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Abstract

The information bottleneck (IB) method offers an attractive framework for understanding
representation learning, however its applications are often limited by its computational
intractability. Analytical characterization of the IB method is not only of practical interest,
but it can also lead to new insights into learning phenomena. Here we consider a generalized
IB problem, in which the mutual information in the original IB method is replaced by
correlation measures based on Rényi and Jeffreys divergences. We derive an exact analytical
IB solution for the case of Gaussian correlated variables. Our analysis reveals a series of
structural transitions, similar to those previously observed in the original IB case. We find
further that although solving the original, Rényi and Jeffreys IB problems yields different
representations in general, the structural transitions occur at the same critical tradeoff
parameters, and the Rényi and Jeffreys IB solutions perform well under the original 1B
objective. Our results suggest that formulating the IB method with alternative correlation
measures could offer a strategy for obtaining an approximate solution to the original 1B
problem.

1 Information Bottleneck

Effective representation of data is key to generalizable learning. Characterizing what makes such repre-
sentation good and how it emerges is crucial to understanding the success of modern machine learning.
The information bottleneck (IB) method—an information-theoretic formulation for representation learning
(Tishby et al., 1999)—has proved a particularly useful conceptual framework for this question, and has led to
a deeper understanding of representation learning in both supervised and self-supervised learning (Achille &
Soatto, 2018; Achille & Soatto, 2018; Tian et al., 2020; Zbontar et al., 2021). Investigating this abstraction
of representation learning has the potential to yield new insights that are applicable to learning problems.

Quantifying the goodness of a representation requires the knowledge of what is to be learned from data.
Information bottleneck theory exploits the fact that, in many settings, we can define relevant information
through an additional variable; for example, it could be the label of each image in a classification task. This
notion of relevance allows for a precise definition of optimality—an IB optimal representation 7" is maximally
predictive of the relevance variable Y while minimizing the number of bits extracted from the data X. The
IB method formulates this principle as an optimization problem (Tishby et al., 1999),

ming,, . I(T;X) — BI(T;Y). (1)

Here the optimization is over the encoders Q7 x which provide a (stochastic) mapping from X to 7'. Maxi-
mizing the mutual information I(T;Y") [second term in Eq (1)] encourages a representation T to encode more
relevant information while minimizing I(7’; X) [first term in Eq (1)] discourages it from encoding irrelevant
bits. The parameter 8 > 0 controls the fundamental tradeoff between the two information terms.

The IB method has proved successful in a number of applications, including neural coding (Palmer et al.,
2015; Wang et al., 2021), statistical physics (Still et al., 2012; Gordon et al., 2021; Kline & Palmer, 2022),
clustering (Strouse & Schwab, 2019), deep learning (Alemi et al., 2017; Achille & Soatto, 2018; Achille &
Soatto, 2018), reinforcement learning (Goyal et al., 2019) and learning theory (Bialek et al., 2001; Shamir
et al., 2010; Bialek et al., 2020; Ngampruetikorn & Schwab, 2022). However the nonlinear nature of the IB
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problem makes it computationally costly. Although scalable learning methods based on the IB principle are
possible thanks to variational bounds of mutual information (Alemi et al., 2017; Chalk et al., 2016; Poole
et al., 2019), the choice of such bounds, as well as specific details on their implementations, can introduce
strong inductive bias that competes with the original objective (Tschannen et al., 2020).

While large-scale applications of the IB method in its exact form are generally intractable, special cases exist.
For example, the limit of low information—i.e., when both terms in Eq (1) are small—can be described by a
perturbation theory, which provides a recipe for identifying a representation that yields maximum relevant
information per extracted bit (Wu et al., 2019; Ngampruetikorn & Schwab, 2021). But perhaps the most
important special case is when the source X and the target Y are Gaussian correlated random variables. In
this case, an exact analytical solution exists (Chechik et al., 2005).

Although originally formulated with Shannon mutual information, the fundamental tradeoff in the IB method
applies more generally: the IB optimization, Eq (1), remains well-defined when the information terms are
replaced by appropriate mutual dependence measures. In this work, we consider generalized 1B problems
based on two important correlation measures. The first is a parametric generalization of Shannon infor-
mation, based on Rényi divergence (Rényi, 1961). Rényi-based generalizations of mutual information and
entropy are central in quantifying quantum entanglement (Horodecki et al., 2009; Eisert et al., 2010) and
have proved a powerful tool in Monte-Carlo simulations (Hastings et al., 2010; Singh et al., 2011; Herdman
et al., 2017) as well as in experiments (Islam et al., 2015; Bergschneider et al., 2019; Brydges et al., 2019).
The second mutual dependence measure we consider is based on Jeffreys divergence (Jeffreys, 1946). The
resulting Jeffreys information is (up to a constant prefactor) equal to the generalization gap of a broad family
of learning algorithms, known as Gibbs algorithms (Aminian et al., 2021).

We derive an analytical IB solution for the case in which X and Y are Gaussian correlated, generalizing the
result of Chechik et al. (2005) to a class of information-theoretic mutual dependence measures which includes
Shannon information as a limiting case. We show that, for both Rényi and Jeffreys cases, an optimal encoder
can be constructed from the eigenmodes of the normalized regression matrix X X‘YE;(l. Our solution reveals
a series of phase transitions, similar to those observed in the Gaussian IB method (Chechik et al., 2005). In
both Rényi and Jeffreys cases, we find that although the optimal encoders depend on mformatlon measures,
the phase transitions occur at the critical tradeoff parameters 50 Y that coincide with that of the Shannon
case, independent of the order of Rényi information.

2 Divergence-based Correlation measure

When two random variables X and Y are uncorrelated, their joint distribution Pxy is equal to the product
of their marginals Px and Py. As a result, we can quantify the mutual dependence between X and Y by
the difference between Pxy and Px ® Py,

QUX;Y)=D(Pxy || Px @ Py) > 0. (2)

Here D(P || Q) denotes a statistical divergence which, by definition, is nonnegative and vanishes if and only
it P = (. When defined with the Kullback-Leibler (KL) divergence, the above measure becomes Shannon
information, I(X;Y) = Dk (Pxy || Px ® Py).

3 Rényi g-information

We consider a correlation measure, based on Rényi divergence (Rényi, 1961). More precisely, we define Rényi
g-information as
I(X;Y)=Ry(Pxy || Px ® Py), (3)

where R, denotes Rényi divergence of order ¢,

R,(P Q) = —om fao (55) @
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for ¢ € (0,1) U (1,00). This definition extends to ¢ = 0,1 and oo via continuity in ¢. In particular,
R1(P||Q) = Dkr(P||Q) (van Erven & Harremoés, 2014, Thm 5), and as a result [;(X;Y) = I(X;Y).
Rényi divergences, and thus g-information, satisfy the data processing inequality since they have a strictly
increasing relationship with an f-divergence [with f(¢) = (2 — 1)/(q — 1)] which exhibits this property, see,
e.g., Liese & Vajda (2006).

3.1 Gaussian variables

For Gaussian correlated variables X and Y, the g-information is given by (see Appendix B for derivation)

1 YxiyZyt|d
Iq(X;Y):——_ln J X|Y & x \ -
2 |1 -3 —-Xxy2x)l

with g=1-—gq, (5)

where I denotes the identity matrix in compatible dimensions. We see that this information depends on
the covariance matrices only through the normalized regression matrix X X|y2)_<1. We note also that this
information can diverge when ¢ > 2 since the eigenvalues of % X‘YE;(l range from zero to one (Chechik et al.,
2005, Lemma B.1). It is easy to verify that Shannon information corresponds to the limit ¢ — 1,

. 1 _
I(X:;Y) :;EI(](X;Y) = —iln\EX‘yEXIL (6)

In addition, we note that for Gaussian variables I(X;Y) = 2I(X;Y) and I,(X;Y) increases with ¢ from
zero at ¢ = 0.

Note that alternative definitions of Rényi mutual information exist. In physics literature, a frequently
used definition is I,(X;Y) = Sy (X) + S,(Y) — S4(X,Y) where Sy(X) = (1 —¢) ' In [ depx(x)? is Rényi
(differential) entropy of order q. However, for Gaussian variables, this definition leads to Rényi information
that is equal to Shannon information regardless of g; the resulting Rényi IB problem is therefore identical
to the original IB problem.

4 Rényi Information Bottleneck for Gaussian variables

Replacing the mutual information in the original IB objective [Eq (1)] with g-information yields
Ly[Qrix] = 1,(T; X) = BI,(T;Y) (7)

where X denotes the source data, Y the target variable and T the representation of X. The loss function
varies with the encoder Q7| x which provides a stochastic mapping from X to T'. In general, the g-information
terms need not be of the same order but the data processing inequality I,(T; X) > I (T;Y) is guaranteed
only when ¢ = ¢'.

We specialize to the case where X and Y are Gaussian correlated and consider a family of noisy linear
encoders,
T=AX+¢ with &~ N(0,3). (8)

Since Rényi divergences are invariant under an invertible transformation of random variables [see Eq (4)],
we can transform 7" such that ¢ becomes the identity matrix without changing the information content. In
the following analysis, we set ¥¢ = I without loss of generality. That is, the encoder becomes a Gaussian
channel, parametrized only by the matrix A,

T|X ~N(AX,I). (9)
To compute the information in Eq (7), we first marginalize out X from the above equation, yielding

T~ N(Aux, I+ AXxAT) (10)
T|Y ~ N(Apxjy, I+ AZxy AT), (11)
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Figure 1: a The optimal frontiers of the generalized IB methods based on generalized correlation measures
Q(A4; B), including Shannon (2 = I), Jeffreys (2 = J) and Rényi (2 = I,) informations (see legend). For
the Rényi case, we depict the results for a range of Rényi orders ¢ (see color bar). We emphasize that while
Shannon information is equivalent to Rényi information of order one (¢ = 1), Jeffreys information is not
a special case of Rényi information. The relevant information Q(7;Y) is bounded by the data processing
inequality (DPI, black dotted line), Q(T;Y) < Q(T; X ). We also depict the tight, data-dependent version of
DPI—the strong data processing inequality (SDPI, blue dahsed line), Q(T;Y) < (1 — A\pin)Q(T; X)), where
Amin is the smallest eigenvalue of the normalized regression matrix ¥ x|y E}l. Note that the DPI and SDPI
are the same for all information measures shown. b-c The extracted and relevant bits, Q(T; X) and Q(T;Y)
respectively, increase with the tradeoff parameter 8 and vanish below the critical value 8. = 1/(1 — Amin)-
The vertical lines mark the location of the critical tradeoff parameters (Eqs (22) & (35)). Here the eigenvalues
of Sxy Xy are \; = 0.1,0.2,0.3,0.5,0.7,0.8.

where we use X ~ N(ux,¥x) and X |Y ~ N(uxy,Yx|y). Substituting the covariance matrices in the
above equations into Eq (5) results in

I+ ASx )y AT|I|T + A x AT|4
QHEY%=—;inu:nLI_EJQ_QX;EXQZJAW. (13)
Following the analysis of Chechik et al. (2005), we define the mizing matriz W such that
A=WV, (14)
where V' is a matrix of left (row) eigenvectors of the normalized regression matrix ¥ X|YZ)_(1, ie.,
VExyEx =AV  with A = diag(A, Ao, ). (15)

We note that VE¥2 is orthogonal and thus VX x VT is a diagonal matrix (Chechik et al., 2005, Lemma B.1),
ie.,

VExVT =R with R =diag(r1,79,---). (16)
Writing Eqgs (12-13) in terms of W, A and R leads to
1 |I + WRWT|4
I(T; X) = ——1 17
(T3 X) = = R (7
1[I+ WARWT[I|I T|a
Mﬂm:_7m|+W}mﬂ\+WMV| a8

20 [T+WI[I—@I-MNRWT|
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Substituting Eqs (17-18) into Eq (7) and setting its first order derivative with respect to the mixing matrix
W to zero yields the first order condition

q B 1-¢ _ 5 q N q A
I+RWTW I+ (1—@)RWTW I+ RWTW ' I+ ARWTW
1

T+[I—q(1I- A)]RWTW[I —a(I - A)])'

(19)

In deriving the above, we use the identity

d
i+ WCWT| =2W(I+CW'W)~'C

which holds for any compatible square matrix C'. We also assume that R and W are invertible.
We seek a solution of the form
RWT™W = diag(riw?, row?, - --) = diag(u1, ug, - - - ). (20)
Substituting this ansatz into Eq (19) results in
| 4 204D (=2

L=A T+=(0=\))us

Luwidi 14 fi7tls

5 = gq(uia )\’L) =

(21)

™|~

We see that the contributions from the eigenmodes of % X|y27 decouple from one another and the reduced
mixing weight, u; = r;w;, for each mode depends only on the eigenvalue of that mode \;, the IB tradeoff
parameter /3 and the order of Rényi information ¢q. For A € (0,1) and ¢ € [0,2], the function g,(u, A) is
strictly decreasing in w for u > 0 and approaches zero as u — oo (see Appendix A). As a result, Eq (21)
has exactly one positive solution u; > 0 when 1/5 < g4(0,A;). That is, the eigenmode with eigenvalue A;
contributes to the Rényi IB encoder only when 3 exceeds the critical value

() 1 1

b = 9q(0, A;) DY -

Note that ﬁci) does not depend on ¢. To obtain u;, we can either directly solve Eq (21) or use the analytical
formula for the roots of the equivalent cubic equation (omitting the eigenmode indices)

0 = au® + bu® + cu + d, (23)
where the coefficients are given by
=M1+~ (1 -5
—A(2+2q+Aq ) +d(1+ @) (1= A — (1= X1)3")
(1+q+q2)+d(2+(1—/\)fi—62)
= B(L=A).

)
| |

="
| |

Although the above calculation does not uniquely determine the mixing matrix W, we can obtain a valid
IB encoder by taking W = diag(wy, we, - - - ) where w; = /u;/r; since the Rényi-IB loss depends on W only
through the diagonal entries of WTW. To see this, we substitute Eq (20) into Eqs (17-18) and write down

p>BL

Iq(T;X)z—Ziq Z ln% (24)
1O A T(1 4 )
Iq(T;Y):f?q Z 1111“1_12(1 ;] (25)
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Figure 2: Solving Rényi and Jeffreys IB problems yields representations that are close to Shannon IB optimal.
Plotted on the Shannon information plane, the solutions to Shannon (dotted), Jeffreys (dashed) and Rényi
(solid) IB problems are nearly indistinguishable. For the Rényi case, we depict the results for a range of
Rényi orders ¢ (see color bar). Inset: We depict the gap between the maximum achievable and encoded
relevant Shannon informations, I™**(T;Y) and I(T;Y") respectively, as a function of the extracted Shannon
information I(T; X). This gap vanishes in the low and high-information limits, I(T; X) — 0 and I(T; X) —
0o. The satellite peaks result from the fact that the solutions to Shannon, Jeffreys and Rényi IB problems
go through structural transitions at different values of I(7; X') even though these transitions occur at the
same set of critical tradeoff parameters. Here the eigenvalues of Z;qu}l are A\; = 0.1,0.2,0.3,0.5,0.7,0.8.

where the summations are restricted to the eigenmodes that contribute the IB encoder, i.e., those with
u; > 0. We depict the optimal frontiers of Rényi IB in Fig 1.

To complete our analysis of Rényi IB, we note that the analytical solution of Chechik et al. (2005) is a
limiting case of our results. In the limit ¢ — 1, Eq (21) reads

1-=X @=1) _ BL—X)—1
= = : = . 2
T o U, (26)

1
B = ngl(uiv )\Z) )\z

Recalling that u; = r;w?, we see immediately that this solution is identical to that in Chechik et al. (2005,
Lemma 4.1).

5 Jeffreys Information Bottleneck for Gaussian variables

The technique in the previous section applies also to the IB problems, based on other statistical divergences.
In this section, we consider Jeffreys IB, defined by the loss function

L;Qrx]=J(T; X) = BJ(T;Y). (27)
Here J(X;Y) denotes Jeffreys information which is a mutual dependence measure, defined by
J(X;Y) = Ds(Pxy || Px ® Py), (28)

where Dj is Jeffreys divergence (Jeffreys, 1946),
1
Dy(P | Q)= i[DKL(P | Q) + Dkr(Q || P)]. (29)

For Gaussian correlated random variables, Jeffreys information takes a simple form (see Appendix C for
derivation)

J(X;Y) = %tr (zxz;ﬁy - 1) . (30)
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Using the linear encoder from Eq (9), the information terms in Eq (27) read

J(T;X) = - tr (WRWT) (31)

N = N =

J(T;Y) = - tr ((1 + WRWT); - 1) : (32)

I+WARWT

where W, A and R are defined in Eqgs (14-16).

To solve the IB optimization, we differentiate of the loss function with respect to the mixing matrix W and
set the resulting derivative to zero, yielding

1 1
I=8— ([ I—-(I+RWW)———— A 33
BI+ARWTW ( (I+ )I+ARWTW )’ (33)
where we use the identities
0A~1 404 0 T
90— —A —aaA and 94 tr(CABA') =2CAB

which hold for symmetric matrices B and C. We see that this equation is solvable by taking WTW to be
diagonal. Substituting Eq (20) into the above equation and solving for u; gives

B(L—Ni)—1
i ’

U; =

(34)

Since u; = m;w? > 0, we see that this solution is valid only when the tradeoff parameter 3 in greater than
the critical value

(1) —
pe! 1—/\

We note that this critical value is identical to that of Rényi IB [Eq (22)]. Finally substituting Eq (34) into
Eqgs (31-32) leads to

(35)

B>ﬁ(l)
J(T:X) = . > VAL A (36)

—_

B>pL
JTY) =2 > LA v —A) — 1 (37)

B V(DY

where the summations are limited to the modes that contribute to the encoder, i.e., those with By) < B.
In Fig 1, we depict an example of the Jeffreys IB optimal frontier, computed from the above equations.
We emphasize that while Shannon information is equivalent to Rényi information with ¢ = 1, Jeffreys
information is not a special case of Rényi information.

6 Discussion & Conclusion

In Fig 2, we depict the solutions to the original, Rényi and Jeffreys IB problems on the Shannon information
plane. We see that these solutions are very close to the optimal frontier, characterized by the Shannon
IB solutions. This result suggests that formulating and solving an IB problem, defined with alternative
correlation measures other than Shannon information, could offer a strategy for obtaining an approximate
solution to the original IB problem. To better illustrate the differences between the solutions to the original,
Rényi and Jeffreys IB problems, the inset shows how much less relevant Shannon information the optimal
representations of Rényi and Jeffreys IB encode, compared to the Shannon IB optimal representation. We see
that the differences are maximum at intermediate information and vanish in the low and high-information
limits. In addition, the Shannon information gaps exhibit satellite peaks, resulting from structural the
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transition of the IB solutions. We note that although these transitions occur at the same critical tradeoff
parameters [Eqs (22) & (35)], they generally correspond to different values of extracted Shannon information.

To sum up, we consider generalized IB problems in which the mutual information is replaced by mutual
dependence measures, based on Rényi and Jeffreys divergences. We obtain exact analytical solutions for the
case of Gaussian correlated random variables, generalizing the results of Chechik et al. (2005). We show that
the fundamental IB tradeoff between relevance and compression holds also for correlation measures other
than Shannon information. Our analyses reveal structural transitions in the optimal representations, similar
to that in the original IB method (Chechik et al., 2005). Interestingly the critical tradeoff parameters are
the same for original, Rényi and Jeffreys IB problems, even though the solutions are distinct.

We anticipate that our work will find application in physics of correlated components which relies on Rényi-
generalization of entropy and information to quantify entanglement. In addition, our characterization of
Jeffreys IB could have implications for understanding the generalization properties of Gibbs learning algo-
rithms of which the generalization gap is proportional to Jeffreys information between fitted models and
training data. Finally we note that the conditional IB problem, in which the compression term I(T;X)
is replaced by I(T; X |Y'), becomes non-trivial for generalized information measures since the chain rule
does not hold for Rényi and Jeffreys information—that is, given the Markov constraint T-X-Y, we have
I(T; X |Y)=I1(T; X)— I(T;Y) for Shannon information, but in general, Q(T; X |Y) # Q(T; X) — QT;Y).
The logical steps in our analyses are readily generalizable to conditional IB problems.
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A Supplementary figure

u/(1+u)

8q(u, 1)/ (1-2)

=]

Figure Al: The function gq(u,A) [Eq (21)] decreases with w from 1 — X at u = 0 and approaches zero as
u — 00. As a result, the equation ~! = gq(u, ) always has a unique positive solution when 5> 1/(1— ).
We consider only 0 < g < 2 since Rényi information for Gaussian variables can diverge for ¢ > 2 [see Eq (5)].

B Rényi information for Gaussian variables

In this appendix, we derive Rényi mutual information for Gaussian correlated variables. Using the definition
from Egs (3-4), we write down Rényi mutual information for continuous random variables,

tn [ dedypx(@pr () (M) (38)

IQ(XaY): px(ZE)py(y

q—1

where px, py and pxy denote the probability density functions of X, Y and (X,Y), respectively. We
consider Gaussian correlated random variables

X : _ kX _ | Xx Exvy
[Y] ~ N(p,X) with p= [HY} and ¥ = [ZYX SR (39)

In this case, the joint probability density is given by

exp {—([y] =" =" ([y] -}
27%[1/2

pxy (2, y) = (40)

The product of the marginal distributions is equal to a joint distribution but with X xy and Xy x set to
Zero, i.e.,

exp{—([y] =" ([y] - w}
275|1/2

px (@)py (y) = (41)

where ¥ = [E,X o ] Substituting the above densities into Eq (38) and performing the resulting Gaussian
integration over x and y gives

1 1 e ) D

. — _ 4
L(X3Y) g—1 n |2|9/2|2|(1-9)/2 (42)
The determinants of the covariance matrices are given by
IS = [Sy| % [Expy| and [E]=[Sy| x [Sx], (43)
where Yxy =Xy — ZXyE;lZYX and we use the identity
A B| 1
'O D‘ =|D|x |A—BD~"C|. (44)
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We now consider the numerator in Eq (42),

ST (1- S =[S (@2 + (1 - %) 57
1 ZX (1 _q)ZXY

12| x |Z] (1 —@)Eyx Yy

_ -0 -0 - Sxy YY)
Xy | x [Ex)y]

; (45)

where the last equality follows from Eqs (43-44). Finally we write down the Rényi information for Gaussian
variables

1/2 Sxpy Syt
I(X;Y) = 2, | X | — (46)
g—1  |I-(1—-q?2(I—-3xyEy)|
This expression is identical to Eq (5) (with ¢ =1 — q).
C Jeffreys information for Gaussian variables
The Jeffreys information is defined via
J(X;Y) = Dy(Pxy || Px ® Py), (47)
where Dj is Jeffreys divergence (Jeffreys, 1946),
1
Dy(P Q) = §[DKL(P | Q) + DxL(Q || P)]- (48)

For Gaussian correlated X and Y, the Jeffreys information follows immediately from the KL divergence
between two multivariate Gaussian distributions

Dxr(N(po, o) || N(p1,%1)) = ;(tr(EflEo —1)

_ >
+ (u1 — p0) 27 (w1 — po) +1n :z;) (49)

For X and Y described by Eq (39), we have Pxy = N(u, %) and Px @ Py = N(p, ¥), where & = [ X 3|

- Yyx Xy
and ¥ = [E_X o ] As a result, we have

1 - by

DKL(PXY || PX X Py) = 5 (tr(E_lZ — I) + In :E:) (50)
1 = by

Dx1(Px ® Py || Pxy) = 3 (tr(E_lz —I)+In :Z_):) . (51)

_ -1
We see that the logarithmic term drops out upon symmetrization [Eq (48)]. Substituting =% = [EX }
and the determinant formula in Eq (43) into Eq (50) gives
) 1 _
in 5 = —3 In Sy 2| (52

which is the usual mutual information, as expected. To compute trace in Eq (51), we write down the inverse
of the covariance matrix,

N =

Dx1(Pxy || Px ® Py) =

-1 -1 -1
-1 _ ZX|Y _ZX|YZXYEY
E - 2—12 Z_l E_l . (53)
oYy SYX Xy Y|X
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Therefore we have

tr(B7IE 1) = tr(Z7HE - B))

—1 -1 —1
= tr Txlv TRy EOE 1 o)
-2 'Sy x 2! baivh —Xyx -

x|y v|Xx
= tr(E}I‘YZXyE;lzyx) + tI‘(Z;IZy){Z}_{TYZXy)
= 2tr(zxy2;12yxz;{}y)
= 2tr(EXE;JY -1, (54)

where the last equality follows from the identity Y x|y = ¥x — Xxy E;lEy x. Substituting the above result
into Eq (51) yields

_ 1 _
Dxi(Px @ Py || Pxy) = tr(SxSx )y — 1) + I IZxy S5 (55)
Finally eliminating the logarithmic term with Eq (52) leads to

5

J(XY) = > Dx1(Px ® Py || Pxy) + Dkn(Pxy || Px ® Py)]

= %tr (zx=zly - 1) (56)
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