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ABSTRACT

Off-policy method has demonstrated great potential on model-free deep reinforce-
ment learning due to the sample-efficient advantage. However, it suffers extra in-
stability due to some mismatched distributions from observations. Model-free on-
policy counterparts usually have poor sample efficiency. Model-based algorithms,
in contrast, are highly dependent on the goodness of expert demonstrations or
learned dynamics. In this work, we propose a method which involves training the
dynamics to accelerate and gradually stabilize learning without adding sample-
complexity. The dynamics model prediction can provide effective target value ex-
ploration, which is essentially different from the methods on-policy exploration,
by adding valid diversity of transitions. Despite the existence of model bias, the
model-based prediction can avoid the overestimation and distribution mismatch
errors in off-policy learning, as the learned dynamics model is asymptotically ac-
curate. Besides, to generalize the solution to large-scale reinforcement learning
problems, we use global gaussian and deterministic function approximation to
model the transition probability and reward function, respectively. To minimize
the negative impact of potential model bias brought by the estimated dynamic-
s, we adopt one-step global prediction for the model-based part of target value.
By analyses and proofs, we show how the model-based prediction provides val-
ue exploration and asymptotical performance to the overall network. It can also
be concluded that the convergence of proposed algorithm only depends on the
accuracy of learnt dynamics model.

1 INTRODUCTION

Model-free reinforcement learning (RL) algorithms have been applied to a wide range of tasks,
ranging from simple games (Mnih et al., 2013; Oh et al., 2016) to robotic locomotion skills (Schul-
man et al., 2015). To tackle the large-scale continuous control problems, the function approximators
implement some neural networks to represent the high-dimensional state and action spaces in deep
reinforcement learning (DRL). However, model-free DRL is notoriously expensive in terms of its
sample efficiency, which is deadly difficult to be employed in reality where samples are valuable to
achieve. Among the recent model-free DRL algorithms, on-policy methods (Schulman et al., 2015;
2017; Fujimoto et al., 2018) typically require multiple samples to be collected for each rollout at
every gradient step, which is quite extravagant in consuming samples because multiplied data re-
quirement does not necessarily bring corresponding performance gain. In comparison, off-policy
methods aim to reuse the past experience by storing the collected observations in a memory buffer,
typically, combining Q-learning with neural networks (Mnih et al., 2015). Unfortunately, the com-
bination of off-policy learning and high-dimensional, nonlinear function approximation are exposed
to issues in terms of instability and divergence (Maei et al., 2009).

The causes for the emergent problems are very complicated, for example, some works (Fujimoto
et al., 2018; 2019; Duan et al., 2021) blame them on the overestimation bias, which says the con-
tinually maximized value during the actor-critic optimization will accumulate the overestimation
errors and break the training stability. Some others try to find extrapolation error induced by the
mismatch between the distribution of sampled data from experience and true state-action visitation
of the current policy (Fujimoto et al., 2019). There have been several ways to tackle the distribution
mismatch. The authors in (Wu et al., 2019) address the distribution errors by extra value penalty
or policy regularization, (Wang & Ross, 2019) changes the rule of experience replay to reduce the
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distribution mismatch by sampling more aggressively from recent experience while ordering the
updates to ensure that updates from old data do not overwrite updates from new data, and (Martin
et al., 2021) relabels successful episodes as expert demonstrations for the agent to match. Despite
their efforts, the overestimation bias and mismatched distribution from past experience can only be
mitigated, and sometimes may induce new problems.

The paper has the following contributions. First, instead of using immediate rewards or assuming
known reward function, we adopt neural networks to approximate the reward function as part of dy-
namics. Meanwhile, we train the parameters of modeled transition probability and reward function
based on the replay buffer from off-policy observations. Second, the prediction from the learned
dynamics will be used to foresee the target value according to a certain percentage. Since the
dynamics-prediction is essentially different from the observations from environment, it can pro-
vide extra exploration which is not conditioned on the state-action visitation history. Besides, a well
trained dynamics model is free of overestimation and distribution mismatch errors, and can provide
more accurate target value and stabilize the asymptotic performance. Third, the related algorith-
m is proposed and the final results prove good efficiency and stability of the proposed algorithm.
Fourth, the accuracy of learned model is tested by setting a maximum online time step, which is the
beginning of off-line planning that is isolated from the environment.

2 RELATED WORK

Due to the various problems arising from the sample complexity of model-free algorithms, task-
specific representations (Peters et al., 2010; Deisenroth et al., 2013) as well as the model-based
algorithms (Deisenroth & Rasmussen, 2011; Levine et al., 2016; 2018; Kaiser et al., 2019) using
planning, which optimize the policy under a learned or given dynamics model, are more preferable
in real physical systems, such as robots and autonomous vehicles. However, task-specific repre-
sentations have limited range of learnable tasks and greater requirement for domain knowledge.
Model-based DRL algorithms are considered being more efficient (Deisenroth et al., 2013), because
it constructs a dynamic probabilistic model via lots of data and avoids interaction with the environ-
ment by training the strategy based on the learned dynamics model (Hua et al., 2021), but it limits
the policy to only be as good as the learned model (Gu et al., 2016).

For the model-free part, the agent needs to interact with the environment to collect enough knowl-
edge for training, which poses the importance of the tradeoff between exploration and exploitation
(Mnih et al., 2016). Soft actor-critic (SAC) (Haarnoja et al., 2018a;b) achieves good performance on
a set of continuous control tasks by adopting stochastic function approximation and maximum en-
tropy for policy exploration. Among these techniques, stochastic policies have the advantage of
allowing on-policy exploration and off-policy experience replay over deterministic counterpart-
s (Heess et al., 2015), and the maximum entropy exploration improves robustness and stability
(Ziebart et al., 2008; Ziebart, 2010). Overall, the existing exploration strategies are limited to the
policy, which raises the concern about whether and how the value exploration can play a positive
role in model-free learning.

While some works combine both model-free and model-based DRL in the literature (Sutton, 1990;
Lampe & Riedmiller, 2014), the following works are particularly relevant to our work in this pa-
per. Specifically, (Gu et al., 2016; Nagabandi et al., 2018) add synthetic imagination rollouts to an
additional replay buffer for model-guided exploration in some off-policy methods at the price of
much higher storage and computation costs. Besides, model ensembles are adopted in (Chua et al.,
2018; Kurutach et al., 2018; Janner et al., 2019) to reduce misguided policy or inaccurate planning
caused by model bias. Moreover, value expansion of fixed multi-step prediction by dynamics model
is adopted in (Feinberg et al., 2018; Buckman et al., 2018) to make proper value expansion and con-
trol imagination depth. However, making multi-step prediction from a global dynamics model may
suffer cumulative model estimation errors and is usually replaced by iteratively refitted time-varying
linear models (Levine & Abbeel, 2014). VIME (Houthooft et al., 2016) introduces maximization of
information gain about the dynamics’ certainty, which is overwhelmed by theoretical analyses and
lack a bit intuitive judgement. In this paper, we adopt one-step prediction, which avoids the costs of
storage and computation from multi-step synthetic rollouts, from a global dynamics model used for
value exploration to achieve diversity, accuracy and generality.
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3 PRELIMINARIES

We consider the extended Markov Decision Process (MDP) in continuous state and action spaces,
denoted by the tuple (S,A, P, r) where S is the state space, A is the action space, S is the space of
next state, P (s′|s, a) is the transition denoting the conditional probability of the next state s′ ∈ S
given the current state s ∈ S and action a ∈ A, and r ∈ S × A is the reward function which is
connected with (s, a, s′) from the environment. The purpose of reinforcement learning (RL) is to
optimize the policy by maximizing the reward return, which is denoted by the expected discounted
cumulative reward of a rollout. DRL employs the function approximation to parameterize the reward
return so that the optimization can work under the setting of continuous control. In DRL, an action a
is sampled from the policy π and ”judged” according to a value estimate determined by the observa-
tion s, then the next state s′ and the future reward r can be determined by the transition probability
P (·|s, a) and the reward function r(s, a), respectively, which are combined to define the dynamics
in this work. In recent researches of DRL, the action-value (Q-value) function with respect to the
state-action pair is usually chosen as the surrogate of the reward return, in the form of

Qπ(s, a) =
∑
t

Est∼P t,at∼π
[
γtr(st, at)|s0 = s, a0 = a

]
, (1)

where γ ∈ (0, 1) is the discount horizon factor for future rewards, π is the policy for action section
at every time step, and P t is the distribution of st, which is a joint distribution of transitions. If
conditioned on initial state-action pair (s0, a0), it is given by

P t(st|s0, a0) = P (s1|s0, a0)
t−1∏
i=1

Esi∼S,ai∼πP (si+1|si, ai). (2)

Then we have

P t(st) = Est−1∼S,at−1∼π
[
P (st|st−1, at−1)P t−1(st−1)

]
. (3)

Lemma 1. Assume the expected KL-divergence between two transition distributions is bounded by

max
t

Eat∼π,st∼P tDTV (p(st+1|st, at)||P (st+1|st, at)) ≤ δ, (4)

then we have Est∼S |pt(st)− P t(st)| ≤ 2tδ.

Proof See Appendix A (submitted in the supplementary material). �

The Q-value function in Eq. (1) is a mapping from the input observation-action pair (s, a) to the
Q-value, and it has the property of satisfying Bellman equation, so the temporal difference (TD)
(Tesauro, 1995) is generally used to minimize Bellman errors by the transition tuple (s, a, r, s′) at
every critic evaluation step, which is given by E(s,a,r,s′)

[
(r + γQt(s′, π(s′))−Q(s, a))2

]
(Lilli-

crap et al., 2015), whereQt stands for a target Q network. In algorithms using the experience replay,
(s, a, r, s′) will be stored in a replay buffer at every environment step, a is sampled from the ex-
perience pool, and the next action has to be judged by the current policy, represented as π(s′). In
off-policy methods, the distribution of sampled action a is different from the current policy, which
will cause distribution mismatch. In the context, we use the term of ’iteration’ to represent the index
of updates. In the actor-critic paradigm, each iteration contains the evaluation step and the policy
improvement step, which are used to update Q-value function and optimize the policy, respectively.
After minimizing the Bellman errors, the policy improvement is performed by maximizing the ex-
pected return J(θ) = Es [Qπ(s, π(s)]. In some algorithms, the policy regularization may be attached
to the expected return for the stability of training (Kumar et al., 2019; Jaques et al., 2019), which
is aimed to restrain the policy gradient ∇θJ(θ) to keep away from potential gradient vanishing or
exploding problems as well as reducing the estimation variance.

4 MODEL-BASED ACTOR-CRITIC VALUE EXPLORATION WITH ASYMPTOTIC
PLANNING

The actor-critic target value exploration with asymptotic planning is a method that blends the one-
step global model-based prediction into target critic value, whose importance lies in how and why it
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can work well. The diversity of state distributions between model-based prediction and observations
produces extra value exploration, and asymptotically accurate learned model has the potential to
overcome errors from the overestimation and mismatched policy distributions, when experience re-
play is applied in off-policy algorithms. The asymptotic planning is realized by gradually increasing
the weight of model-based prediction in the target critic value.

4.1 MODEL-BASED TARGET VALUE EXPLORATION

By instinct, the model-based target value is able to explore the future states from different view-
points with some certainty. Without the model-based prediction, the target value usually chooses
the input next states from random samples in replay buffer. The distributions of sampled next states
which meet st+1 ∼ P t+1(st+1) (2) are not really stationary in off-policy methods, since the policy
will go through multiple updates in a rollout. These unstationary distributions can distort the real
stationary transition probability from the view of the current policy, which means a false dynamics
could be experienced or ”felt” with the real observations from the replay buffer, which are achieved
by interacting with the environment. The problem of distribution mismatch will be incurred when
off-policy method is used, since actions (at, · · · , a0) are random samples from the replay buffer
following different distributions. The analyses tell that observations from the real environment are
not necessarily more accurate than the prophecy of a dynamics model.

Based on the choice of target value, the evaluation step for the critic updates can be separated into the
off-policy training and the on-policy planning. We introduce the backup operator for model-based
Q-value prediction as

PπQ(st, at) = rµ(st, at, s
p
t+1) + γEst+1

[
Q(spt+1, at+1)

]
, (5)

where spt+1 ∼ p(·|st, at), at ∼ π(·|st), at+1 ∼ π(·|st+1), and rµ and p are reward functions and
transition probability learnt from the dynamics model, respectively. We use spt+1 to distinguish the
subtle difference between the model-based prediction and st+1 ∼ P t+1(st+1), which follows a
distribution determined by the complete rollout. And at+1 ∼ π(·|st+1) because of the limitation
on one-step global prediction, otherwise, choosing at+1 ∼ π(·|spt+1) will induce cumulative model
bias. If replacing rµ and spt+1 with the immediate reward r and the next state s′ from past experience,
(19) reduces to the target Q-value of deep deterministic policy gradient (DDPG) (Lillicrap et al.,
2015). Plus a regularization term concerning the entropy policy exploration, it then becomes the
target Q-value of SAC.

The change of target value seems subtle, however, the model-based prediction produces valid state
and reward diversity for value exploration. Unlike the action which is usually bounded, the state s-
pace is continuously unbounded in many tasks like Gym environments, then the exploration strategy
commonly used in policy exploration, for example the gaussian exploration noise, will be invalid
in value exploration. Throughout the referred literature, few works have attempted to apply sim-
ple and/or feasible value exploration. More importantly, as the trained reward model and transition
model grow more accurate, the on-policy prediction (19) will greatly reduce or avoid originally ex-
isting overestimation errors and distribution mismatch in target Q-value without value exploration.
Although model bias is induced by model-based planning during learning, it can be controlled by
asymptotically increased impact of model-based prediction.

Lemma 2. Consider the sequence Qt+1 = PπQt constructed by (19), then given the condition that
the Q-values are bounded, i.e., |Qt(s, a)| <∞, ∀(s, a) ∈ S ×A, the sequence Qt will converge to
a unique optimal value as t→∞.

The proof of Lemma 5 can be found in Appendix B. In this work, (19) will be combined with the
target Q-value of SAC according to an asymptotically increasing percentage. To expand the value
exploration, the current Q-value function to be predicted by the target Q-value is also divided into
two parts sharing the same critic network parameter. However, they take actions following different
distributions as inputs. By this means, the diversity can be enlarged and some convergence conditions
can be satisfied, which will be shown later in Theorem 4.

In the policy improvement step, we directly adopt the entropy policy exploration of SAC with the
actor network, which does not involve computation on the dynamics. When the model-free DRL is
applied to large-scale continuous control problems, the dynamics is unknown and the state-action
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spaces are continuous, the policy improvement over S ×A at every iteration, which is called as the
absolute policy improvement, cannot be guaranteed by estimation with distribution mismatch and
estimation biases. Some researches on continuous control also show empirical results which degrade
after reaching a good point. As told in related work part, there have been several methods trying to
apply the model-based synthetic rollouts to the policy improvement step, however, they do not work
well with the proposed value exploration strategy according to our practice since the one-step global
prediction will be violated.

4.2 DYNAMICS LEARNING

Compared with descriptive models that are feasible in small state spaces (Deisenroth & Rasmussen,
2011; Khansari-Zadeh & Billard, 2011), neural network approximation can scale better to high-
dimensional state spaces. We parameterize the dynamics pλ(s, a) and rµ(s, a, s′) with deep gener-
ative models (Moerland et al., 2020), where the parameters λ and µ reparameterize the transition
and the reward functions, respectively. Considering the fact that the transition function is difficult to
train, we choose to learn a relative transition function to forecast the difference between the current
state and next state, which is given by s′p = s+pλ(s, a), and the state difference follows the relative
transition probability density function (pdf) pλ(·|s, a). The use of s in does not induce the distribu-
tion mismatch since the relative transition function is unaffected by the policy. The representation
of unknown reward function differs in the inputs among various tasks, for example, the informa-
tion determining the rewards is not included in observations for the default setting of MuJoCo suite
(Todorov et al., 2012; Brockman et al., 2016). This complicates the training of the reward function,
but we will show that taking inputs as (s, a, s′) is applicable in our selected benchmarks.

Lemma 3. Assume the absolute value of expected reward function and the expected KL-divergence
between the dynamics model and the real transition probability are respectively bounded by

max
s∼S
|Ea∼πr(s, a)| ≤ rm,

max
t

Eat∼π,st∼P tDTV (p(st+1|st, at)||P (st+1|st, at)) ≤ δ, (6)

then we have ∣∣Espt∼pt,at∼π [Q(spt , at)]− Est∼P t,at∼π [Q(st, at)]
∣∣ ≤ O(δ). (7)

The proof of Lemma 6 can be found in Appendix C, which tells the distance between predicted
Q-value and true Q-value is bounded linearly by δ. The dynamics Model is trained accompanying
the iteration, using random samples from experience buffer. Given the four-tuple sample (s, a, r, s′),
the surrogate objective of relative transition function is given by

D(λ) = E(s,a,s′)∼R

[
1

2
(s+ pλ(s, a)− s′)2

]
, (8)

whereR represents the replay buffer that random samples come from.

Then (8) can be optimized with stochastic gradient

ÔλD(λ) = E(s,a,s′)

[
(s+ pλ(s, a)− s′)Ôλpλ(s, a)

]
. (9)

Similarly, the surrogate objective for updating the reward function can be formulated as

D(µ) = E(s,a,r,s′)∼R

[
1

2
(rµ(s, a, s

′)− r)2
]
, (10)

and it gradient is computed as

ÔµD(µ) = E(s,a,r,s′)

[
(rµ(s, a, s

′)− r)Ôµrµ(s, a, s′)
]
. (11)

A well trained reward function is necessary for (19). Without the real-time model of reward function,
sampled rewards from the replay buffer will induce distribution errors in model-based prediction.
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4.3 MODEL-BASED ACTOR-CRITIC VALUE EXPLORATION ALGORITHM

As mentioned above, we adopt the minimized pairwise critics to serve as the target Q-value for
the purpose of mitigating the effect of overestimation (Watkins, 1989). Besides, current and target
networks are separated to execute soft updates (Lillicrap et al., 2015; Haarnoja et al., 2018b) for all
surrogate objectives, for the good of stability. In this work, the asymptotical model-based prediction
based on (19) is merged into the target value of SAC, so the loss function for the update of critic
parameters in the evaluation step can be estimated by

L(ωi) = E(s,a,r,s′)

[
(kQt(s′p, a

′) + (1− k)Qt(s′, a′)− kQωi(s, a)− (1− k)Qωi(s, a))2
]
, (12)

where i ∈ {1, 2}, a = πθ(s) and a′ = πθ′(s
′) are the on-policy actions chosen from the current

policy and the target policy parameterized by θ and θ′, respectively, (s, a, r, s′) is a tuple of history
data sampled from the experience pool, and k is the asymptotic variable increasing from 0 to 1 as
the time step proceeds. And

Qt(s′, a′) = r + γ

[
min (Qω′1(s

′, a′), Qω′2(s
′, a′))− α

1− k
log(πθ′(a

′|s′))
]
, (13)

Qt(s′p, a
′) = γmin

(
Qω′1(s

′
p, a
′), Qω′2(s

′
p, a
′)
)
+ rµ(s, a, s

′
p), (14)

where ω1, ω2, ω′1 and ω′2 parameterize two critic networks and their target estimates, respectively.
Besides, s′p = s+pλ(s, a) is the on-policy next state predicted by the transition model parameterized
by λ, and πθ′(·|s′) is the target policy distribution conditioned on the next state s′. The action input
of reward function rµ follows the current policy instead of being sampled from the replay buffer. By
minimizing (24), the critic parameters can be updated for each evaluation step.

Theorem 1. Assume E(s,a,r,s′)

[
(Qt(s′, a′)−Qωi(s, a))2

]
≤ ε for t > T1, then ∃T > 0 so that

L(ωi) ≤ 2ε for t > T .

The proof of Theorem 3 can be found in Appendix D. Theorem 3 means that the critic loss function
(24) of this work will converge under the assumption that the critic loss of SAC converges. Besides
the conclusion of convergence, we are more curious about how it converges or by what factors it
is affected. From Theorem 4, we see both the accuracy of transition model and reward function
model will affect the target value prediction, and the transition model influences more. Moreover, a
well-trained model can guarantee its convergence.

Theorem 2. Assume the absolute value of expected reward function, the expected KL-divergence
between the dynamics model and the real transition probability, and the MSE of expected difference
between the modeled reward function and the immediate reward are respectively bounded by

max
s∼S
|Ea∼πr(s, a)| ≤ rm,

max
t

Eat∼π,st∼P tDTV (p(st+1|st, at)||P (st+1|st, at)) ≤ δ,

max
t

E(s,r)

{
Espt+1∼pt+1,at∼π

[
rµ(s, at, s

p
t+1)− r

]}2

≤ ξ, (15)

then we have the MSE of target prediction error bounded by 2ξ +O(δ2).

Proof See Appendix E. This theorem interprets that the target prediction error does not suffer
from overestimation bias and mismatched distribution, and can be negligible once the learnt model
is accurate, then the prediction error distance is bounded by

√
2ξ +O(δ2). �

Generally, the policy improvement step aims to maximize the current Q-value or it variant, which
does not need the dynamics model to predict the reward or the next state. Then the surrogate objec-
tive function used to update the actor parameters can be directly given by

J(θ) = Es [Qω1,2(s, a)− α log(πθ(a|s))] , (16)

where Qω1,2(s, a) = min (Qω1(s, a), Qω2(s, a)), s comes from the tuple of history data, a = πθ(s)
is the reparameterized action based on s and the policy network parameterized by θ, and πθ(·|s)
is the current policy distribution conditioned on the current state s. By maximizing (16), the actor
parameter can be updated for each policy improvement step.
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Figure 1: (a) Ant-v3; (b) Halfcheetah-v3; (c) Hopper-v3; (d) Walker2d-v3; (e) Humanoid-v3

For updates of target critic parameters, we adopt ”soft” target updates (Lillicrap et al., 2015) using
a weighted factor 0 ≤ τ < 1 to control the speed of policy updates for the sake of small value
error at each iteration. Except the critic parameters, we adopt immediate updates for other parame-
ters in this work. In (9) and (11), the gradients in expectation forms are approximated by averaging
over the sampled results of rollouts from past experience. We organize the above procedures as
the model-based actor-critic value exploration with asymptotic planning (MAVE) algorithm, whose
pseudocode is described by Algorithm 1. The algorithm alternates between running the environ-
ment steps to collect experience, and updating the network parameters using the stochastic gradients
computed by the sampled batches from the experience pool. It is composed of online training and
off-line planning, separated by the maximum online time step T1. At the stage of online training,
Step 10 in Algorithm 1 requires tiny computation using the dynamics model without the burden of
great computing and storage processing from virtual or synthetic rollouts, as explained by (14).

Algorithm 1 MAVE Algorithm

1: Initialize parameters ω1 ← ω1
0 , ω2 ← ω2

0 , θ ← θ0, λ← λ0, µ← µ0

2: Initialize target parameters ω′1 ← ω′10 , ω′2 ← ω′20 , θ′ ← θ′0
3: Initialize the learning rates lc, la, ld for the critic, the actor and the dynamics model, the time

step t ← 0, the asymptotic variable k ← 0, the soft update hyperparameter τ , the maximum
online time step T1, the maximum overall time step T , the batch size B and the replay buffer
R ← ∅.

4: while t < T1 do
5: Select action at ∼ πθt(at|st)
6: Observe the reward and next state from the interaction feedback
7: Store transitionR ← R∪ {(st, at, rt, st+1)}
8: Sample a batch of transitions B = (s, a, r, s′)

B
i=1 fromR

9: for each time step do
10: ωit+1 ← ωit − lcÔωi

t
L(ωit) for i ∈ {1, 2} following ÔωiL(ωi)

11: θt+1 ← θt + laÔθtJ(θt) following ÔθiJ(θi)
12: λt+1 ← λt − ldÔλD(λ) following Eq. (9)
13: µt+1 ← µt − ldÔµD(µ) following Eq. (11)
14: ω′it+1 ← τωit+1 + (1− τ)ω′it for i ∈ {1, 2}
15: end for
16: st+1 ← st;
17: t← t+ 1
18: end while
19: k ← 1
20: while t < T do
21: Repeat Steps 10, 11, 12, 13, 14 and 17
22: end while

5 EXPERIMENTS

5.1 BENCHMARKS

The performance of our proposed method is compared with several prior model-free and model-
based reinforcement learning algorithms in the sample complexity and stability on a set of gym

7



Under review as a conference paper at ICLR 2023
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(c) (d)
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Figure 2: Average reward of off-line training and online-planning versus time step in (a) Ant-v3; (b)
Halfcheetah-v3; (c) Hopper-v3; (d) Walker2d-v3; (e) Humanoid-v3

continuous control tasks, several of which are selected in this paper as benchmarks illustrated in
Fig. 1.

6 BASELINES

The baselines adopted for reference includes TD3, SAC, BRAC and Model-based policy optimiza-
tion (MBPO) (Janner et al., 2019). Before the appearance of SAC, DDPG is regarded as one of the
most efficient off-policy DRL methods (Duan et al., 2016), followed by TD3 as an extension. SAC
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has achieved state-of-the-art sample efficiency in multiple challenging continuous control domains
(Christodoulou, 2019), and BRAC can be regarded as a variant of SAC by adopting an extra policy
regularization based on the KL divergence between updated and older policy. In this work, we adopt
(8) to train the transition probability instead of maximum likelihood since the logarithm of transition
probability parameterized by the global gaussian network tends to be unbounded.

We apply the shared hyperparameters to our proposed algorithm with other baselines for every
benchmark to keep fairness. In the process of collecting the off-policy rollouts, the gaussian ex-
ploration noise is added to every time step with a fixed variance 0.2 when choosing the action, and
then the noisy action is clipped within the set boundary to avoid out-of-distribution (OOD) actions
(Kumar et al., 2019; 2020). The discount horizon factor is selected as 0.99, and all algorithms adopt
stochastic policies and maximum prior action entropy except for TD3. The stochastic policies follow
gaussian distributions with mean and variance parameterized by fully connected networks with two
hidden layers, each of which has 256 units. TD3 uses a deterministic policy, also parameterized by
fully connected networks with two hidden layers. We organize the network architectures and hyper-
parameters in Appendix F and G, respectively. The Adam optimizer (Kingma & Ba, 2014) is used
to update the network parameters.

6.1 RESULTS

We run 10 seeds numbered from 0 to 9 for each algorithm to keep a fair comparison. After every
500 iterations (time steps), we launch a evaluation procedure, which averages 10 rollouts for a test.
The average reward of a test will be recorded at every evaluation procedure, and all tests throughout
the time step scale give the result of each algorithm.

The average rewards of algorithms tested in chosen benchmarks are shown Fig. 2 with standard devi-
ation as the confidence interval (CI). From Figs. 2(a), 2(b) and 2(c), we can observe higher converged
value and smaller standard deviation of MAVE at late time steps over other baselines. At early stage
before 1 million time steps, MAVE vibrates due to the training dynamics, as we note from Figs. 2(a),
2(c) and 2(d). In Hopper environment, since the converged value is far lower than other benchmark-
s, the tolerance for the fluctuation around convergence is much lower, which causes the instability
problems of tested baselines. However, MAVE shows strong robustness and has a converged value
up to 3700 compared with other baselines, which outweighs the limits of state-of-the-art results in
Hopper task, as shown in 2(c). In Fig. 2(d), MAVE has a relatively stable performance over 5000.
For Humanoid with high-dimensional action space, Fig. 2(e) shows that MAVE is much better than
other baselines and can converge around the score of 6200. Over all figures in Fig. 2, SAC and
BRAC both have their up and downs, and TD3 gives the worst performance, considering its lack of
adopting the policy exploration.

We also show the goodness of trained dynamics model by plotting the results of off-line learning
without interacting with the environment after T1 in Fig. 2, labeled by ’MAVE-P’, which is analyzed
in Appendix H.

By the way, due to the differences in code details and the Mujoco version (which we use version 3),
the converged maximum may be a bit different from those of (Haarnoja et al., 2018b) and (Feinberg
et al., 2018). For example, the best result of Halfcheetah is 8000 in (Feinberg et al., 2018), however,
it is up to 15000, which is 12000 in our case. In contrast, the best result of Ant is 6000 in (Haarnoja
et al., 2018b), which is lower than 7000 in our work and similar to Janner et al. (2019). Except for
Ant, the best results in Janner et al. (2019) is closer to ours’.

Due to the page limit, the ablation studies can be found in Appendix I.

7 CONCLUSION

In this paper, we proposed a method that combines notations of dynamics training, model prediction,
off-line training and on-line planning, which jointly deduce a simple solution to the value explo-
ration. Our work is sensitive to the dynamics precision, especially to the transition model, however,
it is free from costs on extra storage and computation and can greatly reduce estimation errors and
distribution mismatches. The minor costs of our work are the necessary networks for the dynamics
and a hyperparameter (given in Appendix G) to control the speed of asymptotical dynamics training.
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A PROOF OF LEMMA 4

Lemma 4. Assume the expected KL-divergence between two transition distributions is bounded by
max
t

Eat∼π,st∼P tDTV (p(st+1|st, at)||P (st+1|st, at)) ≤ δ, (17)

then we have Est∼S |pt(st)− P t(st)| ≤ 2tδ.

Proof
Est∼S

∣∣pt − P t∣∣
=Est∼S,st−1∼S,at−1∼π

∣∣p(st|st−1, at−1)pt−1 − P (st|st−1, at−1)P t−1∣∣
≤Est∼S,st−1∼S,at−1∼π

∣∣p(st|st−1, at−1)[pt−1 − P t−1] + P t−1[p(st|st−1, at−1)− P (st|st−1, at−1)]
∣∣

≤Est−1∼S,at−1∼π
∣∣pt−1 − P t−1∣∣+ Est∼S,st−1∼P t−1,at−1∼π |p(st|st−1, at−1)− P (st|st−1, at−1)|

=Est−1∼S
∣∣pt−1 − P t−1∣∣+ 2Eat−1∼π,st−1∼P t−1DTV (p(st|st−1, at−1)||P (st|st−1, at−1))

≤Est−1∼S
∣∣pt−1 − P t−1∣∣+ 2δ

≤ |p(s0)− P (s0)|+ 2tδ

=2tδ, (18)

where pt = pt(st) and P t = P t(st), and the last equality holds because the initial distribution is
not affected by transitions. This proof is partly referred to Janner et al. (2019). �
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B PROOF OF LEMMA 5

PπQ(st, at) = rµ(st, at, s
p
t+1) + γEst+1

[
Q(spt+1, at+1)

]
, (19)

Lemma 5. Consider the sequence Qt+1 = PπQt constructed by (19), then given the condition that
the Q-values are bounded, i.e., |Qt(s, a)| <∞, ∀(s, a) ∈ S ×A, the sequence Qt will converge to
a unique optimal value as t→∞.

Proof

|PπQ(st, at)− PπQ′(st, at)|
≤γ
∣∣Est+1

[Q(spt+1, at+1)−Q′(spt+1, at+1)]
∣∣

≤γmax
st+1

∣∣Q(spt+1, at+1)−Q′(spt+1, at+1)
∣∣

=γ‖Q−Q′‖∞, (20)

where ‖·‖∞ means the max norm. Since the Q-value is assumed to be bounded, the second inequality
holds. We reach a conclusion that ∀(st, at) ∈ S ×A, (20) holds, which can be rewritten as ‖TπQ−
TπQ′‖∞ ≤ γ‖Q−Q′‖∞, which means PπQ(s, a) is a max-norm contraction mapping. According
to the contraction property, the sequence Qk+1 = PπQk will converge to a unique fixed point. �

C PROOF OF LEMMA 6

Lemma 6. Assume the absolute value of expected reward function and the expected KL-divergence
between the dynamics model and the real transition probability are respectively bounded by

max
s∼S
|Ea∼πr(s, a)| ≤ rm,

max
t

Eat∼π,st∼P tDTV (p(st+1|st, at)||P (st+1|st, at)) ≤ δ, (21)

then we have ∣∣Espt∼pt,at∼π [Q(spt , at)]− Est∼P t,at∼π [Q(st, at)]
∣∣ ≤ O(δ). (22)

Proof

∣∣Espt∼pt,at∼π [Q(spt , at)]− Est∼P t,at∼π [Q(st, at)]
∣∣

=

∣∣∣∣∣∑
t

Est∼S,at∼π
[
γtr(st, at)(p

t(st)− P t(st))
]∣∣∣∣∣

≤
∑
t

Est∼S
∣∣Eat∼π [r(st, at)] γt(pt(st)− P t(st))∣∣

≤rm
∑
t

Est∼S
[
γt
∣∣pt(st)− P t(st)∣∣]

≤2rmδ
t∑
i=0

[iγi]

≤ 2rmδγ

(1− γ)2
, (23)

where the second last inequality is due to Lemma 4. �

D PROOF OF THEOREM 3

Theorem 3. Assume E(s,a,r,s′)

[
(Qt(s′, a′)−Qωi(s, a))2

]
≤ ε for t > T1, then ∃T so that

L(ωi) ≤ 2ε for t > T .
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Proof According to Lemma 5, ∃T2 > 0, E(s,a,r,s′)

[
(Qt(s′, a′)−Qωi(s, a))2

]
≤ ε for t > T2,

then for T > maxT1, T2

L(ωi) ≤ 2E(s,a,r,s′)

[
k2(Qt(s′p, a

′)−Qωi(s, a))2 + (1− k)2(Qt(s′, a′)−Qωi(s, a))2
]
,

≤ 2ε, (24)
for t > T . �

E PROOF OF THEOREM 4

Theorem 4. Assume the absolute value of expected reward function, the expected KL-divergence
between the dynamics model and the real transition probability, and the MSE of expected difference
between the modeled reward function and the immediate reward are respectively bounded by

max
s∼S
|Ea∼πr(s, a)| ≤ rm,

max
t

Eat∼π,st∼P tDTV (p(st+1|st, at)||P (st+1|st, at)) ≤ δ,

max
t

E(s,r)

{
Espt+1∼pt+1,at∼π

[
rµ(s, at, s

p
t+1)− r

]}2

≤ ξ, (25)

then we have the MSE of target prediction error bounded by 2ξ +O(δ2).

Proof

Es
{
Espt+1∼pt+1,at∼π,at+1∼π

[
rµ(s, at, s

p
t+1) + γQ(spt+1, at+1)−Q(s, at)

]}2

=E(s,r)

{
Espt+1∼pt+1,st+1∼P t+1,at∼π,at+1∼π

[
rµ − r + γQ(spt+1, at+1)− γQ(st+1, at+1)

]}2

≤2ξ + 2γ2
{
Espt+1∼pt+1,st+1∼P t+1,at+1∼π

[
Q(spt+1, at+1)−Q(st+1, at+1)

]}2

≤2ξ + 2γ2
{
Espt+1∼pt+1,st+1∼P t+1,at+1∼π

∣∣Q(spt+1, at+1)−Q(st+1, at+1)
∣∣}2

≤2ξ + 8r2mδ
2γ4

(1− γ)4
, (26)

where (s, r) is the random sample from the replay buffer, and the last inequality can be referred to

Lemma 6. Then the prediction error is bounded by
√
2ξ +

8r2mδ
2γ4

(1−γ)4 . �

F NETWORK ARCHITECTURE

We construct the critic network using a fully-connected MLP with two hidden layers. The input is
composed of the state and action, outputting a value representing the Q-value. The ReLU functions
are adopted to activate the two hidden layers. The setting of policy network follows normal random
distribution, whose expectation and variance are fully-connected networks fed only by the state.
Both of them have two hidden layers activated by the ReLU function. After the hidden layers, a
Tanh function and a Softplus function follows to form the expectation and variance, respectively.
With the expectation and variance, a normal distribution can be achieved to represent the random
policy. The network of transition probability is constructed similarly to that of the policy without of
the Tanh clipping, except for the input, which is composed of the state and action instead. And the
network of reward function is similar to that of the critic, with the input composed of the state, action
and the next state. The architecture of networks are plotted in Fig. 3. For simplicity, we omit the
illustration of reward network in this figure. The above mentioned network architecture is adopted
for the random policy. For the algorithm using the deterministic policy, the critic is constructed in
the same way, however, the actor network is deterministic as the fully connected dense layer.

G HYPERPARAMETERS

Table 1 lists the common hyperparameters shared by all experiments and their respective settings. In
this table,La means the learning rate of the actor,Lc means the learning rate of critics, andLd means

14



Under review as a conference paper at ICLR 2023

Fully connected 
layer
ReLu

Fully connected 
layer
ReLu

Fully connected 
layer
ReLu

Fully connected 
layer
ReLu

 ,Q s a

Sigmoid

Input layer

Input layer

State layer

Action layer

State layer

Fully connected layer
ReLu

Fully connected layer
ReLu

Tanh

Input layer

State
layer

Fully connected layer
ReLu

 s

 s

Fully connected layer
ReLu

Bound
Of 

action

Softplus

 |s 

 | ,p s a

 s

 sAction layer

Figure 3: Architecture of networks.

the learning rate of dynamics including the transition probability and the reward. τa and τc represent
soft update hyperparameter of the actor and the critic, respectively, and τa = 1 means we adopt
immediate update for the actor. The symbol var represents the variance of gaussian exploration
noise, and α is the fixed temperature hyperparameter for the term of maximum posteriori action
entropy, which is applied in algorithms except DDPG and TD3. αd represents the Wight factor
of KL divergence for policy regularization applied in BRAC, β is the temperature hyperparameter
to tune the impact of posteriori transition entropy in MAVE, and η is the asymptotic rise rate for
kt = 1− βt.
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Table 1: List of hyperparameters

Hyperparameter Value Description Algorithm applied
La 0.0003 Learning rate of actor All
Lc 0.0003 Learning rate of critic All
Ld 0.0003 Learning rate of dynamics MAVE
τa 1 Soft update parameter of actor All
τc 0.005 Soft update parameter of critic All
γ 0.99 Discount horizon factor All
var 0.2 The variance of exploration noise All
α 0.1 Fixed temperature Except DDPG and TD3
β 0.1 Fixed temperature MAVE
αd 0.1 Wight factor of KL regularization BRAC
η 0.9999999995 Asymptotic rise rate MAVE

Batch 256 Size of each mini-batch All
Units 256 Hidden layer units All

Memory 1000000 Size of replay buffer All
Interval 500 Evaluation period All
Test 10 Rollouts per evaluation All

Moreover, Batch represents the size of mini-batches sampled for training, and Memory is means
the size of replay buffer. The rest in Table 1 are the hyperparameters for the evaluation procedure,
specifically, Interval means how many time steps between two successive evaluation procedures,
and Test means the number of rollouts run during each evaluation procedure.

H OFF-LINE PERFORMANCE

In Halfcheetah environment, the maximum online time step T1 is set as 1 million, which means from
1 million to 3 million steps, the agent stops interacting with the environment and performs the train-
ing and planning totally based on the reserved fixed experience buffer, more specifically, based on
the initial states s in the experience four-tuple slots (s, a, r, s′). From Fig. 2(b), MAVE-P represents
the off-line performance after T1, which shows that the model can preserve the performance before
the online training is stopped, when MAVE still has great potential to continue improving perfor-
mance. Similar phenomena can be observed from Figs. 2(a), 2(d) and 2(e), with the same T1 for Ant,
Walker2d and Humanoid environments, respectively. The maximum online time step in Hopper is
set as 0.5 million, which is smaller than other tasks because the upper converged value in Hopper
is much lower. Besides, we note that Hopper does not reach a good point after stoping the on-line
training, however, MAVE-P still manages to converge to 3500 solely counting on off-line training.

I ABLATION STUDY

To investigate the contribution of individual parts in the proposed value exploration, we replace
the modeled reward function with the immediate reward, replace the model predicted next state s′p
with buffer-sampled s′, and replace the on-policy current action a with buffer-sampled a in Q-value
function, labeled as ’MAVE-R’, ’MAVE-P’ and ’MAVE-Q’, respectively. The figures of the three
conditions are compared with MAVE in Fig. 4. From these figures, we see these fragments are all
necessary. Specifically, lacking of the modeled reward function as part of the dynamics and the pre-
dicted next state foreseen by the modeled transition probability will induce distribution mismatches
for MAVE-R and MAVE-P, respectively, and MAVE-Q will cause estimation error, which can be
analyzed by the proof of Theorem 4.
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(a) (b)

(c) (d)

(e)

Figure 4: Ablation Study on 3 components in (a) Ant-v3; (b) Halfcheetah-v3; (c) Hopper-v3; (d)
Walker2d-v3; (e) Humanoid-v3

17


	Introduction
	Related Work
	Preliminaries
	Model-based Actor-critic Value Exploration With Asymptotic Planning 
	Model-based Target Value Exploration
	Dynamics Learning
	Model-based Actor-critic Value Exploration Algorithm

	Experiments
	Benchmarks

	Baselines
	Results

	Conclusion
	Proof of Lemma 4
	Proof of Lemma 5
	Proof of Lemma 6
	Proof of Theorem 3
	Proof of Theorem 4
	Network Architecture
	Hyperparameters
	Off-line Performance
	Ablation Study

