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Abstract

Nondeterminism models an ability to see the future: an automaton with an infinite look-ahead

can successfully resolve its nondeterministic choices. An automaton is history deterministic (HD)

if it can successfully resolve its nondeterministic choices in a way that only depends on the past.

Formally, an HD automaton has a strategy that maps each finite word to the transition to be taken

after the word is read, and following this strategy results in accepting all the words in the language

of the automaton. Beyond being theoretically interesting and intriguing, HD automata can replace

deterministic automata in several applications, most notably reactive synthesis, and they attract a lot of

interest in the research community. The survey describes the development of HD ω-regular automata,

relates history determinism to other types of bounded nondeterminism, studies the determinization

of HD automata and their succinctness with respect to deterministic ones, and discusses variants,

extensions, and open problems around HD automata.

1 Introduction

Automata are among the most studied computation models in theoretical computer science. Their simple

structure has made them a basic formalism for the study of fundamental notions. One such notion is

nondeterminism, introduced by Rabin and Scott in 1959: “A nondeterministic automaton has, at each

stage of its operation, several choices of possible actions. This versatility enables us to construct very

powerful automata using only a small number of internal states” [49]. Nondeterminism allows a computing

machine to examine several possible actions simultaneously, and some fundamental questions around it

(most notably, P vs. NP) are still open. In the setting of automata on finite words, nondeterminism

enables the definition of exponentially more succinct automata, but it does not add to the expressive

power of deterministic automata (called “ordinary” in [49]): “One might imagine at first sight that these

new machines are more general than the ordinary ones, but this is not the case”.

In 1962, Büchi introduced automata on infinite words [15]. Acceptance in such automata is determined

according to the set of states that are visited infinitely often along the run. In particular, in Büchi

automata (NBW and DBW, for nondeterministic and deterministic Büchi word automata, respectively),

the acceptance condition is a subset α of states, and a run is accepting iff it visits α infinitely often. The

transition to infinite words significantly extends the combinatorial richness of automata. In particular, in

1969 Landweber proved that NBWs are strictly more expressive than DBWs [38]. That is, there exists a

language of infinite words that is recognizable by an NBW but cannot be recognized by a DBW. Today, the
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gap between deterministic and nondeterministic Büchi word automata is well understood: While NBWs

can recognize all ω-regular languages, an ω-regular language L of infinite words can be recognized by a

DBW iff there exists a regular language R of finite words such that L contains exactly all words that have

infinitely many prefixes in R [38].

Using NBWs, Büchi solved the decidability problem for monadic second order logic with one successor

(S1S). Given an S1S formula ϕ, Büchi constructed an NBW Aϕ that accepts exactly all the models of ϕ,

and thus reduced the satisfiability of ϕ to the nonemptiness of Aϕ. The computer-science community has

become further interested in automata on infinite objects thanks to their applications in reasoning about

reactive systems. By translating specifications to automata, questions about specifications, verification,

and synthesis are reduced to questions about automata [55, 33]. In particular, while the translation from

S1S formulas to automata is nonelementary, it is only exponential for specification formalisms like linear

temporal logic [45]. In some applications, such as verification, algorithms can be based on nondeterministic

automata, whereas in other applications, such as synthesis and control, algorithms are based on determinis-

tic automata. There, the advantages of nondeterminism are lost, and the algorithms involve a complicated

determinization construction [50] or acrobatics for circumventing determinization [37, 21].

To see the difficulty of using nondeterministic automata in synthesis, let us review the synthesis problem

and its automata-based solution [23]. Consider a language L of infinite words over an alphabet 2I∪O, where

I and O are sets of input and output signals, respectively. The synthesis problem for the specification L

is to build a reactive system that receives from its environment assignments to the signals in I (that is,

letters in 2I), responds with assignments to the signals in O (that is, letters in 2O), and does so in such a

way that the generated computation (an infinite word over the alphabet 2I∪O) is in L [46]. Algorithms for

solving the problem are based on taking a deterministic automaton D for L and conducting a two-player

game on top of it. The game is played between a player that models the system and a player that models

the environment. The positions of the game are the states of D and it starts in the initial state. In each

turn of the game, the environment first chooses the 2I component of the next letter, the system responds

with the 2O component, and D moves to the corresponding successor state. Together, the players generate

an infinite word in (2I∪O)ω along with the run of D on it. The system wins if this run is accepting. It

can be shown that the system has a winning strategy, namely a strategy to respond so that it wins against

every environment, iff the language L can be synthesized. Now, if one replaces D with a nondeterministic

automaton A for L, the system should also choose in each turn a transition to proceed with. Then, it might

be that L is synthesizable and still the system has no winning strategy. Indeed, the transition that the

system chooses should work for all possible futures of the game, whereas possibly each nondeterministic

choice of A works for a strict subset of the possible futures.

Let us go back to the 1960s, when the solution of the decidability problem for S1S has lead to in-

creasing efforts to solve also the decidability problem for SnS, namely monadic second order logic with

multiple successors. While S1S formulas describe linear structures, and thus correspond to infinite words,

SnS formulas describe branching structures, and correspond to infinite trees. Accordingly, researchers

started to study automata on infinite trees, which define languages of infinite trees. In particular, they

searched for translations of SnS formulas to nondeterministic Büchi tree automata (NBTs), aiming to

reduce satisfiability to their nonemptiness.

In 1969, Rabin solved the decidability problem for SnS [47]. The solution involved an introduction of a

new type of acceptance condition for automata on infinite objects, namely the Rabin acceptance condition.

The condition is more complex than the Büchi acceptance condition and involves two types of constraints
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on the set of states that are visited infinitely often in the run. Given an SnS formula ϕ, Rabin constructed

a nondeterministic Rabin tree automaton (NRT) Aϕ that accepts exactly all the models of ϕ, and thus

reduced the satisfiability of ϕ to the nonemptiness of Aϕ. Then, in 1970, Rabin proved that in fact SnS

cannot be translated to NBTs [48]. Specifically, NBTs can recognize only the weak fragment of SnS –

one in which the sets we quantify over are finite. Thus, while nondeterministic Büchi and Rabin word

automata have the same expressive power, NRTs are strictly more expressive than NBTs.

Proving that NBWs are strictly more expressive than DBWs, Landweber showed that the language

L1 = (0 + 1)∗ · 1ω (only finitely many 0’s) is in NBW \ DBW. The proof is simple and can be stated

in a few lines or using a two-state expressiveness refuter [36]. Much harder is the proof that NRTs are

strictly more expressive than NBTs. In [48], Rabin had to use a complicated construction and a complicated

inductive argument. Interestingly, the language of trees that Rabin used in his proof is the derived language

of L1. That is, the set of all trees all whose paths have only finitely many 0’s.

In 1996, it turned out that Rabin’s choice of L1 was not arbitrary: for every language L of infinite

words, let L4 denote the derived language of L, namely the language of trees all whose paths are in L.

In [34, 35], Kupferman, Safra, and Vardi proved that for every language L of infinite words, we have that

L ∈ NBW\DBW iff L4 ∈ NRT\NBT. The difficult part in the proof is to show that if L4 can be recognized

by an NBT, then L can be recognized by a DBW. Intuitively, since the branches of a tree in L4 may

contain any word in L, the nondeterministic choices that an NBT performs when it recognizes L4 have to

accommodate all possible futures, which makes the usefulness of nondeterminism questionable. The results

in [34, 35] where generalized in [44] to acceptance conditions that are stronger than the Büchi condition.

Niwinski and Walukiewicz showed that if L4 can be recognized by a nondeterministic tree automaton with

some acceptance condition γ (for example, γ may be parity with index 5), then L can be recognized by a

deterministic word automaton with acceptance condition γ. The difficulty in defining a nondeterministic

tree automaton for a derived language are similar to the difficulty of the system player in the synthesis

game, when played on a nondeterministic automaton: both have to resolve their nondeterministic choices

in a way that only depends on the past and still accommodates all futures.

In [26], Henzinger and Piterman introduced history deterministic (HD) automata, which capture this

difficulty in a very clean way. Essentially, a nondeterministic automaton is HD if it has a strategy to resolve

its nondeterministic choices that only depends on the past. The notion used in [26] is good for games (GFG)

automata, as they address the difficulty described above, of playing games on top of a nondeterministic

automaton. As it turns out, the property of being good for games varies in different settings and HD is

good for applications beyond games (see more in Section 5). Therefore, following [14], we use the term

history determinism, introduced by Colcombet in the setting of quantitative automata with cost functions

[19].

Formally, a nondeterministic automaton A over an alphabet Σ is HD if there is a strategy f that maps

each finite word u ∈ Σ∗ to the transition to be taken after u is read; and following f results in accepting all

the words in the language of A. Note that a state q of A may be reachable via different words, and f may

suggest different transitions from q after different words are read. Still, the choices of f only depend on the

past, namely on the word read so far, and have to address all possible futures, namely all possible suffixes.

As formalized in [8], the strategy f of an HD automaton for L is similar to a run of a tree automaton

for L4 on a tree that includes all words in L.1 As their original “good for games” name suggests, HD

1Note that such a tree exists only when L is fusion closed; in the general case, the relation between a tree automaton for

L4 and an HD automaton for L is formalized by a tree that includes all the words in Σω [8].
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automata can be used in the reduction of synthesis to game solving. Indeed, if one tries to replace the

deterministic automaton D discussed above by an HD automaton A, the system should still choose in each

turn a transition to proceed with, but now it is guaranteed that there is a transition that would work for

all possible futures.

Obviously, there exist HD automata: deterministic ones, or nondeterministic ones that are determinizable

by pruning (DBP); that is, ones that just add transitions on top of a deterministic automaton. In fact, the

HD automata constructed in [26] are DBP.2 Beyond the theoretical interest in DBP automata, they are used

for modeling online algorithms: by relating the “unbounded look ahead” of optimal offline algorithms with

nondeterminism, and relating the “no look ahead” of online algorithms with determinism, it is possible to

reduce questions about the competitive ratio of online algorithms and the memory they require to questions

about DBPness [5, 6]. As it turns out, HD automata on infinite words need not be DBP, and they constitute

an interesting and intriguing class of automata, many of whose properties are still unknown.

This survey presents selected results about HD automata. We focus in Büchi auotmata, and their

dual co-Büchi automata, denoted DCW and NCW, for the deterministic and nondeterministic classes.

Section 3 studies determinization by pruning. It shows that HD nondeterministic automaton on finite

words are always DBP. Moreover, a deterministic equivalent automaton that is embodied in every HD

automaton can be found in polynomial time. On the other hand, once we move to automata on infinite

words, HD-NBWs and HD-NCWs need not be DBP, and deciding their DBPness is NP-complete. Section 4

studies determinization of HD-NBWs and HD-NCWs. It shows that their determinization is simpler than

that of NBWs and NCWs, and that HD affects Büchi and co-Büchi automata in a different and surprising

way: Recall that nondeterminism is more significant for Büchi than for co-Büchi automata: NBWs are

strictly more expressive than DBWs [38], and determinization of NBWs is very complicated and involves,

beyond using a richer acceptance condition, also a 2O(n logn) blow up [50]. NCWs, on the other hand,

are as expressive as DCWs, and their determinization only involves a 2O(n) blow up [40]. One could then

expect that HD nondeterminism would also be more significant for Büchi than co-Büchi automata. As

we show in Section 4, this is not the case: while HD-NCWs are exponentially more succinct than DCWs,

every HD-NBWs can be determinized to a DBW with a quadratic blow-up, and in fact no matching lower

bound is known. The section also relates determinization and complementation of HD automata. Finally,

Section 5 discusses variants, extensions, and open problems.

2 Preliminaries

For a finite nonempty alphabet Σ, an infinite word w = σ1 · σ2 · · · ∈ Σω is an infinite sequence of letters

from Σ. A language L ⊆ Σω is a set of infinite words. For i, j ≥ 0, we use w[1, i] to denote the (possibly

empty) prefix σ1 · σ2 · · ·σi of w, use w[i+ 1, j] to denote the (possibly empty) infix σi+1 · σi+2 · · ·σj of w,

and use w[i+1,∞] to denote its suffix σi+1 ·σi+2 · · · . We sometimes refer also to languages of finite words,

namely subsets of Σ∗. We denote the empty word by ε.

A nondeterministic automaton over infinite words is A = 〈Σ, Q, q0, δ, α〉, where Σ is an alphabet, Q

is a finite set of states, q0 ∈ Q is an initial state, δ : Q × Σ → 2Q \ ∅ is a transition function, and α is

an acceptance condition, to be defined below. For states q and s and a letter σ ∈ Σ, we say that s is a

2As explained in [26], the fact that the HD automata constructed there are DBP does not contradict their usefulness in

practice, as their transition relation is simpler than the one of the embodied deterministic automaton and it can be defined

symbolically.
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σ-successor of q if s ∈ δ(q, σ). Note that A is total, in the sense that it has at least one successor for each

state and letter. If |δ(q, σ)| = 1 for every state q ∈ Q and letter σ ∈ Σ, then A is deterministic.

When A runs on an input word, it starts in the initial state and proceeds according to the transition

function. Formally, a run ofA on w = σ1·σ2 · · · ∈ Σω is an infinite sequence of states r = r0, r1, r2, . . . ∈ Qω,

such that r0 = q0, and for all i ≥ 0, we have that ri+1 ∈ δ(ri, σi+1). We extend δ to sets of states and finite

words in the expected way. Thus, δ(S, u) is the set of states that A may reach when it reads the word

u ∈ Σ∗ from some state in S ∈ 2Q. Formally, δ : 2Q × Σ∗ → 2Q is such that for every S ∈ 2Q, finite word

u ∈ Σ∗, and letter σ ∈ Σ, we have that δ(S, ε) = S, δ(S, σ) =
⋃

s∈S δ(s, σ), and δ(S, u · σ) = δ(δ(S, u), σ).

The transition function δ induces a transition relation ∆ ⊆ Q×Σ×Q, where for every two states q, s ∈ Q
and letter σ ∈ Σ, we have that 〈q, σ, s〉 ∈ ∆ iff s ∈ δ(q, σ). For a state q ∈ Q of A, we define Aq to be the

automaton obtained from A by setting the initial state to be q. Thus, Aq = 〈Σ, Q, q, δ, α〉.
The acceptance condition α determines which runs are “good”. We consider here the Büchi and co-Büchi

acceptance conditions, in both a state-based and a transition-based setting. In the traditional state-based

setting, we have that α ⊆ Q is a subset of states. For a run r, let inf (r) ⊆ Q be the set of states that r visits

infinitely often. Thus, inf (r) = {q ∈ Q : q = ri for infinitely many i’s}. A run r of a Büchi automaton

is accepting iff it visits states in α infinitely often, thus inf (r) ∩ α 6= ∅. Dually, a run r of a co-Büchi

automaton is accepting iff it visits states in α only finitely often, thus inf (r) ∩ α = ∅. In the transition-

based setting, we have that α ⊆ ∆ is a set of transitions, inf (r) is defined as the set of transitions that are

traversed infinitely often in r, and the definition of acceptance is similar. Thus, in Büchi automata, a run

is accepting if it traverses infinitely many transitions in α, and in co-Büchi automata, a run is accepting

if it traverses only finitely many transitions in α. In both the state-based and transition-based settings,

a run that is not accepting is rejecting. As A is nondeterministic, it may have several runs on a word w.

The word w is accepted by A if there is an accepting run of A on w. The language of A, denoted L(A), is

the set of words that A accepts. Two automata are equivalent if their languages are equivalent.

Consider a nondeterministic automaton A = 〈Σ, Q, q0, δ, α〉, We say that A is semantically deterministic,

if its nondeterministic choices lead to states with the same language. Formally, for every state q ∈ Q and

letter σ ∈ Σ, all the σ-successors of q have the same language.

Then, we say that A is history deterministic (HD, for short) if there is a strategy f : Σ∗ → Q that

resolves the nondeterminism in A in a way that only depends on the past and leads to the acceptance of

all words in L(A). Formally, the following hold:

• The strategy f is compatible with δ. That is, for all u ∈ Σ∗ and σ ∈ Σ, we have that f(u · σ) ∈
δ(f(u), σ).

• Following f guarantees the acceptance of all the words in L(A). That is, for all words σ1 ·σ2 ·σ3 · · · ∈
L(A), the sequence f(ε), f(σ1), f(σ1 · σ2), f(σ1 · σ2 · σ3), . . . satisfies the acceptance condition α.

Finally, A is determinizable by pruning (DBP, for short) if it embodies an equivalent deterministic

automaton, thus it can be determinized to an equivalent automaton by removing some of its transitions.

It is easy to see that every DBP automaton is HD. Indeed, a witness strategy f can follow the unpruned

transitions. Also, every HD automaton can be pruned in polynomial time to a semantically deterministic

automaton [32]. Indeed, the fact the automaton is HD implies that for every state q ∈ Q, we can prune

transitions to σ-successors of q whose language does not contain the language of another σ-successor of q.

Indeed, these transitions are never taken by an HD strategy. Since language-containment for HD automata

can be checked in polynomial time, such a pruning can be done in polynomial time.
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We denote the different classes of automata by three-letter acronyms in {D, N} × {F, B, C} × {W}.
The first letter stands for the branching mode of the automaton (deterministic or nondeterministic); the

second for the acceptance condition type (finite, Büchi, or co-Büchi); and the third indicates that we

consider automata on words. For example, NBWs are nondeterministic Büchi word automata. When the

acceptance condition is transition-based, we add “t” before the acronym, and when the automata are HD,

we indicate it too. For example, HD-tNCWs are HD NCWs with a transition-based acceptance condition.

3 Determinization by Pruning

The fact nondeterminism leads to exponential succinctness implies that not all nondeterministic automata

are DBP. In this section we study DBPness for HD automata. Recall that the strategy f that witnesses

the HDness of an automaton A directs runs of A how to resolve nondeterministic choices based on the

prefix of the word read so far, and may proceed with different nondeterministic choices in different visits

to the same state. We can view the question of DBPness in HD automata as the question of whether the

HD strategy really needs to make these different choices, namely whether the choices depend on the past.

Indeed, an HD automaton is DBP if the past does not really play a role in the resolving of nondeterminism

and the same choice can be taken whenever nondeterminism has to be resolved. As we shall see, the answer

is positive for automata on finite words and negative for Büchi and co-Büchi automata.

3.1 The case of finite words

In this section we prove that for automata on finite words, all HD-NFWs are DBP. For this, we describe a

sufficient condition for NFWs to be DBP, and argue that all HD-NFWs satisfy the condition. The condition

is a simplification of a fixed-point characterization of NFWs that are DBPs introduced in [5], where it is

used in order to decide whether a given NFW is DBP.

Consider an NFW A = 〈Σ, Q,Q0, δ, α〉. For a relation H ⊆ Q×Q, a set S ⊆ Q, and a states q′ ∈ Q, we

write H(S, q′) to indicate that H(q, q′) for all q ∈ S. We inductively define a sequence H0, H1, . . . ⊆ Q×Q
of relations as follows.

• H0 = (α× α) ∪ ((Q \ α)×Q). That is, H0 = {{〈q, q′〉 : if q ∈ α, then q′ ∈ α}.

• For i ≥ 0, we have Hi+1 = Hi ∩ {〈q, q′〉 : for all σ ∈ Σ there is v′ ∈ δ(q′, σ) such that Hi(δ(q, σ), v′)}.

Intuitively, Hi(q, q
′) means that A can be prunned to a DFW A′ such that all the words of length at most

i accepted from q in A are also accepted from q′ in A′.
Since H0 ⊆ Q×Q and H0 ⊇ H1 ⊇ H2 ⊇ . . ., the sequence of relations eventually reaches a fixed-point,

which we denote by H. Intuitively, H(q, q′) if there is a DFW embodied in Aq′ that accepts all words in

L(Aq).

The relation H induces an NFW AH = 〈Σ, Q,QH
0 , δ

H , α〉 embodied in A, where

• QH
0 = {v : v ∈ Q0 and H(Q0, v)}.

• For all q ∈ Q and σ ∈ Σ, we have that δH(q, σ) = {v : v ∈ δ(q, σ) and H(δ(q, σ), v)}.

Note that the set QH
0 may be empty, and that for some state q ∈ Q and letter σ ∈ Σ, it may be that

δH(q, σ) = ∅. We prove that nonemptiness of QH
0 is a sufficient condition for A to be DBP.
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Lemma 3.1. Consider an NFW A, its relation H, and the induced NFW AH . If QH
0 6= ∅, then A is DBP.

Proof: Assume that QH
0 is not empty. We prove that every DFW that is embodied in AH is equivalent

to A. Let A′ = 〈Σ, Q, q′0, δ′, α〉 be such a DFW. Thus, q′0 ∈ QH
0 and for all states q ∈ Q and letters σ ∈ Σ,

we have δ′(q, σ) ∈ δH(q, σ). Note that if δH(q, σ) = ∅, then δ′(q, σ) is not defined. As we shall prove,

however, the fact QH
0 is not empty implies that δH(q, σ) 6= ∅ for all letters σ ∈ Σ states q ∈ Q that are

reachable in A′.
We prove that L(A′) = L(A). Since A′ is embodied in AH , which in turn is embodied in A, it is clear

that L(A′) ⊆ L(A). In order to prove that L(A) ⊆ L(A′), consider a word w = w1w2 . . . wn ∈ L(A).

We prove that A′ does not get stuck on w and that for every run r = r0r1 . . . rn of A on w, the run

s = s0s1 . . . sn of A′ on w is such that for all 0 ≤ j ≤ n, we have that H(rj , sj). Since H ⊆ H0, the latter

implies that membership of rn in α implies membership of sn in α. Thus, if there is an accepting run of A
on w, then the run of A′ on w is also accepting.

The proof proceeds by an induction on j. For j = 0, the definition of A′ implies that s0 = q′0 ∈ QH
0 .

Therefore, by the definition of QH
0 , we have that H(Q0, s0). In particular, as r0 ∈ Q0, we have that

H(r0, s0).

For the induction step, assume that the induction hypothesis holds for j ≥ 0, thus H(rj , sj). We prove

that the run s does not get stuck in the j-th transition, and that the state sj+1 satisfies H(rj+1, sj+1). By

the induction hypothesis, we have that H(rj , sj). Hence, by the definition of H, for every letter σ ∈ Σ,

there exists a state v ∈ δ(sj , σ) such that H(δ(rj , σ), v). Hence, if δ(rj , σ) is not empty, so is δH(sj , σ).

In particular, as δ(rj , wj+1) includes rj+1, we have that δH(sj , wj+1) 6= ∅, and so A′ does not get stuck

on w in the j-th transition. In addition, by the definition of δH , the fact sj+1 ∈ δH(sj , wj+1) implies that

H(δ(rj , wj+1), sj+1). Since rj+1 ∈ δ(rj , wj+1), it follows that H(rj+1, sj+1), and we are done.

We continue and prove that all HD-NFWs are DBP. Given an HD-NFW A as above, and a function

f : Σ∗ → Q that witnesses its HDness, consider the relation Gf ⊆ Q ×Q where for all q, q′ ∈ Q, we have

that G(q, q′) iff there is a word w ∈ Σ∗ such that q ∈ δ(Q0, w) and f(w) = q′. Intuitively, Gf (q, q′) if there

is a word w ∈ Σ∗ such that the HD strategy f is guaranteed to accept from q′ all suffixes that extend w to

a word in L(A) and are accepted from q.

Lemma 3.2. If A is an HD-NFW and f witnesses its HDness, then Gf ⊆ H and f(ε) ∈ QH
0 .

Proof: Consider an HD-NFW A and a function f : Σ∗ → Q that witnesses its HDness. We first prove

that Gf ⊆ Hi for all i ≥ 0, thus Gf ⊆ H. The proof proceeds by an induction on i.

For the induction base, consider two states q, q′ ∈ Q such that Gf (q, q′). Let w ∈ Σ∗ be such that

q ∈ δ(Q0, w) and f(w) = q′. By the definition of Gf , such a word w exists. Assume that q ∈ α. Then,

w ∈ L(A), and so, as f witnesses the the HDness of A, we have that f(w) ∈ α too. Thus, q ∈ α implies

that q′ ∈ α, and so H0(q, q′), and we are done.

For the induction step, consider again two states q, q′ ∈ Q such that Gf (q, q′), and let w ∈ Σ∗ be such

that q ∈ δ(Q0, w) and f(w) = q′. First, by the induction hypothesis, we have that Hi(q, q
′). Now, by

definition, Hi+1(q, q′) iff Hi(q, q
′) and for all letters σ ∈ Σ there is v′ ∈ δ(q′, σ) such that Hi(δ(q, σ), v′).

For a letter σ ∈ Σ, let v′ = f(w · σ). Note that by the definition of HD witness functions, the state v′ is

in δ(q′, σ). Consider a state v ∈ δ(q, σ). Note that v ∈ δ(Q0, w · σ), and so Gf (v, v′). Therefore, by the

induction hypothesis, we have Hi(v, v
′). It follows that Hi(δ(q, σ), v′). Since the above holds for all letters

σ ∈ Σ, it follows that Hi+1(q, q′), and are done.
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It is left to prove that f(ε) ∈ QH
0 . Recall that for every state q ∈ Q, we have that q ∈ QH

0 iff q ∈ Q0 and

H(Q0, q). Clearly, f(ε) ∈ Q0. Also, by the definition of Gf , as Q0 = δ(Q0, ε), we have that Gf (Q0, f(ε)).

Hence, as Gf ⊆ H, we have that H(Q0, f(ε)), and we are done.

Lemmas 3.2 and 3.1 together imply that a function that witnesses the HDness of an HD-NFW A also

witnesses the nonemptiness of QH
0 , and so we can conclude with the following.

Corollary 3.3. Every HD-NFW is DBP.

Remark 3.1. A language L ⊆ Σω is a safety language if it states that something “bad” never happens.

Formally, for every infinite word w ∈ Σω, if w 6∈ L, then w has a prefix x ∈ Σ∗ such that x · y 6∈ L for all

y ∈ Σω. Safety languages play an important role in verification and synthesis, as many natural specifications

are safety. It is not hard to prove that safety languages can be recognized by looping automata, namely

Büchi automata in which all states are in α (or dually, co-Büchi automata in which no state is in α) [54].

It is also not hard to see that the considerations in our proof above apply also to looping automata. Thus,

all HD nondeterministic looping automata are DBP. In fact, by [41, 11], the above applies also to weak

automata, which are a stronger special case of Büchi and co-Büchi, in which every strongly connected

component of the graph induced by the automaton is either contained in α or disjoint from α.

3.2 The case of infinite words

We continue to automata on infinite words and show that here, the past does play a role in resolving

nondeterminism. Thus, HD Büchi and co-Büchi automata need not be DBP. The result was first proven,

by examples, in [8]. In [31], the authors study DBPness for general NCWs and proved that deciding whether

a given NCW is DBP is NP-hard. In [4], the authors noted that the NCW used in the proof is actually

HD, thus deciding DPNess is NP-hard already for HD-NCWs, and proved a similar results also for Büchi

automata. Clearly, in order for a problem to be NP-hard, the answer has to be non-trivial. Thus, there

are HD-NCWs and HD-NBWs that are not DBP, and deciding whether a given HD-NCW or HD-NBW is

DBP is NP-hard. Here, we describe a variant of the example in [8] for the Büchi case, and then describe the

NP-hardness proof for the co-Büchi case. We consider both state-based and transition-based acceptance.

Theorem 3.4. [8] There are HD-tNBWs and HD-NBWs that are not DBP.

Proof: Consider the tNBW A appearing in Figure 1. We prove that A is HD and is not DBP.

Note that A gets stuck (and rejects) when it reads words that are not in (a0 + a1)ω. We claim that

L(A) = L, for

L = {w ∈ (a0 + a1)ω : w has infinitely many infixes of the form a0a0 or a1a1}.

In order to see that L(A) ⊆ L, note that if a word in (a0 +a1)ω is not in L, and thus it has only finitely

many infixes of the form a0a0 or a1a1, then it has a suffix (a0a1)ω. Also, when a run of A traverses an α-

transition when reading such a suffix, then after taking the α-transition, it keeps looping at the q3, q5, q4, q6

cycle and never traverses an α-transition again. In order to see that L ⊆ L(A), note that after reading a

prefix in (a0 + a1)∗, a run of A is in state s, q3, or q4. If the run is in state s or q4 and reads a0a0, then

it can traverse an α-transition and return to s, and if it is in state q3 and reads a0a0, then it reaches the

state s. Also, reading a1 from s, a run can return to s. Thus, reading a0a0 infinitely often enables a run

to traverse α-transitions infinitely often, and similarly for a1a1.
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q2 q6
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Figure 1: A HD-tNBW that is not DBP. Dashed transitions are in α.

We continue and prove that A is HD. We do so by describing a strategy f that witnesses its HDness.

Note that there is one nondeterministic transition in A: reading a in state s, a run can proceed to q1 or q2.

We define f so that whenever A is in state s and reads a, it directs the run to proceed as follows. If the run

has just started or s was reached from q6 or q2, then the run continues to q1; if s was reached from q5 or q1,

then the run continues to q2. First, note that the above strategy can be described by means of a function

with domain {a, 0, 1}∗. For example, f(a) = q1, f(a0a) = q2, and f(a1a1a) = q2. In addition, the strategy

guarantees that all words in the language are accepted. Indeed, reading a0a0 either leads to a traversal

of an α-transition or leads to s, where the next a0a0 or a1a1 leads to a traversal of an α-transition, and

similarly for a1a1.

It is left to prove that A is not DBP. Recall that there are two ways to make A deterministic by pruning:

either prune the a transition from s to q1 or the a-transition from s to q2. We show that both ways result

in a tDBW whose language is strictly contained in that of A. First, if we prune the transition from s to q1,

then the obtained tDBW rejects the word (a1)ω, which is in L(A). Indeed, the singe run on it is (s, q2)ω,

which is rejecting. Dually, if we prune the transition from s to q2, then the single run of the obtained

tDBW on the word (a0)ω, which is in L(A), is (s, q1)ω, which is rejecting.

Thus, A is an HD-tNBW that is not DBP. We continue and obtain from A an HD-NBW A′ that is

not DBP. For this, we replace the letters 0 and 1 by the words 0# and 1#, respectively, thus consider the

language L′ = {w ∈ (a0# + a1#)ω : w has infinitely many infixes of the form a0#a0# or a1#a1#}. We

obtain A′ from A by adding an intermediate state inside each 0-transition (and similarly for 1-transitions).

The state is reached with 0 and continues with # to the destination of the original transition. The new state

is accepting iff the transition that induces it is accepting. By applying the same considerations detailed

above for A, it is easy to see that A′ accepts exactly all words in (a0# + a1#)ω that have infinitely many

infixes of the form a0#a0# or a1#a1#, is HD, and is not DBP.

Theorem 3.5. [31, 4] Deciding whether a given HD-tNCW or HD-NCW is DBP is NP-complete.

Proof: Since pruning transitions can only decrease the language of an automaton and checking the

containment of the language of a tNCW (or NCW) in the language of a tDCW (or a DCW) can be checked

in polynomial time, membership in NP is easy.

For the lower bound, we describe a reduction from the Hamiltonian-cycle problem: Given a connected

directed graph graphG = 〈V,E〉, the problem is to decide whetherG contains a cycle that visits every vertex
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in V exactly once. We start with automata with state-based acceptance. Consider a graph G = 〈V,E〉.
For simplicity, we assume that V = {1, 2, . . . , |V |}. Given G, the reduction outputs an NCW AG over

the alphabet V ∪ {#} that is obtained from G as follows (see example in Figure 2). The automaton AG

accepts only words in (V ·#)ω. Each vertex i ∈ V contributes three states to AG, denoted vi, si, and ui.

From states of the form vi, the NCW reads only letters in V , and from states of the form si and ui, it

reads only the letter #. When in state vi, the subword i ·# leads back to vi via si, and subwords j ·#, for

j ∈ V \ {i}, nondeterministically lead, via ui, to states vk, for successors k of i in G. For example, in the

graph G and its NCW appearing in Figure 2, there are two #-transitions from state u1, leading to v2 and

v4 – or the successors 2 and 4 of the vertex 1 in G. Accordingly, reading 1#, a run from v1 returns to v1,

and reading 2#, 3#, or 4#, a run from v1 can reach v2 or v4.

The co-Büchi condition α includes all states of the form ui, and thus requires a run to eventually get

stuck at some (vi, si)
ω cycle. Accordingly, L(AG) = (V · {#})∗ ·⋃i∈V (i ·#)ω. Indeed, no matter which

state of the form vk is reached after reading some prefix in (V · {#})∗, the fact G is connected guarantees

that for every i ∈ V , the state vi can be reached from vk by reading a prefix of the (i · #)ω suffix after

at most |V | visits in α, and then the run can stay forever in the (vi, si)
ω cycle. Also, if w is accepted by

AG, then the accepting run on it eventually loops in some (vi, si)
ω cycle, which is possible only if w is in

(V ·#)ω and has an (i ·#)ω suffix.

AG:

v1s1 u1 v2 s2

u2

v3 s3u3v4s4

u4

1

#
2, 3, 4 #

#

2

#

1, 3, 4

#

3

#
1, 2, 4

#

4

#

1, 2, 3
#

G:

1 2

34

Figure 2: The reduction from the Hamiltonian-cycle problem.

In order to see that AG is DBP iff there is a Hamiltonian cycle in G, note that the only nondeterminism

in AG is in states of the form uk, where the letter # forces each deterministic pruning of AG to proceed

from the state vk upon reading a subword (V \ {i}) ·#, to the same state vj , for some successor vertex j

of k . DBPing AG from Figure 2, for example, leaves only one #-transition from u1, forcing 2#, 3#, or

4# to all reach v2 from v1, or all reach v4.

Now, if there is a Hamiltonian cycle in G, then AG can be pruned to a DCW by leaving, from each

state uk, the #-transition to the successor of vertex k in the cycle. Indeed, as the Hamiltonian cycle visits

all vertices of G, reading a suffix (i ·#)ω of a word in L(AG), the DCW can reach the (vi, si)
ω cycle and

stay there forever. For the other direction, a DCW that is obtained by pruning AG and recognizes L(AG)

must induce a Hamiltonian cycle, as otherwise some vertices are not reachable in the DCW, making its

language a strict subset of L(AG).

Finally, it is not hard to see that AG is HD for every graph G. Indeed, an HD strategy can decide to

which successor of vk to proceed with a subword in (V \{k})·# by following a (not necessarily Hamiltonian)

10



cycle that traverses all the vertices of the graph G. Since when we read (V \ {k}) ·# we move to a state

vj for a successor vertex j of k, then by following the cycle when we read an (i · #)ω suffix of a word

in L(AG), we eventually reach the state vi, where we stay in the (vi, si)
ω cycle, and accept. Thus, the

Hamiltonian-cycle problem is reduced to DBPness of an HD-NCW, and we are done.

As for HD-NCWs, the reduction is similar, except that we define AG to be an HD-tNCW, for example

by defining α as the set of transitions that leave states of the form ui.

4 Determinization of HD Automata

Recall that HD automata are as expressive as deterministic ones. For the case of finite words, this follows

immediately from the fact HD automata are DBP. For the case of infinite words, where HD automata need

not be DBP, the result is more complicated. As discussed in Section 1, the expressive power of HD automata

was first studied in the setting of derivable tree languages [34, 44]. Then, [32] studied also the succinctness

of HD automata with respect to deterministic ones, namely the blow-up involved in determinizing a given

HD automaton. In this section we study determinization and succinctness of HD automata. As we shall see,

the answers for Büchi and co-Büchi automata are different, and in a surprising way: while nondeterminism

is in general more significant for Büchi than for co-Büchi automata, HD nondeterminism is more significant

for co-Büchi than for Büchi. Specifically, while HD-NBWs can be determinized with a quadratic blow-up,

determinization of HD-NCWs may involve an exponential blow up [32].

4.1 Subset-construction-based determinization

We first show that both Büchi and co-Büchi HD automata can be determinized with a construction that

is similar to the subset construction used for determinization of NFWs [49]. As noted above, for the

Büchi case, this is a significant improvement over determinization of general NBWs [50]. For the co-Büchi

case, determinization of general NCWs involves a “break-point construction”, which augments the subset

construction by a set that keeps track of visits to states in α, and involves a 3n blow up [40], which is tight

[10]. Thus, also in the co-Büchi case, deterninization of HD automata is simpler than determinization of

general automata.

Theorem 4.1. [35, 32] HD-NBWs (HD-NCWs) are as expressive as DBWs (respectively, DCWs). Given

an HD-NBW (HD-NCW) with n states, we can construct an equivalent DBW (respectively, DCW) with 2n

states. Similar results hold for automata with transition-based acceptance.

Proof: We start with Büchi automata. Consider an HD-NBW A = 〈Σ, Q, q0, δ, α〉. We assume that A
is semantically deterministic, thus its nondeterministic choices lead to states with the same language. As

detailed in Section 2, every HD automaton can be pruned in polynomial time to a semantically deterministic

automaton.

We define the DBW A′ = 〈Σ, 2Q, {q0}, δ′, α′〉, where α′ = {S ∈ 2Q : S ⊆ α}, and the transition function

δ′ is defined for every state S ∈ 2Q and letter σ ∈ Σ as follows. If δ(S, σ) ∩ α = ∅, then δ′(S, σ) = δ(S, σ).

Otherwise, namely if δ(S, σ) ∩ α 6= ∅, then δ′(S, σ) = δ(S, σ) ∩ α. Thus, we proceed as in the standard

subset construction, except that whenever a constructed set contains a state in α, we leave in the set only

states in α.

The key observation about the correctness of the construction is that when A is semantically determin-

istic, then for all reachable states S of A′, and all states q, q′ ∈ S, we have that Aq and Aq′ are equivalent.
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Indeed, if A is semantically deterministic, then for every two states q, q′ ∈ Q, letter σ ∈ Σ, and states

s ∈ δ(q, σ) and s′ ∈ δ(q′, σ), if q and q′ are equivalent, then so are s and s′. Also, by the definition of δ′,

every reachable state S of A′ contains only states in α or only states not in α. As we formally prove below,

these properties guarantee that indeed L(A′) = L(A).

We first prove that L(A′) ⊆ L(A). Let rA′ = S0, S1, S2, . . . be an accepting run of A′ on a word

w = σ1 ·σ2 · · · . We construct an accepting run of A on w. Since rA′ is accepting, there are infinitely many

positions j1, j2, . . . with Sji ∈ α′. Let j0 = 0, and consider the DAG G = 〈V,E〉, where

• V ⊆ Q× N is the union
⋃

i≥0(Sji × {i}).

• E ⊆ ⋃
i≥0(Sji × {i})× (Sji+1

× {i+ 1}) is such that for all i ≥ 0, it holds that E(〈s′, i〉, 〈s, i+ 1〉) iff

there is a finite run from s′ to s over w[ji + 1, ji+1]. Then, we label this edge by the run from s′ to s.

By the definition of A′, for every j ≥ 0 and state sj+1 ∈ Sj+1, there is a state sj ∈ Sj such that

sj+1 ∈ δ(sj , σj). Thus, it follows by induction that for every i ≥ 0 and state si+1 ∈ Sji+1 , there is a state

si ∈ Sji such that there is a finite run from si to si+1 on w[ji + 1, ji+1]. Thus, the DAG G has infinitely

many reachable vertices from the vertex 〈q0, 0〉. Also, as the nondeterminism degree of A is finite, so is

the branching degree of G. Thus, by König’s Lemma, G includes an infinite path, and the labels along the

edges of this path define a run of A on w. Since for all i ≥ 1, the state Sji is in α′, and so all the states in

Sji are in α, this run is accepting, and we are done.

For the other direction, assume that w = σ1 · σ2 · · · ∈ L(A), and let r = r0, r1, . . . be an accepting run

of A on w. Let r′ = S0, S1, S2 . . . be the run of A′ on w, and assume, by way of contradiction, that r′ is

not accepting, thus there is a position j ≥ 0 such that Sl 6∈ α′, for all l ≥ j. Consider a state S of A′
and a letter σ ∈ Σ. By the definition of A′, if S′ = δ′(S, σ) and S′ /∈ α′, then all the σ-successors of a

state s ∈ S are in not in α. Applying the above observation iteratively, we get that all the runs of a state

sj ∈ Sj on the suffix w[j + 1,∞] never visit an α state. Thus, for all sj ∈ Sj , we have that Asj does not

accept w[j + 1]. We claim that rj is equivalent (in A) to all the states in Sj , which is a contradiction, as

Arj does accept s[j + 1,∞].

Consider states q ∈ Q, a letter σ ∈ Σ, and a state q′ ∈ δ(q, σ). Since A is semantically deterministic,

the definition of A′ implies that if q is equivalent (in A) to all the states in some set S ∈ 2Q, then q′ is

equivalent (in A) to all the states in δ′(S, σ). Now, since r0 = q0 and S0 = {q0}, an iterative application

of the above observation implies that indeed rj is equivalent to all the states in Sj , and we are done.

We continue to the co-Büchi automata, where the construction is similar, except that in A′, we try to

proceed to states that are not in α. Formally, A′ = 〈Σ, 2Q, {q0}, δ′, α′〉, where α′ = {S ∈ 2Q : S ⊆ α}
is as in the Büchi case, and the transition function δ′ is defined for every state S ∈ 2Q and letter σ ∈ Σ

as follows. If δ(S, σ) ⊆ α, then δ′(S, σ) = δ(S, σ). Otherwise, namely if δ(S, σ) ∩ (Q \ α) 6= ∅, then

δ′(S, σ) = δ(S, σ) \ α. Thus, whenever a constructed set contains a state not in α, we leave in the set only

states not in α. The proof is based on the semantic determinism of A and follows the same considerations

as in the Büchi case.

Finally, for automata with transition-based acceptance, the constructions are also similar, except that

we restrict the sets according to the membership of transitions in α. For example, in the case of HD-tNBW,

consider a state S ∈ 2Q and a letter σ ∈ Σ. If all the σ-transitions in A from states in S are not in α,

then A′ proceeds from S to the set of all the σ-successors of S in A, and the transition is not in α′. If

some σ-transitions from S are in α, then A′ proceeds only with these transitions, and the transition is in
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α. Formally, for S ∈ 2Q and σ ∈ σ, let

S′ = {s′ : there is s ∈ S such that 〈s, σ, s′〉 ∈ α}.

Now, if S′ = ∅, then δ′(S, σ) = δ(S, σ) and 〈S, σ, δ(S, σ)〉 6∈ α′, and if S′ 6= ∅, then δ′(S, σ) = S′ and

〈S, σ, S′〉 ∈ α′.

4.2 Determinization via complementation

For a language L ⊆ Σω, the complement of L, denoted comp(L), is the set of infinite words not in L,

thus comp(L) = Σω \ L. In this section, we show that determinization of HD automata cannot induce

an exponential blowup for both a language and its complement. This is different from the situation for

general nondeterministic automata, where a blowup may occur for both languages. For example, consider

the family of languages of finite words Lk = (a + b)∗ · a · (a + b)k−1. While for all k ≥ 1, both Lk and

{a, b}∗ \ L can be recognized by nondeterministic automata with k + 1 states, a deterministic automaton

for Lk must have at least 2k states.

The above property of HD automata was proved in [8] for HD automata with the Rabin acceptance

condition.3 Here we give a variant of the proof there, focusing on Büchi and co-Büchi automata.

Theorem 4.2. Consider a language L ⊆ Σω. If there is an HD-NBW for L with n states, and an HD-NCW

for comp(L) with m states, then there is a DBW for L with nm states.

Proof: Let A1 = 〈Σ, Q1, q
0
1 , δ1, α1〉 be an HD-NBW for L, and A2 = 〈Σ, Q2, q

0
2 , δ2, α2〉 be an HD-NCW

for comp(L). Consider the nondeterministic automaton A obtained by taking the product of A1 with

A2. Thus, A = 〈Σ, Q1 × Q2, 〈q01 , q02〉, δ, α〉, where for every state 〈q1, q2〉 ∈ Q1 × Q2 and letter σ ∈ Σ,

we have that δ(〈q1, q2〉, σ) = δ1(q1, σ) × δ2(q2, σ). It is easy to see that if we define A as an NBW with

α = α1 × Q2, we get that L(A) = L(A1) = L, and if we define A as an NCW with α = Q1 × α2, we get

that L(A) = L(A2) = comp(L). Also, as every word in Σω is either in L or in comp(L), if we define A
with a Rabin condition α = {〈α1 × Q2, ∅〉, 〈Q1 × Q2, Q1 × α2〉} with two pairs (for readers not familiar

with the Rabin acceptance condition, a run satisfies α iff its projection on Q1 satisfies the Büchi condition

α1 or its projection on Q2 satisfies the co-Büchi condition α2), we get that L(A) = Σω. We argue that in

all three cases, A is DBP. Since the number of states in A is |Q1 ×Q2|, the theorem follows.

Consider the following game between Player ∃ and Player ∀. The game is played on A and starts from

position 〈q01 , q02〉. When the game is in position 〈q1, q2〉 ∈ Q1 × Q2, Player ∀ chooses a letter σ ∈ Σ, and

Player ∃ chooses a successor position 〈q′1, q′2〉 ∈ δ(〈q1, q2〉, σ). The outcome of a play is an infinite run

r = 〈q01 , q02〉, 〈q11 , q12〉, 〈q21 , q22〉, 〈q31 , q32〉, . . . of A. Note that r combines a run r1 = q01 , q
1
1 , q

2
1 , q

3
1 , . . . of A1 with

a run r2 = q02 , q
1
2 , q

2
2 , q

3
2 , . . . of A2, both on the word w obtained by concatenating the letters chosen by

Player ∀.
The winning condition for Player ∃ is that either r1 satisfies α1 or r2 satisfies α2. This winning condition

can be specified by a Rabin winning condition with two pairs: {〈α1 × Q2, ∅〉, 〈Q1 × Q2, Q1 × α2〉}. It is

easy to see that following the HD strategies of both automata is a winning strategy for Player ∃. Indeed,

this strategy guarantees that if the word w is in L, the run r1 is accepting in A1 and thus satisfies the

Büchi condition α1, and if w ∈ comp(L), then the run r2 is accepting in A2 and thus satisfies the co-Büchi

3We have not defined the Rabin acceptance condition in Section 2. The condition consists of a set of pairs of sets of states

[47]. Thus, when the automaton is defined with respect to a set of states Q, it is of the form {〈G1, B1〉, 〈G2, B2〉, . . . , 〈Gk, Bk〉},
with Gi, Bi ⊆ Q, and a run r is accepting if for some 1 ≤ i ≤ k, we have that inf (r) ∩Gi 6= ∅ and inf (r) ∩Bi = ∅.
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condition α2. Since every word is either in L or in comp(L), the winning condition for Player ∃ is always

satisfied.

It is known that Rabin games admit memoryless strategies [30, 29]. Hence, Player ∃ actually has a

memoryless winning strategy in the game. Such a strategy maps each position 〈q1, q2〉 ∈ Q1 × Q2 and

letter σ ∈ Σ to a position 〈q′1, q′2〉, and induces the required pruning of A into a deterministic automaton

A′. Specifically, A′ with the Rabin condition {〈α1 × Q2, ∅〉, 〈Q1 × Q2, Q1 × α2〉} accepts all the words in

Σω, then A′ with the Büchi condition α1 ×Q2 is a DBW for L, and A′ with a co-Büchi condition Q1 ×α2

is a DCW for comp(L).

In Section 4.3, we use Theorem 4.2 in order to obtain both upper and lower bounds on the succinctness

of HD automata with respect to deterministic ones.

4.3 Succinctness

By Theorem 4.2, an upper bound on the complementation of HD automata implies an upper bound also on

their determinization. Specifically, if f : IN→ IN is a function such that complementing an HD automaton

A with n states results in an HD automaton with at most f(n) states, then determinization of A results

in an automaton with at most n · f(n) states. In [32], the authors describe a linear complementation

construction for HD-NBWs. Hence, HD-NBWs are at most quadratically more succinct than DBWs, and

the same holds for HD-tNBWs. For the co-Büchi acceptance condition, Kuperberg and Skrzypczak proved

that HDness can lead to a significant succinctness. Their proof makes use of Theorem 4.2 in the following

way. Consider a language L ⊆ Σω, and assume that A is an HD automaton for L. By Theorem 4.2, an

HD automaton for comp(L) can serve as a “memory structure” that generates a strategy for A: taking its

product with A, we obtain a deterministic automaton that inherits its acceptance condition from A. Since

every deterministic automaton is an HD automaton, and deterministic automata can be complemented

by dualization, it follows that every deterministic automaton for L can also serve as a memory structure

for an HD automaton for L. As we shall see now, this property is useful in the proof of the exponential

succinctness of HD-NCWs with respect to DCWs. We state the theorem in the transition-based setting.

Similar considerations hold in the state-based setting.

Theorem 4.3. [32] There is an infinite family of languages L1, L2, L3, . . . such that for every n ≥ 1, the

following holds.

1. There is an HD-tNCW with 2n states that recognizes Ln.

2. Every tDCW that recognizes Ln needs at least 2n

2n states.

Proof: For n ≥ 1, let [n] = {0, 1, . . . , 2n − 1}. We define the language Ln over the alphabet Σ =

{I, Z,X,H}. Each letter in Σ is a (possibly partial) function σ : [n]→ [n], as described in Figure 3.

The functions I,X, and Z are one-one and onto: for every x ∈ [n], we have that I(x) = x, Z(x) =

(x + 1) mod 2n − 1, and X agrees with I, except for x ∈ {0, 1}, where X(0) = 1 and X(1) = 0. The

function H is partial; it agrees with I, except for x = 0, where H(0) is undefined. Thus, the letters induce

permutations on [n], with H inducing a permutation only on [n] \ {0}.
We view a finite word w as the partial function w : [n] → [n] obtained by composing its letters. Thus,

if w = σ1 · σ2 · · ·σl, then for all i ∈ [n], we have that w(i) = σl(· · ·σ2(σ1(i))). It is convenient to associate

with each word w ∈ Σ∗ a grid of dimensions (|w| + 1) × 2n, and lines that start in “floors” in [n] and
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I X Z H

2n− 1

...

4

3

2

1

0

Figure 3: The permutations induced by the letters I, X, Z, and H.

traverse the floors along the grid according to the permutations induced by the letters in w. As H(0) is

undefined, a line that reaches floor 0 before H is read has a “hole” in the corresponding position in the

grid. Figure 4 describes the grid associated with the word IXHZZXHZ when n = 2 and n = 3.

I X H Z Z X H Z

3

2

1

0

I X H Z Z X H Z

5

4

3

2

1

0

Figure 4: The grid induced by the word IXHZZXHZ when n = 2 (top) and n = 3 (bottom).

An infinite word u ∈ Σω corresponds to an infinite sequence of compositions of its letters, and thus

the horizontal dimension of the grid associated with it is infinite. We define Ln as the set of words in Σω

whose grid contains an infinite line; that is, a line that has only finitely many holes. For example, back

to Figure 4, it is not hard to see that the infinite word u = wω, for w = IXHZZXHZ is in L2. Indeed,

when n = 2, we have that w(0) = 0 and w(2) = 2, and so the lines starting at floors 0 and 2 are never cut.

On the other hand, u 6∈ L3. Indeed, when n = 3, we have that w(0) = 4, w(2) = 5, w(3) = 0, w(4) = 2,

whereas w(1) and w(5) are undefined. Accordingly, w5(i) is undefined for all i ∈ [3], implying that lines

from all floors are cut whenever w5 is read. Therefore, the grid of u contains no infinite line, and so u 6∈ L3.

We first prove that there is an HD-tNCW with 2n states that recognizes Ln. It is easy to see that Ln
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can be recognized by a tNCW with 2n states. Indeed, a tNCW can simply guesses a line to follow, and

to initiate its guess whenever the line it follows is cut. Specifically (see A2 in Figure 5), the tNCW An

has state space {q0, . . . , q2n−1} and for all i ∈ [n], it visits qi when the line it follows is in floor i. The

initial state of An is arbitrarily set to q0, and the transition function updates the floor according to the

letter it reads. For example, when An is in state qi and reads I, it stays in qi, when it reads X, if stays

in qi for i ∈ {2, . . . , 2n − 1}, moves to q1 from q0, and moves to q0 from q1. Nondeterminism is required

when An reads the letter H in state q0, thus when it follows a line that is in floor 0 and the line is cut.

Then, An guesses a new floor to follow. Since all floors are candidates for hosting an infinite line, An can

nondeterministically move from q0 with H to all states. Since the input word is in the language if it contains

an infinite line, thus if it is possible to eventually follow a line that is never cut, we want an accepting run

to take only finitely many H-transitions from the state q0, thus α is the set of these transitions.

q0

q3q2

q1

X

X,Z

Z

Z

Z

I,H I

I,X,H I,X,H

H
H

H

H

Figure 5: The HD-tNCW A2 that recognizes L2.

It is less easy to see that the tNCW An is in fact HD. In order to see this, consider the following HD

strategy g : Σ∗ → Q. First, g(ε) = q0, thus all runs start in state q0, which is the only initial state of An.

Whenever a run is in state q0 after reading a prefix u and it reads H, it proceeds to the state qi such that

the line that is now in floor i is the longest among all lines in the graph. Formally, for all words u ∈ Σ∗

and floors i ∈ [n], let seniority(u, i) be the length of the longest suffix u′ of u such that there is j ∈ [n]

with u′(j) = i. Then, if u ∈ Σ∗ is such that g(u) = q0, then g(u · H) = qi, for the minimal i ∈ [n] that

maximizes seniority(u, i). Note that the choice of the minimal i is arbitrary, and it is required in order to

decide between lines with the same seniority. Note also that it is possible to implement the HD strategy

g by maintaining the order of seniority among the different floors during the run, thus it indeed depends

only on the history of the run. Finally, as an infinite line would eventually obtain the maximal seniority,

it is guaranteed that following the strategy g leads to accepting all words in the language: in all of then,

the run that follows g eventually follows an infinite line.

It is left to prove that a tDCW for Ln needs at least 2n−1 states. The full proof, in [32], is based on the

following arguments: The first argument refers to the ability to generate with finite words over {I, Z,X}
every permutation on [n]. The proof in [32] focuses on pair-based permutations, namely permutations that

map each floor i ∈ [n] to floor 2b i2c or 2b i2c + 1. That is, for every j ∈ {0, . . . , n − 1}, the permutation

map {2j, 2j + 1} onto itself. Note that there are 2n pair-based permutations, and that each pair-based

permutation can be generated by a word in ((I+X) ·ZZ))n. Indeed, the word that generates a pair-based

permutation π is σ0 ·ZZ · σn−2 ·ZZ · σn−1 ·ZZ · σ2 ·ZZ · σ1 ·ZZ, where for all j ∈ {0, . . . , n− 1}, we have
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that σj = I if π does not switch 2j and 2j + 1 and σj = X if π switches 2j and 2j + 1. For example (see

figure 6), when n = 3, the word IZZXZZXZZ induces the permutation 〈013254〉, thus it switches {2, 3}
and {4, 5}. It is easy to see that in a similar manner, we can generate with finite words over {I, Z,X}
every permutation on [n], and not only pair-based ones.

I Z Z X Z Z I Z Z

5

4

3

2

1

0

Figure 6: The word IZZXZZXZZ generates the pair-based permutation 〈013254〉.

The second argument is that when we discuss potential tDCWs for Ln, we can restrict attention to

tDCWs that are obtained by taking the product of An with a deterministic memory structure. The

argument proceeds as follows. Given a tDCW with f(n) states for Ln, we can dualize it and obtain

a tDBW for comp(Ln), which is also an HD-tNBW for comp(Ln). Then, as specified in the proof of

Theorem 4.2, we can take the product of this HD-tNBW with the HD-tNCW An described above for Ln

and obtain a tDCW with 2n · f(n) states for L whose acceptance condition is induced by An. Thus, its

α-transitions are H-transitions that leave states of the form 〈q0, s〉 for a state s of the claimed tDCW. Note

that in this process we start with a tDCW with f(n) states for Ln and obtain an equivalent tDCW with

2n · f(n) states, which may seem a bad idea in the context of proving a lower bound. The information,

however, that we gain about the structure of the obtained tDCW makes this “2n penalty” worthwhile.

The third, and most complicated argument is that a tDCW that attempts to recognize Ln, is obtained

by taking the product of An with a deterministic memory structure, and has less than 2n states, must err.

Essentially, the argument proceeds as follows. Consider a tDCW Dn as above. Since Dn is obtained by

taking the product of An with some memory structure, it accepts only words in the language, and so the

error we point to is that it rejects a word in Ln. The word along with the run rejecting it are constructed

as follows. The run starts from some state of the form 〈q0, s0〉. Since Dn has less than 2n states, there are

two different pair-based permutations π1 and π′1 that lead from 〈q0, s0〉 to the same state 〈qi1 , s1〉. Since

π1 6= π′1, there is j ∈ {0, . . . , n− 1} such that π1(2j) 6= π′1(2j). Thus, {π1(2j), π′1(2j)} = {2j, 2j + 1}. This

implies that the size of the set F = {π1(1), π1(3), . . . , π1(2n − 1), π′1(2j)} is n + 1. Therefore, there is a

permutation τ1 that behaves as follows: First, it maps i1 (that is, the floor that Dn now follows, as its

An component is in state qi1) to 0. In addition, if i1 ∈ F , then the other n elements in F are mapped to

{1, 3, . . . , 2n − 1}, and if i1 6∈ F , then n elements in F are mapped to {1, 3, . . . , 2n − 1}, and one element

is mapped arbitrarily. Note that since Dn is based on An, its run on τ1 from the state 〈qi1 , s1〉, reaches

a state of the form 〈q0, s′1〉. Indeed, the operation of An on τ1 is deterministic and it follows the states

that correspond to the floors visited along the execution to the permutation τ1, which maps i1 to 0. Thus,

when Dn reads either π1 · τ1 · H or π′1 · τ1 · H, the transition taken when the last letter H is read, is an

α-transition. On the other hand, the grid induced by at least one of these words, includes a line that is not

cut and reaches one of the floors in {1, 3, . . . , 2n−1}. Let 〈qi′1 , s′′1〉 be the H-successor of 〈q0, s′1〉 in Dn. We

can now continue the generation of the run by considering two different pair-based permutations π2 and π′2
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that lead from 〈qi′1 , s′′1〉 to the same state 〈qi2 , s2〉 and a permutation τ2 whose composition with π2 and π′2
maps i2 to 0 and guarantees that the line to at least one floor in {1, 3, . . . , 2n− 1} is not cut. Continuing

in this manner, it can be shown that while the runs on all the words in (π1 +π′1) ·τ1 ·H · (π2 +π′2) ·τ2 ·H · · ·
are rejecting, at least one of these words is in Ln.

5 Variants, Extensions, and Open Problems

Since their introduction, history-deterministic automata have attracted a lot of interest in the research

community. Indeed, beyond their practical usefulness, history determinism is theoretically interesting

and intriguing, relevant to computation models beyond nondeterministic automata on infinite words, and

many natural questions around it are still open. This survey focuses on some key results about HD

nondeterministic Büchi and co-Büchi automata on infinite words. Due to the lack of space, several beautiful

results, like the linear complementation and quadratic determinization of HD-NBWs [32], algorithms for

deciding HDness [32, 7], relations to other types of bounded nondeterminism [4, 11], and results on HD

automata with richer acceptance conditions [11, 9, 17] are not included.

History determinism has been studied also for alternating, pushdown, and quantitative automata. We

briefly describe these models here. For an excellent recent survey, see [14]. An alternating automaton

has both nondeterministic and universal transitions. While a nondeterministic transition stands for an

existential choice, thus a run may choose a successor state to proceed to, in a universal transition the

run should proceed to all successors [18]. Thus, universality actually involves no choices that have to

be resolved, and one could have defined HD alternating automata as ones in which the nondeterministic

choices can be resolved in a way that only depends on the past. One of the main features, however, of

alternating automata, is the duality between the nondeterministic and universal choices. In particular, an

alternating automaton A can be complemented (that is, turned into an automaton Ã for the complementing

language) by dualizing its transition function (that it, making all nondeterministic branches universal, and

all universal branches nondeterministic) and acceptance condition (that is, switching between Büchi and

co-Büchi). With this duality in mind, Colcombet defined HD alternating automata with cost functions as

automata that have two strategies – one for resolving nondeterministic choices in A and one for resolving

nondeterministic choices in Ã [20]. HD alternating automata for ω-regular languages are further studied

in [12].

History-deterministic ω-pushdown automata were studied in [39, 24]. Their definition is similar to the

definition of HD ω-regular automata, except that now, the nondeterminism that the strategy resolves

corresponds to the different choices in the transition function of pushdown automata; thus the strategy

maps the history to both the next state of the automaton and the operations on the stack.

Quantitative automata define weighted languages, namely mappings from words to values. In these

automata, nondeterminism essentially amounts to letting the automaton choose a run that leads to the

best value. For example, if the value of a run is the limit average of values of transitions taken along the

run, and the setting corresponds to a maximization question, then the value of a word is the supremum

value of all the runs on it. Recall that a strategy of an HD Boolean automaton has to generate a run that

accepts all words in the language of the automaton. In the quantitative setting, we want the strategy to

generate a run that attains the supremum value (or, in a minimization setting, the infimum value) [13].

The quantitative setting calls for variants in which we seek strategies that approximate the optimal value

or attain values above or below some threshold. In fact, the very first work of Colcombet on HD automata
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studied strategies that approximate regular cost functions [19], and the analysis of the competitive-ratio of

on-line algorithms in [5, 6] studied approximating HD quantitative automata.

An orthogonal extension of HD automata is motivated by their use in the synthesis problem. Recall

that the problem can be reduced to solving a game on top of an HD automaton for the specification. HD

automata are defined for general alphabets, whereas in the synthesis problem, the specification is over an

alphabet 2I∪O, for sets I and O of input and output signals, respectively. In [22], the authors introduced

(I/O)-aware HD automata, which distinguish between nondeterminism due to I and O: both should be

resolved in a way that depends only on the past; but while nondeterminism in I is hostile, and all I-futures

should be accepted, nondeterminism in O is cooperative, and a single O-future may be accepted. It is

shown in [22] that (I/O)-aware HD automata can be used for synthesis, and that they are unboundedly

more succinct than deterministic and even HD automata.

Related variants of HD automata have to do with their applications. As discussed in Section 1, HD

automata are good for trees, in the sense that an HD word automaton for L can be expanded to a tree

automaton for L4, and are good for games, in the sense that synthesis can be reduced to playing a game

on top of an HD automaton for the specification. As it turns out, these “goodness” properties need not

characterize history determinism in all settings. For example, in the quantitative setting, an automaton

may be good for games without being HD [13]. Moreover, even in the Boolean setting, HD may imply,

yet not be characterized by, other useful properties. For example, every HD automaton is good for MDPs,

thus its product with Markov decision processes maintains the probability of acceptance, and can therefore

replace deterministic automata when reasoning about stochastic behaviors [25, 53].

Some basic problems around history determinism are still open. Most notable is the succinctness of

HD-NBWs with respect to DBWs. Recall that, by [32], HD-NBWs can be determinized with a quadratic

blow up. Yet, while we know that not all HD-NBWs are DBP, there is no matching quadratic lower bound,

and in fact we still do not have even an example of a language L such that an HD-NBW for L is strictly

smaller than a DBW for L. In particular, while the HD-tNBW A appearing in Figure 1 is not DBP, the

tDBW obtained by merging the states q1 and q2 of A recognizes L(A) and is smaller than A.

Additional open problems refer to decision problems around history determinism. One such question

is the complexity of deciding whether a given language is HD-helpful, namely whether an HD automaton

for it is smaller than a deterministic automaton for it. Note that the definition is parameterized by the

acceptance condition. For example, as discussed above, possibly there are no languages that are HD-Büchi-

helpful (that is, languages L such that an HD-NBW for L is strictly smaller than a DBW for L), and the

same for Büchi automata with transition-based acceptance. For co-Büchi automata, we do know that

HD-co-Büchi-helpful languages exist. We also know that there are languages that are HD-co-Büchi-helpful

only in automata with transition-based acceptance, but no clean characterization of tight complexity of

the corresponding decision problems is known.

The problem of HD-helpfulness is related to the fundamental problem of minimization: generation of

an equivalent automaton with a minimal number of states. For automata on finite words, the picture

is well understood: For nondeterministic automata, minimization is PSPACE-complete [28], whereas for

deterministic automata, a minimization algorithm, based on the Myhill-Nerode right congruence [42, 43],

generates in polynomial time a canonical minimal deterministic automaton [27]. Essentially, the canon-

ical automaton, a.k.a. the quotient automaton, is obtained by merging equivalent states. For automata

on infinite words, merging of equivalent states fails, and minimization of DBWs (and hence, also DCWs,

as the two dualize each other) is NP-complete [51]. In [1], Abu-Radi and Kupferman described a poly-
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nomial minimization algorithm for HD-tNCW. Considering HD-tNCWs rather than DCWs involves two

modifications: considering HD rather than deterministic automata, and considering transition-based rather

than state-based acceptance. A natural question that arises is whether both modifications are crucial for

efficiency. In [52], Schewe proved that his NP-hardness result of DCW minimization can be generalized

to HD-NCWs. This suggests that the consideration of transition-based acceptance is crucial, and makes

the study of tDBWs and tDCWs minimization, which is still open, very interesting. Moreover, for the

richer acceptance condition of Rabin, Casares proved that minimization is NP-hard for HD automata with

transition-based acceptance [16], and for automata with state-based acceptance, [3] shows that minimiza-

tion is NP-hard already for automata that recognize fragments of ω-regular languages, in particular for

automata that recognize liveness languages. The minimization algorithm of [1] also implies canonicity for

HD-tNCWs: all minimal automata have isomorphic safe components (namely components obtained by

restricting the transitions to these not in α) and once we saturate the automata with α-transitions, we get

full isomorphism. This is in contrast with DCW, where no canonicity exists [2].
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[7] M. Bagnol and D. Kuperberg. Büchi good-for-games automata are efficiently recognizable. In Proc.

38th Conf. on Foundations of Software Technology and Theoretical Computer Science, volume 122 of

LIPIcs, pages 16:1–16:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018.

[8] U. Boker, D. Kuperberg, O. Kupferman, and M. Skrzypczak. Nondeterminism in the presence of a

diverse or unknown future. In Proc. 40th Int. Colloq. on Automata, Languages, and Programming,

volume 7966 of Lecture Notes in Computer Science, pages 89–100, 2013.

20



[9] U. Boker, D. Kuperberg, K. Lehtinen, and M. Skrzypczak. On the succinctness of alternating parity

good-for-games automata. In Proc. 40th Conf. on Foundations of Software Technology and Theoretical

Computer Science, volume 182 of LIPIcs, pages 41:1–41:13. Schloss Dagstuhl - Leibniz-Zentrum für

Informatik, 2020.

[10] U. Boker, O. Kupferman, and A. Rosenberg. Alternation removal in Büchi automata. In Proc. 37th
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