

000 DON'T PASS@K: A BAYESIAN FRAMEWORK FOR LARGE LAN- 001 002 GUAGE MODEL EVALUATION

003 004 **Anonymous authors**
 005 006 Paper under double-blind review

007 008 ABSTRACT

009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 Pass@ k is widely used to report performance for LLM reasoning, but it often yields unstable, misleading rankings, especially when the number of trials (samples) is limited and compute is constrained. We present a principled Bayesian evaluation framework that replaces Pass@ k and average accuracy over N trials (avg@ N) with posterior estimates of a model's underlying success probability and credible intervals, yielding stable rankings and a transparent decision rule for differences. Evaluation outcomes are modeled as categorical (not just 0/1) with a Dirichlet prior, giving closed-form expressions for the posterior mean and uncertainty of any weighted rubric and enabling the use of prior evidence when appropriate. Theoretically, under a uniform prior, the Bayesian posterior mean is order-equivalent to average accuracy (Pass@1), explaining its empirical robustness while adding principled uncertainty. Empirically, in simulations with known ground-truth success rates and on AIME'24/'25, HMMT'25, and BrUMO'25, the Bayesian/avg procedure achieves faster convergence and greater rank stability than Pass@ k and recent variants, enabling reliable comparisons at far smaller sample counts. The framework clarifies when observed gaps are statistically meaningful (non-overlapping credible intervals) versus noise, and it naturally extends to graded, rubric-based evaluations. Together, these results recommend replacing Pass@ k for LLM evaluation and ranking with a posterior-based, compute-efficient protocol that unifies binary and non-binary evaluation while making uncertainty explicit.

1 INTRODUCTION

Large language models (LLMs) have moved rapidly from research artifacts to everyday infrastructure (1; 2). Students use them for homework and exam preparation; developers rely on them for code synthesis and refactoring (3); analysts and clinicians use them for decision support; and agents built atop LLMs are increasingly embedded in workflows across industry and government. This demand has catalyzed unprecedented investment: specialized chips, datacenters, and startups dedicated to LLM training, serving, and tooling (4). As deployment accelerates, trust, oversight, and comparability become central: *how we evaluate LLMs* directly shapes which models are adopted, what progress is declared, and how resources are allocated (5; 6; 7; 8; 9; 10; 11).

Evaluation, however, remains the weakest link in the LLM pipeline. Alongside advances in model efficiency and compression(12; 13; 14; 15; 16; 17; 18), training and fine-tuning (PEFT/LoRA, RL-from-human-feedback) (19; 20; 11), and inference/decoding (sampling strategies, caching, efficient attention) (21; 22), the community still leans on simple, yet flawed, success rates and Pass@ k -style metrics to summarize capabilities (23). These practices are convenient but fragile. On small or costly benchmarks (e.g., math reasoning sets with only tens of problems such as AIME) (24), Pass@ k or single-run accuracy often produce unstable rankings (25; 26), are sensitive to decoding choices and seed effects (27; 25), and provide little guidance on whether observed gaps are meaningful or mere noise (28; 29). Averaging across multiple runs ("avg@ N ") helps but is compute-hungry (30), offers no unified way to handle graded/rubric outcomes, and lacks a principled decision rule for significance (28; 31; 32).

This paper takes a different approach: we treat evaluation itself as a statistical inference problem. We introduce a *posterior-based* framework that replaces Pass@ k and avg@ N with estimates of a model's underlying success probabilities and associated uncertainty (33). Outcomes are modeled as *categorical* (34) rather than purely binary: each item can yield correct, partially correct, formatting-error, refusal, or rubric-defined levels. A Dirichlet prior over these categories yields closed-form posterior means and credible intervals for any *weighted rubric*, allowing the evaluator to report both a point estimate and principled uncertainty with negligible overhead. In the binary special case under a uniform prior, its posterior mean is order-equivalent to average accuracy, explaining the empirical robustness of avg@ N while making uncertainty explicit.

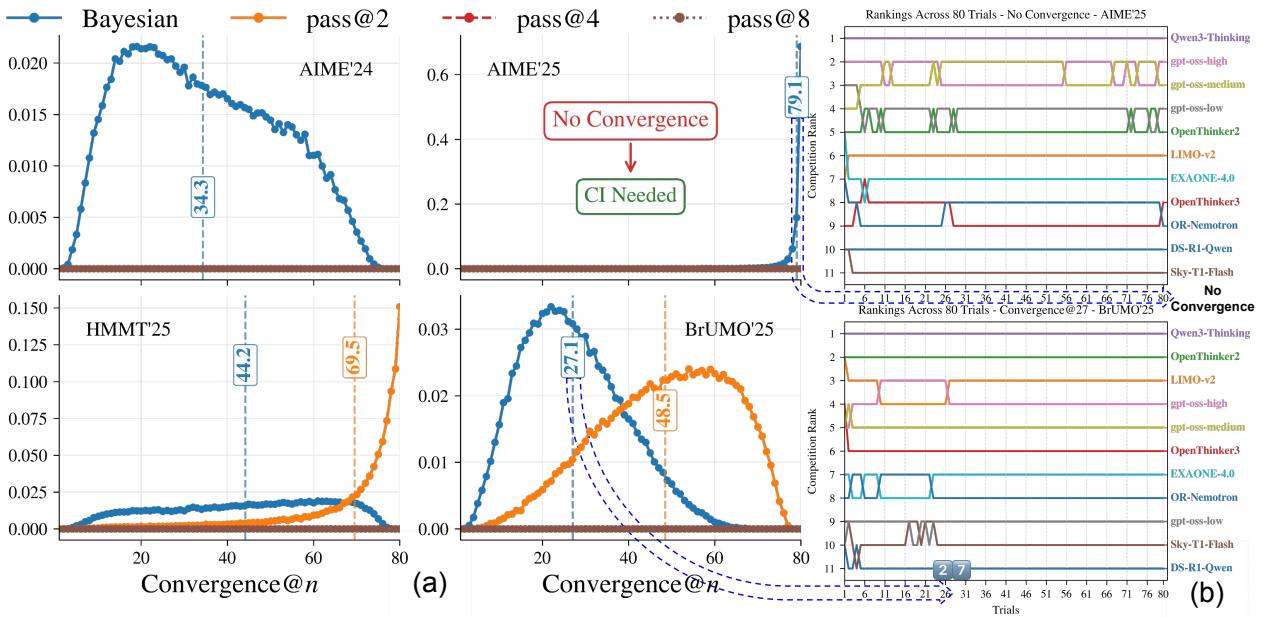


Figure 1: a) Probability mass functions (PMFs) of convergence@ n , the number of trials n above which a ranking of LLM models consistently matches the ranking using $N_{\max} = 80$ trials. Eleven LLM models (listed on the right) and four math-reasoning datasets are used—AIME’24, AIME’25, HMMT’25, and BrUMO’25—comparing Pass@2/4/8 against our Bayesian posterior evaluation (Bayes@ N). Each PMF is estimated by bootstrapping with 10^5 samples over the N_{\max} trials; vertical lines indicate the mean of each convergence distribution. On AIME’24/’25, the Pass family frequently *fails to converge*, whereas Bayes@ N converges. On HMMT and BrUMO, Pass methods converge more slowly (mean required trials ≈ 69.5 and ≈ 48.5) than Bayes@ N (≈ 44.2 and ≈ 27.1), respectively. Right: Example competition-style ranking from a single bootstrap replicate, highlighting the mean convergence for AIME’25 and BrUMO’25. Per task rankings, including worst-case replicates, are in Section I (Fig. 10).

The framework addresses *four* persistent pain points. ❶ **Convergence**: as shown in Fig. 1, we ideally want methods that can converge to the true underlying ranking with the smallest number of trials, but different approaches can have significantly different convergence speeds. ❷ **Credible intervals**: a simple, transparent rule—**do not declare a winner when intervals overlap**—reduces leaderboard churn and over-interpretation of tiny gaps by introducing a compute-efficient confidence interval (CI). Updates are analytic; one can monitor interval widths online, and allocate additional trials only when needed (no Monte Carlo/bootstrap simulations are required for CI estimation). ❸ **Categorical evaluation**: our approach unifies binary and non-binary evaluation. Graded rubrics are natural in this framework, so one can evaluate step-by-step reasoning, partial credit, or judge categories without ad hoc aggregation. ❹ **Prior information**: we can incorporate prior evidence when appropriate (e.g., reuse of stable rubric distributions across closely related tasks or versions).

We validate the approach in two settings: In controlled simulations with known ground-truth success rates, the posterior procedure converges to correct rankings with fewer samples than Pass@ k and recent variants, and it flags when ties are statistically unresolved. On real math-reasoning benchmarks (AIME’24/’25 (35; 36), HMMT’25 (37), and BrUMO’25 (38)-derived sets), we observe the same pattern: the posterior method achieves greater rank stability at far smaller sample counts than Pass@ k , while clarifying when differences are meaningful versus noise. Practically, this yields a computationally efficient protocol that is easy to implement and audit.

We summarize our contributions as follows:

- **A unified Bayesian evaluation framework.** We model per-item outcomes as categorical with a Dirichlet prior, yielding closed-form posterior means and credible intervals for *any* weighted rubric, with binary evaluation as a special case. This unifies 0/1 and graded evaluations and supports reuse of prior evidence when justified.
- **A compute-efficient, interval-aware protocol.** We provide a simple recipe: report posterior means with credible intervals; only declare differences when intervals do not overlap; adaptively allocate additional samples until intervals meet pre-specified widths. This protocol naturally supports sequential/online evaluation.
- **Empirical evidence on simulations and math benchmarks.** On synthetic data with known ground truth and on AIME’24/’25, HMMT’25, and BrUMO’25 datasets, our method achieves faster convergence and greater rank stability than Pass@ k and recent variants, enabling reliable comparisons with far fewer samples.

108 2 BAYESIAN FRAMEWORK FOR EVALUATING LLM PERFORMANCE

110 2.1 BACKGROUND: THE PASS@ k METRIC AND ITS LIMITATIONS

112 Evaluation metrics for LLMs aim to quantify performance on tasks like reasoning or programming, but they often
 113 struggle to provide reliable relative rankings across models. Pass@ k , for instance, estimates the probability of at least
 114 one correct answer within k model attempts (see Appendix G for details). While convenient, this metric exhibits
 115 high variance (39), particularly when k approaches the total number of trials, N , resulting in unstable rankings (40).
 116 Small fluctuations in correctness can distort comparisons, particularly in benchmarks with few problems or limited
 117 computational resources, raising doubts about its suitability for differentiating model capabilities. If a metric cannot
 118 consistently distinguish stronger models from weaker ones, its value as a benchmarking tool is undermined (26).

119 Estimating uncertainty in Pass@ k scores is also challenging, as it lacks closed-form expressions for variance, relying
 120 instead on computationally intensive approximations like bootstrapping. A truly effective metric should yield
 121 reliable performance rankings with a minimal number of trials, prioritizing both accuracy and efficiency in resource-
 122 constrained environments. To address these limitations, we propose a Bayesian evaluation framework that provides
 123 more stable estimates of performance, incorporates uncertainty, and facilitates robust relative comparisons across
 124 models (33; 41; 42).

126 2.2 RESULTS MATRIX

128 Consider a results matrix R for an LLM evaluated on a test set comprising M questions. Due to the stochastic nature of
 129 LLM sampling, responses may vary across independent trials, so we run the LLM N times per question. The outcomes
 130 are captured in the $M \times N$ matrix R , where element $R_{\alpha i}$ represents the score in the i th trial for the α th question. This
 131 score is an integer ranging from 0 to a maximum value C , reflecting a rating system with $C + 1$ categories. In the
 132 binary case ($C = 1$), 0 indicates an incorrect answer and 1 a correct one, though we accommodate more nuanced
 133 rubrics generally.

135 2.3 WEIGHTED PERFORMANCE METRIC

137 For the α th question, $\alpha = 1, \dots, M$, there is an underlying probability $\pi_{\alpha k}$ that the LLM’s answer falls in the k th
 138 category. We denote π_{α} as the $(C + 1)$ -dimensional vector with elements $\pi_{\alpha k}$, $k = 0, \dots, C$. If all π_{α} were known,
 139 we could calculate a desired performance metric $\bar{\pi}$ as a weighted average over these probabilities:

$$141 \quad \bar{\pi} = \frac{1}{M} \sum_{\alpha=1}^M \mathbf{w} \cdot \boldsymbol{\pi}_{\alpha} = \frac{1}{M} \sum_{\alpha=1}^M \sum_{k=0}^C w_k \pi_{\alpha k}, \quad (1)$$

145 where \mathbf{w} is a $(C + 1)$ -dimensional vector of constant weights. For example, if $w_k = k$, then $\bar{\pi}$ represents the average
 146 category label. In the case where $C = 1$, this average corresponds to the mean probability of a correct answer over the
 147 entire test set. However, we allow for a general choice of \mathbf{w} to accommodate a wide range of possible metrics.

149 2.4 BAYESIAN ESTIMATOR AND UNCERTAINTY FOR THE PERFORMANCE METRIC

151 In principle, we could estimate π_{α} by running an arbitrarily large number of trials with the LLM, yielding an accurate
 152 estimate of $\bar{\pi}$. However, we are typically constrained to small N due to limited computational resources. Our goal is to
 153 develop a Bayesian approach to estimate $\bar{\pi}$ and its associated uncertainty given a finite N . The first step is to construct
 154 $\mathcal{P}(\boldsymbol{\pi}_{\alpha} | \mathbf{R}_{\alpha})$, the posterior probability of π_{α} given the α th row of the matrix R , denoted \mathbf{R}_{α} . This posterior depends
 155 on the data in \mathbf{R}_{α} and a chosen prior distribution $\mathcal{P}(\boldsymbol{\pi}_{\alpha})$ for the unknown underlying probability vector $\boldsymbol{\pi}_{\alpha}$. The
 156 prior could be uniform (assuming no prior information) or incorporate previously gathered evidence about the LLM’s
 157 performance. The Bayesian framework focuses on two quantities: the first is the mean of $\bar{\pi}$ over the joint posterior for
 158 all questions, which we denote as $\mu(R)$. This is a Bayesian optimal estimator, minimizing the quadratic loss function
 159 $\mathcal{L}(\bar{\pi}^{\text{est}}) = \mathbb{E}_{R, \boldsymbol{\pi}_{\alpha}} (\bar{\pi}^{\text{est}}(R) - \bar{\pi})^2$ over all possible estimators $\bar{\pi}^{\text{est}}(R)$, where the expectation value is over all possible
 160 $\boldsymbol{\pi}_{\alpha}$ and realizations of R (43). The second quantity is the variance $\sigma^2(R)$, which quantifies the uncertainty of the
 161 μ estimate. Both $\mu(R)$ and $\sigma^2(R)$ have exact closed-form expressions, derived in Appendix A, and can be simply
 calculated for any R using Algorithm 1.

162 **Algorithm 1** LLM performance evaluation using the Bayes@ N framework.

```

163 function EVALUATEPERFORMANCE( $R$ ,  $[R^0]$ ,  $\mathbf{w}$ )
164   input:  $M \times N$  matrix  $R$  of results, with each element  $R_{\alpha i} = 0, \dots, C$ 
165   weight vector  $\mathbf{w} = (w_0, \dots, w_C)$  defining performance metric  $\bar{\pi}$ 
166   optional input:  $M \times D$  matrix  $R^0$  of results for prior; otherwise  $D = 0$ 
167   output: performance metric estimate  $\mu$  and associated uncertainty  $\sigma$ 
168
169    $T = 1 + C + D + N$ 
170   for  $\alpha = 1$  to  $M$  do ▷ Tally results in  $R$  and  $R^0$ 
171     for  $k = 0$  to  $C$  do
172        $n_{\alpha k} = \sum_{i=1}^N \delta_{k, R_{\alpha i}}$ 
173        $n_{\alpha k}^0 = 1 + \sum_{i=1}^D \delta_{k, R_{\alpha i}^0}$ 
174        $\nu_{\alpha k} = n_{\alpha k}^0 + n_{\alpha k}$ 
175     end for
176   end for
177    $\mu = w_0 + \frac{1}{MT} \sum_{\alpha=1}^M \sum_{j=0}^C \nu_{\alpha j} (w_j - w_0)$ 
178    $\sigma = \left[ \frac{1}{M^2(T+1)} \sum_{\alpha=1}^M \left\{ \sum_{j=0}^C \frac{\nu_{\alpha j}}{T} (w_j - w_0)^2 - \left( \sum_{j=0}^C \frac{\nu_{\alpha j}}{T} (w_j - w_0) \right)^2 \right\} \right]^{1/2}$ 
179   return  $\mu, \sigma$ 
180
181 end function

```

182 **2.5 USING UNCERTAINTY ESTIMATES TO DECIDE SIGNIFICANCE OF PERFORMANCE DIFFERENCES**

183 In general, the expressions for $\mu(R)$ and $\sigma^2(R)$ are valid for any M and N , and do not rely on asymptotic arguments
 184 like the central limit theorem (CLT). However, there are useful simplifications that occur in specific limiting cases. For
 185 example as the size of the test set M becomes large, we can derive not just the moments of the posterior distribution
 186 for $\bar{\pi}$, but also its shape, which becomes approximately Gaussian: $\mathcal{P}(\bar{\pi}|R) \sim \mathcal{N}(\mu(R), \sigma^2(R))$. This allows us to
 187 assess whether two methods exhibit a statistically significant performance difference. Consider results matrices R
 188 and R' from two approaches, with corresponding means μ, μ' and standard deviations σ, σ' . The distribution of the
 189 performance difference $\Delta\bar{\pi} \equiv \bar{\pi} - \bar{\pi}'$ is a convolution of the individual posteriors, yielding another normal distribution:
 190 $\mathcal{P}(\Delta\bar{\pi}|R, R') \sim \mathcal{N}(\tilde{\mu}, \tilde{\sigma}^2)$, where the mean of the difference is $\tilde{\mu} = \mu - \mu'$, and the standard deviation is $\tilde{\sigma} =$
 191 $\sqrt{\sigma^2 + (\sigma')^2}$. To determine our confidence in the ranking of the two methods, we need to determine the probability
 192 that $\text{sign}(\Delta\bar{\pi}) = \text{sign}(\mu - \mu')$. This can be done by calculating the absolute z -score, $z = |\mu - \mu'| / \sqrt{\sigma^2 + (\sigma')^2}$.
 193 The probability that the ranking based on μ and μ' is correct (the ranking confidence ρ) is given by $\rho = (1/2)(1 +$
 194 $\text{erf}(z/\sqrt{2}))$. For example $z = 1.645$ corresponds to $\rho = 0.95$.

195 **2.6 EQUIVALENCE OF BAYESIAN AND AVERAGE RANKINGS FOR UNIFORM PRIOR**

196 In the results below, we will denote ranking based on the Bayesian estimator μ with a uniform prior as Bayes@ N .
 197 Because μ is related to a naive weighted average accuracy via a positive affine transformation, it turns out the ranking
 198 based on the average, denoted as avg@ N , is identical to Bayes@ N (for the detailed proof, see Appendix B). In the
 199 large-trial limit $N \rightarrow \infty$, the value of μ approaches the average, as expected, but the ranking equivalence holds at
 200 all finite N . This relationship also extends to uncertainty quantification, where the standard deviation of the average
 201 relates to the Bayesian standard deviation σ by a scaling factor, providing a concrete method to compute uncertainty
 202 in the average without relying on the Central Limit Theorem (CLT). This is particularly advantageous in small-sample
 203 regimes common in LLM evaluations, where CLT-based methods often underestimate uncertainty and produce invalid
 204 intervals (e.g., extending beyond $[0,1]$ or collapsing to zero) (44). As highlighted by (44), Bayesian approaches with
 205 uniform priors (e.g., Beta(1,1) in the binary case) yield well-calibrated credible intervals even for datasets with fewer
 206 than a few hundred datapoints, outperforming CLT approximations in coverage and handling complex structures like
 207 clustered data.

208 **2.7 GOLD STANDARD FOR RANKING**

209 Strictly speaking, the underlying true ranking of LLMs for a particular performance metric $\bar{\pi}$ is unknown, because it
 210 would require determining the infinite trial limit, $\bar{\pi} = \lim_{N \rightarrow \infty} \mu$, for each LLM. In practice, we have to settle for
 211 an approximation to $\bar{\pi}$, calculated at some large but finite value $N = N_{\max}$ (for example $N_{\max} = 80$ in our LLM

216 experiments). Specifically we will use Bayes@ N_{\max} —which is the same as the ranking based on avg@ N_{\max} —as our
 217 “gold standard” or reference ranking. In other words, rankings using smaller N will be compared to this gold standard
 218 to assess their accuracy.

219 For this comparison, we employ Kendall’s τ , a nonparametric correlation coefficient that measures ordinal agreement
 220 between two rankings by comparing the number of concordant and discordant pairs of models. The coefficient ranges
 221 from -1 (perfect inversion) to $+1$ (perfect agreement), with 0 indicating no association. We specifically use the τ_b
 222 variant, which properly accounts for ties in the rankings (e.g., the intentional tie in our simulation below), ensuring that
 223 equivalences do not artificially inflate the correlation. See Appendix H.1 for further discussion and formal definitions.

224 To validate our claims about the gold standard as Bayes@ N_{\max} , specifically to determine which evaluation methods
 225 converge to the true ranking, we conduct a simulation using biased coins as a metaphor for LLMs. In this
 226 setup, we already know the underlying performance distribution (the success probabilities π_α for each question),
 227 allowing us to establish a known ground truth $\bar{\pi}$. We generate 11 sets of these 30 probabilities, with $\bar{\pi}$ values of
 228 $[0.2332, 0.2545, 0.3604, 0.3642, 0.3642, 0.4466, 0.5418, 0.5276, 0.608, 0.6213, 0.7327]$, representing different LLMs
 229 (note the tie at 0.3642 to test handling of equivalent performances). We run experiments for $M = 30$ questions, where
 230 each LLM “answers” all the questions in each trial according to its success probabilities $\pi_{\alpha 1}$. Panel (a) of Fig. 2 shows
 231 results without bootstrapping: we generate 1000 independent R matrices, each with 80 trials; for each step in the
 232 number of trials (from $N = 1$ to 80), we compute scores using Pass@ k ($k = 2, k = 4$, and $k = 8$ with an unbiased
 233 estimator Eq. (21)), Bayes@ N , a naive Pass \hat{k} variant ($1 - (1 - \hat{p})^k$, Eq. (22)), G-Pass@ $k_{\tilde{\tau}}$ (Eq. (23) with $\tilde{\tau} = 0.5$), and
 234 mG-Pass@ k (Eq. (24)), then derive rankings and compare them to the gold standard using Kendall’s τ as a measure of
 235 rank correlation (where $\tau = 1$ indicates perfect alignment with the gold standard), and report the average τ over the
 236 1000 R matrices. Note that we do not explicitly show average accuracy avg@ N because it is equivalent to Bayes@ N ,
 237 as discussed in section 2.6. In practice, we are computationally limited to a small number of trials per question. To
 238 examine what happens with only $N = 80$ trials, we apply two methods of bootstrapping with replacement to the R
 239 matrix, allowing us to estimate how results differ from the ideal case with a large number of independent R matrices
 240 (panel a). For both methods, we generate 10,000 bootstrap replicates for each of the $N = 1$ to 80 trials, derived from
 241 a single R matrix. Panels (b) and (c) of Fig. 2 illustrate this using two bootstrapping schemes. In the first scheme
 242 (panel b, column-wise bootstrapping), we resample trial indices; in the second (panel c, row-wise bootstrapping), we
 243 resample answers independently for each question. In both cases, the resulting bootstrap replicates are used to recom-
 244 pute evaluation scores, rankings, and τ values, which are then averaged to produce smoothed convergence curves. The
 245 two bootstrapping approaches yield nearly identical behavior, and both closely match the baseline in panel (a). This
 246 demonstrates that the τ convergence behavior is robust and not sensitive to the ordering of answers in either the rows
 247 or columns of R . Though in our LLM mimic simulations, we do not have to use bootstrapping (since we can easily
 248 generate an arbitrarily large number of R matrices), in actual LLM experiments, we have limited trial data, and these
 249 results show that bootstrapping provides a viable way of estimating statistical properties like convergence.

250 As seen in Fig. 2, Bayes@ N begins with relatively high agreement with the gold standard and converges much faster
 251 to $\tau = 1$ than Pass@ k and its variants, which suffer from greater variance and bias at small N . All methods eventually
 252 converge to the same ranking, but their rates of convergence differ substantially. This makes the convergence rate a
 253 crucial factor when choosing between different LLM evaluation methods. While we focus here on uniform priors, even
 254 faster convergence can be achieved by incorporating information from correlated models (e.g., base, older, or quantized
 255 versions) through non-uniform priors. We provide a preliminary demonstration of this potential using synthetic data
 256 in Appendix C.

257 2.7.1 RANKING WITH UNCERTAINTY

258 In section 2.5, we described how uncertainty estimates from the Bayesian approach can be used to evaluate the relative
 259 performance of two models. Here, we extend these ideas to incorporate uncertainty into the ranking of multiple
 260 models. We do this via our biased-coin LLM mimics, which we denote LLM_β for $\beta = 1, \dots, 11$, described in the
 261 previous section. To incorporate a chosen confidence interval in the ranking, we order their μ values from highest to
 262 lowest, choose the appropriate z threshold (for example $z = 1.645$ for 95% confidence in the ranking), and assign two
 263 consecutive methods the same ranking if the absolute z -score falls below this threshold.

264 The first row of Table 1 shows the underlying gold standard ranking for all the LLM mimics, since in this case we
 265 know the true $\bar{\pi}$ values. Note the tie between LLM_4 and LLM_5 , because their $\bar{\pi} = 0.3642$ is the same. The second
 266 row shows the Bayes@80 ranking without a confidence interval (CI) and the third row shows Bayes@80 incorporating
 267 the 95% CI. The Bayes@80 ranking without CI aligns with the gold standard, except for two differences: the order
 268 of LLM_{10} and LLM_9 is swapped, and the tie between LLM_5 and LLM_4 is not captured, which is expected since this
 269 ranking relies solely on μ estimates without accounting for uncertainty σ . In contrast, the third row, which incorporates
 270 the CI, reveals multiple ties across several models. Interestingly, LLM_{10} and LLM_9 are now indistinguishable at the

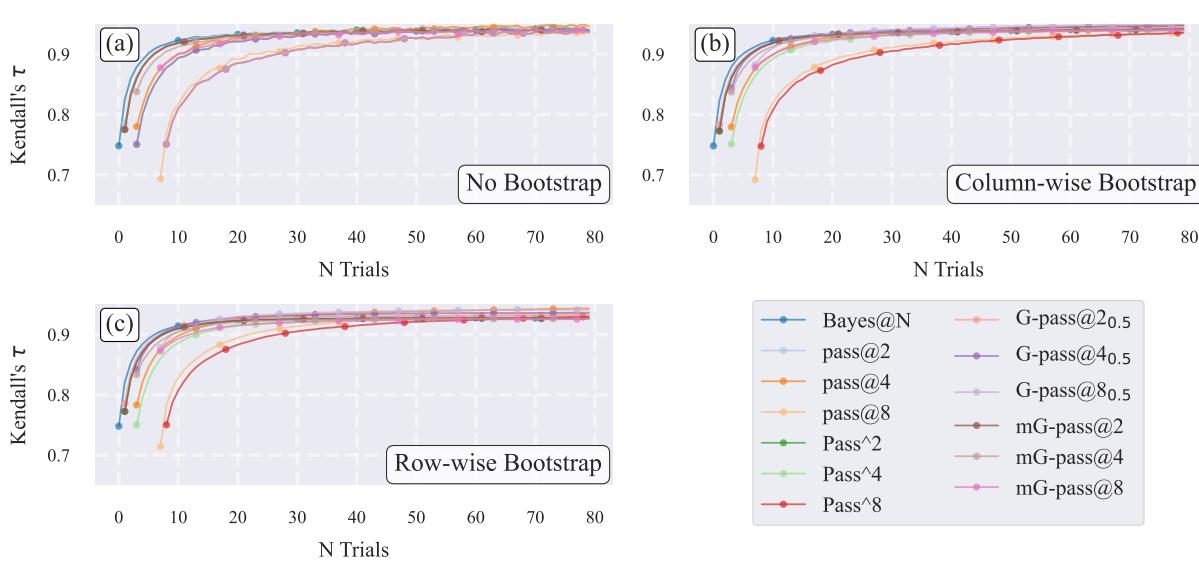


Figure 2: Kendall’s τ rank correlation for various evaluation methods compared to the true ranking of 11 sets of biased coins (LLM mimics) with known mean success probabilities $\bar{\pi} = 0.2332, 0.2545, 0.3604, 0.3642, 0.3642, 0.4466, 0.5418, 0.5276, 0.608, 0.6213, 0.7327$. The simulation evaluates methods including Pass@ k ($k = 2, 4, 8$), Bayes@ N , naive Pass k , G-Pass@ $k_{\tilde{\tau}} (\tilde{\tau} = 0.5)$, and mG-Pass@ k across 1 to 80 trials. Panel a) shows τ results without bootstrapping, while panels b) and c) use two different bootstrapping approaches with 10^4 samples.

95% CI. Despite the fact that $N = 80$ would be an atypically large number of trials for an actual LLM evaluation, it is insufficient to confidently distinguish the small performance difference ($\bar{\pi} = 0.608$ vs. 0.6213) between the two models. In Appendix D we show that it would actually require increasing N by a factor of 3 to achieve 95% CI, highlighting the difficulties of reliably ranking models with similar performance.

Table 1: Comparison of biased-coin LLM mimic rankings based on the gold standard, Bayes@80 without confidence interval (CI), and Bayes@80 with CI.

LLM mimic	LLM ₁₁	LLM ₁₀	LLM ₉	LLM ₈	LLM ₇	LLM ₆	LLM ₅	LLM ₄	LLM ₃	LLM ₂	LLM ₁
Gold Standard	1	2	3	5	4	6	7	7	8	9	10
Bayes@80 (w/o CI)	1	3	2	5	4	6	7	8	9	10	11
Bayes@80 (w/ CI)	1	2	2	3	3	4	5	5	5	6	7

3 EXPERIMENTS

In this section, we empirically validate our proposed evaluation methods using real-world datasets, focusing on ranking LLMs for mathematical reasoning tasks. We employ bootstrapping to compute the expected value of each evaluation score at a given N . First, we present rankings of LLMs on the AIME’24, AIME’25, BrUMO’25, and HMMT’25 datasets without accounting for variance, based solely on evaluation scores (with ties occurring when scores are identical). Subsequently, we demonstrate how incorporating uncertainty in these scores can alter rankings across different datasets. Building on the discussion in section 2.7, we adopt the ranking derived from avg@80 (Pass@1) or Bayes@80 (uniform prior Bayesian estimator) at $N = 80$ (the total number of trials conducted per dataset) as our gold standard for comparing current LLMs, noting their equivalence in rankings (as proven in Section 2.6). For each N from 1 to 80 (with Pass@ k and similar methods starting from $N = k$ to avoid computation with insufficient samples), we compare the rankings produced by various evaluation methods against this gold standard, reporting the average Kendall’s τ over 10^4 bootstrapped resamples to estimate the expected rank correlation at each step (assuming independence among questions and trials).

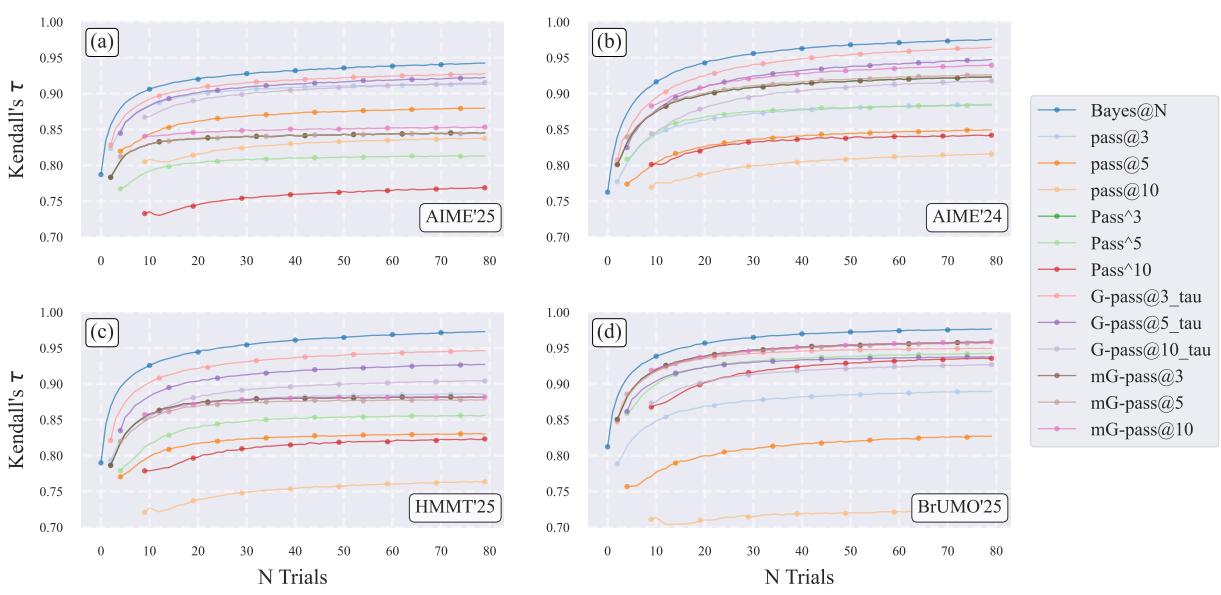


Figure 3: Average Kendall’s τ correlation between rankings produced by various evaluation methods and the gold standard (derived from Bayes@80, or equivalently avg@80), as a function of the number of trials N . Results are averaged over 10^4 bootstrapped resamples for each dataset: (a) AIME’25, (b) AIME’24, (c) HMMT’25, and (d) BrUMO’25. Methods include Bayesian estimation Bayes@ N , Pass@ k ($k = 2, 4, 8$), naive Pass k , G-Pass@ $k_{\tilde{\tau}}$ ($\tilde{\tau} = 0.5$), and mG-Pass@ k .

3.1 CONVERGENCE TO GOLD STANDARD

To assess the ability of different evaluation methods to compare the performance of different LLMs, we plot the average Kendall’s τ against the gold standard as a function of the number of trials N in Fig. 3, combining results from AIME 2025 (panel a), AIME 2024 (panel b), HMMT’25 (panel c), and BrUMO’25 (panel d). Across all datasets, the Bayes@ N and avg@ N curves overlap completely (so we only plot Bayes@ N) and demonstrate the fastest convergence to high τ values, indicating robust alignment with the gold standard even in low-sample regimes. In all four datasets, Bayes@ N reaches $\tau > 0.90$ by $N = 10$ and approaches $\tau \approx 1$ at $N \approx 80$. The only exception is AIME’25, where $\tau > 0.90$ is achieved by $N = 10$, but the curve converges to $\tau \approx 0.95$ at $N = 80$.

In contrast, Pass@ k variants ($k = 2, 4, 8$) and their variations (e.g., naive Pass k , G-Pass@ $k_{\tilde{\tau}}$ with $\tilde{\tau} = 0.5$, mG-Pass@ k) start with lower Kendall’s τ compared to Bayes@ N and converge more slowly in all four datasets. At every N , Bayes@ N consistently shows faster convergence and higher agreement with the gold standard. These findings align with our biased-coin simulations in Section 2.7, demonstrating that the Bayesian method best satisfies the gold-standard criteria—low uncertainty, minimal ties, and rapid convergence—across diverse mathematical reasoning benchmarks.

3.2 RANKINGS WITH CONFIDENCE INTERVALS

Following the methodology of section 2.7.1, we compare model rankings across four datasets (AIME’25, AIME’24, HMMT’25, and BrUMO’25) using Bayes@80 as the gold standard (see Fig. 3). Table 2 summarizes these comparisons by reporting, for each dataset, two versions of the ranking: the rank *with* a 95% confidence interval (CI) and the rank *without* CI. The “w/ CI” rank accounts for uncertainty in the Bayes@80 scores and therefore allows models with overlapping CIs to share the same rank; the “w/o CI” rank is the strict ordering determined by the point estimates of Bayes@80 for that dataset.

Table 2 indicates that point-estimate rankings diverge from those accounting for confidence intervals. Qwen3-30B-A3B-Thinking-2507 and Qwen3-4B-Thinking-2507 consistently secure the top positions across all four datasets; specifically, the dominance of the 30B model is statistically distinguishable at the 95% CI level in every case. Conversely, the relative ordering of the remaining models varies by dataset.

When incorporating 95% CIs, we observe that while all four datasets exhibit five tied groups, the extent of ambiguity varies significantly. AIME’25 yields the fewest distinct ranks (up to 11), followed by AIME’24 (up to 13), and both HMMT’25 and BrUMO’25 (up to 14). This compression of ranks indicates greater uncertainty in the Bayes@80 gold standard for AIME’25 (due to more extensive ties) compared to the others under our current trial budget. Intuitively, this higher uncertainty in AIME’25’s gold-standard scores implies that more additional trials would be required for that dataset to empirically produce a statistically stable ranking; conversely, we can be more confident in the estimated gold standards for AIME’24, HMMT’25, and BrUMO’25 given the current number of trials. This distinction also explains why AIME’25 reaches a Kendall’s τ of 0.95 at $N = 80$, whereas the other three datasets converge to ~ 1 at the same sample size in Fig. 3.

Table 2: Rankings for four datasets. Models are listed in the order of their gold-standard ranking (Bayes@80 point estimates, i.e., without uncertainty) for AIME’25. Each dataset column gives the rank with a 95% confidence interval (left) and the rank without CI (right).

Model	AIME’25		AIME’24		HMMT’25		BrUMO’25	
	w/ CI	w/o CI	w/ CI	w/o CI	w/ CI	w/o CI	w/ CI	w/o CI
Qwen3-30B-A3B-Thinking-2507	1	1	1	1	1	1	1	1
Qwen3-4B-Thinking-2507	2	2	2	2	2	2	2	2
gpt-oss-20b-high	3	3	3	5	3	4	6	11
gpt-oss-20b-medium	3	4	3	3	2	3	7	12
Phi-4-reasoning-plus	3	5	3	4	3	5	3	5
AceReason-Nemotron-1.1-7B	4	6	5	9	4	6	3	4
Phi-4-reasoning	5	7	5	10	5	8	4	7
gpt-oss-20b-low	5	8	6	12	11	17	11	17
OpenThinker2-32B	5	9	4	8	5	7	2	3
Light-R1-14B-DS	5	10	4	6	6	11	4	8
FuseO1-DeepSeekR1-QwQ-SkyT1-Flash-32B	5	11	4	7	6	9	3	6
NVIDIA-Nemotron-Nano-9B-v2	6	12	6	11	6	10	5	10
LIMO-v2	6	13	7	13	7	12	5	9
EXAONE-4.0-1.2B	7	14	8	14	7	13	10	15
OpenR1-Distill-7B	7	15	9	15	10	16	8	13
OpenThinker3-1.5B	8	16	10	16	8	14	9	14
OpenReasoning-Nemotron-1.5B	8	17	11	17	9	15	10	16
DeepSeek-R1-Distill-Qwen-1.5B	9	18	12	19	12	18	13	19
Sky-T1-32B-Flash	10	19	12	18	13	19	12	18
Bespoke-Stratos-7B	11	20	13	20	14	20	14	20

3.3 CONVERGENCE

In this section, we investigate the convergence of model rankings, building on the showcase figure (Fig. 1). We define convergence@ n as the smallest trial n at which the ranking induced by the first n trials matches the *gold standard* ranking from all 80 trials (without bootstrapping) and remains unchanged thereafter.

Lower convergence@ n values indicate that fewer trials are sufficient to achieve stable rankings. As detailed in the caption of Fig. 1, the figure displays the probability mass functions (PMFs) of convergence@ n for each method across the datasets. These PMFs are empirically estimated by generating 10^5 column-wise bootstrap replicates through resampling the N_{\max} trials, then for each replicate, cumulatively evaluating the ranking at every N (from 1 to 80) and identifying the minimal n where the ranking stabilizes to the *gold standard*. This process captures the distribution of convergence points under repeated sampling, reflecting the inherent uncertainty in finite-sample rankings due to stochastic trial outcomes.

This bootstrapping approach provides a distribution over possible convergence points (n), offering insights into the variability and reliability of each evaluation method: Pass@ k (for $k = 2, 4, 8$) versus our Bayes@ N . A lower mean convergence@ n signifies more cost-effective convergence, while failure to converge within 80 trials (as seen in AIME’25) indicates more trials are needed to *confidently* rank LLMs or we must include CI for a reliable ranking.

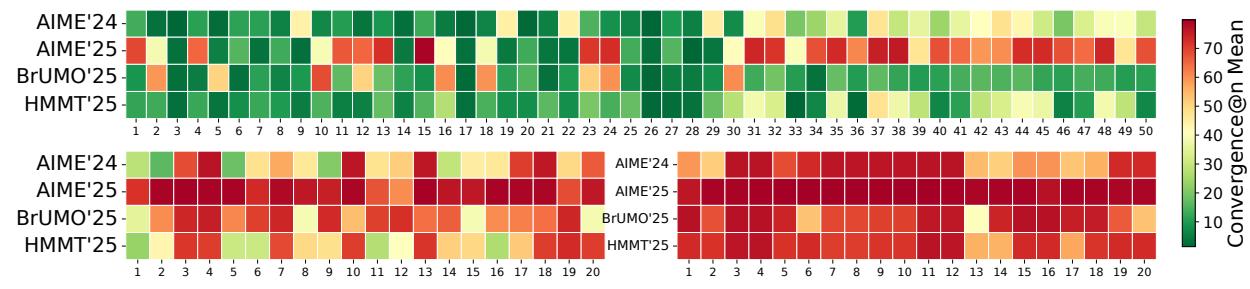


Figure 4: **Convergence@ n without CI.** Mean convergence@ n across model combinations for AIME’24, AIME’25, HMMT’25, and BrUMO’25. **Top:** 50 combinations of 5 models. **Bottom-left:** 20 combinations of 10 models. **Bottom-right:** 20 combinations of 15 models. Color indicates the mean convergence@ n over 10^5 bootstrap replicates (green: fast convergence; red: slow convergence).

The key takeaways from Fig. 1, as summarized in its caption, underscore the superiority of the Bayes@ N : it converges reliably on all datasets except AIME’25, often with fewer trials than Pass@ k . For instance, on HMMT’25 and BrUMO’25, Bayes@ N achieves mean convergence at approximately 44.2 and 27.1 trials, respectively, compared to around 69.5 and 48.5 for the best scores of Pass@ k family. The right panel of the figure further illustrates this through an example ranking from a bootstrap replicate, emphasizing differences in convergence for AIME’25 and BrUMO’25. See Section I Fig. 9 for the corresponding cumulative distribution functions (CDFs).

Worst-case scenarios To further distinguish the Bayes@ N framework from avg@ N , we analyze the *worst-case* bootstrap replicates, i.e., those that either require the maximum number of trials to stabilize the rankings or fail to converge. For 11 LLMs, Fig. 10 shows these trajectories as competition rankings, with each line tracing a model’s rank as trials accumulate; convergence is defined as the point at which the ranking order remains unchanged for all subsequent trials. In AIME’24 (panel a) the ranking converges at trial 75, in BrUMO’25 (panel c) at trial 68, and in HMMT’25 (panel d) at trial 78, whereas in AIME’25 (panel b) no convergence is observed within 80 trials, underscoring persistent instability and the need for additional trials or Bayes@ N ’s confidence intervals. When a ranking does not converge within the trial budget (as for AIME’25 in Fig. 1) only Bayes@ N can be used to quantify uncertainty and estimate the minimum N required for a reliable ranking (see section 2.7.1).

This situation becomes even more severe as more models are included. As shown in Fig. 11, when the number of models is increased to $L = 20$, none of the datasets exhibit convergence. To examine convergence as a function of L more systematically, we consider a pool of 20 LLMs (Table 6) and construct 50 subsets of 5 models (Table 8), 20 subsets of 10 models (Table 9), and 20 subsets of 15 models (Table 10). For each subset, we generate 10^5 bootstrap replicates to estimate convergence@ n . Fig. 4 reports the resulting convergence@ n values across all subsets and replicates, showing that as the number of models increases, evaluation methods such as avg@ N and the Pass@ k family become unreliable for estimating model abilities and producing stable rankings.

3.4 RUBRIC-AWARE CATEGORICAL EVALUATION

While evaluation is often reduced to binary correctness, this simplification discards valuable signals that capture other aspects of model behavior. For instance, LLM outputs can be assessed not only on correctness but also on whether they are well-structured, coherent, or exhibit step-by-step reasoning in mathematical tasks. In practice, evaluators routinely record richer dimensions such as format compliance, calibration of confidence, degenerate outputs, out-of-distribution (OOD) behavior, and verifier scores. This limitation is especially important for reasoning models, where overthinking (45) inflates token usage without corresponding gains in reliability. Bayes@ N provides a principled way to capture these richer outcomes. By treating per-item results as categorical rather than binary, the approach aligns more closely with actual goals while preserving statistical rigor and transparency. This method enables a nuanced understanding of model performance across diverse dimensions, offering insights into trade-offs between correctness, efficiency, and robustness. For a comprehensive discussion of the categorical Bayesian evaluation framework, including base signals, schema definitions, and their impact on model rankings, see Appendix F.

486
487
488 Table 3: Comparison of the Bayesian framework and other evaluation methods.
489
490
491
492
493

Methods (N trials)	Convergence	Confidence interval	Prior knowledge	Categorical
Pass@ k and alternatives	✗	✗	✗	✗
avg@ N	✓	Limited (via bootstrap/binomial CIs)	✗	✗
Bayes@ N	✓ (Sec.3.3, Figs. 1 and 4)	✓ (Fig. 6, Table 1,2)	✓ (Sec. C)	✓ (Sec.3.4)

494
495
496 4 RELATED WORK
497
498
499
500
501
502
503

Functional-correctness evaluation with Pass@ k became standard in code generation with HumanEval (OpenAI Codex): generate k samples, a task is solved if any sample passes unit tests, and estimate the overall rate with an unbiased estimator that requires producing $n > k$ samples per task (40). Although Pass@ k was initially introduced in the context of coding, it later became the de facto choice to evaluate LLMs not only on math reasoning tasks (46; 47; 48; 49; 50; 51; 52; 53; 54; 55) but also on safety evaluations spanning agent red-teaming, jailbreaks, and backdoor analyses (56; 57; 58; 59; 60; 61). For a broader review of these metrics and their variants, see Appendix G. Beyond standard Pass@ k , pass^k quantifies reliability across k i.i.d. trials for agents, while the generalized G -pass@ k_τ continuum (and its area-under- τ summary mG -Pass) jointly assess potential and stability in reasoning outputs (62; 54; 63).

Efforts like HELM advance holistic, transparent evaluation across scenarios and metrics (5), while practice guidelines distill reproducibility pitfalls and prescribe multi-run, uncertainty-aware reporting with fixed prompts, decoding, and dataset/version control (64). The LM Evaluation Harness offers standardized, reproducible frameworks to implement these recommendations (64). It addresses the need for calibrated uncertainty in small-sample reasoning by employing exact methods for error quantification in binomial settings.

The last category of related work focuses on measuring uncertainty in LLM evaluation. These works converge on interval-aware, small-sample-valid reporting rather than CLT/Wald error bars. Bowyer et al. show that CLT-based intervals *miscalibrate* on small benchmarks and advocate small- n -appropriate frequentist or Bayesian intervals for reliable comparisons (44). A Bayesian alternative models capability as a latent success probability and reports posterior credible intervals that remain informative with limited trials, yielding more stable rankings (33). In judge-based settings, *Judging LLMs on a Simplex* places model and judge behavior on the probability simplex, enabling uncertainty-aware comparisons and highlighting how distributional structure matters for evaluation (65). Beyond bespoke LLM metrics, prediction-powered inference supplies general procedures for valid confidence intervals that leverage model predictions to reduce labeled-sample requirements (66). Finally, in adjacent retrieval evaluation with LLM-generated assessments, Oosterhuis et al. construct reliable confidence intervals and demonstrate that calibrated uncertainty, rather than point estimates, should guide decisions, reinforcing this shift for LLM evaluation more broadly (67).

520
521 5 CONCLUSION: STRENGTHS, LIMITATIONS & FUTURE DIRECTIONS
522
523

524 The overall benefits of the Bayesian framework are summarized in Table 3: it provides fast convergence, analytical
525 estimates of confidence intervals, and incorporation of prior knowledge and categorical results. However it is worth
526 noting that our approach quantifies *statistical* uncertainty from finite samples; it does not fix dataset bias, distribution
527 shift, or rubric misspecification. Results therefore depend on the chosen benchmark, prompts, and inference settings
528 (hardware). Although we have validated our approach with biased-coin LLM mimic simulations, together with experiments
529 using actual LLMs (up to $N_{\max} = 80$ trials across four tasks and 20 models), more extensive evaluations may
530 be constrained by computing and academic budgets.

531 The focus of the current work was the simplest version of the Bayesian approach, using a uniform prior, which provides
532 a conservative and reproducible starting point. But the theory allows for more complex, informative priors, and this
533 opens up a rich vein of future directions that should be systematically explored: for example priors from past runs,
534 domain- or task-conditioned priors, and expert-elicited priors. These have the potential of accelerating convergence
535 even further, but must be chosen and reported carefully. Clear guidance and tools for prior elicitation will hopefully
536 ensure that gains in sample efficiency do not come at the cost of hidden bias.

540 ETHICS STATEMENT
541

542 This research relies only on publicly available, non-personal benchmarks; no human subjects, user data, or PII are
543 involved. Potential misuse includes cherry-picking priors, rubrics, or samples to exaggerate performance. To pre-
544 vent this, use of Bayes@ N with user-defined priors requires clear documentation and reporting of posterior credible
545 intervals.

546
547 REPRODUCIBILITY STATEMENT
548

549 To ensure reproducibility, detailed implementation instructions are provided in Appendix H.
550

551
552 REFERENCES

- 553 [1] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser,
554 and Illia Polosukhin. Attention is all you need. In *Advances in Neural Information Processing Systems*, 2017.
555 URL <https://arxiv.org/abs/1706.03762>.
- 556 [2] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
557 wal, et al. Language models are few-shot learners. In *Advances in Neural Information
558 Processing Systems*, 2020. URL <https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf>.
- 559 [3] StackOverflow. Stack Overflow Developer Survey 2025: AI and Developer Tools, 2025. URL <https://survey.stackoverflow.co/2025/ai>. Accessed: 2025-09-24.
- 560 [4] Nestor Maslej, Loredana Fattorini, Raymond Perrault, Yolanda Gil, Vanessa Parli, Njenga Kariuki, Emily Cap-
561 stick, Anka Reuel, Erik Brynjolfsson, John Etchemendy, et al. Artificial intelligence index report 2025. *arXiv
562 preprint arXiv:2504.07139*, 2025.
- 563 [5] Percy Liang, Rishi Bommasani, et al. Holistic evaluation of language models. *arXiv:2211.09110*, 2022. URL
564 <https://arxiv.org/abs/2211.09110>.
- 565 [6] Dan Hendrycks, Collin Burns, Steven Basart, et al. Measuring massive multitask language understanding. In
566 *International Conference on Learning Representations (ICLR)*, 2021. URL <https://arxiv.org/abs/2009.03300>.
- 567 [7] Aarohi Srivastava, Abhinav Rastogi, et al. Beyond the Imitation Game: Quantifying and Extrapolating the
568 Capabilities of Language Models (BIG-bench). *arXiv:2206.04615*, 2022. URL <https://arxiv.org/abs/2206.04615>.
- 569 [8] Jared Kaplan, Sam McCandlish, Tom Henighan, et al. Scaling laws for neural language models.
570 *arXiv:2001.08361*, 2020. URL <https://arxiv.org/abs/2001.08361>.
- 571 [9] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, et al. Training compute-optimal large language models.
572 *arXiv:2203.15556*, 2022. URL <https://arxiv.org/abs/2203.15556>.
- 573 [10] Jason Wei, Xuezhi Wang, Dale Schuurmans, et al. Chain-of-thought prompting elicits reasoning in large language
574 models. In *Advances in Neural Information Processing Systems*, 2022. URL https://openreview.net/pdf?id=_VjQlMeSB_J.
- 575 [11] Long Ouyang, Jeff Wu, Xu Jiang, et al. Training language models to follow instruc-
576 tions with human feedback. In *Advances in Neural Information Processing Systems*,
577 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf.
- 578 [12] Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. LLM.int8(): 8-bit Matrix Multiplication for
579 Transformers at Scale, 2022. URL <https://arxiv.org/abs/2208.07339>.
- 580 [13] Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. GPTQ: Accurate post-training quantization
581 for generative pre-trained transformers, 2022. URL <https://arxiv.org/abs/2210.17323>.

- 594 [14] Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections
 595 for efficient neural networks. In *NeurIPS*, 2015. URL <https://papers.nips.cc/paper/5784-learning-both-weights-and-connections-for-efficient-neural-network.pdf>.
- 596
- 597 [15] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network, 2015. URL
 598 <https://arxiv.org/abs/1503.02531>.
- 599
- 600 [16] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E. Gonzalez,
 601 Hao Zhang, and Ion Stoica. Efficient memory management for large language model serving with PagedAttention.
 602 In *SOSP*, 2023. URL <https://arxiv.org/abs/2309.06180>.
- 603
- 604 [17] Tianyi Zhang, Jonah Yi, Zhaozhuo Xu, and Anshumali Shrivastava. Kv cache is 1 bit per
 605 channel: Efficient large language model inference with coupled quantization. In A. Globerson,
 606 L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang, editors, *Advances in Neural
 607 Information Processing Systems*, volume 37, pages 3304–3331. Curran Associates, Inc., 2024.
 608 URL https://proceedings.neurips.cc/paper_files/paper/2024/file/05d6b5b6901fb57d2c287e1d3ce6d63c-Paper-Conference.pdf.
- 609
- 610 [18] Hailin Zhang, Xiaodong Ji, Yilin Chen, Fangcheng Fu, Xupeng Miao, Xiaonan Nie, Weipeng Chen, and Bin
 611 Cui. Pqcache: Product quantization-based kvcache for long context llm inference. *Proc. ACM Manag. Data*, 3
 612 (3), June 2025. doi: 10.1145/3725338. URL <https://doi.org/10.1145/3725338>.
- 613
- 614 [19] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
 615 Chen. LoRA: Low-Rank Adaptation of Large Language Models. *arXiv preprint arXiv:2106.09685*, 2021. URL
 616 <https://arxiv.org/abs/2106.09685>.
- 617
- 618 [20] Paul F. Christiano, Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep reinforcement
 619 learning from human preferences. In *NeurIPS*, 2017. URL <https://arxiv.org/abs/1706.03741>.
- 620
- 621 [21] Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text degeneration.
 622 *arXiv preprint arXiv:1904.09751*, 2019.
- 623
- 624 [22] Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. *arXiv preprint
 625 arXiv:2307.08691*, 2023.
- 626
- 627 [23] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, et al. Evaluating large language models trained on code,
 628 2021. URL <https://arxiv.org/abs/2107.03374>.
- 629
- 630 [24] American Invitational Mathematics Examination (AIME) — official description. Mathematical Association
 631 of America, 2025. URL <https://maa.org/maa-invitational-competitions/>. 15 questions,
 632 3 hours.
- 633
- 634 [25] Andreas Hochlehnert, Hardik Bhatnagar, Vishaal Udandarao, Samuel Albanie, Ameya Prabhu, and Matthias
 635 Bethge. A sober look at progress in language model reasoning: Pitfalls and paths to reproducibility. *arXiv
 636 preprint arXiv:2504.07086*, 2025.
- 637
- 638 [26] Junnan Liu, Hongwei Liu, Linchen Xiao, Ziyi Wang, Kuikun Liu, Songyang Gao, Wenwei Zhang, Songyang
 639 Zhang, and Kai Chen. Are your llms capable of stable reasoning? *arXiv preprint arXiv:2412.13147*, 2024.
- 640
- 641 [27] Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text degeneration.
 642 In *ICLR*, 2020. URL <https://openreview.net/forum?id=rygGQyrFvH>. *arXiv:1904.09751* (2019).
- 643
- 644 [28] Rotem Dror, Gili Baumer, Segev Shlomov, and Roi Reichart. The Hitchhiker’s Guide to Testing Statistical
 645 Significance in NLP. In *ACL*, pages 1383–1392, 2018. URL <https://aclanthology.org/P18-1128/>.
- 646
- 647 [29] Alexander Yeh. More accurate tests for the statistical significance of result differences. In *COLING*, 2000. URL
 648 <https://aclanthology.org/C00-2137/>.
- 649
- 650 [30] Jesse Dodge, Suchin Gururangan, Dallas Card, Roy Schwartz, and Noah A. Smith. Show your work: Im-
 651 proved reporting of experimental results. In *EMNLP-IJCNLP*, 2019. URL <https://aclanthology.org/D19-1224/>.
- 652
- 653 [31] Lianmin Zheng, Wei-Lin Chiang, Yingbo Sheng, and et al. Judging LLM-as-a-Judge with MT-Bench and Chatbot
 654 Arena. *arXiv preprint arXiv:2306.05685*, 2023. URL <https://arxiv.org/abs/2306.05685>.

- 648 [32] Guande Chen, Kai Shen, Saurav Shah, and et al. Humans or LLMs as the Judge? A Study on Judgement Bias.
649 In *EMNLP*, 2024. URL <https://aclanthology.org/2024.emnlp-main.474.pdf>.
- 650
- 651 [33] Xiao Xiao, Yu Su, Sijing Zhang, Zhang Chen, Yadong Chen, and Tian Liu. Confidence in large language model
652 evaluation: A bayesian approach to limited-sample challenges. *arXiv preprint arXiv:2504.21303*, 2025.
- 653 [34] Dustin Hayden and Thomas Armitage. Straightforward bayesian a/b testing with dirichlet posteriors. *arXiv
654 preprint arXiv:2508.08077*, 2025.
- 655
- 656 [35] Mathematical Association of America. American invitational mathematics examination (aime). <https://maa.org/maa-invitational-competitions/>, 2024. Official MAA page for the AIME competition
657 (covers AIME 2024).
- 658
- 659 [36] Mathematical Association of America. American invitational mathematics examination (aime). <https://maa.org/maa-invitational-competitions/>, 2025. Official MAA page for the AIME competition
660 (covers AIME 2025).
- 661
- 662 [37] Harvard–MIT Mathematics Tournament. Hmmt february 2025 archive (problems and solutions). <https://www.hmmt.org/www/archive/282>, 2025. Official HMMT archive page for February 2025 competition.
- 663
- 664 [38] Brown University Math Olympiad Organizers. Brown university math olympiad (brumo). <https://www.brumo.org/tournament-info>, 2025. Official BrUMO website with tournament information (Apr 4–5,
665 2025).
- 666
- 667 [39] Uri Dalal, Meirav Segal, Zvika Ben-Haim, Dan Lahav, and Omer Nevo. Leveraging LLM Inconsistency to Boost
668 Pass@k Performance. *arXiv preprint arXiv:2505.12938*, 2025.
- 669
- 670 [40] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared Kaplan, Harri
671 Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large language models trained on code.
672 *arXiv preprint arXiv:2107.03374*, 2021.
- 673
- 674 [41] Brendan Leigh Ross, NoÃ Vouitsis, Atiyeh Ashari Ghomi, Rasa Hosseinzadeh, Ji Xin, Zhaoyan Liu, Yi Sui,
675 Shiysi Hou, Kin Kwan Leung, Gabriel Loaiza-Ganem, et al. Textual Bayes: Quantifying Uncertainty in LLM-
676 Based Systems. *arXiv preprint arXiv:2506.10060*, 2025.
- 677
- 678 [42] Roman Vashurin, Maiya Goloburda, Albina Ilina, Aleksandr Rubashevskii, Preslav Nakov, Artem Shelmanov,
679 and Maxim Panov. Uncertainty Quantification for LLMs through Minimum Bayes Risk: Bridging Confidence
680 and Consistency. *arXiv preprint arXiv:2502.04964*, 2025.
- 681
- 682 [43] Edwin T Jaynes. *Probability theory: The logic of science*. Cambridge university press, 2003.
- 683
- 684 [44] Sam Bowyer, Laurence Aitchison, and Desi R Ivanova. Position: Don't Use the CLT in LLM Evals With Fewer
685 Than a Few Hundred Datapoints. *arXiv preprint arXiv:2503.01747*, 2025.
- 686
- 687 [45] Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuwei Liu, Mengfei
688 Zhou, Zhusong Zhang, et al. Do not think that much for 2+3=? on the overthinking of o1-like llms. *arXiv
689 preprint arXiv:2412.21187*, 2024.
- 690
- 691 [46] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi
692 Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning. *arXiv
693 preprint arXiv:2501.12948*, 2025.
- 694
- 695 [47] Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan Zhang,
696 YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathematical reasoning in open language models.
697 *arXiv preprint arXiv:2402.03300*, 2024.
- 698
- 699 [48] Yuxuan Tong, Xiwen Zhang, Rui Wang, Ruidong Wu, and Junxian He. Dart-math: Difficulty-aware rejection
700 tuning for mathematical problem-solving. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tom-
701 czak, and C. Zhang, editors, *Advances in Neural Information Processing Systems*, volume 37, pages 7821–7846.
702 Curran Associates, Inc., 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/0ef1afa0daa888d695dcd5e9513bafa3-Paper-Conference.pdf.
- 703
- 704 [49] Bingbin Liu et al. TinyGSM: achieving >80% on GSM8K with small language models. 2023.

- [50] Hyeongdon Hwang et al. Self-explore: Enhancing mathematical reasoning in large language models by finding the first pit. In *Findings of EMNLP*, 2024. URL <https://aclanthology.org/2024.findings-emnlp.78/>.
- [51] Yan Yang et al. Weak-to-strong reasoning. In *Findings of EMNLP*, 2024. URL <https://aclanthology.org/2024.findings-emnlp.490/>.
- [52] Niklas Muennighoff et al. s1: Simple test-time scaling. 2025.
- [53] Fangchen Chen et al. Rethinking fine-tuning when scaling test-time compute. 2025.
- [54] Junnan Liu et al. Are Your LLMs Capable of Stable Reasoning? 2024.
- [55] LG Research. EXAONE Deep: Reasoning Enhanced Language Models. 2025.
- [56] Eyal Nakash et al. Effective red-teaming of policy-adherent agents. 2025.
- [57] Hojjat Aghakhani et al. Trojanpuzzle: Covertly poisoning code-suggestion models. In *IEEE Symposium on Security and Privacy*, 2024.
- [58] Hongyi Liu, Shaochen Zhong, Xintong Sun, Minghao Tian, Mohsen Hariri, Zirui Liu, Ruixiang Tang, Zhimeng Jiang, Jiayi Yuan, Yu-Neng Chuang, et al. LoRATK: LoRA Once, Backdoor Everywhere in the Share-and-Play Ecosystem. *arXiv preprint arXiv:2403.00108*, 2024.
- [59] Zheng Yan et al. An LLM-Assisted Easy-to-Trigger Backdoor Attack on Code LMs. In *USENIX Security Symposium*, 2024.
- [60] Jiaheng Wang et al. RTL-Breaker: Backdoor Attacks on HDL Code Generation. 2024.
- [61] Rylan Schaeffer et al. How do large language monkeys get their power (laws)? In *Proceedings of ICML*, 2025. Oral.
- [62] Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. τ -bench: A benchmark for tool-agent-user interaction in real-world domains. 2024. doi: 10.48550/arXiv.2406.12045. Introduces the pass^k metric.
- [63] Junnan Liu, Hongwei Liu, Linchen Xiao, Ziyi Wang, Kuikun Liu, Songyang Gao, Wenwei Zhang, Songyang Zhang, and Kai Chen. Are your llms capable of stable reasoning? In *Findings of ACL*, 2025. URL <https://aclanthology.org/2025.findings-acl.905/>. Camera-ready version detailing G-Pass@ k_τ and mG-Pass.
- [64] Stella Biderman, Hailey Schoelkopf, Lintang Sutawika, Leo Gao, Jonathan Tow, Baber Abbasi, Alham Fikri Aji, Pawan Sasanka Ammanamanchi, Sidney Black, Jordan Clive, Anthony DiPofi, Julen Etxaniz, Benjamin Fattori, Jessica Zosa Forde, Charles Foster, Jeffrey Hsu, Mimansa Jaiswal, Wilson Y. Lee, Haonan Li, Charles Lovering, Niklas Muennighoff, Ellie Pavlick, Jason Phang, Aviya Skowron, Samson Tan, Xiangru Tang, Kevin A. Wang, Genta Indra Winata, François Yvon, and Andy Zou. Lessons from the trenches on reproducible evaluation of language models. *arXiv preprint arXiv:2405.14782*, 2024. URL <https://arxiv.org/abs/2405.14782>.
- [65] Patrick Vossler, Fan Xia, Yifan Mai, and Jean Feng. Judging llms on a simplex. *arXiv preprint arXiv:2505.21972*, 2025.
- [66] Anastasios N Angelopoulos, Stephen Bates, Clara Fannjiang, Michael I Jordan, and Tijana Zrnic. Prediction-powered inference. *Science*, 382(6671):669–674, 2023.
- [67] Harrie Oosterhuis, Rolf Jagerman, Zhen Qin, Xuanhui Wang, and Michael Bendersky. Reliable confidence intervals for information retrieval evaluation using generative ai. In *Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, pages 2307–2317, 2024.
- [68] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierrick Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transformers: State-of-the-art natural language processing. *arXiv preprint arXiv:1910.03771*, 2019.
- [69] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model serving with pagedattention. In *Proceedings of the 29th symposium on operating systems principles*, pages 611–626, 2023.

- 756 [70] Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V Le, Christopher Ré, and Azalia
 757 Mirhoseini. Large language monkeys: Scaling inference compute with repeated sampling. *arXiv preprint*
 758 *arXiv:2407.21787*, 2024.
- 759 [71] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic evaluation of
 760 machine translation. In Pierre Isabelle, Eugene Charniak, and Dekang Lin, editors, *Proceedings of the 40th*
 761 *Annual Meeting of the Association for Computational Linguistics*, pages 311–318, Philadelphia, Pennsylvania,
 762 USA, July 2002. Association for Computational Linguistics. doi: 10.3115/1073083.1073135. URL <https://aclanthology.org/P02-1040/>.
- 763 [72] Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu, Duyu Tang, Neel Sundaresan, Ming Zhou, Ambro-
 764 sio Blanco, and Shuai Ma. Codebleu: a method for automatic evaluation of code synthesis. *arXiv preprint*
 765 *arXiv:2009.10297*, 2020.
- 766 [73] Sumith Kulal, Panupong Pasupat, Kartik Chandra, Mina Lee, Oded Padon, Alex Aiken, and Percy S Liang. Spoc:
 767 Search-based pseudocode to code. *Advances in Neural Information Processing Systems*, 32, 2019.
- 768 [74] Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song, and Jacob
 769 Steinhardt. Measuring mathematical problem solving with the math dataset. *arXiv preprint arXiv:2103.03874*,
 770 2021.
- 771 [75] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert,
 772 Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve math word problems. *arXiv*
 773 *preprint arXiv:2110.14168*, 2021.
- 774 [76] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
 775 Denny Zhou. Self-consistency improves chain of thought reasoning in language models. *arXiv preprint*
 776 *arXiv:2203.11171*, 2022.
- 777 [77] Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ramasesh, Am-
 778 brose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative reasoning problems with
 779 language models. *Advances in neural information processing systems*, 35:3843–3857, 2022.
- 780 [78] NovaSky Team. Think less, achieve more: Cut reasoning costs by 50 <https://novasky-ai.github.io/posts/reduce-overthinking>, 2025. Accessed: 2025-01-23.
- 781 [79] Qwen Team. Qwen3 technical report, 2025. URL <https://arxiv.org/abs/2505.09388>.
- 782 [80] OpenAI. gpt-oss-120b & gpt-oss-20b model card, 2025. URL <https://arxiv.org/abs/2508.10925>.
- 783 [81] Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie Xia, and Pengfei Liu. LIMO: Less is More for Reasoning,
 784 2025. URL <https://arxiv.org/abs/2502.03387>.
- 785 [82] LG AI Research. Exaone 4.0: Unified large language models integrating non-reasoning and reasoning modes.
 786 *arXiv preprint arXiv:2507.11407*, 2025.
- 787 [83] Shubham Toshniwal, Ivan Sorokin, Aleksander Ficek, Ivan Moshkov, and Igor Gitman. GenSelect: A Generative
 788 Approach to Best-of-N. In *2nd AI for Math Workshop @ ICML 2025*, 2025. URL <https://openreview.net/forum?id=8LhnNmUDb>.
- 789 [84] Ivan Moshkov, Darragh Hanley, Ivan Sorokin, Shubham Toshniwal, Christof Henkel, Benedikt Schifferer, Wei
 790 Du, and Igor Gitman. AIMO-2 Winning Solution: Building State-of-the-Art Mathematical Reasoning Models
 791 with OpenMathReasoning dataset, 2025. URL <https://arxiv.org/abs/2504.16891>.
- 792 [85] Wasi Uddin Ahmad, Somshubra Majumdar, Aleksander Ficek, Sean Narenthiran, Mehrzad Samadi, Jocelyn
 793 Huang, Siddhartha Jain, Vahid Noroozi, and Boris Ginsburg. OpenCodeReasoning-II: A Simple Test Time
 794 Scaling Approach via Self-Critique, 2025. URL <https://arxiv.org/abs/2507.09075>.
- 795 [86] Wasi Uddin Ahmad, Sean Narenthiran, Somshubra Majumdar, Aleksander Ficek, Siddhartha Jain, Jocelyn
 796 Huang, Vahid Noroozi, and Boris Ginsburg. OpenCodeReasoning: Advancing Data Distillation for Compet-
 797 ititive Coding. 2025. URL <https://arxiv.org/abs/2504.01943>.

- 810 [87] Etash Guha, Ryan Marten, Sedrick Keh, Negin Raoof, Georgios Smyrnis, Hritik Bansal, Marianna Nezhurina,
 811 Jean Mercat, Trung Vu, Zayne Sprague, Ashima Suvarna, Benjamin Feuer, Liangyu Chen, Zaid Khan, Eric
 812 Frankel, Sachin Grover, Caroline Choi, Niklas Muennighoff, Shiye Su, Wanja Zhao, John Yang, Shreyas Pimpala-
 813 gaonkar, Kartik Sharma, Charlie Cheng-Jie Ji, Yichuan Deng, Sarah Pratt, Vivek Ramanujan, Jon Saad-Falcon,
 814 Jeffrey Li, Achal Dave, Alon Albalak, Kushal Arora, Blake Wulfe, Chinmay Hegde, Greg Durrett, Sewoong
 815 Oh, Mohit Bansal, Saadia Gabriel, Aditya Grover, Kai-Wei Chang, Vaishaal Shankar, Aaron Gokaslan, Mike A.
 816 Merrill, Tatsunori Hashimoto, Yejin Choi, Jenia Jitsev, Reinhard Heckel, Maheswaran Sathiamoorthy, Alexan-
 817 dros G. Dimakis, and Ludwig Schmidt. OpenThoughts: Data Recipes for Reasoning Models, 2025. URL
 818 <https://arxiv.org/abs/2506.04178>.
- 819 [88] Marah Abdin, Sahaj Agarwal, Ahmed Awadallah, Vidhisha Balachandran, Harkirat Behl, Lingjiao Chen, Gus-
 820 tavo de Rosa, Suriya Gunasekar, Mojan Javaheripi, Neel Joshi, et al. Phi-4-reasoning technical report. *arXiv*
 821 preprint [arXiv:2504.21318](https://arxiv.org/abs/2504.21318), 2025.
- 822 [89] Hugging Face. Open R1: A fully open reproduction of DeepSeek-R1, January 2025. URL <https://github.com/huggingface/open-r1>.
- 823 [90] Fanqi Wan, Longguang Zhong, Ziyi Yang, Ruijun Chen, and Xiaojun Quan. Fusechat: Knowledge fusion of chat
 824 models. In *Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing*, pages
 825 21629–21653, 2025.
- 826 [91] Liang Wen, Yunke Cai, Fenrui Xiao, Xin He, Qi An, Zhenyu Duan, Yimin Du, Junchen Liu, Tanglifu Tanglifu,
 827 Xiaowei Lv, et al. Light-r1: Curriculum sft, dpo and rl for long cot from scratch and beyond. In *Proceedings*
 828 of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 6: Industry Track), pages
 829 318–327, 2025.
- 830 [92] Zihan Liu, Zhuolin Yang, Yang Chen, Chankyu Lee, Mohammad Shoeybi, Bryan Catanzaro, and Wei Ping.
 831 Acereason-nemotron 1.1: Advancing math and code reasoning through sft and rl synergy. *arXiv preprint*
 832 [arXiv:2506.13284](https://arxiv.org/abs/2506.13284), 2025.
- 833 [93] Aarti Basant, Abhijit Khairnar, Abhijit Paithankar, Abhinav Khattar, Adithya Renduchintala, Aditya Malte,
 834 Akhiad Bercovich, Akshay Hazare, Alejandra Rico, Aleksander Ficek, et al. Nvidia nemotron nano 2: An
 835 accurate and efficient hybrid mamba-transformer reasoning model. *arXiv preprint arXiv:2508.14444*, 2025.
- 836 [94] Bespoke Labs. Bespoke-stratos: The unreasonable effectiveness of reasoning distillation.
 837 www.bespokelabs.ai/blog/bespoke-stratos-the-unreasonable-effectiveness-of-reasoning-distillation, 2025.
 838 Accessed: 2025-01-22.
- 839 [95] Shudong Liu, Hongwei Liu, Junnan Liu, Linchen Xiao, Songyang Gao, Chengqi Lyu, Yuzhe Gu, Wenwei Zhang,
 840 Derek F. Wong, Songyang Zhang, and Kai Chen. CompassVerifier: A Unified and Robust Verifier for Large
 841 Language Models. 2025.
- 842 [96] Sylvain Gugger, Lysandre Debut, Thomas Wolf, Philipp Schmid, Zachary Mueller, Sourab Mangrulkar, Marc
 843 Sun, and Benjamin Bossan. Accelerate: Training and inference at scale made simple, efficient and adaptable.,
 844 2022. URL <https://github.com/huggingface/accelerate>.
- 845 [97] Tianyi Zhang, Mohsen Hariri, Shaochen Zhong, Vipin Chaudhary, Yang Sui, Xia Hu, and Anshumali Shrivastava.
 846 70% size, 100% accuracy: Lossless llm compression for efficient gpu inference via dynamic-length float.
 847 arXiv preprint [arXiv:2504.11651v2](https://arxiv.org/abs/2504.11651v2), 2025. URL <https://arxiv.org/abs/2504.11651>. Accepted in
 848 NeurIPS 2025.
- 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863

864	CONTENTS	
865		
866		
867	1 Introduction	1
868		
869	2 Bayesian Framework for Evaluating LLM Performance	3
870	2.1 Background: The Pass@ k Metric and Its Limitations	3
871	2.2 Results Matrix	3
872	2.3 Weighted Performance Metric	3
873	2.4 Bayesian Estimator and Uncertainty for the Performance Metric	3
874	2.5 Using Uncertainty Estimates to Decide Significance of Performance Differences	4
875	2.6 Equivalence of Bayesian and Average Rankings for Uniform Prior	4
876	2.7 Gold Standard for Ranking	4
877		
878		
879		
880	3 Experiments	6
881	3.1 Convergence to Gold Standard	7
882	3.2 Rankings With Confidence Intervals	7
883	3.3 Convergence	8
884	3.4 Rubric-Aware Categorical Evaluation	9
885		
886		
887		
888	4 Related Work	10
889		
890		
891	5 Conclusion: Strengths, Limitations & Future Directions	10
892		
893		
894	Appendix	17
895		
896	A Derivation of Bayesian Estimator and Uncertainty	19
897		
898	B Proof of Equivalence of Bayesian and Average Rankings for Uniform Prior	20
899		
900	C Potential benefits of non-uniform priors	21
901		
902	D Model Distinguishability and Sample Size	22
903		
904	E Runtime	22
905		
906	F Categorical Evaluation	23
907		
908	F.1 Rubric-aware Bayes@N Evaluation of Reasoning Models	23
909	F.2 Domain-agnostic rubric-aware Bayes@N	25
910		
911		
912	G Extended Related Work	27
913		
914		
915	H Experiment Setup and Reproducibility	28
916	H.1 Metrics	28
917	H.2 Models and Datasets	29

918	H.3 Reproducibility	29
-----	-------------------------------	----

919		
-----	--	--

920	I Convergence	31
-----	----------------------	-----------

921		
-----	--	--

922		
-----	--	--

923		
-----	--	--

924		
-----	--	--

925		
-----	--	--

926		
-----	--	--

927		
-----	--	--

928		
-----	--	--

929		
-----	--	--

930		
-----	--	--

931		
-----	--	--

932		
-----	--	--

933		
-----	--	--

934		
-----	--	--

935		
-----	--	--

936		
-----	--	--

937		
-----	--	--

938		
-----	--	--

939		
-----	--	--

940		
-----	--	--

941		
-----	--	--

942		
-----	--	--

943		
-----	--	--

944		
-----	--	--

945		
-----	--	--

946		
-----	--	--

947		
-----	--	--

948		
-----	--	--

949		
-----	--	--

950		
-----	--	--

951		
-----	--	--

952		
-----	--	--

953		
-----	--	--

954		
-----	--	--

955		
-----	--	--

956		
-----	--	--

957		
-----	--	--

958		
-----	--	--

959		
-----	--	--

960		
-----	--	--

961		
-----	--	--

962		
-----	--	--

963		
-----	--	--

964		
-----	--	--

965		
-----	--	--

966		
-----	--	--

967		
-----	--	--

968		
-----	--	--

969		
-----	--	--

970		
-----	--	--

971		
-----	--	--

972 A DERIVATION OF BAYESIAN ESTIMATOR AND UNCERTAINTY

974 As described in the main text, the Bayesian framework is built on two quantities. The first is $\mu(R)$, the average of $\bar{\pi}$
 975 over the joint posterior for all the questions:

$$977 \quad \mu(R) = \int_{\Delta} d\boldsymbol{\pi}_1 \cdots \int_{\Delta} d\boldsymbol{\pi}_M \bar{\pi} \prod_{\alpha=1}^M \mathcal{P}(\boldsymbol{\pi}_{\alpha} | \mathbf{R}_{\alpha}), \quad (2)$$

979 where the integration region Δ is the probability simplex defined as the set of all possible $(C+1)$ -dimensional vectors
 980 \mathbf{p} such that $\sum_{k=0}^C p_k = 1$. The second is the variance $\sigma^2(R)$ associated with our Bayesian estimator,
 981

$$982 \quad \sigma^2(R) = \int_{\Delta} d\boldsymbol{\pi}_1 \cdots \int_{\Delta} d\boldsymbol{\pi}_M (\bar{\pi} - \mu(R))^2 \prod_{\alpha=1}^M \mathcal{P}(\boldsymbol{\pi}_{\alpha} | \mathbf{R}_{\alpha}). \quad (3)$$

985 Our derivation of closed-form expressions for μ and σ builds on the generalized ($C > 1$) and original ($C = 1$) Laplace
 986 rule of succession theory from (43), recovering those results in the special case of a single question ($M = 1$). We start
 987 with Bayes' rule for each row of R :

$$988 \quad \mathcal{P}(\boldsymbol{\pi}_{\alpha} | \mathbf{R}_{\alpha}) = \frac{\mathcal{P}(\mathbf{R}_{\alpha} | \boldsymbol{\pi}_{\alpha}) \mathcal{P}(\boldsymbol{\pi}_{\alpha})}{\mathcal{P}(\mathbf{R}_{\alpha})}. \quad (4)$$

990 The likelihood $\mathcal{P}(\mathbf{R}_{\alpha} | \boldsymbol{\pi}_{\alpha})$ is a $(C+1)$ -category multinomial distribution over N trials, with the probability distribution
 991 function:

$$992 \quad \mathcal{P}(\mathbf{R}_{\alpha} | \boldsymbol{\pi}_{\alpha}) = \frac{N!}{n_{\alpha 0}! n_{\alpha 1}! \cdots n_{\alpha C}!} \prod_{k=0}^C (\pi_{\alpha k})^{n_{\alpha k}}, \quad (5)$$

994 where $n_{\alpha k} = \sum_{i=1}^N \delta_{k, R_{\alpha i}}$, \mathbf{n}_{α} is the vector with elements $n_{\alpha k}$, and $\delta_{i,j}$ is the Kronecker delta.
 995

996 The prior $\mathcal{P}(\boldsymbol{\pi}_{\alpha})$ is chosen as the conjugate prior of the multinomial, a Dirichlet distribution $\mathcal{P}(\boldsymbol{\pi}_{\alpha}) \sim \text{Dir}(\mathbf{n}_{\alpha}^0)$, with
 997 concentration parameter vector $\mathbf{n}_{\alpha}^0 = (n_{\alpha 0}^0, \dots, n_{\alpha C}^0)$. (34) A uniform prior (no prior knowledge) sets $n_{\alpha k}^0 = 1$ for all
 998 k . Prior information from an earlier $M \times D$ matrix R^0 (with $R_{\alpha i}^0$ as the category for the i th trial of the α th question)
 999 can be incorporated as:

$$1000 \quad n_{\alpha k}^0 = 1 + \sum_{i=1}^D \delta_{k, R_{\alpha i}^0}. \quad (6)$$

1002 The Dirichlet prior is:

$$1003 \quad \mathcal{P}(\boldsymbol{\pi}_{\alpha}) = \frac{\Gamma(1 + C + D)}{\prod_{k=0}^C \Gamma(n_{\alpha k}^0)} \prod_{k=0}^C (\pi_{\alpha k})^{n_{\alpha k}^0 - 1}, \quad (7)$$

1006 where $\sum_{k=0}^C n_{\alpha k}^0 = 1 + C + D$.

1007 The normalization constant $\mathcal{P}(\mathbf{R}_{\alpha})$ is:

$$1009 \quad \mathcal{P}(\mathbf{R}_{\alpha}) = \int_{\Delta} d\mathbf{p} \mathcal{P}(\mathbf{R}_{\alpha} | \mathbf{p}) \mathcal{P}(\mathbf{p}), \quad (8)$$

1011 and since the Dirichlet is the conjugate prior, the posterior is $\mathcal{P}(\boldsymbol{\pi}_{\alpha} | \mathbf{R}_{\alpha}) \sim \text{Dir}(\boldsymbol{\nu}_{\alpha})$, with $\boldsymbol{\nu}_{\alpha} = \mathbf{n}_{\alpha} + \mathbf{n}_{\alpha}^0$. The
 1012 posterior distribution is:

$$1013 \quad \mathcal{P}(\boldsymbol{\pi}_{\alpha} | \mathbf{R}_{\alpha}) = \frac{\Gamma(T)}{\prod_{k=0}^C \Gamma(\nu_{\alpha k})} \prod_{k=0}^C (\pi_{\alpha k})^{\nu_{\alpha k} - 1}, \quad (9)$$

1016 where $T \equiv \sum_{k=0}^C \nu_{\alpha k} = 1 + C + D + N$.

1017 The moment generating function $\Phi(t) = \langle \exp(\bar{\pi}t) \rangle$ is:

$$1019 \quad \Phi(t) = \int_{\Delta} d\boldsymbol{\pi}_1 \cdots \int_{\Delta} d\boldsymbol{\pi}_M \exp(t\bar{\pi}) \prod_{\alpha=1}^M \mathcal{P}(\boldsymbol{\pi}_{\alpha} | \mathbf{R}_{\alpha}) \\ 1020 \\ 1021 = \prod_{\alpha=1}^M \int_{\Delta} d\boldsymbol{\pi}_{\alpha} \exp\left(\frac{t}{M} \sum_{k=0}^C w_k \pi_{\alpha k}\right) \mathcal{P}(\boldsymbol{\pi}_{\alpha} | \mathbf{R}_{\alpha}) \\ 1022 \\ 1023 = e^{tw_0} \prod_{\alpha=1}^M \int_{\Delta} d\boldsymbol{\pi}_{\alpha} \exp\left(t \sum_{k=1}^C s_k \pi_{\alpha k}\right) \mathcal{P}(\boldsymbol{\pi}_{\alpha} | \mathbf{R}_{\alpha}), \quad (10)$$

1026 where $s_k \equiv (w_k - w_0)/M$, and $\pi_{\alpha 0} = 1 - \sum_{k=1}^C \pi_{\alpha k}$.
 1027

1028 Each integral is the moment-generating function for a Dirichlet distribution, expressed via the confluent Lauricella
 1029 hypergeometric function $\Psi^{[C]}$:

$$1030 \quad 1031 \quad 1032 \quad \Phi(t) = e^{t w_0} \prod_{\alpha=1}^M \Psi^{[C]}(\nu_{\alpha 1}, \dots, \nu_{\alpha C}; T; t s_1, \dots, t s_C), \quad (11)$$

1033 where
 1034

$$1035 \quad 1036 \quad \Psi^{[C]}(\nu_{\alpha 1}, \dots, \nu_{\alpha C}; T; t s_1, \dots, t s_C) = \sum_{m_1=0}^{\infty} \dots \sum_{m_C=0}^{\infty} \frac{(\nu_{\alpha 1})_{m_1} \dots (\nu_{\alpha C})_{m_C} (t s_1)^{m_1} \dots (t s_C)^{m_C}}{(T)_m m_1! \dots m_C!}, \quad (12)$$

1038 and $(x)_n$ is the Pochhammer symbol.
 1039

1040 The moments are:
 1041

$$\mu = \Phi'(0), \quad \sigma^2 = \Phi''(0) - (\Phi'(0))^2. \quad (13)$$

1042 Expanding $\Psi^{[C]}$ to $\mathcal{O}(t^2)$:

$$1043 \quad 1044 \quad 1045 \quad \Psi^{[C]} = 1 + \frac{t}{T} \sum_{j=1}^C \nu_{\alpha j} s_j + \frac{t^2}{2T(T+1)} \sum_{j=1}^C \nu_{\alpha j} (\nu_{\alpha j} + 1) s_j^2 \\ 1046 \quad 1047 \quad 1048 \quad + \frac{t^2}{T(T+1)} \sum_{\ell=1}^C \sum_{m=\ell+1}^C \nu_{\alpha \ell} \nu_{\alpha m} s_{\ell} s_m + \mathcal{O}(t^3). \quad (14)$$

1049 Substituting into equation 11 and computing derivatives yields:
 1050

$$1051 \quad 1052 \quad 1053 \quad \mu = w_0 + \frac{1}{MT} \sum_{\alpha=1}^M \sum_{j=0}^C \nu_{\alpha j} (w_j - w_0), \\ 1054 \quad 1055 \quad 1056 \quad \sigma^2 = \frac{1}{M^2(T+1)} \sum_{\alpha=1}^M \left\{ \sum_{j=0}^C \frac{\nu_{\alpha j}}{T} (w_j - w_0)^2 - \left(\sum_{j=0}^C \frac{\nu_{\alpha j}}{T} (w_j - w_0) \right)^2 \right\}. \quad (15)$$

1057 The algorithm summarizing this calculation is shown in Algorithm 1 in the main text.
 1058

1061 B PROOF OF EQUIVALENCE OF BAYESIAN AND AVERAGE RANKINGS FOR UNIFORM PRIOR

1063 For Bayesian estimators using a uniform prior (where $D = 0$, $T = 1 + C + N$, $\nu_{\alpha k} = 1 + n_{\alpha k}$), the expression for
 1064 the mean μ from equation 15 simplifies as:

$$1065 \quad 1066 \quad 1067 \quad \mu = w_0 + \frac{1}{M(1+C+N)} \sum_{\alpha=1}^M \sum_{j=0}^C (1 + n_{\alpha j}) (w_j - w_0) \\ 1068 \quad 1069 \quad 1070 \quad = A + \frac{1}{M(1+C+N)} \sum_{\alpha=1}^M \sum_{j=0}^C w_j n_{\alpha j}, \quad (16)$$

1071 where the constant A is given by
 1072

$$1073 \quad 1074 \quad 1075 \quad A = \frac{1}{1+C+N} \sum_{j=0}^C w_j, \quad (17)$$

1076 and $\sum_{j=0}^C n_{\alpha j} = N$. Here, μ relates to a naive weighted average accuracy a over the number of answers in each
 1077 category,

$$1078 \quad 1079 \quad a = \frac{1}{MN} \sum_{\alpha=1}^M \sum_{j=0}^C w_j n_{\alpha j}, \quad (18)$$

1080 via

1081
$$\mu = A + \frac{N}{1+C+N}a. \quad (19)$$
 1082

1083 Note that in the binary case where $C = 1$, $w_0 = 0$, $w_1 = 1$, the value of a is the just regular average accuracy $\text{avg}@N$.
1084 For categorical cases, it is just a weighted generalization of $\text{avg}@N$.1085 Since A is constant across models and the prefactor $\frac{N}{1+C+N}$ is positive, we see that if $\mu > \mu'$, the corresponding
1086 values of a and a' from the two methods must always give the same ranking, $a > a'$. Additionally, in the limit of a
1087 large number of trials, $N \rightarrow \infty$, we see that $A \rightarrow 0$ and $\mu \approx a$, as expected.
10881089 This equivalence extends to uncertainty quantification. The relationship between the standard deviation of the average
1090 ($\sigma_{\text{avg}@N}$) and the Bayesian standard deviation ($\sigma_{\text{Bayes}@N}$ from equation 15) is
1091

1092
$$\sigma_{\text{avg}@N} = \frac{1+C+N}{N} \sigma_{\text{Bayes}@N}. \quad (20)$$
 1093

1094 The Bayesian expression for $\sigma_{\text{Bayes}@N}$ is valid for all M and N , providing a reliable method to compute uncertainty
1095 in $\text{avg}@N$ without relying on the Central Limit Theorem (CLT).
10961097

C POTENTIAL BENEFITS OF NON-UNIFORM PRIORS

 10981099 While the convergence results in the main text demonstrate that Bayes@ N with a uniform prior outperforms alternatives
1100 like Pass@ k in ranking models, there are scenarios where non-uniform priors can achieve even faster convergence.
1101 This is the case when we have data from models that are related or closely correlated to the ones we are ultimately
1102 interested in ranking. Potential examples include: i) results from an older version of a model used as a prior for ranking
1103 a newer version; ii) a non-quantized version (where running trials is computationally expensive) used to provide prior
1104 data for a quantized version (where achieving large N is cheaper); iii) a base model used to provide prior data for a
1105 fine-tuned one. Though a full exploration of these kinds of priors will be left to a future work, in this section we will
1106 show the potential benefits through our synthetic biased-coin LLM models, introduced in Sec. 2.7.
11071108 We start with a set of eight “original” models with $C = 1$, labeled by $i = 1, \dots, 8$. Each model i consists of a set
1109 of $M = 30$ success probabilities $\pi_{\alpha 1}$ drawn from a distribution $\text{Beta}(i + 3, 12 - i)$. We fix these probabilities for
1110 all the numerical experiments described below, and their averages for the eight models are: $\bar{\pi} = [0.3021, 0.3166,$
1111 $0.4144, 0.4985, 0.5351, 0.5759, 0.6679, 0.7487]$. Hence for the original models higher i corresponds to higher overall
1112 accuracy. We now imagine an “update” of model i that mimics some kind of revision, fine-tuning, or other modification.
1113 Because the performance of the updated model should be correlated with the original, we model the update as
1114 a stochastic perturbation to the Beta distribution from which success probabilities are drawn: for updated model i the
1115 $\pi_{\alpha 1}$ values are drawn from $\text{Beta}(i + 3 + \sigma, 12 - i + \sigma')$, where $\sigma = \pm 1$ and $\sigma' = \pm 1$ are random integers of unit
1116 magnitude. For the updated models the value of $\bar{\pi}$ may not strictly increase with i , so the ranking of models could
1117 be different than the original. Fig. 5(a) shows a histogram of the Kendall’s τ values comparing the original model set
1118 (described above) and 50k possible updated sets drawn using this stochastic procedure. A τ value of 1 corresponds to
1119 exactly the same ranking, and we see that the mean τ over the 50k realizations is 0.88. Hence there is some correlation
1120 between the original and updated rankings, but in the vast majority of cases (about 86% of the updates) the ranking
1121 has changed for the updated models.
11221123 The question we would like to ask is whether we can use the results from the original models as priors to help speed
1124 up convergence when ranking the updated models. To employ a non-uniform prior for a given model, we follow the
1125 procedure described Sec. A, and incorporate the prior via the the $M \times D$ results matrix R^0 corresponding to D trial
1126 results over M questions using the original model. Combined with N trial results from the updated model, we get the
1127 Bayes@ N accuracy estimate μ for the updated model. These estimates are then used to rank the 8 updated models.
1128 Because we know the $\bar{\pi}$ values for this set, we know the true ranking, and we can compare the estimated and true
1129 rankings via Kendall’s τ .
11301131 For each choice of N and D we run 50k replicates, with each replicate consisting of a set of stochastic updates of
1132 the original models. The mean τ values over all these replicates are shown in Fig. 5(b) as a function of N for several
1133 different D . As expected, the τ curves increase with N , since the ranking becomes more certain with more trials, but
1134 the convergence properties vary. The dashed line is the case of a uniform prior ($D = 0$), while the solid lines represent
1135 five different non-uniform prior scenarios, with $D = 1, 2, 4, 8$, and 16. For small N and small $D \leq 4$ we see a clear
1136 benefit of the non-uniform prior: already at $N = 1$ the value of τ starts higher than the uniform case, and remains so
1137 until the latter catches up for $N > 5$. Thus when we have prior data available, we can extract more accurate rankings
1138 with just a small number of trials of the updated model, relative to the uniform case. However there is a possibility
1139

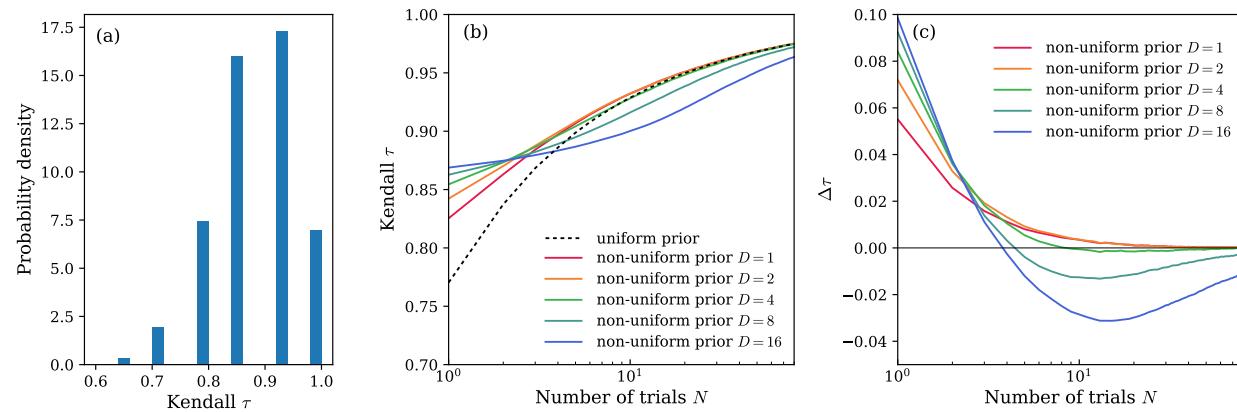


Figure 5: (a) Histogram of Kendall τ values comparing original ranking of synthetic LLM models and 50k replicates of updated models. (b) Mean Kendall τ between the estimated and true ranking for the updated models (50k replicates) as a function of N , the number of trials. The dashed line corresponds to Bayes@ N with a uniform prior ($D = 0$), while the solid lines are Bayes@ N with a non-uniform prior and different choices of D . The non-uniform prior is based on results from D trials of the original models. (c) Same as panel (b), except showing the difference $\Delta\tau$ between the non-uniform prior curves and the uniform curve.

to over-emphasize the prior: when $D = 8$ and 16 , the benefit for small N turns into a disadvantage at larger N . The τ curves dip beneath the $D = 0$ result, indicating that the prior has impeded accurate ranking. Fig. 5(c) shows these trends more clearly by plotting $\Delta\tau$, the difference between the τ for each D and the uniform τ with $D = 0$. So we see that priors have to be used judiciously, with large enough D to nudge the ranking in the correct direction, but not too large to outweigh the results from the updated models. One of the goals of our future work will be to establish practical guidelines for D in different real-world use cases.

D MODEL DISTINGUISHABILITY AND SAMPLE SIZE

To quantify the trials needed to reliably separate models with closely matched performance, we simulated the probability of correctly ranking LLM_{10} above LLM_9 as a function of the number of trials N , shown in the left panel of Fig. 6. At $N = 80$, the probability of obtaining the correct ranking is 83.7%. The right panel plots the absolute z -score versus N ; at $N = 80$, the $z \sim 1.14$, corresponding to approximately 87% confidence (though the plots exhibit some noise due to simulation variability). These values closely align with the empirical probabilities in the left panels.

We also determined the minimum sample size N needed to achieve z -scores of 1.645 and 1.96, corresponding to CI of approximately 95% and 97.5%, respectively, for distinguishing between models. These thresholds occur at about $N = 199$ and $N = 285$. At these values, the simulated probability of correctly ranking the models is 94.7% and 96.9%, respectively, which is closely consistent with expectations given the inherent noise in the results. These results underscore the computational cost of distinguishing models whose true performance metrics differ only slightly. In our biased-coin setup, the underlying success probabilities were $\bar{\pi}_9 = 0.608$ and $\bar{\pi}_{10} = 0.6213$, yet reliably establishing this distinction requires nearly 200 trials. Such large sample requirements highlight the importance of considering both uncertainty and convergence rates when interpreting ranking-based evaluations.

E RUNTIME

To see the asymptotic runtime and memory scaling let:

$$\begin{aligned}
 M &= \text{number of problems (rows),} \\
 N &= \text{number of trials per problem (columns in } R\text{),} \\
 D &= \text{number of prior outcomes per problem (columns in } R_0\text{, which may be 0),} \\
 C + 1 &= \text{number of categories.}
 \end{aligned}$$

From Algorithm 1, the work is:

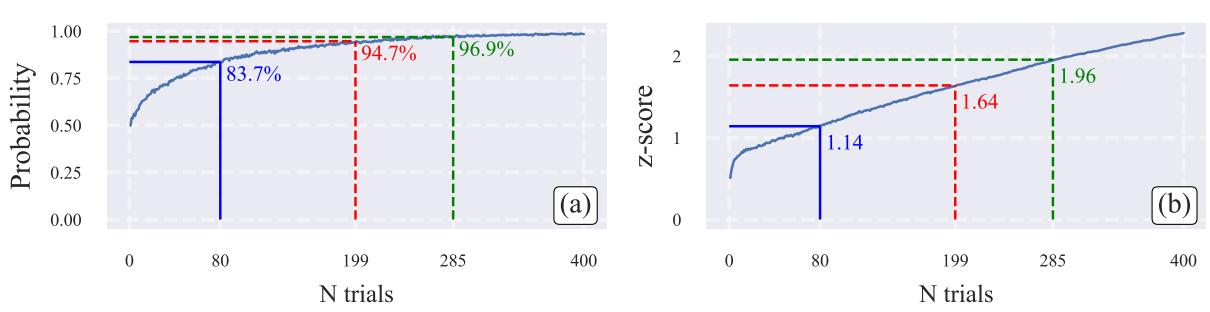


Figure 6: (a) Probability of correctly ranking LLM₁₀ above LLM₉ using Bayes@N in the biased-coin simulations, shown as a function of trial count N . The probability is 83.7% at $N = 80$, increases to $\sim 94.7\%$ at $N = 199$, and reaches 96.9% at $N = 285$. (b) Corresponding absolute z -scores as a function of N , with values of ~ 1.14 at $N = 80$, 1.64 at $N = 199$ (95% confidence), and 1.96 at $N = 285$ (97.5% confidence).

Two row-wise histograms: $\mathcal{O}(MN)$ for R + $\mathcal{O}(MD)$ for R_0 ,

Posterior mean and variance on $\nu \in \mathbb{R}^{M \times (C+1)}$: $\mathcal{O}(M(C+1))$.

So the **overall time complexity** is:

$$\boxed{\mathcal{O}(M(N + D + C))}$$

i.e., linear in the number of entries in the result matrices and linear in the number of categories.

The **memory footprint** is likewise linear:

Store R and (optionally) R_0 : $\mathcal{O}(MN + MD)$,

Store per-row category counts and derived arrays (ν , ν/T): $\mathcal{O}(M(C+1))$.

Note that the evaluation consists of tallying counts and then plugging them into closed-form expressions for μ and σ ; no iterative optimization or Monte Carlo sampling is required.

F CATEGORICAL EVALUATION

F.1 RUBRIC-AWARE BAYES@N EVALUATION OF REASONING MODELS

As we discussed in Section 2.3 and Section 3.4, for each question $\alpha \in 1, \dots, M$, every attempt yields base signals such as `has_box`, `is_correct`, `token_ratio`, `prompt_bpt`, `completion_bpt`, and verifier probabilities A, B, C for *correct*, *wrong*, and *invalid/off-task*. Using thresholds and Boolean criteria, each attempt is mapped into one of $C + 1$ categories under a chosen schema (e.g., *Format Aware*, *Conf-Wrong Penalty*, *Efficiency-Adjusted*; Table 5). We instantiate categorical schemata and update posterior means via Dirichlet–multinomial inference, yielding metrics that preserve correctness while explicitly reflecting formatting, calibration, and efficiency.

Base signals All signals are directly obtainable from common LLM inference stacks such as Hugging Face transformers (68) and vLLM (69), via per-step scores/log-probs and termination metadata, and require no model-specific instrumentation; the verifier probabilities A, B, C are defined in F.1.

- **has_box**: 1 if a final boxed answer is present; else 0.
- **is_correct**: 1 if the answer is correct; else 0.
- **token_ratio**: completion tokens normalized by 32,768 (shorter is smaller).

- **repeated_pattern**: 0 if `finish_reason` is `stop`; else 1 (degenerate output).
 - **prompt_bpt**: negative average prompt log-prob in bits/token (lower is better).
 - **completion_bpt**: negative average completion log-prob in bits/token (lower is better).
 - **compass_context_A**: verifier contextual probability of *correct*.
 - **compass_context_B**: verifier contextual probability of *wrong*.
 - **compass_context_C**: verifier contextual probability of *irrelevant/off-task*.

Reward models in evaluation. While reward models are most familiar from fine-tuning (e.g., RLHF), we use one as a *lightweight verifier* to supply per-attempt label probabilities for

$$\{A, B, C\} = \{\text{correct, wrong, invalid/off-task}\}$$

in evaluation. Concretely, we employ OpenCompass *CompassVerifier-3B* to produce (A, B, C) and then apply *contextual calibration* to obtain a more robust, prompt-stable label distribution: we evaluate next-token scores for the candidate labels at a fixed answer slot, subtract a content-free baseline logit b_y from the task logit s_y for each label y , and apply temperature scaling to yield calibrated probabilities

$$p(y \mid x) = \text{softmax}\left(\frac{s_y - b_y}{T}\right).$$

This helps us mitigate saturation and the entanglement of formatting and confidence seen with last-token probabilities, and improves probability calibration for downstream rubric scoring.

Selected categorical schema. We define 12 schemata (Table 5) using the rubric variables (Table 4) derived from the base signals; here are two illustrative definitions (the others follow analogously):

- Format Aware:

$$\text{cat} = \begin{cases} 0 & \text{invalid} \\ 1 & \text{wrong} \wedge \text{unboxed} \\ 2 & \text{wrong} \wedge \text{boxed} \\ 3 & \text{correct} \wedge \text{unboxed} \\ 4 & \text{correct} \wedge \text{boxed} \end{cases}$$

- **Conf-Wrong Penalty:**

$$\text{cat} = \begin{cases} 0 & \text{invalid} \\ 1 & \text{wrong}_{\text{high_conf}} \\ 2 & \text{wrong} \wedge \text{low_conf} \\ 3 & \text{correct} \end{cases}$$

Rubric weights w are chosen to reflect evaluation preferences. For example, *Format Aware* might use $[0, 0, 1, 2, 3]$ to mildly reward formatting when correct and slightly penalize confidently wrong (via schema choice); *Efficiency-Adjusted* can downweight verbose outputs among both correct and wrong categories.

- **Exact Match** Correctness only; ignores formatting, confidence, and length.
 - **Format Aware** Rewards boxed, well-formatted answers; distinguishes boxed/unboxed even when wrong.
 - **Conf-Calibrated** Penalizes *confidently wrong*; grades correct answers by confidence (low/mid/high).
 - **OOD Robustness** Separates in-distribution vs. OOD prompts; checks correctness under both.
 - **Strict Compliance** Requires boxed final answers; unboxed-correct is treated as non-compliant.
 - **Conf-Wrong Penalty** Heavier penalty for wrong answers at high confidence; lighter when uncertain.
 - **Verifier-Only** Uses verifier signals (A/B/C) alone to rank; model-agnostic probe of the verifier.
 - **Format+Confidence** Balanced composite over (boxed/unboxed) \times (low/high confidence) for both wrong and correct; emphasizes boxed, high-confidence correctness and penalizes confidently wrong.
 - **Length-Robust** Isolates correctness irrespective of verbosity; does not penalize length.

- **Verifier Prob** Probes agreement with the verifier: flags wrong with high verifier A as inconsistent and distinguishes under/over-confidence on correct.
- **Efficiency-Adjusted** Rewards short, correct completions; penalizes verbose outputs (especially when wrong).
- **Concise High-Conf** Prefers concise, high-confidence correct answers; downweights verbose correctness.

Table 4: Rubric variables, decision formulas, and brief descriptions used to map each model attempt into discrete categories. Thresholds (τ_{high} , $\tau_{\text{low_wrong}}$, τ_{prompt}) and length quantiles (len_p33, len_p66) are computed per dataset from observed bits-per-token and token-ratio statistics. Category 0 is reserved for invalid outputs (degenerate repetition or high verifier C), and A, B, C denote calibrated verifier probabilities for *correct*, *wrong*, and *off-task*, respectively.

Rubric variables	Formula	Description
invalid	$(\text{repeated_pattern} = 1) \vee (C \geq 0.50)$	Category 0 reserved for invalid.
correct	$(\text{is_correct} \geq 0.5)$	Boolean mask of correctness.
wrong	$(\text{is_correct} < 0.5)$	Complement of correct.
high_conf	$(\text{completion_bpt} \leq \tau_{\text{high}})$	Confidence proxy
low_conf	$(\text{completion_bpt} > \tau_{\text{high}})$	Complement of high_conf.
wrong_high_conf	$\text{wrong} \wedge (\text{completion_bpt} \leq \tau_{\text{low_wrong}})$	Penalize confidently wrong.
ood	$(\text{prompt_bpt} \geq \tau_{\text{prompt}})$	Out-of-distribution prompt.
ind	$(\text{prompt_bpt} < \tau_{\text{prompt}})$	In-distribution prompt.
economical	$(\text{token_ratio} \leq \text{len_p33})$	Short completions.
moderate	$(\text{len_p33} < \text{token_ratio} \leq \text{len_p66})$	Medium-length completions.
verbose	$(\text{token_ratio} > \text{len_p66})$	Long completions.
boxed	$(\text{has_box} \geq 0.5)$	Answer is boxed.
unboxed	$(\text{has_box} < 0.5)$	Answer is not boxed.
A_high	$(A \geq 0.6)$	Verifier confidence high.
τ_{high}	40th percentile of completion_bpt	
$\tau_{\text{low_wrong}}$	60th percentile of completion_bpt among wrong items	
τ_{prompt}	90th percentile of prompt_bpt	
len_p33, len_p66	33rd and 66th percentiles of token_ratio	
corr_p33, corr_p66	33rd and 66th percentiles of completion_bpt correct items	

Fig. 7 summarizes aggregated results across tasks. The leader Qwen3-30B-A3B-Thinking ranks first under all selected schema, but the margin to rank 2 depends on the rubric (largest under *Conf-Wrong Penalty*, smallest under *Verifier-Only*). Mid-pack reorderings are rubric sensitive: under *Verifier Prob*, *OpenThinker2-32B* edges *gpt-oss-20b_medium*; under calibration-heavy category (e.g., *Conf-Calibrated*, *Format+Confidence*), *gpt-oss-20b_high* overtakes *OpenThinker2-32B*; *OOD Robustness* narrows the gap between ranks 2 and 3. Several categories (*Format Aware*, *Length-Robust*, *Strict Compliance*) agree closely, indicating that once correctness is accounted for, formatting and length rarely flip top ranks. In contrast, calibration-focused categories emphasize and penalize confidently wrong behavior, and efficiency-oriented categories favor concision. The lower tier is stable across categories (*EXAONE-4.0-1.2B*, *OpenThinker3-1.5B*, *OpenReasoning-Nemotron-1.5B*, *Sky-T1-32B-Flash*, *DeepSeek-R1-Distill-Qwen-1.5B*), suggesting rubric choice primarily reshuffles the middle while preserving extremes. Overall, the categorical schema surfaces complementary facets—format compliance, calibration, efficiency, OOD robustness, and verifier alignment—making rubric-dependent differences explicit and enabling compute-efficient, uncertainty-aware comparisons aligned with evaluation goals.

F.2 DOMAIN-AGNOSTIC RUBRIC-AWARE BAYES@N

The Bayesian construction is intentionally domain-agnostic: it applies whenever model outputs can be mapped into a finite set of categories equipped with a rubric. The evaluator specifies

1. a mapping from raw outputs (and any side information) to categorical labels $R_{\alpha i} \in \{0, \dots, C\}$, and
2. a weight vector w that encodes how those categories are valued.

Given these choices, Bayes@N returns the posterior mean $\mu(R)$ as a rubric-aware point estimate, and $\sigma(R)$ as an uncertainty estimate, for *any* such categorical evaluation.

1350 Table 5: Definitions of the twelve categorical evaluation schemata used in our Dirichlet–multinomial framework.
 1351 Each schema specifies decision rules over correctness, formatting (boxed/unboxed), confidence (via completion_bpt),
 1352 prompt distribution (in-distribution vs. OOD), output economy (via token_ratio), and verifier signals (A, B, C). These
 1353 rules map every attempt into $C+1$ discrete categories, enabling posterior means and credible intervals for any chosen
 1354 weight vector w .

Categorical Schema	Rubric
Exact Match	0 invalid; 1 wrong; 2 correct
Format Aware	0 invalid; 1 wrong \wedge unboxed; 2 wrong \wedge boxed; 3 correct \wedge unboxed; 4 correct \wedge boxed
Conf-Calibrated	0 invalid; 1 wrong \wedge low_conf; 2 wrong_high_conf; 3 correct \wedge low_conf; 4 correct \wedge mid; 5 correct \wedge high_conf
OOD Robustness	0 invalid; 1 ood \wedge wrong; 2 ind \wedge wrong; 3 ood \wedge correct; 4 ind \wedge correct
Strict Compliance	0 invalid; 1 wrong \vee (correct \wedge unboxed); 2 correct \wedge boxed
Conf-Wrong Penalty	0 invalid; 1 wrong_high_conf; 2 wrong \wedge low_conf; 3 correct
Verifier-Only	0 invalid; 1 high C; 2 high B; 3 A_high
Format+Confidence	0 invalid; 1 wrong \wedge unboxed; 2 wrong \wedge boxed \wedge low_conf; 3 wrong \wedge boxed \wedge high_conf; 4 correct \wedge unboxed \wedge low_conf; 5 correct \wedge unboxed \wedge high_conf; 6 correct \wedge boxed \wedge low_conf; 7 correct \wedge boxed \wedge high_conf
Length-Robust	0 invalid; 1 wrong; 2 correct
Verifier Probe	0 invalid; 1 wrong \wedge A_high; 2 wrong \wedge \neg A_high; 3 correct \wedge \neg A_high; 4 correct \wedge A_high
Efficiency-Adjusted	0 invalid; 1 wrong \wedge economical; 2 wrong \wedge moderate; 3 wrong \wedge verbose; 4 correct \wedge economical; 5 correct \wedge moderate; 6 correct \wedge verbose
Concision-High-Conf	0 invalid; 1 wrong; 2 correct \wedge verbose; 3 correct \wedge moderate; 4 correct \wedge economical; 5 correct \wedge economical \wedge high_conf

1374
 1375
 1376 This viewpoint naturally covers subjective tasks. For instance:

- 1377
- 1378 • In summarization, each response could be rated {bad, okay, good, excellent} or by multi-criteria scores such
 1379 as faithfulness, coverage, style, and harmful content. Each discrete level becomes a category index k , and w_k
 1380 reflects the importance of that level or criterion.
 - 1381
 - 1382 • In dialogue safety, categories might distinguish {unsafe, borderline, safe}, or finer-grained notions such as
 1383 policy violations vs. merely over-cautious refusals.
 - 1384

1385 Once the labels are available (from humans or an LLM-as-a-judge), Bayes@N provides Bayesian estimates and cred-
 1386 ible intervals for any chosen rubric-based score, reusing the same closed-form posterior as in the binary case.

1387 Two aspects are particularly promising for future work in such subjective domains:

- 1388
- 1389 1. **Preference-based evaluation with rubrics.** When model comparisons are driven by preferences (either
 1390 from human experts or LLM judges), each comparison can be converted into categorical labels over rubric
 1391 dimensions (e.g., faithfulness, verbosity, harmfulness). A downstream weight vector w can then fold these
 1392 dimensions into a single scalar score that reflects application-specific trade-offs.
 - 1393
 - 1394 2. **Transferring prior evidence across related tasks.** The optional prior matrix R_0 in Algorithm 1 lets us
 1395 encode earlier outcome frequencies as a Dirichlet prior. For example, if a summarization system has been
 1396 evaluated on a news dataset, the empirical category counts on that dataset can serve as prior counts when
 1397 evaluating a closely related dataset. This allows stable rubric distributions to be reused across adjacent tasks
 1398 or benchmark revisions, while still updating with new data.
 - 1399

1400 An important limitation in subjective settings is that Bayes@N does *not* resolve disagreement or bias in the rubric or
 1401 labeling process itself. The framework assumes a labeling scheme (from humans or an LLM-based judge) and a weight
 1402 vector w are given; it then provides a statistically principled way to aggregate those labels and quantify uncertainty.
 1403 Designing good rubrics and calibrating judges remain separate modeling decisions.

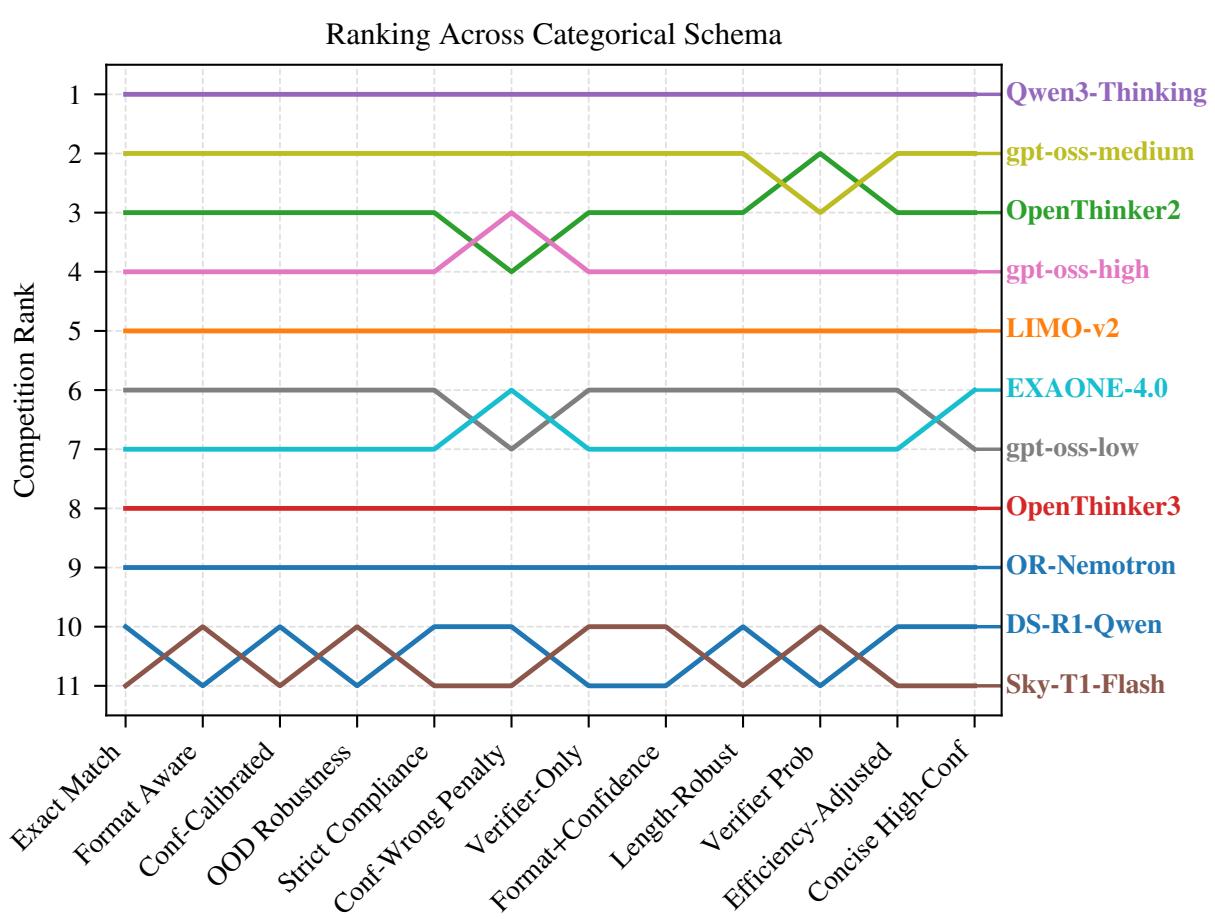


Figure 7: Competition ranks by model across selected categorical schema. Each column is a combination of base signals; lines indicate how a model’s relative position shifts when the rubric changes.

G EXTENDED RELATED WORK

The evaluation of LLMs in generative reasoning tasks, under test-time scaling (e.g., via repeated sampling(70)), has evolved to address the stochastic nature of inference and the need for robust measures of functional correctness. Early approaches relied on syntactic similarity metrics like BLEU (71) and CodeBLEU (72), which compare generated answers against reference solutions. However, these metrics often fail to capture semantic correctness in reasoning tasks, motivating metrics based on execution-validation or test-based validation (73; 72). This limitation has shifted focus toward functional evaluation, where the generated solution is assessed via a ground truth to verify correctness(73; 74). In this section, we review key functional metrics, focusing on those that leverage multiple samples to scale performance at inference time. These metrics form the basis to assess LLM capabilities but often overlook probabilistic uncertainty or consistency across samples, motivating our novel Bayesian framework.

The Pass@ k metric, originally introduced by (73; 40) for evaluating LLMs trained on code. It measures the probability that at least one of k independently generated samples for a given problem passes all associated unit tests (i.e., by matching ground-truth answers or satisfying logical constraints), offering a practical estimate of a model’s potential performance in solving a variety of complex tasks and problems. The unbiased estimator of Pass@ k is computed as:

$$\text{Pass}@k = \mathbb{E}_{\text{problems}} \left[1 - \frac{\binom{n-c}{k}}{\binom{n}{k}} \right], \quad (21)$$

where n is the total number of generated samples and c is the total number of correct solutions within the n trials. This estimator has smaller uncertainty in the limit of $n \gg k$, ensuring reliable approximations. However, due to computational costs, k is often comparable to n in practice, which can increase variance and weaken evaluation

1458 stability. The Pass@ k metric has been adapted beyond code to evaluate LLMs in various tasks requiring verifiable
 1459 correctness, such as math, logic, and general reasoning (74; 75; 76; 77).

1460 **Pass k** , introduced in (62), extends the Pass@ k metric to capture both the potential performance and the consistency
 1461 of LLMs in reasoning tasks, where evaluating the reliability and stability of generated solutions is crucial. Pass k is
 1462 defined as the probability that all k trials are correct:

$$1464 \quad 1465 \quad 1466 \quad \text{Pass}^k = \mathbb{E}_{\text{problems}} \left[\frac{\binom{c}{k}}{\binom{n}{k}} \right], \quad (22)$$

1467 where c and n retain the same meanings as in Pass@ k . This metric assumes that all the trials are independent and
 1468 uniformly distributed, approximating the binomial distribution with a hypergeometric distribution to account for sam-
 1469 pling without replacement. By requiring all k samples to be correct, Pass k provides a stringent measure of model
 1470 consistency and stability.

1471 To introduce flexibility, Liu et al. (26) proposed **G-Pass@ $k_{\tilde{\tau}}$** , which incorporates a tolerance threshold $\tilde{\tau} \in (0.0, 1.0]$:

$$1473 \quad 1474 \quad 1475 \quad \text{G-Pass@}{k_{\tilde{\tau}}} = \mathbb{E}_{\text{problems}} \left[\sum_{j=\lceil \tau \cdot k \rceil}^c \frac{\binom{c}{j} \cdot \binom{n-c}{k-j}}{\binom{n}{k}} \right], \quad (23)$$

1476 where $\lceil \tau \cdot k \rceil$ is the smallest integer greater than or equal to $\tau \cdot k$. This formulation allows up to $k - \lceil \tau \cdot k \rceil$ incorrect
 1477 solutions, balancing the assessment of potential with consistency. As a special case, Pass@ k corresponds to G-
 1478 Pass@ k_{τ} in the limit $\tau \rightarrow 0$.

1479 Furthermore, Liu et al. (26) introduced **mG-Pass@ k** , an interpolated metric that integrates G-Pass@ k_{τ} over $\tau \in$
 1480 $[0.5, 1.0]$:

$$1482 \quad 1483 \quad \text{mG-Pass@}{k} = 2 \int_{0.5}^{1.0} \text{G-Pass@}{k_{\tau}} d\tau \approx \frac{2}{k} \sum_{i=\lceil 0.5 \cdot k \rceil + 1}^k \text{G-Pass@}{k_{i/k}}, \quad (24)$$

1484 providing a more comprehensive measure that jointly reflects performance potential and reasoning stability.

1485 These extended metrics have been applied to mathematical reasoning benchmarks such as LiveMathBench, MATH,
 1486 and AIME, where they reveal substantial performance degradation of LLMs under stricter stability requirements.

1489 H EXPERIMENT SETUP AND REPRODUCIBILITY

1491 METRICS

1493 **Kendall's Tau:** Kendall's tau (τ) is a nonparametric rank correlation coefficient that quantifies the ordinal relation-
 1494 ship between two ranked sets by evaluating the consistency in their orderings. For two rankings of n items, it examines
 1495 all unique pairs (i, j) where $i < j$:

- 1496 • A pair is *concordant* if the relative ordering of items i and j is the same in both rankings (both place i before
 1497 j or vice versa).
- 1498 • A pair is *discordant* if the relative ordering is different.
- 1499 • Pairs with ties in either ranking are neither concordant nor discordant.

1501 Define n_c as the number of concordant pairs, n_d as the number of discordant pairs, and $n_0 = n(n - 1)/2$ as the total
 1502 number of unique pairs. Let n_1 represent the number of tied pairs in the first ranking, and n_2 similarly for the second
 1503 ranking. The two common variants are the following:

$$1506 \quad \text{Tau-a: } \tau_a = \frac{n_c - n_d}{n_0} \quad (\text{no adjustment for ties}), \quad (25)$$

$$1508 \quad \text{Tau-b: } \tau_b = \frac{n_c - n_d}{\sqrt{(n_0 - n_1)(n_0 - n_2)}} \quad (\text{adjusts for ties in both rankings}). \quad (26)$$

1511 Tau-a assumes no ties and may underestimate correlation when ties occur. Tau-b, which corrects for ties, is better
 1512 suited for datasets with equivalent rankings.

1512 In our implementation, we use `scipy.stats.kendalltau` with its default variant='b', which computes τ_b efficiently
 1513 and handles ties appropriately. The coefficient ranges from -1 (perfect disagreement) to $+1$ (perfect agreement),
 1514 with 0 indicating no association. This metric provides a robust, distribution-free measure for comparing model
 1515 performance rankings, particularly when ties reflect meaningful equivalences.
 1516

1517 **Convergence@ n .** For a given bootstrap replicate, we measure convergence in terms of an *exact ranking match*. At
 1518 each step $s \in \{1, \dots, N_{\max}\}$, we compute the ranking induced by the first s trials and compare it to a gold-standard
 1519 ranking (obtained from all N_{\max} trials). We then define

$$s^* = \min\{s : \text{the ranking at step } s \text{ matches the gold-standard ranking and remains identical for all } s' \geq s\},$$

1520 and refer to s^* as the convergence@ n value for that replicate. If no such $s^* \leq N_{\max}$ exists, we declare that replicate
 1521 to exhibit *no convergence*.
 1522

1525 H.2 MODELS AND DATASETS

1527 **Datasets.** We evaluate on four math-reasoning test sets: AIME'24 (35), AIME'25 (36), BrUMO'25 (38), and
 1528 HMMT'25 (37). AIME is administered by the Mathematical Association of America and consists of two sets of
 1529 15 integer-answer problems; we use the 2024 and 2025 problem sets. For HMMT'25, we use the officially posted
 1530 February 2025 contest set (algebra, geometry, number theory, and combinatorics). For BrUMO'25, we use the pub-
 1531 lished 2025 problem sets from the tournament archive.

1532 **Models.** Unless noted otherwise, we run each generator with the provider-recommended chat template
 1533 (DeepSeek/Qwen style when unspecified) and identical decoding settings (below) to minimize template-induced
 1534 variance. The base model cohort includes 11 models (8 distinct models + 3 modes (low, medium, and high) of
 1535 gpt-oss) as follows: Sky-T1-32B-Flash (78) (reasoning-optimized “flash” variant tied to overthinking-reduction
 1536 work), Qwen3-30B-A3B-Thinking-2507 (79) (Qwen3 series, reasoning variant), DeepSeek-R1-Distill-Qwen-
 1537 1.5B (46) (distilled reasoning model), gpt-oss-20b (80) (OpenAI open-weight reasoning model; we use the default
 1538 quantization, MXFP4, and, for prompting, rely on OpenAI Harmony, which defines three levels of reasoning ef-
 1539 fort), LIMO-v2 (81) (data-efficient reasoning fine-tuned on curated traces), EXAONE-4.0-1.2B (82) (hybrid
 1540 non-reasoning/reasoning modes), OpenReasoning-Nemotron-1.5B (83; 84; 85; 86) (open-weight small reasoning
 1541 model), OpenThinker2-32B (87) and OpenThinker3-1.5B (87) (trained on OpenThoughts2/3 data recipes).
 1542

1543 To investigate the effect of the number of models required to reach a stable ranking with and without confidence
 1544 intervals, in addition to the 11 above-mentioned models, we extend the evaluation to 20 models in total (17 + 3):
 1545 Phi-4-reasoning and Phi-4-reasoning-plus (88) (14B small language models with supervised “teachable” reasoning
 1546 traces and an RL-enhanced variant), OpenR1-Distill-7B (89) (an open 7B distillation of DeepSeek-R1 using
 1547 fully public data), FuseO1-DeepSeekR1-QwQ-SkyT1-Flash-32B-Preview (90) (System-II “long–short” reasoning
 1548 fusion of DeepSeek-R1, QwQ, and Sky-T1-32B-Flash), Light-R1-14B-DS (91) (a Qwen2.5-based long-chain-
 1549 of-thought model further improved with GRPO-style reinforcement learning), AceReason-Nemotron-1.1-7B (92)
 1550 (7B NVIDIA Nemotron math/code model trained on OpenMathReasoning/OpenCodeReasoning data), NVIDIA-
 1551 Nemotron-Nano-9B-v2 (93) (a hybrid Mamba–Transformer “Nano 2” model with controllable reasoning mode),
 1552 Qwen3-4B-Thinking-2507 (79) (4B “thinking” variant of Qwen3 with scaled reasoning depth), and Bespoke-
 1553 Stratos-7B (94) (Qwen2.5-7B student obtained via DeepSeek-R1-based reasoning distillation on Bespoke-Stratos-
 17k).
 1554

1555 For verification we additionally use CompassVerifier-3B (95), a lightweight answer verifier suitable for outcome
 1556 reward and equivalence checking.
 1557

1558 **Prompting.** For most models, we follow the provider-recommended DeepSeek/Qwen-style prompt: “*Please
 1559 reason step by step, and put your final answer within `\boxed{}`.*” For gpt-oss-20b, we
 1560 instead use the OpenAI Harmony prompt template, which provides three levels of reasoning effort. For
 1561 OpenReasoning-Nemotron-1.5B, we adopt the task-specific prompt: “*Solve the following math problem.
 1562 Make sure to put the answer (and only the answer) inside `\boxed{}`.*”
 1563

1564 H.3 REPRODUCIBILITY

- 1565 • **Sampling setup.** All trials use top- p sampling with temperature 0.6, $p = 0.95$, batch size 1, and seeds
 1234–1313. We perform $N = 80$ trials per dataset/model.

1566	ID	Model	Short name
1567	1	DeepSeek-R1-Distill-Qwen-1.5B	DS-R1-Qwen
1568	2	LIMO-v2	LIMO-v2
1569	3	OpenThinker2-32B	OpenThinker2
1570	4	OpenThinker3-1.5B	OpenThinker3
1571	5	Qwen3-30B-A3B-Thinking-2507	Qwen3-Thinking
1572	6	Sky-T1-32B-Flash	Sky-T1-Flash
1573	7	gpt-oss-20b_high	gpt-oss-high
1574	8	gpt-oss-20b_low	gpt-oss-low
1575	9	gpt-oss-20b_medium	gpt-oss-medium
1576	10	EXAONE-4.0-1.2B	EXAONE-4.0
1577	11	OpenReasoning-Nemotron-1.5B	OR-Nemotron
1578	12	Phi-4-reasoning	Phi-4
1579	13	Phi-4-reasoning-plus	Phi-4-plus
1580	14	OpenR1-Distill-7B	OR1-Distill
1581	15	FuseO1-DeepSeekR1-QwQ-SkyT1-Flash-32B-Preview	FuseO1-DS-QwQ-SkyT1
1582	16	Light-R1-14B-DS	Light-R1-DS
1583	17	AceReason-Nemotron-1.1-7B	AR-Nemotron
1584	18	NVIDIA-Nemotron-Nano-9B-v2	NVIDIA-Nemotron
1585	19	Qwen3-4B-Thinking-2507	Qwen3-4B
1586	20	Bespoke-Stratos-7B	Bespoke

Table 6: Mapping between model IDs, full model names, and the shortened names used in figures and legends. Corresponding subsets are listed in Tables 8, 9, and 10.

- **Serving stack.** Token generation is served with vLLM (PagedAttention) (69), and models are loaded in `b16` unless the release requires MXFP4 (e.g., `gpt-oss`). We record log-probabilities for both the input prompt and generated tokens, and cap `max_tokens` at 32,768.
- **Verifier.** We use `CompassVerifier-3B` as a reward model. During evaluation, we leverage the model’s scores on prompts generated by other models to create categorical schemas. We rely on the `Transformers` (68) and `Accelerate` (96) libraries. To maximize throughput, we enable FlashAttention kernels (22) and adopt the `DFloat11` format (97).
- **Hardware.** All runs execute on clusters with $8 \times$ NVIDIA H200 (141GB).

COMPUTATIONAL COST AND TOKEN STATISTICS

Across all tasks, we evaluated 20 models with 80 trials per model and 30 questions per benchmark, yielding a total of 192,000 independent inference runs. This required 7,445 GPU-hours (~ 310 GPU-days) and generated 2.96B tokens (2,963,318,176) in total (see Fig. 8 for details).

1604	Task	Inference Time (hours)	Completion Tokens (M)
1605	AIME’24	1,699.4	680.0
1606	AIME’25	1,878.4	728.3
1607	HMMT’25	2,216.5	851.2
1608	BrUMO’25	1,650.9	666.9
1609	TOTAL	7,445.2	2,926.4

Table 7: Task-level computational cost aggregated over 20 models, 80 trials, 4 tasks, and 30 questions per task. Token counts correspond to *completion* tokens only.

Task-level computational cost. HMMT’25 is the most expensive benchmark in terms of GPU time (2,217 GPU-hours), while BrUMO’25 is the least expensive (1,651 GPU-hours). Figure 8 provides a complementary visualization of these patterns, showing inference time and completion-token usage across models and tasks.

Token breakdown. Aggregating across all tasks and models, the total number of tokens (prompt + completion) is 2.96B. The breakdown is:

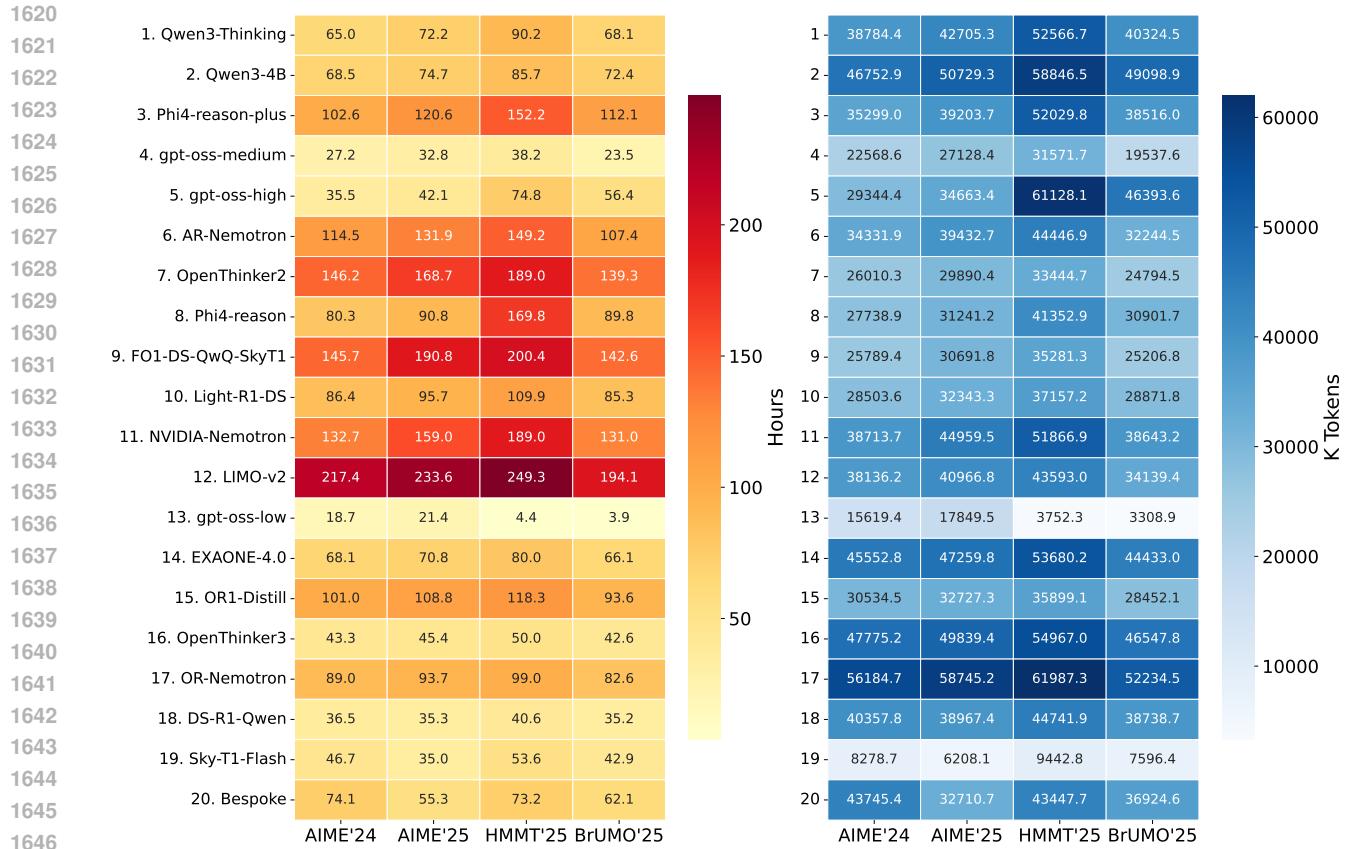


Figure 8: **Computational cost analysis.** (Left) Total inference time in hours aggregated over 80 trials and 30 questions per benchmark (2,400 inference runs per cell). (Right) Total number of completion tokens (in thousands) generated across the same runs. Models are ordered by overall performance (best to worst, top to bottom).

- Prompt tokens: 37M (1.2%)
- Completion tokens: 2.93B (98.8%)
- Average per query: 15,434 tokens

GPU-hours by model efficiency. The 20 model configurations varied substantially in computational efficiency:

- Most efficient: gpt-oss-20b-low (48.4 GPU-hours for 9,600 queries)
- Least efficient: LIMO-v2 (894.3 GPU-hours for 9,600 queries)
- Average per query over all models: 139.6 seconds (~ 2.3 minutes)

I CONVERGENCE

While Fig. 1 shows the PMF of convergence@ n , Fig. 9 shows the corresponding cumulative distribution functions (CDFs). For Pass@4 and Pass@8, there is no convergence, as the figure shows no CDFs associated with them. The CDFs are computed using the same bootstrap replicates as in Fig. 1. The distribution of convergence@ n is computed using the result matrices R from the first 11 models (Table 6). Among the 10^5 replications, Fig. 10 shows the worst-case scenarios in which convergence@ n attains its maximum value. As discussed in Section 3.3, convergence@ n depends on the number of models L : as L increases, convergence@ n grows. When we extend the pool of LLMs from 11 to 20 models, convergence@ n reaches *no convergence* for all datasets (see Fig. 11).

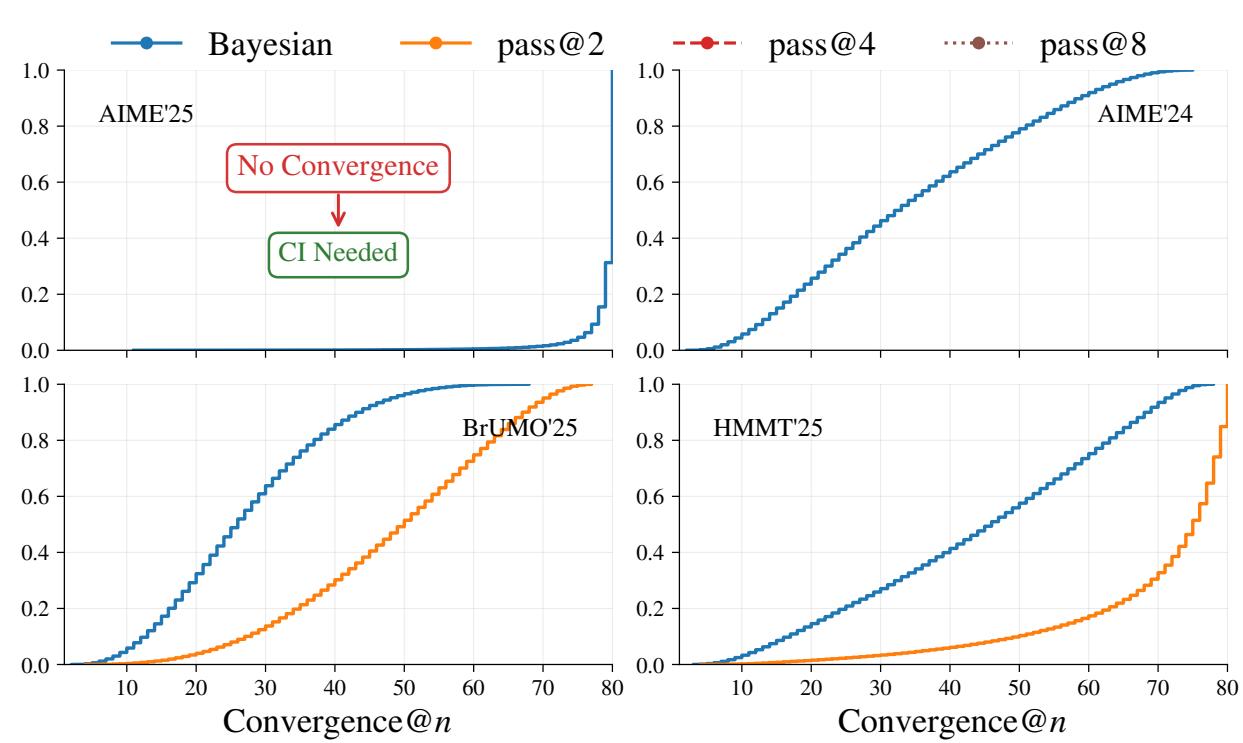


Figure 9: **CDF of convergence@ n .** Complementing the PMFs in Fig. 1, these CDFs plot $P(k \leq n)$ for the convergence threshold k across AIME’24, AIME’25, HMMT’25, and BrUMO’25. Steeper and earlier rises indicate faster convergence. Bayes@ N accumulates mass with fewer trials than Pass@2/4/8, and on AIME’24/’25 the Pass curves do not reach 1 by $N_{\max} = 80$. Greater convergence suggests that confidence intervals should be reported for the evaluation tasks.

To complement the worst-case trajectories discussed in Section 3.3 and shown in Figs. 10 and 11, we provide additional details on the construction of the model subsets and the resulting convergence behavior. Table 6 lists the pool of 20 LLMs used in this analysis, together with the shortened identifiers that appear throughout the figures and tables. From this pool we construct 50 subsets of 5 models, 20 subsets of 10 models, and 20 subsets of 15 models, as summarized in Tables 8 to 10. Each row in these tables corresponds to one subset, indicating which models are included and reporting, under each task, the convergence@ n metric computed *without* a confidence interval; each entry is the mean over 10^5 bootstrap replicates. Thus, the tables make explicit how convergence@ n depends not only on the task but also on the particular mixture of models being compared. Aggregating across all subsets and replicates, Fig. 4 then visualizes the distribution of convergence@ n as a function of the number of models L , confirming the trend anticipated in the main text: as L grows from 5 to 15 and ultimately to the full set of 20 LLMs, the required number of trials increases and non-convergence becomes common, indicating that rank-based evaluation methods such as avg@ N and the Pass@ k family become increasingly unreliable without an accompanying Bayesian uncertainty quantification such as Bayes@ N .

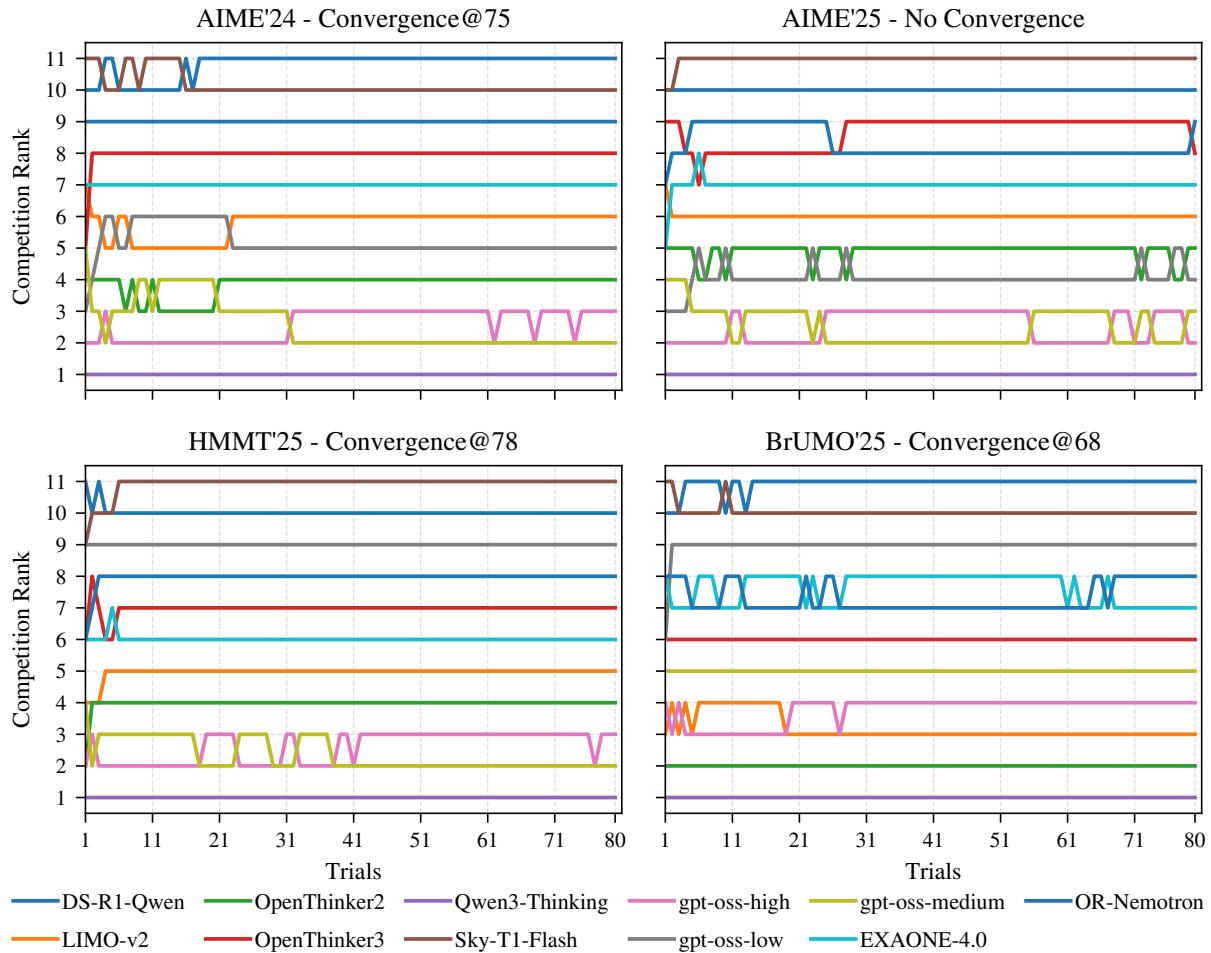


Figure 10: **Worst-case bootstrap rank trajectories.** Each line shows the ranking of a model as trials are added (11 models in total). Convergence is defined as the minimal N after which the ranking remains unchanged. (a) AIME'24: converges at $N = 75$. (b) AIME'25: no convergence observed within 80 trials. (c) HMMT'25: converges at $N = 78$. (d) BrUMO'25: converges at $N = 68$.

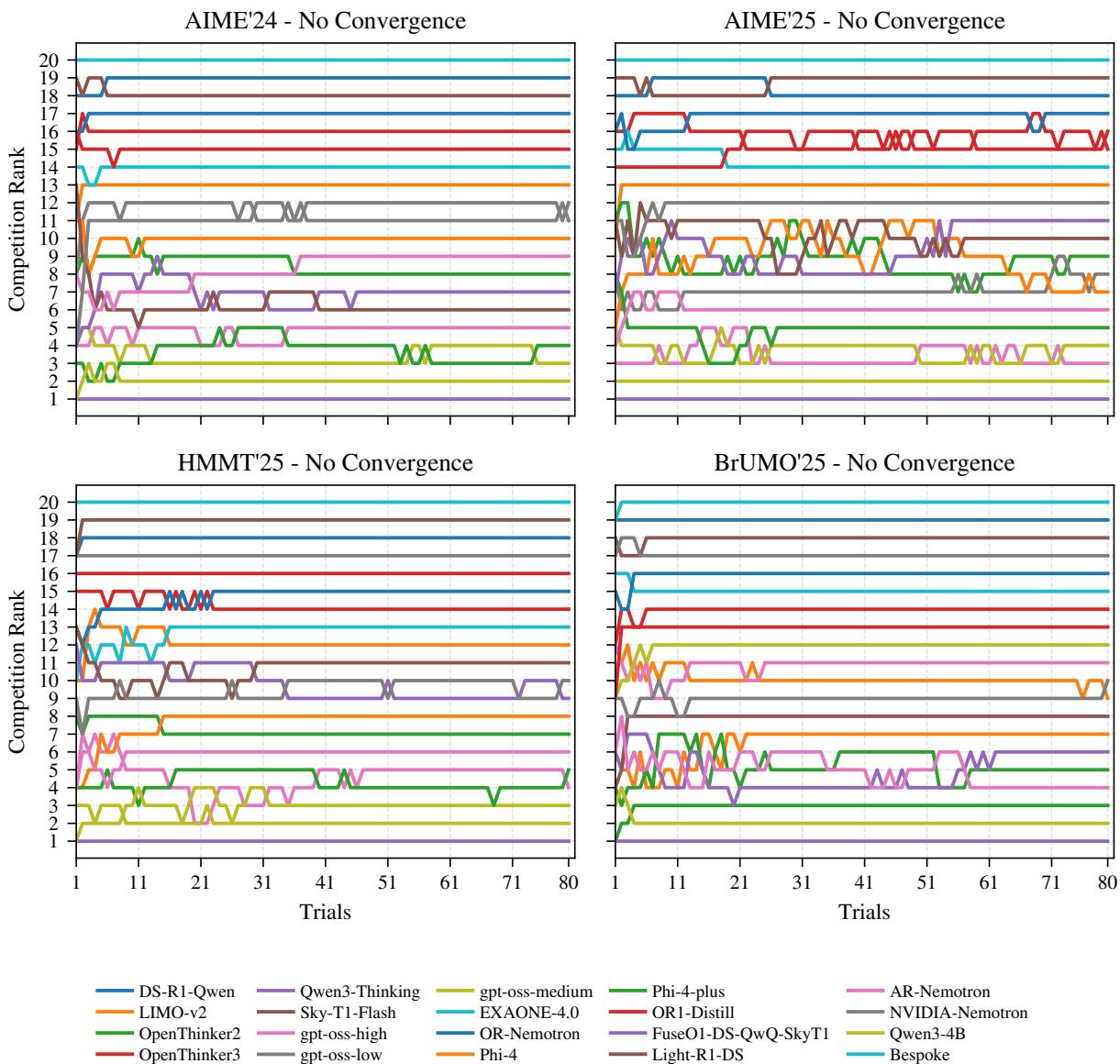


Figure 11: **Worst-case bootstrap rank trajectories.** Each line shows the ranking of a model as trials are added (20 models in total). Convergence is defined as the minimal N after which the ranking remains unchanged. There is at least one *no convergence* replicate among the 10^5 bootstrapped replications.

Table 8: **5-model combinations.** Matrix showing model presence across the 50 evaluated combinations. Values under each task report the convergence@ n metric computed without a confidence interval; each value is the mean of 100K bootstrapped samples. Model identifiers are listed in Table 6.

Comb.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	AIME'24	AIME'25	HMMT'25	BrUMO'25		
1				4									13	14			18	19			13.5	69.0	11.9	8.8		
2	1	2											14				18	20			3.0	38.4	13.3	59.3		
3	1	2			4								13				20				1.5	3.1	2.7	2.7		
4													11	13	14			18	19			10.9	65.0	12.6	5.0	
5	1												11	11	14			17	20			2.5	5.5	3.7	50.2	
6	1												10					17	18			11.4	15.3	7.9	3.1	
7	1												10	12	13				19			11.0	3.3	12.5	11.1	
8	1												10					17	18			5.9	13.1	9.8	6.3	
9													11	12				17	19	20		44.3	2.8	5.1	9.4	
10	1	2												13				17	18			6.8	38.8	14.6	68.4	
11													10	11	14			17	19			10.4	66.9	5.3	16.6	
12													11	13	14			17	20			3.7	65.1	5.4	50.3	
13			4										10	11				18	19			9.2	72.0	17.2	17.7	
14	1	2												12	13				20				2.9	4.4	5.8	11.5
15			4										11	12	14				20				12.9	79.0	15.0	8.4
16		2											10	11				18	19			4.7	41.1	27.4	60.3	
17	1	2	4															17	20			1.8	3.2	3.1	2.3	
18	1	2	4															17	18			6.2	38.3	14.3	59.4	
19	1	2												12				17	19			44.3	4.2	8.1	11.1	
20	1												10	11				18	20			1.8	13.1	7.8	15.0	
21	1												10	12				18	20			5.4	4.1	16.4	3.1	
22		2												12	14			17	20			44.3	4.1	7.9	9.8	
23			4										11	13				17	19			14.7	71.2	19.7	50.9	
24	1	2	4											14					18				8.4	72.3	14.0	59.8
25			4										10	12				18	20			6.3	13.6	17.1	7.0	
26	1		4															18	19	20		1.4	2.9	2.0	1.8	
27													10		14			17	19	20		9.5	15.3	2.5	5.2	
28			4															17	18	19	20	5.4	1.6	3.3	4.5	
29													10	12				17	18	20		45.1	4.1	17.5	8.4	
30	2												10	11				17	18			7.3	41.1	27.5	60.3	
31		3	5	7	9													16				39.6	73.6	38.1	13.1	
32		3		6	8												15	16			48.0	71.4	32.9	18.6		
33			5	6	7	8											16				19.5	39.5	1.6	10.4		
34		3	5		8	9											16				23.9	67.8	6.5	3.3		
35			6	7	8	9											16				35.7	73.1	36.9	17.1		
36		3	5	6	7	8											15	16			10.2	61.1	2.3	10.2		
37		3	5		7	9											15	16			47.3	74.7	47.4	16.6		
38		3	5	5	7	8	9										15	16			29.6	75.4	37.1	12.1		
39		3	5	6	7	8	9										15	16			35.6	47.0	28.6	10.1		
40		3	6	8	9												15	16			23.9	67.8	6.4	11.0		
41		3	6	7	8												15				36.0	64.3	10.9	13.9		
42			6	7	8												15	16			40.5	59.1	28.6	15.8		
43		3	5	6													15	16			47.8	60.1	32.9	14.7		
44		3	5		7	9											15				43.0	72.5	39.1	16.0		
45			5	7	8	9											15				31.3	72.6	36.9	12.1		
46		3	5	6	8												16				19.8	67.8	6.0	11.0		
47		3	5	6	8												15				33.0	64.3	10.3	13.9		
48		3	6	7	9												16				39.6	73.6	38.1	13.1		
49		5	6	7													15	16			39.9	47.0	28.6	10.5		
50		3	6	7	8												16				29.8	67.8	6.7	11.2		

Table 9: **10-model combinations.** Matrix showing model presence across the 20 evaluated combinations. Values under each task report the convergence@ n metric computed without a confidence interval; each value is the mean of 10^5 bootstrapped samples. Model identifiers are listed in Table 6.

Comb.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	AIME'24	AIME'25	HMMT'25	BrUMO'25
1	1	2	3	4	5	6															28.2	71.9	23.3	35.4
2	1	2		4							11		14		16	17	18	19	20		16.4	79.0	43.2	60.4
3		3		5	6	7	8	9				12	13	15	16						68.4	79.3	71.3	73.5
4		2			7	8	9			11	12	13		16	17	18					76.5	79.0	70.3	74.8
5	1	2		4						10	11	14			17	18	19	20			18.1	79.0	30.6	60.9
6	1	2		4							11	12	13		16	17		19	20		47.9	72.8	30.5	70.0
7		3		5	6	7	8				12	13	14	15	16						56.6	78.3	68.7	73.5
8	1		3	4	5	6	7	8	9					15				19			46.3	75.8	49.4	38.6
9	1	2		4						10	11	12	13		16		18	19			20.8	74.4	48.1	73.0
10			5		7	8	9				11	12	13		17	18	19				76.5	78.9	70.1	53.6
11	1	2									11	12	13	14	16	17		19	20		47.6	67.5	27.2	70.0
12	1	2	3		5	6						13	14	15	16	17					51.3	60.3	40.6	71.9
13		3		5		7	8	9				12	13		16		18		20		75.9	79.3	71.5	63.6
14	1	2	3	4						10	11	12	13		16			19			29.0	76.4	50.8	66.0
15		2	3	4	5	6	7	8	9					15			19				45.0	75.8	49.6	38.8
16	1	2		4							11	12		14		17	18	19	20		46.4	79.0	26.3	60.4
17	1	2		4		7	8	9	10	11				14			18	19			70.3	78.8	51.8	61.9
18			5	6	7	8	9	10				12	13		16		18				75.9	78.9	70.1	63.9
19		3		5	6				10	11	12	13		15	16		18				49.2	68.4	72.8	73.5
20	1	2	3		5		7	9		11		13			16			19			66.6	75.6	70.2	38.2

Table 10: **15-model combinations.** Matrix showing model presence across the 20 evaluated combinations. Values under each task report the convergence@ n metric computed without a confidence interval; each value is the mean of 10^5 bootstrapped samples. Model identifiers are listed in Table 6.

Comb.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	AIME'24	AIME'25	HMMT'25	BrUMO'25	
1	1	2	3	4	5	6															59.3	76.1	72.9	77.1	
2	1	2	3	4	5	6				10	11			14	15	16	17	18	19	20	51.3	79.1	71.7	67.6	
3		2		5	6	7	8	9				12	13	14	15	16	17	18	19	20	76.6	79.0	76.4	77.1	
4		2	3		6	7	8	9			11	12	13	14	15	16	17	18		20	76.7	79.5	76.5	77.1	
5	1		3	4	5	6	7	8	9			12	13	14	15	16		19	20		68.5	79.6	71.7	73.9	
6	1		3	4	5	6	7	8	9		11		14	15	16	17	18	19			73.1	79.7	72.7	53.2	
7	1	2		4		7	8	9	10	11	12	13	14			17	18	19	20		76.5	79.9	70.3	69.0	
8	1	2		4	5		7	8	9	10	11	12	13				17	18	19	20		76.5	79.6	70.3	68.9
9	1	2	3		5		7	8	9	10	11	12	13				17	18	19	20		76.5	79.3	71.5	69.9
10	1	2	3	4		7	8	9	10	11	12	13				17	18	19	20		76.5	79.7	71.5	69.9	
11		3	4	5	6	7	8	9			11	12	13	14	15	16	17	18			76.7	79.9	76.5	75.8	
12			5	6	7	8	9			11	12	13	14	15	16	17	18	19	20		76.6	79.3	76.4	75.8	
13	1	2	3	4	5	6	7	8	9	10				14	15	16		19	20		54.4	78.7	55.8	40.3	
14	1	2	3	4	5	6				10	11	12	13	14	15	16		19	20		50.9	79.2	55.6	73.9	
15	1	2	3	4	5	6					11	12	13	14	15	16	17	18	19		59.4	79.2	73.0	77.1	
16	1	2	3	4		6				10	11	12	13	14	15	16	17	18	19	20		59.3	77.0	73.0	77.1
17	1	2	3	4		6				10	11	12	13	14	15	16	17	18	19	20		52.8	79.2	57.0	74.9
18	1	2	3	4		6				10	11	12	13	14	15	16	17	18	19	20		55.9	79.2	71.4	75.3
19	1	2	3	4	5	6	7	8	9	10				14	15	16	17	18			73.1	78.8	72.7	66.5	
20	1		3	4	5	6	7	8	9					14	15	16	17	18	19	20		73.1	78.7	72.7	53.2