComplEx 345 0.238 0.147 0.267 0.404 5452 0.420 0.394 0.441 0.494
MLN 2143 0.088 0.060 0.094 0.125 12667 0.236 0.172 0.285 0.334

RotatE 184 0.325 0.233 0.361 0.518 3531 0.445 0.404 0.470 0.552
RNNLogic 240 0.324 0.243 0.366 0.502 4768 0.468 0.453 0.484 0.534

ComplEx-N3 163 0.358 0.264 0.381 0.550 3535 0.482 0.454 0.489 0.575
GraIL 214 0.310 0.215 0.324 0.480 3754 0.386 0.339 0.419 0.486
QuatE 93 0.330 0.235 0.367 0.531 2410 0.471 0.422 0.489 0.557

GraphANGEL3−cycle 163 0.356 0.265 0.385 0.550 2968 0.482 0.457 0.486 0.580
GraphANGEL4−cycle 168 0.345 0.230 0.372 0.530 3002 0.482 0.453 0.494 0.574

GraphANGEL 153 0.363 0.267 0.390 0.552 2910 0.489 0.460 0.495 0.581

A6 ADDITIONAL RESULTS

A6.1 ADDITIONAL RESULTS OF STANDARD TASK

We show the results of comparisons between GraphANGEL against the baseline methods testing
with 20% least frequent relations in terms of MR, MRR, Hit@1, Hit@3 and Hit@10 in Table A5.

A6.2 ADDITIONAL RESULTS OF GENERALIZATION STUDY

Table A6 shows the results of performance in terms of MR, MRR, Hit@K (K=1,3,10) after randomly
removing 5% relations. We also report the results after randomly dropping 10%, 15% and 20% in Ta-
bles A7, A8 and A9. In addition to randomly dropping the relations, we also evaluate the performance
when we randomly adding 5% relations by combining the existing relations through Composition
Rules, Inverse Rules, Symmetric Rules, Subrelation Rules discussed in (Qu & Tang, 2019). The
results are reported in Table A10. These experimental results verify that GraphANGEL is significantly
less affected by dropping or adding relations, which demonstrates the better generalizability of our
model to unseen relation types against these state-of-the-art methods.

A6.3 ADDITIONAL RESULTS OF HEAT MAP

We show the detailed attention heat map of Douban Book dataset in Figure A5 and Figure 5 in the
main text is a simplification of this figure. One can see that based on the heat map, we can not only
have a global view for each graph pattern, but also see the importance of each subgraph.

Specifically, Figure A5 visualizes the attention heat map between target subgraphs and supporting
subgraphs when predicting relations between users and books. The rows represent the supporting
subgraphs while the columns represent the target subgraphs. We denote each subgraph as a tuple
of node IDs, e.g., S+

7 = (u107, b11, a33, b12). Each cell represents the similarity between a target
subgraph (at the top) and a supporting subgraph (at bottom). The color of each cell shows the attention
weight for corresponding pair of supporting and target subgraphs. We can observe that the deep
color of the cell located at the interaction of S∗7 and S+

32 indicates more similarity. We can see from
the figure that the cells with darkest color have both target subgraph and supporting subgraph as
(u·, b·, a·, b·), which indicates a subgraph with User − Book − Author − Book pattern, meaning
that this particular pattern is more influential in predicting User− Book relation. Notably, this result
reveals a simple logic User∧ Book∧ Author∧ Book⇒ User∧ Book indicating a simple factor that
the users are likely to be interested in the book sharing the same authors with his reading ones. Hence,
our method can intuitively be regarded as the a logical collaborative filtering technique working
on graph. Similarly, we can find that 3-cycle pattern (Person) − Impersonate−1 − (Person) ∧
(Person)−Nationality−(Nation)⇒ (Person)−Nationality−(Nation) plays an important
role in FB15k-237 dataset, where inverse relations are denoted with a superscript−1.

A6.4 ADDITIONAL RESULTS OF ABLATION STUDY OF SUBGRAPH EMBEDDING METHODS

In Section 3, we use R-GCN (Schlichtkrull et al., 2018) with single layer (denoted as
GraphANGEL∗1R−GCN) as an example of Φ. In this subsection, we further investigate the effect of Φ
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Figure A5: Illustrations of generated heat map of attention scores. While Figure 5 can provide a global view for
each graph pattern, this figure can see the importance of detailed subgraphs.

by applying different GNNs including GCN (Kipf & Welling, 2016) (denoted as GraphANGEL∗1GCN),
GAT (Hamilton et al., 2017) (denoted as GraphANGEL∗1GAT), R-GAT (Busbridge et al., 2019) (denoted
as GraphANGEL∗1R−GAT). We do not choose knowledge embedding based methods including TransE
(Bordes et al., 2013), RotatE (Sun et al., 2019a), ComplEx (Trouillon et al., 2016), as these approaches
need to introduce additional supervisions/gredients on the subgraph embeddings, which require sig-
nificant modifications on the framework of GraphANGEL. We do not change any other settings of
GraphANGEL for fair comparison, and report the results on heterogeneous recommendation task and
knowledge graph completion task in Tables A11 and A12 respectively. Results shows that there are
slight differences between GraphANGEL∗1R−GCN and GraphANGEL∗1R−GAT. One possible explanation is
that as our retrieved subgraphs only includes few nodes (e.g. 2,3,or 4 nodes), there is no requirement
of GraphANGEL to mine some complex structure (e.g., high-order neighborhood).

We further study the impact of using the multiple layers of GNNs. We establish a series of variants
using two layers of of R-GCN and R-GAT, denoted as GraphANGEL∗2R−GCN and GraphANGEL∗2R−GAT.
Results reported in Tables A11 and A12 show that there are only slight differences when comparing
to GraphANGEL∗1R−GCN and GraphANGEL∗1R−GAT, which is consistent with the above explanation.

A6.5 ADDITIONAL RESULTS OF EFFECT OF NOISY GRAPHS

In order to further investigate the robustness of GraphANGEL, we randomly generate some noises
and add them into the training graphs. Concretely, for heterogeneous graphs and knowledge graphs
shown in Tables A1 and A2, we randomly change the source or target node of each triplet 〈s, r, t〉
with probability 5%. Since the heterogeneous graphs have the node types, our changes are made
by replacing the current source or target node with a randomly sampled node in the same node
type. We compare our model with all the baselines and report the results for heterogeneous graph
recommendation and knowledge graph completion tasks in Tables A13 and A14. These results
show that our method can consistently outperform these baseline methods, sometimes, even are less
influenced by the noises. One explanation is that if we introduce noises in the labels y, then the
learnable subgraph embeddings s+ and s− will simultaneously be influenced by the noises. These
influences might be counteracted according to Eq. (3).

A6.6 ADDITIONAL RESULTS OF ABLATION STUDY OF BUFFER SIZE

We establish an ablation study to investigate the impact of the buffer size B in Algorithm 8. We
here focus on the number of the subgraphs following Π+

3−cycle and Π+
4−cycle. From Appendix A3,

we know that we search and sample N3−cycle subgraphs following Π+
3−cycle and Π+

4−cycle, where
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Figure A6: Performance change of GraphANGEL with different size of the buffer in term of ACC and AUC,
where we investigate the performance of GraphANGEL using 0.25, 0.5, 0.75 number of supporting instance in
3-cycles (i.e., Π+

3−cycle), or 0.25, 0.5, 0.75 number of supporting instance in 4-cycles (i.e., Π+
4−cycle) on Amazon

and Douban Book datasets.

N3−cycle is the number of subgraphs following Π+
3−cycle. We reduce the number of either subgraphs

following Π+
3−cycle or Π+

4−cycle. Results reported in Figure A6 shows that once the numbers of
supporting 3-cycles and 4-cycles surpass 0.5·N3−cycle and 0.75·N3−cycle respectively, there will be
no significant difference to further increase the buffer size.

TraLnLng InIHrHncH
0

2000

4000

6000

8000

10000

12000

Tr
aL

nL
ng

 T
Lm

H 
(s

Hc
Rn

G)

(a) AmazRn
GraphA1G(L
HHtG11
R-GC1
HGT
TAHI1
HA1
GraphA1G(L_3-cyclH
GraphA1G(L_4-cyclH

0

20

40

60

80

100

In
IH

rH
nc

H 
TL

m
H 

(s
Hc

Rn
G)

GraphA1G(L
HHtG11
R-GC1
HGT
TAHI1
HA1
GraphA1G(L_3-cyclH
GraphA1G(L_4-cyclH

7raLQLQg IQIereQFe
0

2500

5000

7500

10000

12500

15000

17500

20000
7r

aL
QL

Qg
 7

Lm
e 

(s
eF

RQ
G)

(E) )B15N-237
GraphA1G(L
7raQs(
5-GC1
CRmpl(x
5Rtat(
4uat(
GraphA1G(LB3-FyFle
GraphA1G(LB4-FyFle

0

200

400

600

800

1000

IQ
Ie

re
QF

e 
7L

m
e 

(s
eF

RQ
G)

GraphA1G(L
7raQs(
5-GC1
CRmpl(x
5Rtat(
4uat(
GraphA1G(LB3-FyFle
GraphA1G(LB4-FyFle

Figure A7: Time comparisons of GraphANGEL against baseline models on Amazon dataset in (a) and on
FB15k-237 dataset in (b).

A6.7 ADDITIONAL RESULTS OF TIME COMPLEXITY

We first compare the time complexity of GraphANGEL in term of both training and inference times
on Amazon dataset against aforementioned baseline methods. Result in Figure A7(a) reveals that
GraphANGEL is more efficient than HGT and HAN in term of training time and is more efficient
than R-GCN and HGT in term of inference time. One possible explanation is that HAN, HGT, and
R-GCN contain the whole graph, which is much more complex than sampled subgraphs. We further
evaluate the training and inference time of GraphANGEL against the baselines on FB15k-237 dataset
and report the results in Figure A7(b). As the prevailing methods on knowledge completion task are
mainly based on either on translation (Bordes et al., 2013) or rotation (Sun et al., 2019a) assumptions
regardless of the graph structure, they are naturally more efficient than GNN based relation prediction
models. We do note that our efficiency is comparable against other graph neural networks (i.e.,
R-GCN) which have also been tried on knowledge graphs.
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Algorithm 11: Incremental Updating Algorithm for B
B ← Bold
for each v ∈ ∆V− do

Remove all the instances including v in B.
end
# Following is Search and Retrieval for Π+

3−cycle in ∆G+
new

Search, retrieve and store the instances following Π+
3−cycle in ∆G+

new using Algorithm 2 or 3.
# Followings is Search and Retrieval for Π+

3−cycle in (a) Shape
Search, retrieve and store the instances following Π+

3−cycle in (a) shape using Algorithm 9.
# Followings is Search and Retrieval for Π+

3−cycle in (b) Shape
for each u ∈ Vold do

for each 〈v, w〉 ∈ ∆V+
new do

if 〈u, v〉 ∈ ∆E+
old and 〈u,w〉 ∈ ∆E+

old then
Add (u, v, w) into B.

end
end

end
# Following is Uniform Sampling for Π+

4−cycle in ∆G+
new

Sample and store [
|∆V+

new|
4

|Vold|4 n4−cycle] instances following Π+
4−cycle in ∆G+

new using Algorithm 5.
# Following is Uniform Sampling for Π+

4−cycle in (c), (d), (e) Shapes
Compute sample rate pedge

∆G+
old

by running purple part in Algorithm 10 on ∆G+
old.

for i← 1 to [
|∆E+old|

2

|Eold|2 n4−cycle] do
Sample 〈u, v〉 ∈ ∆E+

old with probability pedge
∆G+

old

.

Sample 〈w, x〉 ∈ ∆E+
old with probability pedge

∆G+
old

.

if {〈u,w〉 ∈ Eold ∪∆E+
new and 〈v, x〉 ∈ Eold ∪∆E+

new} or {〈u,w〉 ∈ Eold ∪∆E+
new and

〈v, x〉 ∈ Eold ∪∆E+
new} then

Add (u.v, w, x) into B.
end

end
# Following is Uniform Sampling for Π+

4−cycle in (f), (g) Shapes
Compute sample rate pedgeGold and pnode

∆G+
new

by running blue part in Algorithm 10 on Gold and ∆G+
new.

for i← 1 to [
|∆E+old|

2

|Eold|2 n4−cycle] do
Sample x ∈ ∆V+

new with probability pnode
∆G+

new
.

Sample v ∈ Vold with probability pnodeGold .
Uniformly sample two different neighbor nodes u,w ∈ Vold of v.
if 〈u, x〉 ∈ ∆E+

old and 〈w, x〉 ∈ ∆E+
old then

Add (u, v, w, x) into B.
end

end
for i← 1 to [

|∆E+old|
2|∆E+new|

2

|Eold|4 n4−cycle] do
Sample x ∈ Vold with probability pnodeGold .
Sample v ∈ ∆V+

new with probability pnode
∆G+

new
.

Uniformly sample two different neighbor nodes u,w ∈ ∆V+
new of v.

if 〈u, x〉 ∈ E+
old and 〈w, x〉 ∈ E+

old then
Add (u, v, w, x) into B.

end
end
# Following is Uniform Sampling for Π−3−cycle and Π−4−cycle

Re-sample and store [ |Enew|
3

|Eold|3n
−
3−cycle] and [ |Enew|

3

|Eold|3n
−
4−cycle] refuting cases of Π−3−cycle and

Π−4−cycle from Gnew using Algorithms 7 and 5 with linear computation costs.
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