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ABSTRACT

Pass@k is widely used to report performance for LLM reasoning, but it often yields unstable, mis-
leading rankings, especially when the number of trials (samples) is limited and compute is con-
strained. We present a principled Bayesian evaluation framework that replaces Pass@k and average
accuracy over N trials (avg@N ) with posterior estimates of a model’s underlying success probabil-
ity and credible intervals, yielding stable rankings and a transparent decision rule for differences.
Evaluation outcomes are modeled as categorical (not just 0/1) with a Dirichlet prior, giving closed-
form expressions for the posterior mean and uncertainty of any weighted rubric and enabling the
use of prior evidence when appropriate. Theoretically, under a uniform prior, the Bayesian posterior
mean is order-equivalent to average accuracy (Pass@1), explaining its empirical robustness while
adding principled uncertainty. Empirically, in simulations with known ground-truth success rates
and on AIME’24/’25, HMMT’25, and BrUMO’25, the Bayesian/avg procedure achieves faster con-
vergence and greater rank stability than Pass@k and recent variants, enabling reliable comparisons at
far smaller sample counts. The framework clarifies when observed gaps are statistically meaningful
(non-overlapping credible intervals) versus noise, and it naturally extends to graded, rubric-based
evaluations. Together, these results recommend replacing Pass@k for LLM evaluation and rank-
ing with a posterior-based, compute-efficient protocol that unifies binary and non-binary evaluation
while making uncertainty explicit.

1 INTRODUCTION

Large language models (LLMs) have moved rapidly from research artifacts to everyday infrastructure (1; 2). Students
use them for homework and exam preparation; developers rely on them for code synthesis and refactoring (3); analysts
and clinicians use them for decision support; and agents built atop LLMs are increasingly embedded in workflows
across industry and government. This demand has catalyzed unprecedented investment: specialized chips, datacenters,
and startups dedicated to LLM training, serving, and tooling (4). As deployment accelerates, trust, oversight, and
comparability become central: how we evaluate LLMs directly shapes which models are adopted, what progress is
declared, and how resources are allocated (5; 6; 7; 8; 9; 10; 11).

Evaluation, however, remains the weakest link in the LLM pipeline. Alongside advances in model efficiency and
compression(12; 13; 14; 15; 16; 17; 18), training and fine-tuning (PEFT/LoRA, RL-from-human-feedback) (19; 20;
11), and inference/decoding (sampling strategies, caching, efficient attention) (21; 22), the community still leans
on simple, yet flawed, success rates and Pass@k-style metrics to summarize capabilities (23). These practices are
convenient but fragile. On small or costly benchmarks (e.g., math reasoning sets with only tens of problems such
as AIME) (24), Pass@k or single-run accuracy often produce unstable rankings (25; 26), are sensitive to decoding
choices and seed effects (27; 25), and provide little guidance on whether observed gaps are meaningful or mere noise
(28; 29). Averaging across multiple runs (“avg@N”) helps but is compute-hungry (30), offers no unified way to handle
graded/rubric outcomes, and lacks a principled decision rule for significance (28; 31; 32).

This paper takes a different approach: we treat evaluation itself as a statistical inference problem. We introduce a
posterior-based framework that replaces Pass@k and avg@N with estimates of a model’s underlying success prob-
abilities and associated uncertainty (33). Outcomes are modeled as categorical (34) rather than purely binary: each
item can yield correct, partially correct, formatting-error, refusal, or rubric-defined levels. A Dirichlet prior over these
categories yields closed-form posterior means and credible intervals for any weighted rubric, allowing the evaluator
to report both a point estimate and principled uncertainty with negligible overhead. In the binary special case under
a uniform prior, its posterior mean is order-equivalent to average accuracy, explaining the empirical robustness of
avg@N while making uncertainty explicit.
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Figure 1: a) Probability mass functions (PMFs) of convergence@n, the number of trials n above which a ranking of LLM models
consistently matches the ranking using Nmax = 80 trials. Eleven LLM models (listed on the right) and four math-reasoning datasets
are used—AIME’24, AIME’25, HMMT’25, and BrUMO’25—comparing Pass@2/4/8 against our Bayesian posterior evaluation
(Bayes@N ). Each PMF is estimated by bootstrapping with 105 samples over the Nmax trials; vertical lines indicate the mean of each
convergence distribution. On AIME’24/’25, the Pass family frequently fails to converge, whereas Bayes@N converges. On HMMT
and BrUMO, Pass methods converge more slowly (mean required trials ≈ 69.5 and ≈ 48.5) than Bayes@N (≈ 44.2 and ≈ 27.1),
respectively. Right: Example competition-style ranking from a single bootstrap replicate, highlighting the mean convergence for
AIME’25 and BrUMO’25. Per task rankings, including worst-case replicates, are in Section I (Fig. 10).

The framework addresses four persistent pain points. ➊ Convergence: as shown in Fig. 1, we ideally want methods
that can converge to the true underlying ranking with the smallest number of trials, but different approaches can have
significantly different convergence speeds. ➋ Credible intervals: a simple, transparent rule—do not declare a winner
when intervals overlap—reduces leaderboard churn and over-interpretation of tiny gaps by introducing a compute-
efficient confidence interval (CI). Updates are analytic; one can monitor interval widths online, and allocate additional
trials only when needed (no Monte Carlo/bootstrap simulations are required for CI estimation). ➌ Categorical evalu-
ation: our approach unifies binary and non-binary evaluation. Graded rubrics are natural in this framework, so one can
evaluate step-by-step reasoning, partial credit, or judge categories without ad hoc aggregation. ➍ Prior information:
we can incorporate prior evidence when appropriate (e.g., reuse of stable rubric distributions across closely related
tasks or versions).

We validate the approach in two settings: In controlled simulations with known ground-truth success rates, the poste-
rior procedure converges to correct rankings with fewer samples than Pass@k and recent variants, and it flags when
ties are statistically unresolved. On real math-reasoning benchmarks (AIME’24/’25 (35; 36), HMMT’25 (37), and
BrUMO’25 (38)-derived sets), we observe the same pattern: the posterior method achieves greater rank stability at far
smaller sample counts than Pass@k, while clarifying when differences are meaningful versus noise. Practically, this
yields a computationally efficient protocol that is easy to implement and audit.

We summarize our contributions as follows:

• A unified Bayesian evaluation framework. We model per-item outcomes as categorical with a Dirichlet
prior, yielding closed-form posterior means and credible intervals for any weighted rubric, with binary eval-
uation as a special case. This unifies 0/1 and graded evaluations and supports reuse of prior evidence when
justified.

• A compute-efficient, interval-aware protocol. We provide a simple recipe: report posterior means with
credible intervals; only declare differences when intervals do not overlap; adaptively allocate additional sam-
ples until intervals meet pre-specified widths. This protocol naturally supports sequential/online evaluation.

• Empirical evidence on simulations and math benchmarks. On synthetic data with known ground truth and
on AIME’24/’25, HMMT’25, and BrUMO’25 datasets, our method achieves faster convergence and greater
rank stability than Pass@k and recent variants, enabling reliable comparisons with far fewer samples.
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2 BAYESIAN FRAMEWORK FOR EVALUATING LLM PERFORMANCE

2.1 BACKGROUND: THE PASS@k METRIC AND ITS LIMITATIONS

Evaluation metrics for LLMs aim to quantify performance on tasks like reasoning or programming, but they often
struggle to provide reliable relative rankings across models. Pass@k, for instance, estimates the probability of at least
one correct answer within k model attempts (see Appendix G for details). While convenient, this metric exhibits
high variance (39), particularly when k approaches the total number of trials, N , resulting in unstable rankings (40).
Small fluctuations in correctness can distort comparisons, particularly in benchmarks with few problems or limited
computational resources, raising doubts about its suitability for differentiating model capabilities. If a metric cannot
consistently distinguish stronger models from weaker ones, its value as a benchmarking tool is undermined (26).

Estimating uncertainty in Pass@k scores is also challenging, as it lacks closed-form expressions for variance, rely-
ing instead on computationally intensive approximations like bootstrapping. A truly effective metric should yield
reliable performance rankings with a minimal number of trials, prioritizing both accuracy and efficiency in resource-
constrained environments. To address these limitations, we propose a Bayesian evaluation framework that provides
more stable estimates of performance, incorporates uncertainty, and facilitates robust relative comparisons across
models (33; 41; 42).

2.2 RESULTS MATRIX

Consider a results matrix R for an LLM evaluated on a test set comprising M questions. Due to the stochastic nature of
LLM sampling, responses may vary across independent trials, so we run the LLM N times per question. The outcomes
are captured in the M ×N matrix R, where element Rαi represents the score in the ith trial for the αth question. This
score is an integer ranging from 0 to a maximum value C, reflecting a rating system with C + 1 categories. In the
binary case (C = 1), 0 indicates an incorrect answer and 1 a correct one, though we accommodate more nuanced
rubrics generally.

2.3 WEIGHTED PERFORMANCE METRIC

For the αth question, α = 1, . . . ,M , there is an underlying probability παk that the LLM’s answer falls in the kth
category. We denote πα as the (C + 1)-dimensional vector with elements παk, k = 0, . . . , C. If all πα were known,
we could calculate a desired performance metric π̄ as a weighted average over these probabilities:

π̄ =
1

M

M∑
α=1

w · πα =
1

M

M∑
α=1

C∑
k=0

wkπαk, (1)

where w is a (C + 1)-dimensional vector of constant weights. For example, if wk = k, then π̄ represents the average
category label. In the case where C = 1, this average corresponds to the mean probability of a correct answer over the
entire test set. However, we allow for a general choice of w to accommodate a wide range of possible metrics.

2.4 BAYESIAN ESTIMATOR AND UNCERTAINTY FOR THE PERFORMANCE METRIC

In principle, we could estimate πα by running an arbitrarily large number of trials with the LLM, yielding an accurate
estimate of π̄. However, we are typically constrained to small N due to limited computational resources. Our goal is to
develop a Bayesian approach to estimate π̄ and its associated uncertainty given a finite N . The first step is to construct
P(πα|Rα), the posterior probability of πα given the αth row of the matrix R, denoted Rα. This posterior depends
on the data in Rα and a chosen prior distribution P(πα) for the unknown underlying probability vector πα. The
prior could be uniform (assuming no prior information) or incorporate previously gathered evidence about the LLM’s
performance. The Bayesian framework focuses on two quantities: the first is the mean of π̄ over the joint posterior for
all questions, which we denote as µ(R). This is a Bayesian optimal estimator, minimizing the quadratic loss function
L(π̄est) = ER,πα(π̄

est(R) − π̄)2 over all possible estimators π̄est(R), where the expectation value is over all possible
πα and realizations of R (43). The second quantity is the variance σ2(R), which quantifies the uncertainty of the
µ estimate. Both µ(R) and σ2(R) have exact closed-form expressions, derived in Appendix A, and can be simply
calculated for any R using Algorithm 1.
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Algorithm 1 LLM performance evaluation using the Bayes@N framework.

function EVALUATEPERFORMANCE(R, [R0], w)
input: M ×N matrix R of results, with each element Rαi = 0, . . . , C

weight vector w = (w0, . . . , wC) defining performance metric π̄
optional input: M ×D matrix R0 of results for prior; otherwise D = 0
output: performance metric estimate µ and associated uncertainty σ

T = 1 + C +D +N
for α = 1 to M do ▷ Tally results in R and R0

for k = 0 to C do
nαk =

∑N
i=1 δk,Rαi

n0
αk = 1 +

∑D
i=1 δk,R0

αi

ναk = n0
αk + nαk

end for
end for
µ = w0 +

1
MT

∑M
α=1

∑C
j=0 ναj(wj − w0)

σ =

[
1

M2(T+1)

∑M
α=1

{∑C
j=0

ναj

T (wj − w0)
2 −

(∑C
j=0

ναj

T (wj − w0)
)2}]1/2

return µ, σ
end function

2.5 USING UNCERTAINTY ESTIMATES TO DECIDE SIGNIFICANCE OF PERFORMANCE DIFFERENCES

In general, the expressions for µ(R) and σ2(R) are valid for any M and N , and do not rely on asymptotic arguments
like the central limit theorem (CLT). However, there are useful simplifications that occur in specific limiting cases. For
example as the size of the test set M becomes large, we can derive not just the moments of the posterior distribution
for π̄, but also its shape, which becomes approximately Gaussian: P(π̄|R) ∼ N (µ(R), σ2(R)). This allows us to
assess whether two methods exhibit a statistically significant performance difference. Consider results matrices R
and R′ from two approaches, with corresponding means µ, µ′ and standard deviations σ, σ′. The distribution of the
performance difference ∆π̄ ≡ π̄−π̄′ is a convolution of the individual posteriors, yielding another normal distribution:
P(∆π̄|R,R′) ∼ N (µ̃, σ̃2), where the mean of the difference is µ̃ = µ − µ′, and the standard deviation is σ̃ =√
σ2 + (σ′)2. To determine our confidence in the ranking of the two methods, we need to determine the probability

that sign(∆π̄) = sign(µ − µ′). This can be done by calculating the absolute z-score, z = |µ − µ′|/
√

σ2 + (σ′)2.
The probability that the ranking based on µ and µ′ is correct (the ranking confidence ρ) is given by ρ = (1/2)(1 +

erf(z/
√
2)). For example z = 1.645 corresponds to ρ = 0.95.

2.6 EQUIVALENCE OF BAYESIAN AND AVERAGE RANKINGS FOR UNIFORM PRIOR

In the results below, we will denote ranking based on the Bayesian estimator µ with a uniform prior as Bayes@N .
Because µ is related to a naive weighted average accuracy via a positive affine transformation, it turns out the ranking
based on the average, denoted as avg@N , is identical to Bayes@N (for the detailed proof, see Appendix B). In the
large-trial limit N → ∞, the value of µ approaches the average, as expected, but the ranking equivalence holds at
all finite N . This relationship also extends to uncertainty quantification, where the standard deviation of the average
relates to the Bayesian standard deviation σ by a scaling factor, providing a concrete method to compute uncertainty
in the average without relying on the Central Limit Theorem (CLT). This is particularly advantageous in small-sample
regimes common in LLM evaluations, where CLT-based methods often underestimate uncertainty and produce invalid
intervals (e.g., extending beyond [0,1] or collapsing to zero) (44). As highlighted by (44), Bayesian approaches with
uniform priors (e.g., Beta(1,1) in the binary case) yield well-calibrated credible intervals even for datasets with fewer
than a few hundred datapoints, outperforming CLT approximations in coverage and handling complex structures like
clustered data.

2.7 GOLD STANDARD FOR RANKING

Strictly speaking, the underlying true ranking of LLMs for a particular performance metric π̄ is unknown, because it
would require determining the infinite trial limit, π̄ = limN→∞ µ, for each LLM. In practice, we have to settle for
an approximation to π̄, calculated at some large but finite value N = Nmax (for example Nmax = 80 in our LLM
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experiments). Specifically we will use Bayes@Nmax—which is the same as the ranking based on avg@Nmax—as our
“gold standard” or reference ranking. In other words, rankings using smaller N will be compared to this gold standard
to assess their accuracy.

For this comparison, we employ Kendall’s τ , a nonparametric correlation coefficient that measures ordinal agreement
between two rankings by comparing the number of concordant and discordant pairs of models. The coefficient ranges
from −1 (perfect inversion) to +1 (perfect agreement), with 0 indicating no association. We specifically use the τb
variant, which properly accounts for ties in the rankings (e.g., the intentional tie in our simulation below), ensuring that
equivalences do not artificially inflate the correlation. See Appendix H.1 for further discussion and formal definitions.

To validate our claims about the gold standard as Bayes@Nmax, specifically to determine which evaluation meth-
ods converge to the true ranking, we conduct a simulation using biased coins as a metaphor for LLMs. In this
setup, we already know the underlying performance distribution (the success probabilities πα for each question),
allowing us to establish a known ground truth π̄. We generate 11 sets of these 30 probabilities, with π̄ values of
[0.2332, 0.2545, 0.3604, 0.3642, 0.3642, 0.4466, 0.5418, 0.5276, 0.608, 0.6213, 0.7327], representing different LLMs
(note the tie at 0.3642 to test handling of equivalent performances). We run experiments for M = 30 questions, where
each LLM “answers” all the questions in each trial according to its success probabilities πα1. Panel (a) of Fig. 2 shows
results without bootstrapping: we generate 1000 independent R matrices, each with 80 trials; for each step in the
number of trials (from N = 1 to 80), we compute scores using Pass@k (k = 2, k = 4, and k = 8 with an unbiased
estimator Eq. (21)), Bayes@N , a naive Passˆk variant (1−(1−p̂)k, Eq. (22)), G-Pass@kτ̃ (Eq. (23) with τ̃ = 0.5), and
mG-Pass@k(Eq. (24)), then derive rankings and compare them to the gold standard using Kendall’s τ as a measure of
rank correlation (where τ = 1 indicates perfect alignment with the gold standard), and report the average τ over the
1000 R matrices. Note that we do not explicitly show average accuracy avg@N because it is equivalent to Bayes@N ,
as discussed in section 2.6. In practice, we are computationally limited to a small number of trials per question. To
examine what happens with only N = 80 trials, we apply two methods of bootstrapping with replacement to the R
matrix, allowing us to estimate how results differ from the ideal case with a large number of independent R matrices
(panel a). For both methods, we generate 10,000 bootstrap replicates for each of the N = 1 to 80 trials, derived from
a single R matrix. Panels (b) and (c) of Fig. 2 illustrate this using two bootstrapping schemes. In the first scheme
(panel b, column-wise bootstrapping), we resample trial indices; in the second (panel c, row-wise bootstrapping), we
resample answers independently for each question. In both cases, the resulting bootstrap replicates are used to recom-
pute evaluation scores, rankings, and τ values, which are then averaged to produce smoothed convergence curves. The
two bootstrapping approaches yield nearly identical behavior, and both closely match the baseline in panel (a). This
demonstrates that the τ convergence behavior is robust and not sensitive to the ordering of answers in either the rows
or columns of R. Though in our LLM mimic simulations, we do not have to use bootstrapping (since we can easily
generate an arbitrarily large number of R matrices), in actual LLM experiments, we have limited trial data, and these
results show that bootstrapping provides a viable way of estimating statistical properties like convergence.

As seen in Fig. 2, Bayes@N begins with relatively high agreement with the gold standard and converges much faster
to τ = 1 than Pass@k and its variants, which suffer from greater variance and bias at small N . All methods eventually
converge to the same ranking, but their rates of convergence differ substantially. This makes the convergence rate a
crucial factor when choosing between different LLM evaluation methods. While we focus here on uniform priors, even
faster convergence can be achieved by incorporating information from correlated models (e.g., base, older, or quantized
versions) through non-uniform priors. We provide a preliminary demonstration of this potential using synthetic data
in Appendix C.

2.7.1 RANKING WITH UNCERTAINTY

In section 2.5, we described how uncertainty estimates from the Bayesian approach can be used to evaluate the relative
performance of two models. Here, we extend these ideas to incorporate uncertainty into the ranking of multiple
models. We do this via our biased-coin LLM mimics, which we denote LLMβ for β = 1, . . . , 11, described in the
previous section. To incorporate a chosen confidence interval in the ranking, we order their µ values from highest to
lowest, choose the appropriate z threshold (for example z = 1.645 for 95% confidence in the ranking), and assign two
consecutive methods the same ranking if the absolute z-score falls below this threshold.

The first row of Table 1 shows the underlying gold standard ranking for all the LLM mimics, since in this case we
know the true π̄ values. Note the tie between LLM4 and LLM5, because their π̄ = 0.3642 is the same. The second
row shows the Bayes@80 ranking without a confidence interval (CI) and the third row shows Bayes@80 incorporating
the 95% CI. The Bayes@80 ranking without CI aligns with the gold standard, except for two differences: the order
of LLM10 and LLM9 is swapped, and the tie between LLM5 and LLM4 is not captured, which is expected since this
ranking relies solely on µ estimates without accounting for uncertainty σ. In contrast, the third row, which incorporates
the CI, reveals multiple ties across several models. Interestingly, LLM10 and LLM9 are now indistinguishable at the
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Row-wise Bootstrap

Bayes@N
pass@2
pass@4
pass@8
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Pass^4
Pass^8

G-pass@20.5

G-pass@40.5

G-pass@80.5

mG-pass@2
mG-pass@4
mG-pass@8

Figure 2: Kendall’s τ rank correlation for various evaluation methods compared to the true ranking of 11 sets of
biased coins (LLM mimics) with known mean success probabilities π̄ = 0.2332, 0.2545, 0.3604, 0.3642, 0.3642,
0.4466, 0.5418, 0.5276, 0.608 , 0.6213, 0.7327. The simulation evaluates methods including Pass@k (k = 2, 4, 8),
Bayes@N , naive Passˆk, G-Pass@kτ̃ (τ̃ = 0.5), and mG-Pass@k across 1 to 80 trials. Panel a) shows τ results
without bootstrapping, while panels b) and c) use two different bootstrapping approaches with 104 samples.

95% CI. Despite the fact that N = 80 would be an atypically large number of trials for an actual LLM evaluation,
it is insufficient to confidently distinguish the small performance difference (π̄ = 0.608 vs. 0.6213) between the two
models. In Appendix D we show that it would actually require increasing N by a factor of 3 to achieve 95% CI,
highlighting the difficulties of reliably ranking models with similar performance.

Table 1: Comparison of biased-coin LLM mimic rankings based on the gold standard, Bayes@80 without confidence
interval (CI), and Bayes@80 with CI.

LLM mimic LLM11 LLM10 LLM9 LLM8 LLM7 LLM6 LLM5 LLM4 LLM3 LLM2 LLM1

Gold Standard 1 2 3 5 4 6 7 7 8 9 10
Bayes@80 (w/o CI) 1 3 2 5 4 6 7 8 9 10 11
Bayes@80 (w/ CI) 1 2 2 3 3 4 5 5 5 6 7

3 EXPERIMENTS

In this section, we empirically validate our proposed evaluation methods using real-world datasets, focusing on ranking
LLMs for mathematical reasoning tasks. We employ bootstrapping to compute the expected value of each evaluation
score at a given N . First, we present rankings of LLMs on the AIME’24, AIME’25, BrUMO’25, and HMMT’25
datasets without accounting for variance, based solely on evaluation scores (with ties occurring when scores are iden-
tical). Subsequently, we demonstrate how incorporating uncertainty in these scores can alter rankings across different
datasets. Building on the discussion in section 2.7, we adopt the ranking derived from avg@80 (Pass@1) or Bayes@80
(uniform prior Bayesian estimator) at N = 80 (the total number of trials conducted per dataset) as our gold standard
for comparing current LLMs, noting their equivalence in rankings (as proven in Section 2.6). For each N from 1 to
80 (with Pass@k and similar methods starting from N = k to avoid computation with insufficient samples), we com-
pare the rankings produced by various evaluation methods against this gold standard, reporting the average Kendall’s
τ over 104 bootstrapped resamples to estimate the expected rank correlation at each step (assuming independence
among questions and trials).
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Figure 3: Average Kendall’s τ correlation between rankings produced by various evaluation methods and the gold
standard (derived from Bayes@80, or equivalently avg@80), as a function of the number of trials N . Results are
averaged over 104 bootstrapped resamples for each dataset: (a) AIME’25, (b) AIME’24, (c) HMMT’25, and (d)
BrUMO’25. Methods include Bayesian estimation Bayes@N , Pass@k (k = 2, 4, 8), naive Passˆk, G-Pass@kτ̃
(τ̃ = 0.5), and mG-Pass@k.

3.1 CONVERGENCE TO GOLD STANDARD

To assess the ability of different evaluation methods to compare the performance of different LLMs, we plot the
average Kendall’s τ against the gold standard as a function of the number of trials N in Fig. 3, combining results from
AIME 2025 (panel a), AIME 2024 (panel b), HMMT’25(panel c), and BrUMO’25(panel d). Across all datasets, the
Bayes@N and avg@N curves overlap completely (so we only plot Bayes@N ) and demonstrate the fastest convergence
to high τ values, indicating robust alignment with the gold standard even in low-sample regimes. In all four datasets,
Bayes@N reaches τ > 0.90 by N = 10 and approaches τ ≈ 1 at N ≈ 80. The only exception is AIME’25, where
τ > 0.90 is achieved by N = 10, but the curve converges to τ ≈ 0.95 at N = 80.

In contrast, Pass@k variants (k = 2, 4, 8) and their variations (e.g., naive Passˆk, G-Pass@kτ̃ with τ̃ = 0.5, mG-
Pass@k) start with lower Kendall’s τ compared to Bayes@N and converge more slowly in all four datasets. At
every N , Bayes@N consistently shows faster convergence and higher agreement with the gold standard. These find-
ings align with our biased-coin simulations in Section 2.7, demonstrating that the Bayesian method best satisfies the
gold-standard criteria—low uncertainty, minimal ties, and rapid convergence—across diverse mathematical reasoning
benchmarks.

3.2 RANKINGS WITH CONFIDENCE INTERVALS

Following the methodology of section 2.7.1, we compare model rankings across four datasets (AIME’25, AIME’24,
HMMT’25, and BrUMO’25) using Bayes@80 as the gold standard (see Fig. 3). Table 2 summarizes these comparisons
by reporting, for each dataset, two versions of the ranking: the rank with a 95% confidence interval (CI) and the rank
without CI. The “w/ CI” rank accounts for uncertainty in the Bayes@80 scores and therefore allows models with
overlapping CIs to share the same rank; the “w/o CI” rank is the strict ordering determined by the point estimates of
Bayes@80 for that dataset.

Table 2 indicates that point-estimate rankings diverge from those accounting for confidence intervals. Qwen3-30B-
A3B-Thinking-2507 and Qwen3-4B-Thinking-2507 consistently secure the top positions across all four datasets;
specifically, the dominance of the 30B model is statistically distinguishable at the 95% CI level in every case. Con-
versely, the relative ordering of the remaining models varies by dataset.
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When incorporating 95% CIs, we observe that while all four datasets exhibit five tied groups, the extent of ambiguity
varies significantly. AIME’25 yields the fewest distinct ranks (up to 11), followed by AIME’24 (up to 13), and both
HMMT’25 and BrUMO’25 (up to 14). This compression of ranks indicates greater uncertainty in the Bayes@80 gold
standard for AIME’25 (due to more extensive ties) compared to the others under our current trial budget. Intuitively,
this higher uncertainty in AIME’25’s gold-standard scores implies that more additional trials would be required for
that dataset to empirically produce a statistically stable ranking; conversely, we can be more confident in the estimated
gold standards for AIME’24, HMMT’25, and BrUMO’25 given the current number of trials. This distinction also
explains why AIME’25 reaches a Kendall’s τ of 0.95 at N = 80, whereas the other three datasets converge to ∼ 1 at
the same sample size in Fig. 3.

Table 2: Rankings for four datasets. Models are listed in the order of their gold-standard ranking (Bayes@80 point
estimates, i.e., without uncertainty) for AIME’25. Each dataset column gives the rank with a 95% confidence interval
(left) and the rank without CI (right).

Model AIME’25 AIME’24 HMMT’25 BrUMO’25
w/ CI w/o CI w/ CI w/o CI w/ CI w/o CI w/ CI w/o CI

Qwen3-30B-A3B-Thinking-2507 1 1 1 1 1 1 1 1
Qwen3-4B-Thinking-2507 2 2 2 2 2 2 2 2
gpt-oss-20b-high 3 3 3 5 3 4 6 11
gpt-oss-20b-medium 3 4 3 3 2 3 7 12
Phi-4-reasoning-plus 3 5 3 4 3 5 3 5
AceReason-Nemotron-1.1-7B 4 6 5 9 4 6 3 4
Phi-4-reasoning 5 7 5 10 5 8 4 7
gpt-oss-20b-low 5 8 6 12 11 17 11 17
OpenThinker2-32B 5 9 4 8 5 7 2 3
Light-R1-14B-DS 5 10 4 6 6 11 4 8
FuseO1-DeepSeekR1-QwQ-SkyT1-Flash-32B 5 11 4 7 6 9 3 6
NVIDIA-Nemotron-Nano-9B-v2 6 12 6 11 6 10 5 10
LIMO-v2 6 13 7 13 7 12 5 9
EXAONE-4.0-1.2B 7 14 8 14 7 13 10 15
OpenR1-Distill-7B 7 15 9 15 10 16 8 13
OpenThinker3-1.5B 8 16 10 16 8 14 9 14
OpenReasoning-Nemotron-1.5B 8 17 11 17 9 15 10 16
DeepSeek-R1-Distill-Qwen-1.5B 9 18 12 19 12 18 13 19
Sky-T1-32B-Flash 10 19 12 18 13 19 12 18
Bespoke-Stratos-7B 11 20 13 20 14 20 14 20

3.3 CONVERGENCE

In this section, we investigate the convergence of model rankings, building on the showcase figure (Fig. 1). We define
convergence@n as the smallest trial n at which the ranking induced by the first n trials matches the gold standard
ranking from all 80 trials (without bootstrapping) and remains unchanged thereafter.

Lower convergence@n values indicate that fewer trials are sufficient to achieve stable rankings. As detailed in the
caption of Fig. 1, the figure displays the probability mass functions (PMFs) of convergence@n for each method across
the datasets. These PMFs are empirically estimated by generating 105 column-wise bootstrap replicates through
resampling the Nmax trials, then for each replicate, cumulatively evaluating the ranking at every N (from 1 to 80) and
identifying the minimal n where the ranking stabilizes to the gold standard. This process captures the distribution
of convergence points under repeated sampling, reflecting the inherent uncertainty in finite-sample rankings due to
stochastic trial outcomes.

This bootstrapping approach provides a distribution over possible convergence points (n), offering insights into the
variability and reliability of each evaluation method: Pass@k (for k = 2, 4, 8) versus our Bayes@N . A lower
mean convergence@n signifies more cost-effective convergence, while failure to converge within 80 trials (as seen
in AIME’25) indicates more trials are needed to confidently rank LLMs or we must include CI for a reliable ranking.
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Figure 4: Convergence@n without CI. Mean convergence@n across model combinations for AIME’24, AIME’25,
HMMT’25, and BrUMO’25. Top: 50 combinations of 5 models. Bottom-left: 20 combinations of 10 models.
Bottom-right: 20 combinations of 15 models. Color indicates the mean convergence@n over 105 bootstrap replicates
(green: fast convergence; red: slow convergence).

The key takeaways from Fig. 1, as summarized in its caption, underscore the superiority of the Bayes@N : it con-
verges reliably on all datasets except AIME’25, often with fewer trials than Pass@k. For instance, on HMMT’25 and
BrUMO’25, Bayes@N achieves mean convergence at approximately 44.2 and 27.1 trials, respectively, compared to
around 69.5 and 48.5 for the best scores of Pass@k family. The right panel of the figure further illustrates this through
an example ranking from a bootstrap replicate, emphasizing differences in convergence for AIME’25 and BrUMO’25.
See Section I Fig. 9 for the corresponding cumulative distribution functions (CDFs).

Worst-case scenarios To further distinguish the Bayes@N framework from avg@N , we analyze the worst-case
bootstrap replicates, i.e., those that either require the maximum number of trials to stabilize the rankings or fail to
converge. For 11 LLMs, Fig. 10 shows these trajectories as competition rankings, with each line tracing a model’s
rank as trials accumulate; convergence is defined as the point at which the ranking order remains unchanged for
all subsequent trials. In AIME’24 (panel a) the ranking converges at trial 75, in BrUMO’25 (panel c) at trial 68,
and in HMMT’25 (panel d) at trial 78, whereas in AIME’25 (panel b) no convergence is observed within 80 trials,
underscoring persistent instability and the need for additional trials or Bayes@N ’s confidence intervals. When a
ranking does not converge within the trial budget (as for AIME’25 in Fig. 1) only Bayes@N can be used to quantify
uncertainty and estimate the minimum N required for a reliable ranking (see section 2.7.1).

This situation becomes even more severe as more models are included. As shown in Fig. 11, when the number of
models is increased to L = 20, none of the datasets exhibit convergence. To examine convergence as a function of
L more systematically, we consider a pool of 20 LLMs (Table 6) and construct 50 subsets of 5 models (Table 8), 20
subsets of 10 models (Table 9), and 20 subsets of 15 models (Table 10). For each subset, we generate 105 bootstrap
replicates to estimate convergence@n. Fig. 4 reports the resulting convergence@n values across all subsets and
replicates, showing that as the number of models increases, evaluation methods such as avg@N and the Pass@k
family become unreliable for estimating model abilities and producing stable rankings.

3.4 RUBRIC-AWARE CATEGORICAL EVALUATION

While evaluation is often reduced to binary correctness, this simplification discards valuable signals that capture other
aspects of model behavior. For instance, LLM outputs can be assessed not only on correctness but also on whether they
are well-structured, coherent, or exhibit step-by-step reasoning in mathematical tasks. In practice, evaluators routinely
record richer dimensions such as format compliance, calibration of confidence, degenerate outputs, out-of-distribution
(OOD) behavior, and verifier scores. This limitation is especially important for reasoning models, where overthinking
(45) inflates token usage without corresponding gains in reliability. Bayes@N provides a principled way to capture
these richer outcomes. By treating per-item results as categorical rather than binary, the approach aligns more closely
with actual goals while preserving statistical rigor and transparency. This method enables a nuanced understanding
of model performance across diverse dimensions, offering insights into trade-offs between correctness, efficiency, and
robustness. For a comprehensive discussion of the categorical Bayesian evaluation framework, including base signals,
schema definitions, and their impact on model rankings, see Appendix F.
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Table 3: Comparison of the Bayesian framework and other evaluation methods.

Methods (N trials) Convergence Confidence interval Prior knowledge Categorical

Pass@k and alternatives ✗ ✗ ✗ ✗
avg@N ✓ Limited (via bootstrap/binomial CIs) ✗ ✗
Bayes@N ✓ (Sec.3.3, Figs. 1 and 4) ✓ (Fig. 6, Table 1,2) ✓(Sec. C) ✓ (Sec.3.4)

4 RELATED WORK

Functional-correctness evaluation with Pass@k became standard in code generation with HumanEval (OpenAI Codex):
generate k samples, a task is solved if any sample passes unit tests, and estimate the overall rate with an unbiased
estimator that requires producing n > k samples per task (40). Although Pass@k was initially introduced in the context
of coding, it later became the de facto choice to evaluate LLMs not only on math reasoning tasks (46; 47; 48; 49; 50;
51; 52; 53; 54; 55) but also on safety evaluations spanning agent red-teaming, jailbreaks, and backdoor analyses (56;
57; 58; 59; 60; 61). For a broader review of these metrics and their variants, see Appendix G. Beyond standard
Pass@k, passˆk quantifies reliability across k i.i.d. trials for agents, while the generalized G-pass@kτ continuum (and
its area-under-τ summary mG-Pass) jointly assess potential and stability in reasoning outputs (62; 54; 63).

Efforts like HELM advance holistic, transparent evaluation across scenarios and metrics (5), while practice guidelines
distill reproducibility pitfalls and prescribe multi-run, uncertainty-aware reporting with fixed prompts, decoding, and
dataset/version control (64). The LM Evaluation Harness offers standardized, reproducible frameworks to implement
these recommendations (64). It addresses the need for calibrated uncertainty in small-sample reasoning by employing
exact methods for error quantification in binomial settings.

The last category of related work focuses on measuring uncertainty in LLM evaluation. These works converge on
interval-aware, small-sample-valid reporting rather than CLT/Wald error bars. Bowyer et al. show that CLT-based
intervals miscalibrate on small benchmarks and advocate small-n-appropriate frequentist or Bayesian intervals for re-
liable comparisons (44). A Bayesian alternative models capability as a latent success probability and reports posterior
credible intervals that remain informative with limited trials, yielding more stable rankings (33). In judge-based set-
tings, Judging LLMs on a Simplex places model and judge behavior on the probability simplex, enabling uncertainty-
aware comparisons and highlighting how distributional structure matters for evaluation (65). Beyond bespoke LLM
metrics, prediction-powered inference supplies general procedures for valid confidence intervals that leverage model
predictions to reduce labeled-sample requirements (66). Finally, in adjacent retrieval evaluation with LLM-generated
assessments, Oosterhuis et al. construct reliable confidence intervals and demonstrate that calibrated uncertainty,
rather than point estimates, should guide decisions, reinforcing this shift for LLM evaluation more broadly (67).

5 CONCLUSION: STRENGTHS, LIMITATIONS & FUTURE DIRECTIONS

The overall benefits of the Bayesian framework are summarized in Table 3: it provides fast convergence, analytical
estimates of confidence intervals, and incorporation of prior knowledge and categorical results. However it is worth
noting that our approach quantifies statistical uncertainty from finite samples; it does not fix dataset bias, distribution
shift, or rubric misspecification. Results therefore depend on the chosen benchmark, prompts, and inference settings
(hardware). Although we have validated our approach with biased-coin LLM mimic simulations, together with exper-
iments using actual LLMs (up to Nmax = 80 trials across four tasks and 20 models), more extensive evaluations may
be constrained by computing and academic budgets.

The focus of the current work was the simplest version of the Bayesian approach, using a uniform prior, which provides
a conservative and reproducible starting point. But the theory allows for more complex, informative priors, and this
opens up a rich vein of future directions that should be systematically explored: for example priors from past runs,
domain- or task-conditioned priors, and expert-elicited priors. These have the potential of accelerating convergence
even further, but must be chosen and reported carefully. Clear guidance and tools for prior elicitation will hopefully
ensure that gains in sample efficiency do not come at the cost of hidden bias.
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ETHICS STATEMENT

This research relies only on publicly available, non-personal benchmarks; no human subjects, user data, or PII are
involved. Potential misuse includes cherry-picking priors, rubrics, or samples to exaggerate performance. To pre-
vent this, use of Bayes@N with user-defined priors requires clear documentation and reporting of posterior credible
intervals.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, detailed implementation instructions are provided in Appendix H.
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A DERIVATION OF BAYESIAN ESTIMATOR AND UNCERTAINTY

As described in the main text, the Bayesian framework is built on two quantities. The first is µ(R), the average of π̄
over the joint posterior for all the questions:

µ(R) =

∫
∆

dπ1 · · ·
∫
∆

dπM π̄

M∏
α=1

P(πα|Rα), (2)

where the integration region ∆ is the probability simplex defined as the set of all possible (C+1)-dimensional vectors
p such that

∑C
k=0 pk = 1. The second is the variance σ2(R) associated with our Bayesian estimator,

σ2(R) =

∫
∆

dπ1 · · ·
∫
∆

dπM (π̄ − µ(R))2
M∏
α=1

P(πα|Rα). (3)

Our derivation of closed-form expressions for µ and σ builds on the generalized (C > 1) and original (C = 1) Laplace
rule of succession theory from (43), recovering those results in the special case of a single question (M = 1). We start
with Bayes’ rule for each row of R:

P(πα|Rα) =
P(Rα|πα)P(πα)

P(Rα)
. (4)

The likelihood P(Rα|πα) is a (C+1)-category multinomial distribution over N trials, with the probability distribution
function:

P(Rα|πα) =
N !

nα0!nα1! · · ·nαC !

C∏
k=0

(παk)
nαk , (5)

where nαk =
∑N

i=1 δk,Rαi
, nα is the vector with elements nαk, and δi,j is the Kronecker delta.

The prior P(πα) is chosen as the conjugate prior of the multinomial, a Dirichlet distribution P(πα) ∼ Dir(n0
α), with

concentration parameter vector n0
α = (n0

α0, . . . , n
0
αC). (34) A uniform prior (no prior knowledge) sets n0

αk = 1 for all
k. Prior information from an earlier M ×D matrix R0 (with R0

αi as the category for the ith trial of the αth question)
can be incorporated as:

n0
αk = 1 +

D∑
i=1

δk,R0
αi
. (6)

The Dirichlet prior is:

P(πα) =
Γ(1 + C +D)∏C

k=0 Γ(n
0
αk)

C∏
k=0

(παk)
n0
αk−1

, (7)

where
∑C

k=0 n
0
αk = 1 + C +D.

The normalization constant P(Rα) is:

P(Rα) =

∫
∆

dpP(Rα|p)P(p), (8)

and since the Dirichlet is the conjugate prior, the posterior is P(πα|Rα) ∼ Dir(να), with να = nα + n0
α. The

posterior distribution is:

P(πα|Rα) =
Γ(T )∏C

k=0 Γ(ναk)

C∏
k=0

(παk)
ναk−1

, (9)

where T ≡
∑C

k=0 ναk = 1 + C +D +N .

The moment generating function Φ(t) = ⟨exp(π̄t)⟩ is:

Φ(t) =

∫
∆

dπ1 · · ·
∫
∆

dπM exp (tπ̄)

M∏
α=1

P(πα|Rα)

=

M∏
α=1

∫
∆

dπα exp

(
t

M

C∑
k=0

wkπαk

)
P(πα|Rα)

= etw0

M∏
α=1

∫
∆

dπα exp

(
t

C∑
k=1

skπαk

)
P(πα|Rα),

(10)

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

where sk ≡ (wk − w0)/M , and πα0 = 1−
∑C

k=1 παk.

Each integral is the moment-generating function for a Dirichlet distribution, expressed via the confluent Lauricella
hypergeometric function Ψ[C]:

Φ(t) = etw0

M∏
α=1

Ψ[C] (να1, . . . , ναC ;T ; ts1, . . . , tsC) , (11)

where

Ψ[C] (να1, . . . , ναC ;T ; ts1, . . . , tsC) =

∞∑
m1=0

· · ·
∞∑

mC=0

(να1)m1 · · · (ναC)mC
(ts1)

m1 · · · (tsC)mC

(T )mm1! · · ·mC !
, (12)

and (x)n is the Pochhammer symbol.

The moments are:
µ = Φ′(0), σ2 = Φ′′(0)− (Φ′(0))2. (13)

Expanding Ψ[C] to O(t2):

Ψ[C] = 1 +
t

T

C∑
j=1

ναjsj +
t2

2T (T + 1)

C∑
j=1

ναj(ναj + 1)s2j

+
t2

T (T + 1)

C∑
ℓ=1

C∑
m=ℓ+1

ναℓναmsℓsm +O(t3).

(14)

Substituting into equation 11 and computing derivatives yields:

µ = w0 +
1

MT

M∑
α=1

C∑
j=0

ναj(wj − w0),

σ2 =
1

M2(T + 1)

M∑
α=1


C∑

j=0

ναj
T

(wj − w0)
2 −

 C∑
j=0

ναj
T

(wj − w0)

2
 .

(15)

The algorithm summarizing this calculation is shown in Algorithm 1 in the main text.

B PROOF OF EQUIVALENCE OF BAYESIAN AND AVERAGE RANKINGS FOR UNIFORM PRIOR

For Bayesian estimators using a uniform prior (where D = 0, T = 1 + C +N , ναk = 1 + nαk), the expression for
the mean µ from equation 15 simplifies as:

µ = w0 +
1

M(1 + C +N)

M∑
α=1

C∑
j=0

(1 + nαj)(wj − w0)

= A+
1

M(1 + C +N)

M∑
α=1

C∑
j=0

wjnαj ,

(16)

where the constant A is given by

A =
1

1 + C +N

C∑
j=0

wj , (17)

and
∑C

j=0 nαj = N . Here, µ relates to a naive weighted average accuracy a over the number of answers in each
category,

a =
1

MN

M∑
α=1

C∑
j=0

wjnαj , (18)
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via
µ = A+

N

1 + C +N
a. (19)

Note that in the binary case where C = 1, w0 = 0, w1 = 1, the value of a is the just regular average accuracy avg@N .
For categorical cases, it is just a weighted generalization of avg@N .

Since A is constant across models and the prefactor N
1+C+N is positive, we see that if µ > µ′, the corresponding

values of a and a′ from the two methods must always give the same ranking, a > a′. Additionally, in the limit of a
large number of trials, N → ∞, we see that A → 0 and µ ≈ a, as expected.

This equivalence extends to uncertainty quantification. The relationship between the standard deviation of the average
(σavg@N ) and the Bayesian standard deviation (σBayes@N from equation 15) is

σavg@N =
1 + C +N

N
σBayes@N . (20)

The Bayesian expression for σBayes@N is valid for all M and N , providing a reliable method to compute uncertainty
in avg@N without relying on the Central Limit Theorem (CLT).

C POTENTIAL BENEFITS OF NON-UNIFORM PRIORS

While the convergence results in the main text demonstrate that Bayes@N with a uniform prior outperforms alterna-
tives like Pass@k in ranking models, there are scenarios where non-uniform priors can achieve even faster convergence.
This is the case when we have data from models that are related or closely correlated to the ones we are ultimately
interested in ranking. Potential examples include: i) results from an older version of a model used as a prior for ranking
a newer version; ii) a non-quantized version (where running trials is computationally expensive) used to provide prior
data for a quantized version (where achieving large N is cheaper); iii) a base model used to provide prior data for a
fine-tuned one. Though a full exploration of these kinds of priors will be left to a future work, in this section we will
show the potential benefits through our synthetic biased-coin LLM models, introduced in Sec. 2.7.

We start with a set of eight “original” models with C = 1, labeled by i = 1, . . . , 8. Each model i consists of a set
of M = 30 success probabilites πα1 drawn from a distribution Beta(i + 3, 12 − i). We fix these probabilities for
all the numerical experiments described below, and their averages for the eight models are: π̄ = [0.3021, 0.3166,
0.4144, 0.4985, 0.5351, 0.5759, 0.6679, 0.7487]. Hence for the original models higher i corresponds to higher overall
accuracy. We now imagine an “update” of model i that mimics some kind of revision, fine-tuning, or other modifica-
tion. Because the performance of the updated model should be correlated with the original, we model the update as
a stochastic perturbation to the Beta distribution from which success probabilities are drawn: for updated model i the
πα1 values are drawn from Beta(i + 3 + σ, 12 − i + σ′), where σ = ±1 and σ′ = ±1 are random integers of unit
magnitude. For the updated models the value of π̄ may not strictly increase with i, so the ranking of models could
be different than the original. Fig. 5(a) shows a histogram of the Kendall’s τ values comparing the original model set
(described above) and 50k possible updated sets drawn using this stochastic procedure. A τ value of 1 corresponds to
exactly the same ranking, and we see that the mean τ over the 50k realizations is 0.88. Hence there is some correlation
between the original and updated rankings, but in the vast majority of cases (about 86% of the updates) the ranking
has changed for the updated models.

The question we would like to ask is whether we can use the results from the original models as priors to help speed
up convergence when ranking the updated models. To employ a non-uniform prior for a given model, we follow the
procedure described Sec. A, and incorporate the prior via the the M ×D results matrix R0 corresponding to D trial
results over M questions using the original model. Combined with N trial results from the updated model, we get the
Bayes@N accuracy estimate µ for the updated model. These estimates are then used to rank the 8 updated models.
Because we know the π̄ values for this set, we know the true ranking, and we can compare the estimated and true
rankings via Kendall’s τ .

For each choice of N and D we run 50k replicates, with each replicate consisting of a set of stochastic updates of
the original models. The mean τ values over all these replicates are shown in Fig. 5(b) as a function of N for several
different D. As expected, the τ curves increase with N , since the ranking becomes more certain with more trials, but
the convergence properties vary. The dashed line is the case of a uniform prior (D = 0), while the solid lines represent
five different non-uniform prior scenarios, with D = 1, 2, 4, 8, and 16. For small N and small D ≤ 4 we see a clear
benefit of the non-uniform prior: already at N = 1 the value of τ starts higher than the uniform case, and remains so
until the latter catches up for N > 5. Thus when we have prior data available, we can extract more accurate rankings
with just a small number of trials of the updated model, relative to the uniform case. However there is a possibility
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Figure 5: (a) Histogram of Kendall τ values comparing original ranking of synthetic LLM models and 50k replicates
of updated models. (b) Mean Kendall τ between the estimated and true ranking for the updated models (50k replicates)
as a function of N , the number of trials. The dashed line corresponds estimates using Bayes@N with a uniform prior
(D = 0), while the solid lines are Bayes@N with a non-uniform prior and different choices of D. The non-uniform
prior is based on results from D trials of the original models. (c) Same as panel (b), except showing the difference ∆τ
between the non-uniform prior curves and the uniform curve.

to over-emphasize the prior: when D = 8 and 16, the benefit for small N turns into a disadvantage at larger N . The
τ curves dip beneath the D = 0 result, indicating that the prior has impeded accurate ranking. Fig. 5(c) shows these
trends more clearly by plotting ∆τ , the difference between the τ for each D and the uniform τ with D = 0. So we
see that priors have to be used judiciously, with large enough D to nudge the ranking in the correct direction, but not
too large to outweigh the results from the updated models. One of the goals of our future work will be to establish
practical guidelines for D in different real-world use cases.

D MODEL DISTINGUISHABILITY AND SAMPLE SIZE

To quantify the trials needed to reliably separate models with closely matched performance, we simulated the prob-
ability of correctly ranking LLM10 above LLM9 as a function of the number of trials N , shown in the left panel of
Fig. 6. At N = 80, the probability of obtaining the correct ranking is 83.7%. The right panel plots the absolute z-score
versus N ; at N = 80, the z ∼ 1.14, corresponding to approximately 87% confidence (though the plots exhibit some
noise due to simulation variability). These values closely align with the empirical probabilities in the left panels.

We also determined the minimum sample size N needed to achieve z-scores of 1.645 and 1.96, corresponding to CI
of approximately 95% and 97.5%, respectively, for distinguishing between models. These thresholds occur at about
N = 199 and N = 285. At these values, the simulated probability of correctly ranking the models is 94.7% and
96.9%, respectively, which is closely consistent with expectations given the inherent noise in the results. These results
underscore the computational cost of distinguishing models whose true performance metrics differ only slightly. In our
biased-coin setup, the underlying success probabilities were π̄9 = 0.608 and π̄10 = 0.6213, yet reliably establishing
this distinction requires nearly 200 trials. Such large sample requirements highlight the importance of considering
both uncertainty and convergence rates when interpreting ranking-based evaluations.

E RUNTIME

To see the asymptotic runtime and memory scaling let:

M = number of problems (rows),
N = number of trials per problem (columns in R),

D = number of prior outcomes per problem (columns in R0, which may be 0),

C + 1 = number of categories.

From Algorithm 1, the work is:
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Figure 6: (a) Probability of correctly ranking LLM10 above LLM9 using Bayes@N in the biased-coin simulations,
shown as a function of trial count N . The probability is 83.7% at N = 80, increases to ∼ 94.7% at N = 199, and
reaches 96.9% at N = 285. (b) Corresponding absolute z-scores as a function of N , with values of ∼ 1.14 at N = 80,
1.645 at N = 199 (95% confidence), and 1.96 at N = 285 (97.5% confidence).

Two row-wise histograms: O(MN) for R + O(MD) for R0,

Posterior mean and variance on ν ∈ RM×(C+1) : O(M(C + 1)) .

So the overall time complexity is:

O(M(N +D + C))

i.e., linear in the number of entries in the result matrices and linear in the number of categories.

The memory footprint is likewise linear:

Store R and (optionally) R0 : O(MN +MD),

Store per-row category counts and derived arrays (ν, ν/T ): O(M(C + 1)).

Note that the evaluation consists of tallying counts and then plugging them into closed-form expressions for µ and σ;
no iterative optimization or Monte Carlo sampling is required.

F CATEGORICAL EVALUATION

F.1 RUBRIC-AWARE BAYES@N EVALUATION OF REASONING MODELS

As we discussed in Section 2.3 and Section 3.4, for each question α ∈ 1, . . . ,M , every attempt yields base signals
such as has_box, is_correct, token_ratio, prompt_bpt, completion_bpt, and verifier probabilities
A,B,C for correct, wrong, and invalid/off-task. Using thresholds and Boolean criteria, each attempt is mapped into
one of C + 1 categories under a chosen schema (e.g., Format Aware, Conf-Wrong Penalty, Efficiency-Adjusted; Ta-
ble 5). We instantiate categorical schemata and update posterior means via Dirichlet–multinomial inference, yielding
metrics that preserve correctness while explicitly reflecting formatting, calibration, and efficiency.

Base signals All signals are directly obtainable from common LLM inference stacks such as Hugging Face trans-
formers (68) and vLLM (69), via per-step scores/log-probs and termination metadata, and require no model-specific
instrumentation; the verifier probabilities A, B, C are defined in F.1.

• has_box: 1 if a final boxed answer is present; else 0.
• is_correct: 1 if the answer is correct; else 0.
• token_ratio: completion tokens normalized by 32,768 (shorter is smaller).
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• repeated_pattern: 0 if finish_reason is stop; else 1 (degenerate output).

• prompt_bpt: negative average prompt log-prob in bits/token (lower is better).

• completion_bpt: negative average completion log-prob in bits/token (lower is better).

• compass_context_A: verifier contextual probability of correct.

• compass_context_B: verifier contextual probability of wrong.

• compass_context_C: verifier contextual probability of irrelevant/off-task.

Reward models in evaluation. While reward models are most familiar from fine-tuning (e.g., RLHF), we use one
as a lightweight verifier to supply per-attempt label probabilities for

{A,B,C} = {correct,wrong, invalid/off-task}

in evaluation. Concretely, we employ OpenCompass CompassVerifier-3B to produce (A,B,C) and then apply
contextual calibration to obtain a more robust, prompt-stable label distribution: we evaluate next-token scores for the
candidate labels at a fixed answer slot, subtract a content-free baseline logit by from the task logit sy for each label y,
and apply temperature scaling to yield calibrated probabilities

p(y | x) = softmax

(
sy − by

T

)
.

This helps us mitigate saturation and the entanglement of formatting and confidence seen with last-token probabilities,
and improves probability calibration for downstream rubric scoring.

Selected categorical schema. We define 12 schemata (Table 5) using the rubric variables (Table 4) derived from the
base signals; here are two illustrative definitions (the others follow analogously):

• Format Aware:

cat =



0 invalid
1 wrong ∧ unboxed
2 wrong ∧ boxed
3 correct ∧ unboxed
4 correct ∧ boxed

• Conf-Wrong Penalty:

cat =


0 invalid
1 wronghigh_conf

2 wrong ∧ low_conf
3 correct

Rubric weights w are chosen to reflect evaluation preferences. For example, Format Aware might use [0, 0, 1, 2, 3]
to mildly reward formatting when correct and slightly penalize confidently wrong (via schema choice); Efficiency-
Adjusted can downweight verbose outputs among both correct and wrong categories.

• Exact Match Correctness only; ignores formatting, confidence, and length.

• Format Aware Rewards boxed, well-formatted answers; distinguishes boxed/unboxed even when wrong.

• Conf-Calibrated Penalizes confidently wrong; grades correct answers by confidence (low/mid/high).

• OOD Robustness Separates in-distribution vs. OOD prompts; checks correctness under both.

• Strict Compliance Requires boxed final answers; unboxed-correct is treated as non-compliant.

• Conf-Wrong Penalty Heavier penalty for wrong answers at high confidence; lighter when uncertain.

• Verifier-Only Uses verifier signals (A/B/C) alone to rank; model-agnostic probe of the verifier.

• Format+Confidence Balanced composite over (boxed/unboxed) × (low/high confidence) for both wrong
and correct; emphasizes boxed, high-confidence correctness and penalizes confidently wrong.

• Length-Robust Isolates correctness irrespective of verbosity; does not penalize length.
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• Verifier Prob Probes agreement with the verifier: flags wrong with high verifier A as inconsistent and
distinguishes under/over-confidence on correct.

• Efficiency-Adjusted Rewards short, correct completions; penalizes verbose outputs (especially when
wrong).

• Concise High-Conf Prefers concise, high-confidence correct answers; downweights verbose correctness.

Table 4: Rubric variables, decision formulas, and brief descriptions used to map each model attempt into discrete
categories. Thresholds (τhigh, τlow_wrong, τprompt) and length quantiles (len_p33, len_p66) are computed per dataset from
observed bits-per-token and token-ratio statistics. Category 0 is reserved for invalid outputs (degenerate repetition or
high verifier C), and A,B,C denote calibrated verifier probabilities for correct, wrong, and off-task, respectively.

Rubric variables Formula Description
invalid (repeated_pattern = 1) ∨ (C ≥ 0.50) Category 0 reserved for invalid.
correct (is_correct ≥ 0.5) Boolean mask of correctness.
wrong (is_correct < 0.5) Complement of correct.
high_conf (completion_bpt ≤ τhigh) Confidence proxy
low_conf (completion_bpt > τhigh) Complement of high_conf.
wrong_high_conf wrong ∧ (completion_bpt ≤ τlow_wrong) Penalize confidently wrong.
ood (prompt_bpt ≥ τprompt) Out-of-distribution prompt.
ind (prompt_bpt < τprompt) In-distribution prompt.
economical (token_ratio ≤ len_p33) Short completions.
moderate (len_p33 < token_ratio ≤ len_p66) Medium-length completions.
verbose (token_ratio > len_p66) Long completions.
boxed (has_box ≥ 0.5) Answer is boxed.
unboxed (has_box < 0.5) Answer is not boxed.
A_high (A ≥ 0.6) Verifier confidence high.
τhigh 40th percentile of completion_bpt
τlow_wrong 60th percentile of completion_bpt among wrong items
τprompt 90th percentile of prompt_bpt
len_p33, len_p66 33rd and 66th percentiles of token_ratio
corr_p33, corr_p66 33rd and 66th percentiles of completion_bpt correct items

Fig. 7 summarizes aggregated results across tasks. The leader Qwen3-30B-A3B-Thinking ranks first under all
selected schema, but the margin to rank 2 depends on the rubric (largest under Conf-Wrong Penalty, smallest under
Verifier-Only. Mid-pack reorderings are rubric) sensitive: under Verifier Prob, OpenThinker2-32B edges gpt-
oss-20b_medium; under calibration-heavy category (e.g., Conf-Calibrated, Format+Confidence), gpt-oss-20b_high
overtakes OpenThinker2-32B; OOD Robustness narrows the gap between ranks 2 and 3. Several categories (Format
Aware, Length-Robust, Strict Compliance) agree closely, indicating that once correctness is accounted for, formatting
and length rarely flip top ranks. In contrast, calibration-focused categories emphasize and penalize confidently wrong
behavior, and efficiency-oriented categories favor concision. The lower tier is stable across categories ( EXAONE-
4.0-1.2B, OpenThinker3-1.5B, OpenReasoning-Nemotron-1.5B, Sky-T1-32B-Flash, DeepSeek-R1-Distill-
Qwen-1.5B), suggesting rubric choice primarily reshuffles the middle while preserving extremes. Overall, the cat-
egorical schema surfaces complementary facets—format compliance, calibration, efficiency, OOD robustness, and
verifier alignment—making rubric-dependent differences explicit and enabling compute-efficient, uncertainty-aware
comparisons aligned with evaluation goals.

F.2 DOMAIN-AGNOSTIC RUBRIC-AWARE BAYES@N

The Bayesian construction is intentionally domain-agnostic: it applies whenever model outputs can be mapped into a
finite set of categories equipped with a rubric. The evaluator specifies

1. a mapping from raw outputs (and any side information) to categorical labels Rαi ∈ {0, . . . , C}, and
2. a weight vector w that encodes how those categories are valued.

Given these choices, Bayes@N returns the posterior mean µ(R) as a rubric-aware point estimate, and σ(R) as an
uncertainty estimate, for any such categorical evaluation.
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Table 5: Definitions of the twelve categorical evaluation schemata used in our Dirichlet–multinomial framework.
Each schema specifies decision rules over correctness, formatting (boxed/unboxed), confidence (via completion_bpt),
prompt distribution (in-distribution vs. OOD), output economy (via token_ratio), and verifier signals (A,B,C). These
rules map every attempt into C+1 discrete categories, enabling posterior means and credible intervals for any chosen
weight vector w.

Categorical Schema Rubric
Exact Match 0 invalid; 1 wrong; 2 correct
Format Aware 0 invalid; 1 wrong ∧ unboxed; 2 wrong ∧ boxed; 3 correct ∧ unboxed; 4 correct ∧ boxed
Conf-Calibrated 0 invalid; 1 wrong ∧ low_conf; 2 wrong_high_conf; 3 correct ∧ low_conf; 4 correct ∧

mid; 5 correct ∧ high_conf
OOD Robustness 0 invalid; 1 ood ∧ wrong; 2 ind ∧ wrong; 3 ood ∧ correct; 4 ind ∧ correct
Strict Compliance 0 invalid; 1 wrong ∨ (correct ∧ unboxed); 2 correct ∧ boxed
Conf-Wrong Penalty 0 invalid; 1 wrong_high_conf; 2 wrong ∧ low_conf; 3 correct
Verifier-Only 0 invalid; 1 high C; 2 high B; 3 A_high
Format+Confidence 0 invalid; 1 wrong ∧ unboxed; 2 wrong ∧ boxed ∧ low_conf; 3 wrong ∧ boxed ∧

high_conf; 4 correct ∧ unboxed ∧ low_conf; 5 correct ∧ unboxed ∧ high_conf; 6 cor-
rect ∧ boxed ∧ low_conf; 7 correct ∧ boxed ∧ high_conf

Length-Robust 0 invalid; 1 wrong; 2 correct
Verifier Probe 0 invalid; 1 wrong ∧ A_high; 2 wrong ∧ ¬ A_high; 3 correct ∧ ¬ A_high; 4 correct ∧

A_high
Efficiency-Adjusted 0 invalid; 1 wrong ∧ economical; 2 wrong ∧ moderate; 3 wrong ∧ verbose; 4 correct ∧

economical; 5 correct ∧ moderate; 6 correct ∧ verbose
Concision-High-Conf 0 invalid; 1 wrong; 2 correct ∧ verbose; 3 correct ∧ moderate; 4 correct ∧ economical; 5

correct ∧ economical ∧ high_conf

This viewpoint naturally covers subjective tasks. For instance:

• In summarization, each response could be rated {bad, okay, good, excellent} or by multi-criteria scores such
as faithfulness, coverage, style, and harmful content. Each discrete level becomes a category index k, and wk

reflects the importance of that level or criterion.

• In dialogue safety, categories might distinguish {unsafe, borderline, safe}, or finer-grained notions such as
policy violations vs. merely over-cautious refusals.

Once the labels are available (from humans or an LLM-as-a-judge), Bayes@N provides Bayesian estimates and cred-
ible intervals for any chosen rubric-based score, reusing the same closed-form posterior as in the binary case.

Two aspects are particularly promising for future work in such subjective domains:

1. Preference-based evaluation with rubrics. When model comparisons are driven by preferences (either
from human experts or LLM judges), each comparison can be converted into categorical labels over rubric
dimensions (e.g., faithfulness, verbosity, harmfulness). A downstream weight vector w can then fold these
dimensions into a single scalar score that reflects application-specific trade-offs.

2. Transferring prior evidence across related tasks. The optional prior matrix R0 in Algorithm 1 lets us
encode earlier outcome frequencies as a Dirichlet prior. For example, if a summarization system has been
evaluated on a news dataset, the empirical category counts on that dataset can serve as prior counts when
evaluating a closely related dataset. This allows stable rubric distributions to be reused across adjacent tasks
or benchmark revisions, while still updating with new data.

An important limitation in subjective settings is that Bayes@N does not resolve disagreement or bias in the rubric or
labeling process itself. The framework assumes a labeling scheme (from humans or an LLM-based judge) and a weight
vector w are given; it then provides a statistically principled way to aggregate those labels and quantify uncertainty.
Designing good rubrics and calibrating judges remain separate modeling decisions.
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Figure 7: Competition ranks by model across selected categorical schema. Each column is a combination of base
signals; lines indicate how a model’s relative position shifts when the rubric changes.

G EXTENDED RELATED WORK

The evaluation of LLMs in generative reasoning tasks, under test-time scaling (e.g., via repeated sampling(70)), has
evolved to address the stochastic nature of inference and the need for robust measures of functional correctness. Early
approaches relied on syntactic similarity metrics like BLEU (71) and CodeBLEU (72), which compare generated
answers against reference solutions. However, these metrics often fail to capture semantic correctness in reasoning
tasks, motivating metrics based on execution-validation or test-based validation (73; 72). This limitation has shifted
focus toward functional evaluation, where the generated solution is assessed via a ground truth to verify correctness(73;
74). In this section, we review key functional metrics, focusing on those that leverage multiple samples to scale
performance at inference time. These metrics form the basis to assess LLM capabilities but often overlook probabilistic
uncertainty or consistency across samples, motivating our novel Bayesian framework.

The Pass@k metric, originally introduced by (73; 40) for evaluating LLMs trained on code. It measures the probabil-
ity that at least one of k independently generated samples for a given problem passes all associated unit tests (i.e., by
matching ground-truth answers or satisfying logical constraints), offering a practical estimate of a model’s potential
performance in solving a variety of complex tasks and problems. The unbiased estimator of Pass@k is computed as:

Pass@k = Eproblems

[
1−

(
n−c
k

)(
n
k

) ] , (21)

where n is the total number of generated samples and c is the total number of correct solutions within the n trials.
This estimator has smaller uncertainty in the limit of n ≫ k, ensuring reliable approximations. However, due to
computational costs, k is often comparable to n in practice, which can increase variance and weaken evaluation
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stability. The Pass@k metric has been adapted beyond code to evaluate LLMs in various tasks requiring verifiable
correctness, such as math, logic, and general reasoning (74; 75; 76; 77).

Passˆk, introduced in (62), extends the Pass@k metric to capture both the potential performance and the consistency
of LLMs in reasoning tasks, where evaluating the reliability and stability of generated solutions is crucial. Passˆk is
defined as the probability that all k trials are correct:

Passˆk = Eproblems

[(
c
k

)(
n
k

)] , (22)

where c and n retain the same meanings as in Pass@k. This metric assumes that all the trials are independent and
uniformly distributed, approximating the binomial distribution with a hypergeometric distribution to account for sam-
pling without replacement. By requiring all k samples to be correct, Passˆk provides a stringent measure of model
consistency and stability.

To introduce flexibility, Liu et al. (26) proposed G-Pass@kτ̃ , which incorporates a tolerance threshold τ̃ ∈ (0.0, 1.0]:

G-Pass@kτ̃ = Eproblems

 c∑
j=⌈τ ·k⌉

(
c
j

)
·
(
n−c
k−j

)(
n
k

)
 , (23)

where ⌈τ · k⌉ is the smallest integer greater than or equal to τ · k. This formulation allows up to k − ⌈τ · k⌉ incorrect
solutions, balancing the assessment of potential with consistency. As a special case, Pass@k corresponds to G-
Pass@kτ in the limit τ → 0.

Furthermore, Liu et al. (26) introduced mG-Pass@k, an interpolated metric that integrates G-Pass@kτ over τ ∈
[0.5, 1.0]:

mG-Pass@k = 2

∫ 1.0

0.5

G-Pass@kτdτ ≈ 2

k

k∑
i=⌈0.5·k⌉+1

G-Pass@ki/k, (24)

providing a more comprehensive measure that jointly reflects performance potential and reasoning stability.

These extended metrics have been applied to mathematical reasoning benchmarks such as LiveMathBench, MATH,
and AIME, where they reveal substantial performance degradation of LLMs under stricter stability requirements.

H EXPERIMENT SETUP AND REPRODUCIBILITY

H.1 METRICS

Kendall’s Tau: Kendall’s tau (τ ) is a nonparametric rank correlation coefficient that quantifies the ordinal relation-
ship between two ranked sets by evaluating the consistency in their orderings. For two rankings of n items, it examines
all unique pairs (i, j) where i < j:

• A pair is concordant if the relative ordering of items i and j is the same in both rankings (both place i before
j or vice versa).

• A pair is discordant if the relative ordering is different.
• Pairs with ties in either ranking are neither concordant nor discordant.

Define nc as the number of concordant pairs, nd as the number of discordant pairs, and n0 = n(n− 1)/2 as the total
number of unique pairs. Let n1 represent the number of tied pairs in the first ranking, and n2 similarly for the second
ranking. The two common variants are the following:

Tau-a: τa =
nc − nd

n0
(no adjustment for ties), (25)

Tau-b: τb =
nc − nd√

(n0 − n1)(n0 − n2)
(adjusts for ties in both rankings). (26)

Tau-a assumes no ties and may underestimate correlation when ties occur. Tau-b, which corrects for ties, is better
suited for datasets with equivalent rankings.
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In our implementation, we use scipy.stats.kendalltau with its default variant=’b’, which computes τb effi-
ciently and handles ties appropriately. The coefficient ranges from −1 (perfect disagreement) to +1 (perfect agree-
ment), with 0 indicating no association. This metric provides a robust, distribution-free measure for comparing model
performance rankings, particularly when ties reflect meaningful equivalences.

Convergence@n. For a given bootstrap replicate, we measure convergence in terms of an exact ranking match. At
each step s ∈ {1, . . . , Nmax}, we compute the ranking induced by the first s trials and compare it to a gold-standard
ranking (obtained from all Nmax trials). We then define

s⋆ = min
{
s : the ranking at step s matches the gold-standard ranking and remains identical for all s′ ≥ s

}
,

and refer to s⋆ as the convergence@n value for that replicate. If no such s⋆ ≤ Nmax exists, we declare that replicate
to exhibit no convergence.

H.2 MODELS AND DATASETS

Datasets. We evaluate on four math–reasoning test sets: AIME’24 (35), AIME’25 (36), BrUMO’25 (38), and
HMMT’25 (37). AIME is administered by the Mathematical Association of America and consists of two sets of
15 integer-answer problems; we use the 2024 and 2025 problem sets. For HMMT’25, we use the officially posted
February 2025 contest set (algebra, geometry, number theory, and combinatorics). For BrUMO’25, we use the pub-
lished 2025 problem sets from the tournament archive.

Models. Unless noted otherwise, we run each generator with the provider-recommended chat template
(DeepSeek/Qwen style when unspecified) and identical decoding settings (below) to minimize template-induced
variance. The base model cohort includes 11 models (8 distinct models + 3 modes (low, medium, and high) of
gpt-oss) as follows: Sky-T1-32B-Flash (78) (reasoning-optimized “flash” variant tied to overthinking-reduction
work), Qwen3-30B-A3B-Thinking-2507 (79) (Qwen3 series, reasoning variant), DeepSeek-R1-Distill-Qwen-
1.5B (46) (distilled reasoning model), gpt-oss-20b (80) (OpenAI open-weight reasoning model; we use the default
quantization, MXFP4, and, for prompting, rely on OpenAI Harmony, which defines three levels of reasoning ef-
fort), LIMO-v2 (81) (data-efficient reasoning fine-tuned on curated traces), EXAONE-4.0-1.2B (82) (hybrid
non-reasoning/reasoning modes), OpenReasoning-Nemotron-1.5B (83; 84; 85; 86) (open-weight small reasoning
model), OpenThinker2-32B (87) and OpenThinker3-1.5B (87) (trained on OpenThoughts2/3 data recipes).

To investigate the effect of the number of models required to reach a stable ranking with and without confidence
intervals, in addition to the 11 above-mentioned models, we extend the evaluation to 20 models in total (17 + 3):

Phi-4-reasoning and Phi-4-reasoning-plus (88) (14B small language models with supervised “teachable” reason-
ing traces and an RL-enhanced variant), OpenR1-Distill-7B (89) (an open 7B distillation of DeepSeek-R1 using
fully public data), FuseO1-DeepSeekR1-QwQ-SkyT1-Flash-32B-Preview (90) (System-II “long–short” reasoning
fusion of DeepSeek-R1, QwQ, and Sky-T1-32B-Flash), Light-R1-14B-DS (91) (a Qwen2.5-based long-chain-
of-thought model further improved with GRPO-style reinforcement learning), AceReason-Nemotron-1.1-7B (92)
(7B NVIDIA Nemotron math/code model trained on OpenMathReasoning/OpenCodeReasoning data), NVIDIA-
Nemotron-Nano-9B-v2 (93) (a hybrid Mamba–Transformer “Nano 2” model with controllable reasoning mode),

Qwen3-4B-Thinking-2507 (79) (4B “thinking” variant of Qwen3 with scaled reasoning depth), and Bespoke-
Stratos-7B (94) (Qwen2.5-7B student obtained via DeepSeek-R1-based reasoning distillation on Bespoke-Stratos-
17k).

For verification we additionally use CompassVerifier-3B (95), a lightweight answer verifier suitable for outcome
reward and equivalence checking.

Prompting. For most models, we follow the provider-recommended DeepSeek/Qwen-style prompt: “Please
reason step by step, and put your final answer within \boxed{}.” For gpt-oss-20b, we in-
stead use the OpenAI Harmony prompt template, which provides three levels of reasoning effort. For

OpenReasoning-Nemotron-1.5B, we adopt the task-specific prompt: “Solve the following math problem.
Make sure to put the answer (and only the answer) inside \boxed{}.”

H.3 REPRODUCIBILITY

• Sampling setup. All trials use top-p sampling with temperature 0.6, p = 0.95, batch size 1, and seeds
1234–1313. We perform N = 80 trials per dataset/model.
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ID Model Short name
1 DeepSeek-R1-Distill-Qwen-1.5B DS-R1-Qwen
2 LIMO-v2 LIMO-v2
3 OpenThinker2-32B OpenThinker2
4 OpenThinker3-1.5B OpenThinker3
5 Qwen3-30B-A3B-Thinking-2507 Qwen3-Thinking
6 Sky-T1-32B-Flash Sky-T1-Flash
7 gpt-oss-20b_high gpt-oss-high
8 gpt-oss-20b_low gpt-oss-low
9 gpt-oss-20b_medium gpt-oss-medium

10 EXAONE-4.0-1.2B EXAONE-4.0
11 OpenReasoning-Nemotron-1.5B OR-Nemotron
12 Phi-4-reasoning Phi-4
13 Phi-4-reasoning-plus Phi-4-plus
14 OpenR1-Distill-7B OR1-Distill
15 FuseO1-DeepSeekR1-QwQ-SkyT1-Flash-32B-Preview FuseO1-DS-QwQ-SkyT1
16 Light-R1-14B-DS Light-R1-DS
17 AceReason-Nemotron-1.1-7B AR-Nemotron
18 NVIDIA-Nemotron-Nano-9B-v2 NVIDIA-Nemotron
19 Qwen3-4B-Thinking-2507 Qwen3-4B
20 Bespoke-Stratos-7B Bespoke

Table 6: Mapping between model IDs, full model names, and the shortened names used in figures and legends.
Corresponding subsets are listed in Tables 8, 9, and 10.

• Serving stack. Token generation is served with vLLM (PagedAttention) (69), and models are loaded in bf16
unless the release requires MXFP4 (e.g., gpt-oss). We record log-probabilities for both the input prompt
and generated tokens, and cap max_tokens at 32,768.

• Verifier. We use CompassVerifier-3B as a reward model. During evaluation, we leverage the
model’s scores on prompts generated by other models to create categorical schemas. We rely on the
Transformers (68) and Accelerate (96) libraries. To maximize throughput, we enable FlashAttention
kernels (22) and adopt the DFloat11 format (97).

• Hardware. All runs execute on clusters with 8× NVIDIA H200 (141GB).

COMPUTATIONAL COST AND TOKEN STATISTICS

Across all tasks, we evaluated 20 models with 80 trials per model and 30 questions per benchmark, yielding a total of
192,000 independent inference runs. This required 7,445 GPU-hours (∼310 GPU-days) and generated 2.96B tokens
(2,963,318,176) in total (see Fig. 8 for details).

Task Inference Time (hours) Completion Tokens (M)
AIME’24 1,699.4 680.0
AIME’25 1,878.4 728.3
HMMT’25 2,216.5 851.2
BrUMO’25 1,650.9 666.9

TOTAL 7,445.2 2,926.4

Table 7: Task-level computational cost aggregated over 20 models, 80 trials, 4 tasks, and 30 questions per task. Token
counts correspond to completion tokens only.

Task-level computational cost. HMMT’25is the most expensive benchmark in terms of GPU time (2,217 GPU-
hours), while BrUMO’25is the least expensive (1,651 GPU-hours). Figure 8 provides a complementary visualization
of these patterns, showing inference time and completion-token usage across models and tasks.

Token breakdown. Aggregating across all tasks and models, the total number of tokens (prompt + completion) is
2.96B. The breakdown is:
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AIME'24 AIME'25 HMMT'25 BrUMO'25

1. Qwen3-Thinking

2. Qwen3-4B

3. Phi4-reason-plus

4. gpt-oss-medium

5. gpt-oss-high

6. AR-Nemotron

7. OpenThinker2

8. Phi4-reason

9. FO1-DS-QwQ-SkyT1

10. Light-R1-DS

11. NVIDIA-Nemotron

12. LIMO-v2

13. gpt-oss-low

14. EXAONE-4.0

15. OR1-Distill

16. OpenThinker3

17. OR-Nemotron

18. DS-R1-Qwen

19. Sky-T1-Flash

20. Bespoke
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Figure 8: Computational cost analysis. (Left) Total inference time in hours aggregated over 80 trials and 30 questions
per benchmark (2,400 inference runs per cell). (Right) Total number of completion tokens (in thousands) generated
across the same runs. Models are ordered by overall performance (best to worst, top to bottom).

• Prompt tokens: 37M (1.2%)

• Completion tokens: 2.93B (98.8%)

• Average per query: 15,434 tokens

GPU-hours by model efficiency. The 20 model configurations varied substantially in computational efficiency:

• Most efficient: gpt-oss-20b-low (48.4 GPU-hours for 9,600 queries)

• Least efficient: LIMO-v2 (894.3 GPU-hours for 9,600 queries)

• Average per query over all models: 139.6 seconds (∼2.3 minutes)

I CONVERGENCE

While Fig. 1 shows the PMF of convergence@n, Fig. 9 shows the corresponding cumulative distribution functions
(CDFs). For Pass@4 and Pass@8, there is no convergence, as the figure shows no CDFs associated with them. The
CDFs are computed using the same bootstrap replicates as in Fig. 1. The distribution of convergence@n is computed
using the result matrices R from the first 11 models (Table 6). Among the 105 replications, Fig. 10 shows the worst-
case scenarios in which convergence@n attains its maximum value. As discussed in Section 3.3, convergence@n
depends on the number of models L: as L increases, convergence@n grows. When we extend the pool of LLMs from
11 to 20 models, convergence@n reaches no convergence for all datasets (see Fig. 11).
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Figure 9: CDF of convergence@n. Complementing the PMFs in Fig. 1, these CDFs plot P (k≤ n) for the conver-
gence threshold k across AIME’24, AIME’25, HMMT’25, and BrUMO’25. Steeper and earlier rises indicate faster
convergence. Bayes@N accumulates mass with fewer trials than Pass@2/4/8, and on AIME’24/’25 the Pass curves
do not reach 1 by Nmax = 80. Greater convergence suggests that confidence intervals should be reported for the
evaluation tasks.

To complement the worst-case trajectories discussed in Section 3.3 and shown in Figs. 10 and 11, we provide additional
details on the construction of the model subsets and the resulting convergence behavior. Table 6 lists the pool of 20
LLMs used in this analysis, together with the shortened identifiers that appear throughout the figures and tables. From
this pool we construct 50 subsets of 5 models, 20 subsets of 10 models, and 20 subsets of 15 models, as summarized in
Tables 8 to 10. Each row in these tables corresponds to one subset, indicating which models are included and reporting,
under each task, the convergence@n metric computed without a confidence interval; each entry is the mean over 105
bootstrap replicates. Thus, the tables make explicit how convergence@n depends not only on the task but also on the
particular mixture of models being compared. Aggregating across all subsets and replicates, Fig. 4 then visualizes the
distribution of convergence@n as a function of the number of models L, confirming the trend anticipated in the main
text: as L grows from 5 to 15 and ultimately to the full set of 20 LLMs, the required number of trials increases and non-
convergence becomes common, indicating that rank-based evaluation methods such as avg@N and the Pass@k family
become increasingly unreliable without an accompanying Bayesian uncertainty quantification such as Bayes@N .
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Figure 10: Worst-case bootstrap rank trajectories. Each line shows the ranking of a model as trials are added (11
models in total). Convergence is defined as the minimal N after which the ranking remains unchanged. (a) AIME’24:
converges at N = 75. (b) AIME’25: no convergence observed within 80 trials. (c) HMMT’25: converges at N = 78.
(d) BrUMO’25: converges at N = 68.
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Figure 11: Worst-case bootstrap rank trajectories. Each line shows the ranking of a model as trials are added (20
models in total). Convergence is defined as the minimal N after which the ranking remains unchanged. There is at
least one no convergence replicate among the 105 bootstrapped replications.
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Table 8: 5-model combinations. Matrix showing model presence across the 50 evaluated combinations. Values under
each task report the convergence@n metric computed without a confidence interval; each value is the mean of 100K
bootstrapped samples. Model identifiers are listed in Table 6.

Comb. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 AIME’24 AIME’25 HMMT’25 BrUMO’25

1 4 13 14 18 19 13.5 69.0 11.9 8.8
2 1 2 14 18 20 3.0 38.4 13.3 59.3
3 1 2 4 13 20 1.5 3.1 2.7 2.7
4 11 13 14 18 19 10.9 65.0 12.6 5.0
5 1 11 13 17 20 2.5 5.5 3.7 50.2
6 1 10 14 17 18 11.4 15.3 7.9 3.1
7 1 10 12 13 19 11.0 3.3 12.5 11.1
8 1 4 10 17 18 5.9 13.1 9.8 6.3
9 11 12 17 19 20 44.3 2.8 5.1 9.4
10 1 2 13 17 18 6.8 38.8 14.6 68.4
11 10 11 14 17 19 10.4 66.9 5.3 16.6
12 11 13 14 17 20 3.7 65.1 5.4 50.3
13 4 10 11 18 19 9.2 72.0 17.2 17.7
14 1 2 12 13 20 2.9 4.4 5.8 11.5
15 4 11 12 14 20 12.9 79.0 15.0 8.4
16 2 10 11 18 19 4.7 41.1 27.4 60.3
17 1 2 4 17 20 1.8 3.2 3.1 2.3
18 1 2 4 17 18 6.2 38.3 14.3 59.4
19 1 2 12 17 19 44.3 4.2 8.1 11.1
20 1 10 11 18 20 1.8 13.1 7.8 15.0
21 1 10 12 18 20 5.4 4.1 16.4 3.1
22 2 12 14 17 20 44.3 4.1 7.9 9.8
23 4 11 13 17 19 14.7 71.2 19.7 50.9
24 1 2 4 14 18 8.4 72.3 14.0 59.8
25 4 10 12 18 20 6.3 13.6 17.1 7.0
26 1 4 18 19 20 1.4 2.9 2.0 1.8
27 10 14 17 19 20 9.5 15.3 2.5 5.2
28 4 17 18 19 20 5.4 1.6 3.3 4.5
29 10 12 17 18 20 45.1 4.1 17.5 8.4
30 2 10 11 17 18 7.3 41.1 27.5 60.3
31 3 5 7 9 16 39.6 73.6 38.1 13.1
32 3 6 8 15 16 48.0 71.4 32.9 18.6
33 5 6 7 8 16 19.5 39.5 1.6 10.4
34 3 5 8 9 16 23.9 67.8 6.5 3.3
35 6 7 8 9 16 35.7 73.1 36.9 17.1
36 3 5 6 7 8 10.2 61.1 2.3 10.2
37 5 7 9 15 16 47.3 74.7 47.4 16.6
38 3 5 7 8 9 29.6 75.4 37.1 12.1
39 5 6 9 15 16 35.6 47.0 28.6 10.1
40 3 6 8 9 16 23.9 67.8 6.4 11.0
41 3 6 7 8 15 36.0 64.3 10.9 13.9
42 6 7 8 15 16 40.5 59.1 28.6 15.8
43 3 5 6 15 16 47.8 60.1 32.9 14.7
44 3 5 7 9 15 43.0 72.5 39.1 16.0
45 5 7 8 9 15 31.3 72.6 36.9 12.1
46 3 5 6 8 16 19.8 67.8 6.0 11.0
47 3 5 6 8 15 33.0 64.3 10.3 13.9
48 3 6 7 9 16 39.6 73.6 38.1 13.1
49 5 6 7 15 16 39.9 47.0 28.6 10.5
50 3 6 7 8 16 29.8 67.8 6.7 11.2
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Table 9: 10-model combinations. Matrix showing model presence across the 20 evaluated combinations. Values
under each task report the convergence@n metric computed without a confidence interval; each value is the mean of
105 bootstrapped samples. Model identifiers are listed in Table 6.

Comb. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 AIME’24 AIME’25 HMMT’25 BrUMO’25

1 1 2 3 4 5 6 14 16 19 20 28.2 71.9 23.3 35.4
2 1 2 4 11 14 16 17 18 19 20 16.4 79.0 43.2 60.4
3 3 5 6 7 8 9 12 13 15 16 68.4 79.3 71.3 73.5
4 2 7 8 9 11 12 13 16 17 18 76.5 79.0 70.3 74.8
5 1 2 4 10 11 14 17 18 19 20 18.1 79.0 30.6 60.9
6 1 2 4 11 12 13 16 17 19 20 47.9 72.8 30.5 70.0
7 3 5 6 7 8 12 13 14 15 16 56.6 78.3 68.7 73.5
8 1 3 4 5 6 7 8 9 15 19 46.3 75.8 49.4 38.6
9 1 2 4 10 11 12 13 16 18 19 20.8 74.4 48.1 73.0
10 5 7 8 9 11 12 13 17 18 19 76.5 78.9 70.1 53.6
11 1 2 11 12 13 14 16 17 19 20 47.6 67.5 27.2 70.0
12 1 2 3 5 6 13 14 15 16 17 51.3 60.3 40.6 71.9
13 3 5 7 8 9 12 13 16 18 20 75.9 79.3 71.5 63.6
14 1 2 3 4 10 11 12 13 16 19 29.0 76.4 50.8 66.0
15 2 3 4 5 6 7 8 9 15 19 45.0 75.8 49.6 38.8
16 1 2 4 11 12 14 17 18 19 20 46.4 79.0 26.3 60.4
17 1 2 4 7 8 9 10 11 18 19 70.3 78.8 51.8 61.9
18 5 6 7 8 9 10 12 13 16 18 75.9 78.9 70.1 63.9
19 3 5 6 10 11 12 13 15 16 18 49.2 68.4 72.8 73.5
20 1 2 3 5 7 9 11 13 16 19 66.6 75.6 70.2 38.2

Table 10: 15-model combinations. Matrix showing model presence across the 20 evaluated combinations. Values
under each task report the convergence@n metric computed without a confidence interval; each value is the mean of
105 bootstrapped samples. Model identifiers are listed in Table 6.

Comb. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 AIME’24 AIME’25 HMMT’25 BrUMO’25

1 1 2 3 4 5 6 12 13 14 15 16 17 18 19 20 59.3 76.1 72.9 77.1
2 1 2 3 4 5 6 10 11 14 15 16 17 18 19 20 51.3 79.1 71.7 67.6
3 2 5 6 7 8 9 12 13 14 15 16 17 18 19 20 76.6 79.0 76.4 77.1
4 2 3 6 7 8 9 11 12 13 14 15 16 17 18 20 76.7 79.5 76.5 77.1
5 1 3 4 5 6 7 8 9 12 13 14 15 16 19 20 68.5 79.6 71.7 73.9
6 1 3 4 5 6 7 8 9 11 14 15 16 17 18 19 73.1 79.7 72.7 53.2
7 1 2 4 7 8 9 10 11 12 13 14 17 18 19 20 76.5 79.9 70.3 69.0
8 1 2 4 5 7 8 9 10 11 12 13 17 18 19 20 76.5 79.6 70.3 68.9
9 1 2 3 5 7 8 9 10 11 12 13 17 18 19 20 76.5 79.3 71.5 69.9
10 1 2 3 4 7 8 9 10 11 12 13 17 18 19 20 76.5 79.7 71.5 69.9
11 3 4 5 6 7 8 9 11 12 13 14 15 16 17 18 76.7 79.9 76.5 75.8
12 5 6 7 8 9 11 12 13 14 15 16 17 18 19 20 76.6 79.3 76.4 75.8
13 1 2 3 4 5 6 7 8 9 10 14 15 16 19 20 54.4 78.7 55.8 40.3
14 1 2 3 4 5 6 10 11 12 13 14 15 16 19 20 50.9 79.2 55.6 73.9
15 1 2 3 4 5 6 11 12 13 14 15 16 17 18 19 59.4 79.2 73.0 77.1
16 1 2 3 4 6 10 11 12 13 15 16 17 18 19 20 59.3 77.0 73.0 77.1
17 1 2 3 4 6 10 11 12 13 14 16 17 18 19 20 52.8 79.2 57.0 74.9
18 1 2 3 4 6 10 11 12 13 14 15 17 18 19 20 55.9 79.2 71.4 75.3
19 1 2 3 4 5 6 7 8 9 10 14 15 16 17 18 73.1 78.8 72.7 66.5
20 1 3 4 5 6 7 8 9 14 15 16 17 18 19 20 73.1 78.7 72.7 53.2
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