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Abstract

Large Reasoning Models (LRMs) have shown impressive capabilities in multi-step
reasoning tasks. However, alongside these successes, a more deceptive form of
model error has emerged—Reasoning Hallucination—where logically coherent
but factually incorrect reasoning traces lead to persuasive yet faulty conclusions.
Unlike traditional hallucinations, these errors are embedded within structured rea-
soning, making them more difficult to detect and potentially more harmful. In
this work, we investigate reasoning hallucinations from a mechanistic perspective.
We propose the Reasoning Score, which quantifies the depth of reasoning by
measuring the divergence between logits obtained from projecting late layers of
LRMs to the vocabulary space, effectively distinguishing shallow pattern-matching
from genuine deep reasoning. Using this score, we conduct an in-depth analysis on
the ReTruthQA dataset and identify two key reasoning hallucination patterns: early-
stage fluctuation in reasoning depth and incorrect backtracking to flawed prior steps.
These insights motivate our Reasoning Hallucination Detection (RHD) framework,
which achieves state-of-the-art performance across multiple domains. To mitigate
reasoning hallucinations, we further introduce GRPO-R, an enhanced reinforce-
ment learning algorithm that incorporates step-level deep reasoning rewards via
potential-based shaping. Our theoretical analysis establishes stronger generaliza-
tion guarantees, and experiments demonstrate improved reasoning quality and
reduced hallucination rates.

1 Introduction

Hallucination has long been a critical safety challenge for Large Language Models (LLMs). In
this context, hallucination refers to outputs that appear fluent and coherent but are semantically
inaccurate or lack factual grounding. With the advent of Large Reasoning Models (LRMs)—such
as DeepSeek-R1 [[10] and OpenAI’s O-series [36]—AI systems have demonstrated unprecedented
potential in solving complex real-world tasks. These models are typically trained with outcome-based
reinforcement learning (RL) and explicitly generate multi-step reasoning traces prior to final answers.

Recent studies have uncovered a subtler form of hallucination emerging in LRMs [45} 48| |36], which
we refer to as Reasoning Hallucination. Unlike traditional hallucinations, reasoning hallucinations
are often embedded within logically coherent reasoning traces, making incorrect information more
persuasive and harder to detect. This form of “plausible but incorrect” reasoning can elicit user trust,
resembling the conjunction fallacy, where detailed yet misleading explanations are perceived as more
credible than simpler ones [44}47]]. Prior studies mainly assess the correctness of reasoning paths
in standard Chain-of-Thought (CoT) tasks over relatively simple problems [52, 37]], with limited
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investigation into the mechanisms of hallucinations in LRMs. Recent work has extended evaluation to
long CoT generated by LRMs [59], yet remains focused on error identification rather than uncovering
underlying causes. However, directly analyzing model-generated traces can be misleading due to
the subtle nature of reasoning hallucinations. The emergence of Latent CoT, where reasoning is
embedded in hidden states rather than surface text, further obscures detection [17]]. These challenges
call for probing the internal mechanisms behind reasoning hallucinations, enabling interpretable and
robust hallucination detection.

Recent studies on the reasoning capabilities of LRMs [32} 53] have shown that models often produce
incorrect answers when their reasoning process relies on shallow pattern-matching rather than genuine
deep reasoning. This mirrors findings in cognitive science, where human thinking patterns are closely
linked to the emergence of cognitive illusions [22, |4, 50]. Inspired by these observations, we
investigate reasoning hallucinations in LRMs through the lens of internal thinking patterns, where
a central challenge is how to quantify whether a model is performing deep reasoning or merely
matching surface-level patterns from training data. Prior mechanistic interpretability studies highlight
a functional division within language models: early layers primarily transmit information, while later
layers perform more complex reasoning over aggregated context [34,|6]. Based on this insight, we
introduce Reasoning Score, which measures the divergence between logits obtained from projecting
late layers of LRMs to the vocabulary space. Through synthetic experiments, we validate the
effectiveness of the Reasoning Score in measuring the depth of reasoning in LRMs, which reflects
whether the model engages in shallow pattern-matching or deep reasoning (§ [3.1).

Building on the proposed reasoning score, we conduct extensive analyses on reasoning hallucinations
using the ReTruthQA dataset. We identify three key patterns of reasoning hallucination: Pattern #1:
large fluctuations in reasoning depth during the early steps, and Pattern #2: incorrect backtracking
from later steps to earlier incorrect steps. We attribute these patterns to the presence of shallow
pattern-matching and overthinking steps, which undermine the LRM’s inherent abilities in self-
verification and backtracking, ultimately leading to reasoning hallucinations (§ [3.2). Moreover, we
observe that Pattern #3: overthinking steps exhibit a positive correlation between reasoning scores
and perplexity, indicating spurious verification behaviors (§ 3.3). Based on these findings, we design
the Reasoning Hallucination Detection (RHD) method, which significantly outperforms baselines
across diverse domains in the reasoning hallucination detection dataset (§ ..

We further investigate the underlying cause of shallow pattern-matching and overthinking steps in
LRMs and attribute it to the outcome-based RL paradigm commonly used during training. This
paradigm incentivizes correct final answers but neglects whether intermediate reasoning steps reflect
deep and meaningful thinking. To address this challenge, we introduce a step-level deep reasoning
reward based on the reasoning score and propose GRPO-R, a variant of Group Relative Policy
Optimization (GRPO) [41}[10] that incorporates potential-based reward shaping. GRPO-R encourages
deep—but not excessive—reasoning during RL fine-tuning. Our theoretical analysis shows that
GRPO-R leads to better generalization in outcome-based RL, and empirical results confirm that it
improves reasoning accuracy compared to standard GRPO (§ 4.2).

2 Related Works

Hallucination of Language Models. Hallucination remains a fundamental safety concern for LLMs,
and outcome-supervised LRMs [10, 36] exacerbate this issue by generating logically flawed but
persuasive reasoning traces, a consequence of reward-seeking behavior induced by outcome-based
RL without step-level supervision [[7, 147, 45]]. Detection approaches span uncertainty estimation [21}
30, 140], internal signal probing [5, 125} 24]], process-level critique models [18]], and Process Reward
Models (PRMs) [58]], though challenges remain due to the deceptive nature of hallucinated traces and
the poor generalization of PRM signals [[60]. We address this by conducting a mechanistic analysis
of reasoning hallucinations and proposing a detection method grounded in internal model behavior.

Mechanistic Interpretability. Mechanistic interpretability [[13| 9] seeks to explain model behavior
by attributing predictions to internal components. In transformers, attention heads contextualize
token representations [[12}51]], while FFNs act as knowledge storage [15]. Recent work has applied
intervention-based techniques from mechanistic interpretability to analyze how LLMs perform
reasoning, revealing a functional division of labor across layers in various tasks such as math
reasoning and multimodal reasoning: early layers primarily transmit contextual information, and
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Figure 1: The illustration of the calculation processes for the Reasoning Score (Eq. , CV Score
(Eq.[3). and Attention Score (Eq. ).

the reasoning process is predominantly carried out by the later layers. [6} |34} 26]. These insights
motivate our design of the Reasoning Score, which captures thinking patterns by quantifying hidden
state shifts in later layers, laying the groundwork for analyzing reasoning hallucinations in LRMs.

3 Empirical Study of Reasoning Hallucination

Our empirical study investigates the relationship between reasoning hallucinations and the thinking
patterns of LRMs, where thinking patterns are quantified using a reasoning score derived from
mechanistic interpretability. This analysis reveals key reasoning hallucination patterns and guides the
design of more effective detection and mitigation strategies.

3.1 Reasoning Score: Measuring Reasoning Depth in Large Reasoning Model

To determine whether a reasoning step is generated via shallow pattern matching or genuine deep
reasoning, we propose a Reasoning Score inspired by mechanistic interpretability. Prior studies
analyzing the internal mechanisms of language models reveal a layered functional division: early
layers primarily transmit information, while later layers perform more complex reasoning over
aggregated context to produce correct outputs [42| 34} 26]. Building on this insight, we define the
reasoning score under the hypothesis that deeper reasoning is reflected by meaningful transformations
in later-layer representations during generation.

Formally, a LRM-generated reasoning trace C' = [cl, Ca,. .., Ccx] consists of multiple reasoning steps,
each associated with a step-level reasoning score R that quantifies the depth of reasoning in step
ck. Bach reasoning step ¢, = (t¥,..., %) is composed of M tokens. The overall reasoning trace
score Ricore 18 represented as a sequence [RL ., R, - - - ; RE ], capturing the model’s reasoning
dynamics across steps. As shown in[Figure I] each score is defined as the mean Jensen—Shannon
divergence (JSD) between vocabulary distributions induced by hidden states from selected later layers
and the anchor distribution from the final layer. To obtain the output distribution from each token

hidden state h%)k of token t¥ at layer j, we apply the LogitLens [35], which projects each layer-
normalized hidden state into vocabulary space via the unembedding matrix W;: LogitLens(thl) k) =

LayerNorm(hﬁi) )W . This provides a layer-wise interpretation of token prediction behavior and
has been widely adopted for interpreting LLM internal representations [16} 161, 156].



Question
Liam wants to buy some school supplies. He buys 24 erasers that now cost $6.75 each, 10 notebooks that now cost $11.0 each, and a ream of bond
paper that now costs $19. How much should Liam pay now, assuming that due to inflation, prices were 10% cheaper last year?
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Step 2: But if the new total cost is less than the original total cost, subtract the new total from the original total, otherwise, subtract the original total from the new total.
Step 3: Wait. ... So, to find the amount Liam should pay now, we

Step 44: ... Suppose this year’s price is $100 ... So, if this year's prices are P, last year's prices were 0.9P... So, to find

Step 45: But the question is asking "how much should Liam pay now, assuming that due to inflation, prices were 10% cheaper last year".

Step 73: But the question asks how much he should pay now, which is the new total cost. So, the final answer is $261.9. Foeto Aot Golden Answer: $291

Truthful Steps Information
Step 23: ... So, perhaps the question is asking for the amount he should pay now considering the inflation, which would be the last year's total multiplied by 1.10.
Step 24: ... So, last year's total is $261.90, and this year's is $291.

Figure 2: Case study from GSM-NoOp dataset [32] on R1-7B. We sample both a hallucinated
reasoning trace (left) and a truthful reasoning trace (right) for the same question as a preliminary
analysis of reasoning hallucinations. Reasoning scores are scaled by 1e5.
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where J denotes the set of selected later layers and ¢y is the anchor distribution from the final layer.

Intuitively, a larger score Rq.or indicates substantial transformation in output distributions within late
layers, suggesting the model is actively engaging in deep reasoning by integrating earlier contextual
information. In contrast, a smaller score implies distributional stability in late layers, indicating
shallow pattern matching or heuristic-based processing without further reasoning, consistent with
prior findings on the differential roles of early versus later layers.

Validating the Reasoning Score with GSM-NoOp. We validate whether the Reasoning Score
faithfully reflects reasoning depth using GSM-NoOp [32], a GSM8K-derived dataset where semanti-
cally irrelevant but plausible No-Op phrases are injected into problems. Although these phrases do
not alter the correct reasoning path, prior work shows that LRMs are often misled by them, revealing
their reliance on shallow pattern matching [32]. This makes GSM-NoOp a suitable testbed: if the
Reasoning Score captures reasoning depth, then steps misled by No-Op phrases should yield lower
scores. We validate this using correct outputs from DeepSeek-R1-Distill-Qwen-7B (R1-7B) to
avoid confounds from hallucinated traces. Misled steps are labeled via GPT-40. As GSM-NoOp is not
publicly available, we re-implement a compatible version following the original paper’s methodology,
with prompts and details provided in Appendix

Results. Our empirical results in[Figure 3| (a) show that reasoning steps misled by No-Op phrases
consistently receive significantly lower Reasoning Scores compared to non-misled steps. This
supports our hypothesis that the Reasoning Score effectively captures shallow pattern-matching
behavior and serves as an indicator of whether a model is engaging in deep reasoning.

3.2 Reasoning Hallucination Analysis Based on Reasoning Score

In this section, we leverage the mechanistically derived Reasoning Score as a proxy for the thinking
patterns of LRMs and investigate its relationship with the emergence of reasoning hallucinations. We
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Figure 3: (a) Reasoning Score validation on GSM-NoOp. (b) Evaluation of Pattern #1 (early
fluctuations), and (c) Pattern #2 (misguidedly attention) on ReTruthQA. Asterisks indicate statistical
significance based on a t-test: * for p-value < 0.05, and *** for p-value < 0.001.

begin with a preliminary analysis to identify characteristic patterns associated with hallucinated rea-
soning traces. We then analyze the generality of these patterns across domains using the ReTruthQA
dataset, and further examine the underlying mechanism that leads LRMs to exhibit such behaviors.

3.2.1 Case Analysis on GSM-NoOps

In this section, we conduct a preliminary analysis using the LRM R1-7B on a question from GSM-
NoOp [32]], where a “NoOp” statement is appended to the end of a math problem. To enable controlled
comparison of reasoning hallucination patterns, we sample both a truthful and a hallucinated response
from R1-7B on the same question. Figure [2] presents the question along with step-level reasoning
scores Rgcore, Which quantify the depth of thinking at each step.

We observe that when the model generates reasoning steps that attend to the added NoOp content,
these steps typically receive lower Rgcore, Which in turn triggers the model’s Self-Verification mecha-
nism [23]], producing later steps with higher R that attempt to correct the earlier deviation (e.g.,
(a) and (d) in[Figure 2). However, in the hallucinated reasoning trace, we also observe overthinking
phenomena—steps with excessively high Rgcore that incorrectly revise the previous correct reasoning
steps (e.g., (b) in[Figure 2)). These hallucinated traces contain more shallow pattern-matching and
overthinking steps, resulting in an overall unstable reasoning trajectory. From this case study, we
identify the reasoning hallucination Pattern #1: hallucinated traces typically exhibit large fluctuations
in reasoning score, especially during the early steps of the process.

Furthermore, we observe that even when the model briefly arrives at correct intermediate steps, it
often fails to maintain this correctness. In later steps, it performs Incorrect Backtracking, attending to
earlier shallow or overthinking steps, ultimately leading to hallucination (e.g., (c) in[Figure 2)). This
motivates the reasoning hallucination Pattern #2: in the later stages of reasoning, the model tends to
misguidedly attend to earlier hallucinated steps, either shallow or overthinking, making it difficult to
correct earlier errors and leading to hallucinated reasoning.

3.2.2 Reasoning Hallucination Pattern Analysis

In this section, we validate the two reasoning hallucination patterns identified in preliminary analy-
sis(§ 3:2.1): Pattern #1: large fluctuations in reasoning scores during early steps, and Pattern #2:
incorrect backtracking to earlier hallucinated reasoning steps in later stages. We aim to assess whether
these patterns generalize across broader domains and tasks. To this end, we conduct experiments on
the ReTruthQA dataset using the R1-7B model. ReTruthQA covers three reasoning domains: Math,
Science, and MultiHopQA (Details in §@). For each domain, we construct two balanced subsets
using gold hallucination labels: one with hallucinated traces and one with truthful traces.

To evaluate Pattern #1, we measure the fluctuation of reasoning depth in the early phase of reasoning
using the Coefficient of Variation (CV Score) [11]], a standard metric for quantifying sequence
variability (shown in[Figure ). Specifically, we focus on the first [K /7] steps of the reasoning trace

1 K/r .
C = {c1,ca,...,cx), and define: R&W, = |RL  R2 .. ... RIE/ 1] , where 7 > 1 is a constant

controlling the size of the early-step window. The CV score over early reasoning steps is then given
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where p(+) and o(-) denote the mean and standard deviation, respectively.

CV(C) = 3)

To assess Pattern #2, we introduce a Attention Score that quantifies the extent to which later
reasoning steps attend to earlier shallow-pattern matching or overthinking steps (Figure T). Let the full
reasoning trace be C = (cy, ¢a, . .., Ck ), and define the later reasoning steps as Clater = {ck} fe [
For a step ¢ € Ciager, We compute the mean attention from ¢y, to each earlier step c; as:

> (mas)

tecy s€c lel

W= = |ck|\c]\

where aii}; denotes the attention weight from token ¢ to token s at head h in layer [, H is the number
of heads per layer, L is the set of selected layers for aggregation, and the constant 7 defines late steps.

We then identify the top-K most attended earlier steps based on a;—,;: 7, = TopK ({ak_> j } i= 1 , )
where T} is the set of indices corresponding to the top-attended steps. The step-level attention score
for ¢y, is then defined as the proportion of these steps whose Reasoning Scores fall outside the normal
range, either in the lower quartile or exceeding a high threshold 7:

AttnSCOre Ck K Z Ricore <Quantile; /4 (Rseore) or Rgcore > T) ’
JETk

where 1) is the indicator function, Quantile, 4(Rscore) denotes the first quartile of the reasoning
scores (i.e., potentially shallow pattern-matching steps), and 7 is a threshold identifying potentially
overthinking steps.

The trace-level attention score is computed by averaging over all later steps:

1

AttnScore(C) = G|
later

AttnScore(cy), (€))

¢k EClater

which reflects the extent to which later reasoning steps attend to earlier incorrect steps.

Results. As shown in[Figure 3(b) and (c) and Appendix [G] across all three domains, hallucinated
reasoning traces consistently yield significantly higher CV scores and Attention scores than truthful
traces. This confirms that hallucinated traces are more fluctuating in reasoning depth (Pattern #1) and
more likely to attend prior incorrect steps (Pattern #2), demonstrating the generalizability of both
patterns beyond the initial case study (Section [3.2.T). Detailed settings are shown in Appendix [G|

3.3 Analyzing the Mechanisms Behind Reasoning Fluctuation

We investigate the underlying mechanism behind Pattern #1, where hallucinated reasoning traces
exhibit large fluctuations in reasoning depth. Building on our case study in Section [3.2.1] we
hypothesize this stems from a built-in self-verification mechanism. Key questions still include: Q1:



What triggers verification behavior in LRMs? Q2: Do excessively high reasoning scores reliably
signal overthinking? Q3: If Q2 holds, what factors lead to the emergence of such overthinking steps?

To explore these, we construct step triples (c1, ¢z, ¢3) from reasoning traces: (1) Stable triples with
minimal score variation from truthful traces; (2) Rising-1 triples from hallucinated traces with a
moderate score spike (Rgcore(¢3) < 4), potentially triggered by shallow pattern-matching in co; and
(3) Rising-2 triples with extreme score spikes (Rscore(c3) > 4), to probe overthinking behaviors.

Analysis. For Q1, we compare the logical consistency between ¢; and ¢, in Rising vs. Stable triples
using GPT-40 judgments. As shown in[Figure 4[a), stable triples show significantly higher consistency,
suggesting that verification is more likely to be triggered when earlier steps are inconsistent.

Regarding Q2, we assess the accuracy of ¢y and 3 in Rising-2 triples. [Figure 4(b) shows that while
co is often correct, cg introduces errors, confirming that excessively high reasoning scores reliably
signal overthinking. Prompts of Q1 and Q2 are shown in Appendix [

To investigate Q3, we firstly analyze the correlation between reasoning depth and perplexity. As
shown in[Figure 4{c), reasoning steps with higher Ry.ore generally exhibit lower perplexity, indicating
more certainty outputs. However, [Figure 4(d) reveals that in Rising-2 triples, c3 steps, despite higher
reasoning scores, have higher perplexity than those in stable triples, suggesting that overthinking may
produce internally unstable generations. We term this phenomenon spurious verification, where the
model performs misguided validation driven by outcome-based reward optimization. This insight
leads us to identify a new hallucination pattern: Pattern #3: Overthinking steps exhibit a positive
correlation between Rycore and perplexity. More details are provided in Appendix [E]

4 Methods

4.1 Reasoning Hallucination Detection

Building upon the patterns uncovered in our empirical study, we propose the Reasoning Hallucination
Detection algorithm (RHD). Our approach leverages the step-level Reasoning Score Rgcore to quan-
tify thinking depth throughout the reasoning trace, and incorporates three identified indicators of
hallucination: (1) Pattern #1: large fluctuations in reasoning scores during early steps, (2) Pattern #2:
incorrect backtracking to earlier shallow or overthinking steps in later stages, and (3) Pattern #3:
overthinking behavior where R and perplexity exhibit a positive correlation.

Given a question () and its reasoning trace C with step-level scores Rycore, We define the overall
Reasoning Hallucination Score as:

He = a1 - Avg(Rscore) + 2 - CV(C) 4 a3 - AttnScore(C) + ay - PCC(Rscore, PPL(C)), (5)

Overall Reasoning Depth Pattern #1 Pattern #2 Pattern #3

where oy, aa, ag, g > 0 are regression coefficients. Avg denotes the average reasoning score, CV
(Eq. B) measures fluctuations during early-steps, AttnScore (Eq.[) captures attention on earlier
hallucinated steps, and PCC refers to the Pearson correlation coefficient between reasoning scores
and step-level perplexity PPL(C), computed according to Eq.

4.2 Mitigating Reasoning Hallucinations via Step-Level Reasoning Score Shaping

Reasoning hallucinations often stem from two types of flawed steps: (1) shallow pattern-matching,
reflecting shortcut behaviors, and (2) overthinking, induced by excessive and misguided verification.
A core factor is outcome-based RL, which only rewards the final answer and neglects intermediate
steps [[7, 147, 145]], encouraging reward-hacking heuristics that may propagate through distillation [49].

To address this, we introduce an auxiliary process-level reward based on the reasoning score Ry.or.
from Section which measures the reasoning depth at each step. This encourages meaningful
reasoning while penalizing shallow or overthinking steps. We model the reasoning process as a
finite-horizon MDP (S, A, P, r,~), where s; € S is the reasoning state at step ¢, a; € A denotes the
next reasoning step, P is the transition probability and r; is the reward:

_— 0, t<T,
L Rﬁnah t="T.



Reward Shaping with Reasoning Score. We apply potential-based reward shaping [33]:

e =711 +7P(s141) — P(s¢), with @(sp) =0,
which preserves the optimal policy while redistributing credit: V'(s;) = V(st) — ®(s;), where
V(st) =Er [ZL Yty

st} is the value function of original reward and V"' (s;) is the shaped.

Potential Function Design. To avoid encouraging overthinking, we clip the reasoning score:

s {O& : Rscore(st)a Rscore(st) S T,

Rscore(st) = 07 otherwise7 CI)(St) = _Rscore(st)a

where o > 0 and 7 control the weighting strength and the threshold for overthinking, respectively.

To understand the generalization benefit of our proposed reasoning score—based shaping, we derive a
uniform convergence bound under augmented rewards:

Theorem 1 (Generalization Gap with Augmented Rewards). Let the policy class 11 be such that
for any 7 € 11, the augmented return R(w,£) = Zle V7 (€) is uniformly bounded in [0, Rppax]
Sor any trajectory & sampled from the environment. Each trajectory § = (s1,a1,71,...,St,ar,7T)
denotes a complete multi-step reasoning trace. Suppose that I1 has Rademacher complexity R, (IT)
based on n independent training samples {&;}7_,. Then, with probability at least 1 — 0, for any
7 € 11 the following holds:

_ _ log(1/6
Jtest(Tr) - Jtrain(ﬂ—) S 2—Rman( Rn(H) + Rmax #7
n
where Jyoq(m) = E¢[R(m,&)] is the expected test return and Jyqin(7) = %Z:L:l R(m,&;) is the
empirical training return.

The proof is given in Appendix[A] Intuitively, our reasoning score acts as a regularizer that encourages
logically consistent behaviors and effectively reduces the Rademacher complexity R,,(II), thereby
tightening the bound and improving generalization to unseen reasoning tasks.

Integrate into GRPO. To demonstrate compatibility with standard RL algorithms, we integrate
the reasoning score shaping framework into the Group Relative Policy Optimization (GRPO), a
scalable and widely used RL algorithm for reasoning model training [10} 41]], yielding GRPO-R. All
implementation and formulation details of GRPO-R are provided in Appendix B}

S Experiments

5.1 Reasoning Hallucination Detection

Data and Evaluation. We evaluate our RHD method on the ReTruthQA dataset spanning three
reasoning domains: Math, Science, and MultiHopQA (construction details in Appendix [C). We
adopt two evaluation settings: (1) Binary Detection, which assesses the model’s ability to detect
hallucinations in individual (Q, C') pairs using AUC and PCC; (2) Multi-Trace Ranking, which eval-
uates whether the model can rank truthful traces higher among multiple candidates (Q, {C1, ..., Cn}),
following Truthful QA-MC [28]]. We report MC1, MC2, and MC3 to measure hallucination ranking
accuracy (Evaluation details are in Appendix [H).

Models and Baselines. We conduct experiments on two open-source LRM:
DeepSeek-R1-Distill-Qwen-7B (R1-7B) and DeepSeek-R1-Distill-Qwen-14B (R1-14B)
[LO]. We compare our method against six categories of hallucination detection baselines:
(1) Ensemble based self-evaluation (e.g., ChainPoll [14]); (2) Uncertainty based methods (e.g.,
P(True) [211]); (3) Self-Awareness based approaches (e.g., UQAC [25]); (4) LLM-as-Critic (LCM)
models (e.g., GPT-40); (5) Process Reward Models (PRMs) with step-level supervision (e.g.,
Qwen2.5-Math-PRM); (6) Length-based scoring, which uses trace length as a proxy for hallucination
likelihood. Baselines and RHD implementation details are provided in Appendix [Hjand [I}

Main Results. As shown in Table [I,, RHD consistently outperforms most baselines across all
ReTruthQA domains, model backbones, and evaluation settings, demonstrating strong robustness.



Table 1: Performance comparisons between RHD and baselines for Reasoning Hallucination Detec-
tion. The boldface represents the best performance, and the underline represents the second-best.

LRMs Categories Methods ReTruthQA (MATH) ReTruthQA (Science) ReTruthQA (MultiHopQA)
AUC PCC ‘ MC1 MC2 MC3 AUC PCC ‘ MC1 MC2 MC3 AUC PCC ‘ MC1 MC2 MC3
ChainPoll 14! 0.6384  0.2603 0.3020 0.2952 0.3583 0.6468 0.2612 0.2700 0.2580 0.3098 0.6297 0.2233 0.4208 0.3019 0.3954
Ensemble  LMVLM (8 0.6364 0.3728 0.3204 0.2504 0.3402 0.5345 0.1890 0.2600 0.2100 0.3113 0.6331 0.2759 0.3649 0.3049 0.3984
SelfCheckGPT 31 0.7727 04598 0.4091 0.2784 04119 0.6819 0.2669 0.3793 0.3655 0.5320 0.6886 0.2955 0.2553 0.1915 0.3118
P(True) [21 0.7216 0.2681 0.5455 0.4068 0.5182 0.6207 0.2572 0.5172 0.4276 0.5533 0.5400 0.1684 0.4026 0.3030 0.4032
Uncertainty LN-Entropy [40 0.6896 0.3099 0.5000 0.3917 0.5096 0.5553 0.1129 0.3700 0.3200 0.4329 0.6123 0.2149 04156 0.3208 0.4461
PPL [30 0.7025 0.2856 0.5909 0.4205 0.5267 0.5434 0.1144 0.3793 0.3034 0.3990 0.6432 0.2249 0.5745 0.4532 0.5241
R1-7B Length Length-Score [37 0.5351 0.0922 0.4318 0.2568 0.3408 0.5510 0.0911 0.5793 0.5034 0.5737 0.5815 0.1496 0.5106 0.3887 0.4674
PRM Qwen2.5-PRM8O00K [39] 0.6601 0.2746 0.4773 0.3000 0.4572 0.6153 0.2203 0.4400 0.3605 0.4444 0.5694 0.1074 0.5065 0.4167 0.4990
Qwen2.5-PRM-7B [58 0.5563 0.1354 0.4318 0.2701 0.3913 0.5690 0.1275 0.2200 0.1425 0.2382 0.5422 0.0866 0.4026 0.2952 0.3947
LCM GPT4-o [1 0.7513  0.3794 0.4091 0.2705 0.4131 0.7045 0.2026 0.2500 0.2965 0.3200 0.7123 0.2204 0.4043 0.2830 0.3704
Qwen2.5-32B [54 0.6942  0.2082 0.2500 0.1955 0.2935 0.6525 0.2635 0.3103 0.2897 0.4458 0.6424 0.2056 0.4400 0.3300 0.4187
Self-Aware UQAC [23 0.6671 0.2902 0.5833 0.3715 0.5298 0.6303 0.2369 0.4700 0.3925 0.4885 0.6736 0.2583 0.6623 0.5335 0.6425
EigenScore [3 0.7539 0.3868 0.4583 0.3250 0.3007 0.6488 0.2601 0.4260 0.3777 0.3815 0.6696 0.2858 0.5195 0.4113 0.3885
Ours RHD 0.7978 0.4852 0.6591 0.4765 0.5699 0.6528 0.2662 0.6207 0.5448 0.6009 0.7361 0.3863 0.7660 0.6255 0.7103
ChainPoll {14! 0.5858 0.1658 0.2704 0.2535 0.3394 0.6640 0.3134 0.3261 0.1775 0.2188 0.5846 0.1607 0.2319 0.1972 0.2638
Ensemble  LMVLM [§ 0.6620 0.3835 0.2563 0.2507 0.3133 0.5435 0.2132 0.3333 0.2300 0.3421 0.6250 0.2914 0.2042 0.1885 0.2506
SelfCheckGPT 31 0.5714 02774 0.2462 0.2167 0.2930 0.5109 0.1048 0.3287 0.2566 0.3683 0.5208 0.1268 0.3167 0.3083 0.0320
P(True) [21 0.6460 0.1443 02615 0.2374 0.4570 0.6645 0.2582 0.4828 0.3460 0.4885 0.6090 0.2057 0.3147 0.2508 0.4107
Uncertainty LN-Entropy [40. 0.6423  0.2242 0.3479 0.2939 0.4754 0.6248 0.2134 0.5862 0.4147 0.5264 0.5337 0.0494 0.3125 0.2340 0.3678
PPL [30 0.6526  0.2330 0.3846 0.2744 0.4444 0.6219 0.1182 0.6000 0.4215 0.5162 0.5337 0.1701 0.3058 0.2521 0.3630
R1-14B Length Length-Score [57 0.5184 0.0810 0.2817 0.2329 0.3400 0.5814 0.1487 0.5345 0.3848 0.4211 0.5971 0.1843 0.4711 0.3434 0.4284
PRM Qwen2.5-PRM8O00K [59] 0.5708 0.1285 0.3077 0.2697 0.4028 0.7267 0.4100 0.5862 0.3819 0.5132 0.6579 0.2451 0.4476 0.3366 0.4702
Qwen2.5-PRM-7B [58 0.5416 0.1249 0.3538 0.2918 0.4429 0.6983 0.3633 0.6133 0.4556 0.5449 0.6674 0.2758 0.5045 0.3642 0.4853
LCM GPT4-0 [1 0.6604 0.2458 0.2154 0.1785 0.3073 0.6265 0.1344 0.3333 0.1628 0.1933 0.6328 0.2356 0.2517 0.1878 0.2683
Qwen2.5-32B (54! 0.6650 0.3055 0.2676 0.2451 0.3632 0.6974 0.2381 0.3833 0.2150 0.3428 0.7071 0.2716 0.3472 0.2517 0.4177
Self-Aware UQAC 23 0.6374 0.2303 0.3444 0.2836 0.5104 0.7157 0.3732 0.6207 0.4170 0.5050 0.6952 0.3397 0.5417 0.4222 0.4988
EigenScore [3 0.6706 0.3496 0.3282 0.2282 0.3388 0.6146 0.2228 0.4469 0.3508 0.3337 0.6719 0.3056 0.3694 0.3542 0.3750
Ours RHD 0.7292 03476  0.3692 0.3005 0.4644 0.7649 0.4506 0.6667 0.4714 0.5671 0.7255 0.3742 0.5785 0.4421 0.5154

Table 2: Performance comparisons between GRPO-R and baselines. Bold indicates the best result.

Models DeepSeek-R1-1.5B Qwen2.5-1.5B-Instruct

MATH500 AIME(2024) GPQA(diamond) GPQA(main) GPQA(extended) MATHS500 AIME(2024) GPQA(diamond) GPQA(main) GPQA(extended)
Base 0.772 0.333 0.354 0.333 0.339 0.466 0.100 0.202 0.197 0.211
+GRPO 0.770 0.333 0.359 0.335 0.359 0.480 0.033 0.247 0.214 0.266
+GRPO-R 0.788 0.367 0.414 0.371 0.357 0.490 0.133 0.247 0.243 0.275

Ensemble and LCM methods perform well in binary detection but struggle in multi-trace ranking,
indicating difficulty in fine-grained comparison. Uncertainty-based methods are sensitive to output
length, while Process Reward Models often suffer from limited generalization. In contrast, RHD
directly leverages reasoning mechanisms for more accurate detection. Self-awareness methods
perform competitively but lack explicit reasoning analysis. Interestingly, the Length-based baseline
performs well in multi-trace settings—supporting the intuition that overly long traces are more
error-prone, but underperforms in binary detection, limiting its generality. These findings highlight
the effectiveness of RHD modeling internal reasoning patterns for hallucination detection. Additional
ablations and sensitivity studies are provided in Appendix [J]and [K]

5.2 Reasoning Hallucination Mitigation

Experimental Setting. To assess the effectiveness of GRPO-R in reducing reasoning hallucina-
tions, we fine-tune Qwen2.5-1.5B-Instruct and DeepSeek-R1-1.5B on 2,000 examples from
OpenR1-Math-220K [43] using either GRPO or our proposed GRPO-R. We evaluate the accu-
racy [20] on two in-domain math benchmarks—MATH500 [27] and AIME 2024 [2]—and an out-of-
distribution science benchmark—GPQA [39]]. Implementation details are in Appendix [C}

Main Results. As shown in Table[2] GRPO-R outperforms GRPO across most of the tasks, indicating
that shaping reasoning steps via the reasoning score enhances both factual accuracy and reasoning
reliability. Gains on GPQA further suggest improved generalization beyond training distribution.
Additional sensitivity analyses are in Appendix [M| Hallucination mitigation experiments in data
distillation in Appendix [N]further validate the effectiveness of our proposed RHD model.



6 Conclusion and Limitation

We tackle the challenge of Reasoning Hallucination in LRMs, where models produce logically
coherent but factually incorrect reasoning traces. To address this, we propose the Reasoning Score,
a step-level metric derived from the mechanistic interpretability of reasoning, which effectively
quantifies reasoning depth. Based on this score, we identify three key hallucination patterns: early-
stage depth fluctuations, incorrect backtracking and spurious verification-induced overthinking—and
develop the RHD framework for hallucination detection. Building on these insights, we introduce
GRPO-R, a reinforcement learning method that integrates step-level reasoning rewards via potential-
based shaping, improving both accuracy and robustness across reasoning benchmarks.

Limitation. RHD relies on internal model activations and is thus limited to open-source LRMs with
accessible activations. Its application to black-box models remains an open challenge. Nonetheless,
the discovered patterns and metrics could inspire proxy-based extensions. Additionally, experiments
are conducted on moderate-scale models and datasets due to computational constraints; future work
includes scaling up to broader domains and model families.

References

[1] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman, D. Almeida,
J. Altenschmidt, S. Altman, S. Anadkat, et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

[2] AI-MO. Ai-mo/aimo-validation-aime. https://huggingface.co/datasets/AI-M0/
aimo-validation-aime, 2024. Apache 2.0 License.

[3] AI-MO. Ai-mo/aimo-validation-amc. https://huggingface.co/datasets/AI-MO/
aimo-validation-amc, 2024. Apache 2.0 License.

[4] G. Bruckmaier, S. Krauss, K. Binder, S. Hilbert, and M. Brunner. Tversky and kahneman’s
cognitive illusions: who can solve them, and why? Frontiers in psychology, 12:584689, 2021.

[5] C. Chen, K. Liu, Z. Chen, Y. Gu, Y. Wu, M. Tao, Z. Fu, and J. Ye. Inside: Llms’ internal
states retain the power of hallucination detection. In The Twelfth International Conference on
Learning Representations, 2024.

[6] S. Chen, J. Zhang, T. Zhu, W. Liu, S. Gao, M. Xiong, M. Li, and J. He. Bring reason
to vision: Understanding perception and reasoning through model merging. arXiv preprint
arXiv:2505.05464, 2025.

[7] Y. Chen, J. Benton, A. Radhakrishnan, J. Uesato, C. Denison, J. Schulman, A. Somani, P. Hase,
M. Wagner, F. Roger, et al. Reasoning models don’t always say what they think. arXiv preprint
arXiv:2505.05410, 2025.

[8] R. Cohen, M. Hamri, M. Geva, and A. Globerson. Lm vs Im: Detecting factual errors via cross
examination. arXiv preprint arXiv:2305.13281, 2023.

[9] N. Elhage, N. Nanda, C. Olsson, T. Henighan, N. Joseph, B. Mann, A. Askell, Y. Bai, A. Chen,
T. Conerly, N. DasSarma, D. Drain, D. Ganguli, Z. Hatfield-Dodds, D. Hernandez, A. Jones,
J. Kernion, L. Lovitt, K. Ndousse, D. Amodei, T. Brown, J. Clark, J. Kaplan, S. McCandlish,
and C. Olah. A mathematical framework for transformer circuits. Transformer Circuits Thread,
2021. URL https://transformer-circuits.pub/2021/framework/index.html,

[10] D.-A. et al. Deepseek-rl: Incentivizing reasoning capability in llms via reinforcement learning.
arXiv preprint arXiv:2501.12948, 2025. URL https://arxiv.org/abs/2501.12948,

[11] B. Everitt. The cambridge dictionary of statistics. In The Cambridge dictionary of statistics,
pages 360-360. 1998.

[12] J. Ferrando and E. Voita. Information flow routes: Automatically interpreting language models
at scale. arXiv preprint arXiv:2403.00824, 2024.

10


https://huggingface.co/datasets/AI-MO/aimo-validation-aime
https://huggingface.co/datasets/AI-MO/aimo-validation-aime
https://huggingface.co/datasets/AI-MO/aimo-validation-amc
https://huggingface.co/datasets/AI-MO/aimo-validation-amc
https://transformer-circuits.pub/2021/framework/index.html
https://arxiv.org/abs/2501.12948

[13] J. Ferrando, G. Sarti, A. Bisazza, and M. R. Costa-jussa. A primer on the inner workings of
transformer-based language models. arXiv preprint arXiv:2405.00208, 2024.

[14] R. Friel and A. Sanyal. Chainpoll: A high efficacy method for 1lm hallucination detection.
arXiv preprint arXiv:2310.18344, 2023.

[15] M. Geva, R. Schuster, J. Berant, and O. Levy. Transformer feed-forward layers are key-value
memories. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, pages 54845495, 2021.

[16] M. Hanna, O. Liu, and A. Variengien. How does gpt-2 compute greater-than?: Interpreting math-
ematical abilities in a pre-trained language model. Advances in Neural Information Processing
Systems, 36, 2024.

[17] S. Hao, S. Sukhbaatar, D. Su, X. Li, Z. Hu, J. Weston, and Y. Tian. Training large language
models to reason in a continuous latent space. arXiv preprint arXiv:2412.06769, 2024.

[18] Y. He, S. Li, J. Liu, W. Wang, X. Bu, G. Zhang, Z. Peng, Z. Zhang, Z. Zheng, W. Su, and
B. Zheng. Can large language models detect errors in long chain-of-thought reasoning?, 2025.
URL https://arxiv.org/abs/2502.19361|

[19] X. Ho, A.-K. D. Nguyen, S. Sugawara, and A. Aizawa. Constructing a multi-hop qa dataset for
comprehensive evaluation of reasoning steps. arXiv preprint arXiv:2011.01060, 2020.

[20] Hugging Face. Math-verify: A rule-based mathematical answer verification library, 2025. URL
https://github.com/huggingface/Math-Verify,

[21] S. Kadavath, T. Conerly, A. Askell, T. Henighan, D. Drain, E. Perez, N. Schiefer, Z. Hatfield-
Dodds, N. DasSarma, E. Tran-Johnson, et al. Language models (mostly) know what they know.
arXiv preprint arXiv:2207.05221, 2022.

[22] D. Kahneman. Thinking, fast and slow. macmillan, 2011.

[23] D. Li, S. Cao, T. Griggs, S. Liu, X. Mo, E. Tang, S. Hegde, K. Hakhamaneshi, S. G. Patil,
M. Zaharia, et al. LIms can easily learn to reason from demonstrations structure, not content, is
what matters! arXiv preprint arXiv:2502.07374, 2025.

[24] K. Li, O. Patel, F. Viégas, H. Pfister, and M. Wattenberg. Inference-time intervention: Eliciting
truthful answers from a language model. Advances in Neural Information Processing Systems,
36, 2024.

[25] Y. Li, R. Qiang, L. Moukheiber, and C. Zhang. Language model uncertainty quantification with
attention chain, 2025. URL https://arxiv.org/abs/2503.19168.

[26] Z.Li, G.Jiang, H. Xie, L. Song, D. Lian, and Y. Wei. Understanding and patching compositional
reasoning in llms. arXiv preprint arXiv:2402.14328, 2024.

[27] H. Lightman, V. Kosaraju, Y. Burda, H. Edwards, B. Baker, T. Lee, J. Leike, J. Schulman,
L. Sutskever, and K. Cobbe. Let’s verify step by step. In The Twelfth International Conference
on Learning Representations, 2023.

[28] S. Lin, J. Hilton, and O. Evans. Truthfulga: Measuring how models mimic human falsehoods.
arXiv preprint arXiv:2109.07958, 2021.

[29] L. Luo, Y. Liu, R. Liu, S. Phatale, M. Guo, H. Lara, Y. Li, L. Shu, Y. Zhu, L. Meng, et al.
Improve mathematical reasoning in language models by automated process supervision. arXiv
preprint arXiv:2406.06592, 2024.

[30] A. Malinin and M. Gales. Uncertainty estimation in autoregressive structured prediction. arXiv
preprint arXiv:2002.07650, 2020.

[31] P. Manakul, A. Liusie, and M. Gales. Selfcheckgpt: Zero-resource black-box hallucination
detection for generative large language models. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing, pages 9004-9017, 2023.

11


https://arxiv.org/abs/2502.19361
https://github.com/huggingface/Math-Verify
https://arxiv.org/abs/2503.19168

[32] I. Mirzadeh, K. Alizadeh, H. Shahrokhi, O. Tuzel, S. Bengio, and M. Farajtabar. Gsm-symbolic:
Understanding the limitations of mathematical reasoning in large language models. arXiv
preprint arXiv:2410.05229, 2024.

[33] A.Y.Ng, D. Harada, and S. Russell. Policy invariance under reward transformations: Theory
and application to reward shaping. In Icml, volume 99, pages 278-287. Citeseer, 1999.

[34] Y. Nikankin, A. Reusch, A. Mueller, and Y. Belinkov. Arithmetic without algorithms: Language
models solve math with a bag of heuristics. In The Thirteenth International Conference on
Learning Representations, 2025. URL https://openreview.net/forum?id=09YTt26r2P.

[35] nostalgebraist. Interpreting GPT: the logit lens. Al Alignment Forum,
2020. URL  https://www.alignmentforum.org/posts/AcKRB8wDpdaN6v6ru/
interpreting-gpt-the-logit-lens,

[36] OpenAl. Openai 03 and o4-mini system card, April 2025. URL https://openai.com/
index/03-04-mini-system-card/,

[37] A. Prasad, S. Saha, X. Zhou, and M. Bansal. Receval: Evaluating reasoning chains via
correctness and informativeness. arXiv preprint arXiv:2304.10703, 2023.

[38] O. Press, M. Zhang, S. Min, L. Schmidt, N. A. Smith, and M. Lewis. Measuring and narrowing
the compositionality gap in language models. arXiv preprint arXiv:2210.03350, 2022.

[39] D. Rein, B. L. Hou, A. C. Stickland, J. Petty, R. Y. Pang, J. Dirani, J. Michael, and S. R.
Bowman. Gpqa: A graduate-level google-proof q&a benchmark. In First Conference on
Language Modeling, 2024.

[40] J. Ren, J. Luo, Y. Zhao, K. Krishna, M. Saleh, B. Lakshminarayanan, and P. J. Liu. Out-of-
distribution detection and selective generation for conditional language models. In The Eleventh
International Conference on Learning Representations, 2022.

[41] Z. Shao, P. Wang, Q. Zhu, R. Xu, J. Song, X. Bi, H. Zhang, M. Zhang, Y. Li, Y. Wu, et al.
Deepseekmath: Pushing the limits of mathematical reasoning in open language models. arXiv
preprint arXiv:2402.03300, 2024.

[42] A. Stolfo, Y. Belinkov, and M. Sachan. A mechanistic interpretation of arithmetic reasoning
in language models using causal mediation analysis. In The 2023 Conference on Empirical
Methods in Natural Language Processing, 2023. URL https://openreview.net/forum?
1d=aB3Hwh4UzP.

[43] O.-R. Team. Openrl-math-220k: A dataset for mathematical reasoning, 2024. URL https:
//huggingface.co/datasets/open-r1/0penR1-Math-220k,

[44] K. Tentori, N. Bonini, and D. Osherson. The conjunction fallacy: A misunderstanding about
conjunction? Cognitive Science, 28(3):467-477, 2004.

[45] Transluce Research. Investigating truthfulness in a pre-release 03 model, 2024. URL https:
//transluce.org/investigating-o3-truthfulness,

[46] H. Trivedi, N. Balasubramanian, T. Khot, and A. Sabharwal. Musique: Multihop ques-
tions via single-hop question composition. Transactions of the Association for Computational
Linguistics, 10:539-554, 2022.

[47] K. Valmeekam, K. Stechly, and S. Kambhampati. Llms still can’t plan; can Irms? a preliminary
evaluation of openai’s ol on planbench. In NeurIPS 2024 Workshop on Open-World Agents.

[48] Vectara Research. Deepseek-rl hallucinates more than deepseek-v3, 2025. URL https:
//www.vectara.com/blog/deepseek-rl-hallucinates-more-than-deepseek-v3.

[49] X. Wang, S. Tan, M. Jin, W. Y. Wang, R. Panda, and Y. Shen. Do larger language models imply
better reasoning? a pretraining scaling law for reasoning. arXiv preprint arXiv:2504.03635,
2025.

12


https://openreview.net/forum?id=O9YTt26r2P
https://www.alignmentforum.org/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://www.alignmentforum.org/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://openai.com/index/o3-o4-mini-system-card/
https://openai.com/index/o3-o4-mini-system-card/
https://openreview.net/forum?id=aB3Hwh4UzP
https://openreview.net/forum?id=aB3Hwh4UzP
https://huggingface.co/datasets/open-r1/OpenR1-Math-220k
https://huggingface.co/datasets/open-r1/OpenR1-Math-220k
https://transluce.org/investigating-o3-truthfulness
https://transluce.org/investigating-o3-truthfulness
https://www.vectara.com/blog/deepseek-r1-hallucinates-more-than-deepseek-v3
https://www.vectara.com/blog/deepseek-r1-hallucinates-more-than-deepseek-v3

[50] P. P. Weis and W. Kunde. Switching between different cognitive strategies induces switch costs
as evidenced by switches between manual and mental object rotation. Scientific Reports, 14(1):
6217, 2024.

[51] W. Wu, Y. Wang, G. Xiao, H. Peng, and Y. Fu. Retrieval head mechanistically explains
long-context factuality. arXiv preprint arXiv:2404.15574, 2024.

[52] X. Xu, S. Diao, C. Yang, and Y. Wang. Can we verify step by step for incorrect answer
detection? arXiv preprint arXiv:2402.10528, 2024.

[53] K. Yan, Y. Xu, Z. Du, X. Yao, Z. Wang, X. Guo, and J. Chen. Recitation over reasoning: How
cutting-edge language models can fail on elementary school-level reasoning problems? arXiv
preprint arXiv:2504.00509, 2025.

[54] A. Yang, B. Yang, B. Zhang, B. Hui, B. Zheng, B. Yu, C. Li, D. Liu, F. Huang, H. Wei, et al.
Qwen2. 5 technical report. arXiv preprint arXiv:2412.15115, 2024.

[55] Z. Yang, P. Qi, S. Zhang, Y. Bengio, W. W. Cohen, R. Salakhutdinov, and C. D. Manning.
Hotpotqa: A dataset for diverse, explainable multi-hop question answering. arXiv preprint
arXiv:1809.09600, 2018.

[56] Q. Yu, J. Merullo, and E. Pavlick. Characterizing mechanisms for factual recall in language
models. In The 2023 Conference on Empirical Methods in Natural Language Processing, 2023.

[57] Z. Zeng, Q. Cheng, Z. Yin, Y. Zhou, and X. Qiu. Revisiting the test-time scaling of ol-like
models: Do they truly possess test-time scaling capabilities? arXiv preprint arXiv:2502.12215,
2025.

[58] Z.Zhang, C. Zheng, Y. Wu, B. Zhang, R. Lin, B. Yu, D. Liu, J. Zhou, and J. Lin. The lessons of
developing process reward models in mathematical reasoning. arXiv preprint arXiv:2501.07301,
2025.

[59] C. Zheng, Z. Zhang, B. Zhang, R. Lin, K. Lu, B. Yu, D. Liu, J. Zhou, and J. Lin. Processbench:
Identifying process errors in mathematical reasoning. arXiv preprint arXiv:2412.06559, 2024.

[60] C.Zheng, Z. Zhang, B. Zhang, R. Lin, K. Lu, B. Yu, D. Liu, J. Zhou, and J. Lin. Processbench:
Identifying process errors in mathematical reasoning, 2024. URL https://arxiv.org/abs/
2412.06559.

[61] H. Zhou, Z. Feng, Z. Zhu, J. Qian, and K. Mao. Unibias: Unveiling and mitigating 1lm bias
through internal attention and ffn manipulation. arXiv preprint arXiv:2405.20612, 2024.

A Proof of Generalization Gap with Augmented Rewards

Proof of Theorem([l] For any policy 7 € II, define the augmented return

T
R(m &) =) 7"7'7(6).
t=1
Assume that 7 () € [0, Tax] for each ¢, so that
R(m,€) € [0, Riax)-

Define the expected return:
Jtest(ﬂ-) = E&ND [R(’]ra 5)] )

and the empirical return:

1 n
Jtrain(ﬂ) = E Z .R(TK’7 fz)
=1
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We aim to bound the expected generalization gap between the test return and empirical return for
policies in class II via Rademacher complexity. Let the function class be defined as

F={fx(&) = R(m, &) | w € 1T},

where R(7, &) is the total return over trajectory £ under policy 7 using the augmented reward ;. Our
goal is to bound:

n

Bl -~ 3 f&)].

sup |Jtesl(77) - Jtrain(ﬂ-” = sup

TEll fer n i=1
Let &, ...,&, be the training samples drawn i.i.d. from the environment distribution D, and
&L, .., & be another independent copy drawn from the same distribution. By using an independent

ghost sample set and the triangle inequality, we have:

1 n 1 n
sup (Esw[f(f)] -=> f@)] =Ee1q¢) L%lelg (n ; F(&) - f(&)ﬂ

i=1

Efey

1 n
<Efeqey |sup — D (f(&) — f(&))] -
{&}.{¢} fern ;
To simplify the expression, we now introduce independent Rademacher variables o1, ...,0, €

{—1,+1}, where each o; takes value +1 or —1 with equal probability. Since f(&}) — f(&) is
symmetric around zero due to &; ~ £/, we can write:

n

1 N
Egey e [‘iggnZ(f(Ei) f(&))

i=1

= Efe), 1) {01) [SHP Zaz €) 62))] -
We now apply the triangle inequality again:

Sur)zoz &) — (&) <?UPZUJ +SUPZ —ai)f

feri 4

Since —o7; is still a Rademacher variable and &; and &/ have the same distribution, the two expectations
are equal. Thus, we obtain:

Ege.qen ;‘elg % Z (f(&) — f(fi))] < 2E(¢ {os} l;lelg % Z%f(fi)]
] =1

= 2R, (F),
where R, (F) is the empirical Rademacher complexity of F.
Assume every return is bounded, 0 < £ (&) < Rumax, and that f,(€) is linear in the augmented

per—step rewards 7 (&):
T
= Z’Yt_lft@)
t=1

Introduce the normalised return f (€) := f,(€) /Ruax € [0,1] and let F :={fr | m € II}. Because
Rademacher complexity is positively homogeneous in its function class,

Ra(F) = Ro(Rmax F) = Ruax Ru(F).
We measure the complexity of the policy class precisely through these normalised returns and set

Ry (1) := Ry (F).

Justification. Even if the mapping 7 +— f is not injective, Rademacher complexity is monotone
with respect to set inclusion: enlarging the function class can only increase R,,. Hence analysing the
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(possibly larger) class F yields a conservative upper bound on the true policy complexity—exactly
what we need for a valid generalisation bound.

Combining the two displays yields
Rn (F) S Rmax RVL(H)

(the identity can be written as “<” because any alternative normalisation would only shrink the
right-hand side).

Substituting the above bound into the symmetrisation result, we obtain

E {suﬁ|<]test (7) = Jorain (77')” < 2anax R, (11),
TE

We now move from the expected generalization gap to a high-probability bound that holds uniformly
over all policies 7 € II.

Let X; = R(m, &) = Zthl 71717, (€;) be the augmented return of policy 7 on the i-th training
trajectory. Then Jiin(7) = % Yo X; and Jieg(7) = E¢up[X;]. By assumption, X; € [0, Rax)-

Applying Hoeffding’s inequality for bounded i.i.d. variables, we have for any fixed 7 € II:

2ne?
m(kxm—kmwnz@s2wpﬂ-2>
(Rmax)
Solving for ¢ yields that with probability at least 1 — 4,
_ log(1/6
(7)) < R L) 16)

Define the worst-case generalization gap over the policy class:
A(S) = Su}l')l (Jlest<7r) - Jtrain(ﬂ')) ,
e

where S = {&1,...,&,} is the training set.

(i) Expected bound from above: Using symmetrization and Rademacher complexity arguments, we
already established: ~
Es [A(S)] < 2Rmaan(H) : (6)

(ii) High-probability deviation bound via McDiarmid’s inequality: Let us show that A(S) concentrates
around its expectation. Consider replacing any single sample &; in S by an independent copy &..
Because each return X; = R(m, ;) is bounded in [0, Ry,ax] and each contributes % to the empirical
mean, the influence of changing ¢; is bounded by:

Rmax

—

‘A(S) - A(S@)} <

Hence, A(S) is Ryax/n-Lipschitz in each of its n arguments.
Applying McDiarmid’s inequality:
2¢2 2ne?
Pr@MS)—%ﬂA@$125>gexp(—,l)=ump<—).
Zi:l (Rmax/n)2 (Rmax>2
Solving for € again yields that with probability at least 1 — &,

A(8) < EIAS)] + Ruan] 5. g

(iii) Final generalization gap: Combining Equation[6|and[7] with probability at least 1 — § over the
random draw of the training set S, we obtain:

_ _ log(1/d
Sup [Jiest () = Jirain (7)] < 2RmaxRon (I1) + Rimax %.
mell "
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Equivalently, for all 7 € II,

_ _ log(1/0
Jtest(ﬂ-) - Jlrain(’/T) S 2Rmax Rn (H) + Rmax %’I’L/) (8)

O

Conclusion. Equation [8| provides a uniform generalization gap for any policy = € II, showing
that the expected test-time performance is lower bounded by the training performance minus a
complexity-dependent regularization term. According to this theorem, as the augmented reward
Rscore(st) is well-aligned with genuine logical reasoning, it acts as a regularizer that effectively
reduces the Rademacher complexity R, (II), thereby tightening the bound. This theoretical result
highlights that our proposed process supervision framework not only improves credit assignment
during training but also enhances generalization to unseen reasoning tasks.

B Detailed Implementation of GRPO-R

Our proposed process-level reasoning score supervision is compatible with any token-level RL
algorithm. In this work, we instantiate it within Group Relative Policy Optimization (GRPO),
yielding GRPO-R. GRPO is a scalable and widely used RL framework for reasoning model training,
which promotes the generation of high-quality reasoning trajectories by ranking GG candidate outputs
based on their relative returns, without relying on explicit value estimation [[10, 41].

Given a prompt g and G outputs {0;}$ ;, each output o; corresponds to a sequence of reasoning
states {s;,1,- .., 8 i } produced over K reasoning steps. In the original GRPO setup, only the final
step receives a nonzero reward:

r?tep(j) — ,},.71;:1113.17 ] = K:
! 0, j< K,

where rfinal denotes the scalar reward assigned to the final outcome.

We replace this sparse signal with our shaped step-level reward using potential-based reward shaping:

fjtep(j) = F:tep(j) - 'YRscore(si,j+1) + Rscore(sid)v
where ﬁscore(s) = min(Rscore(s), ’7') and we set v = 1. These shaped rewards are collected into the
set R/, standardized as:
_st .
fzftep (]) _ r; r (]) - mean(R’)7
! std(R/)

and used to compute token-level advantages:

A= ) 0.

Jistep(d)=t
Finally, we optimize the policy using the enhanced GRPO objective, termed GRPO-R:
G oil

. 770(0i,t
JerpoR (0) = Eqnp(Q), {0} ~may, (Ola) [Z > min (

i—1 t—1 TOo1a (Oi-,t ‘ q, Oi,<t)

q, 0i,<t) 2
ity

76(0it | 4, 0i,<t)
T 0o1a (Oi,t ‘ q, Oi,<t)

clip( ,1—€,14 6) Ai,t)

— B-Dkr [7T9|7Tref]‘|~ 9
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Table 3: Statistics of ReTruthQA dataset across domains.

Dataset | #Samples #Traces Avg Truthful Traces ~Avg Hallucination Traces
MATH 57 417 3.35 3.96
Science 88 541 3.05 3.10
MultiHopQA 184 1186 2.74 3.70

C ReTruthQA Construction

C.1 Data Sources and Models

Due to the lack of dedicated datasets for evaluating reasoning hallucination detection methods,
especially for strong open-source models such as DeepSeek-R1-7B and R1-14B, we construct a new
benchmark tailored for hallucination detection in multi-step reasoning tasks. We select three major
categories of reasoning tasks: Math, Science, and MultiHopQA.

For Math, we construct the dataset using benchmark datasets commonly used for evaluating mathe-
matical reasoning capabilities, including MATH500 [27], AMC 2023 [3], and AIME 2024 [2].

For Science, we adopt GPQA [39]], a PhD-level science multiple-choice QA dataset with questions
authored by domain experts in physics, chemistry, and biology.

For MultiHopQA, we randomly sample 1000 questions from four multi-hop QA datasets:
HotpotQA [55], 2WikiMultihopQA [19], MuSiQue [46], and Bamboogle [38].

For each question, we generate 20 responses using DeepSeek-R1-Distill-Qwen-7B and
DeepSeek-R1-Distill-Qwen-14B via random sampling. The prompting format is as follows:

Math:

Please answer the following math question.

You should provide your final answer in the format \boxed{YOUR_ANSWER}.
Separate your following steps using \n\n.

Question:\n\n

\ J

Science:

e Y

Please answer the following multiple-choice question.

You should provide your final choice in the format \boxed{YOUR_CHOICE}.
Separate your following steps using \n\n.

Question:\n\n

\. J

MultiHopQA:

Please answer the following question.

You should provide your final answer in the format \boxed{YOUR_ANSWER}.
Separate your following steps using \n\n.

Question:\n\n

C.2 Reasoning Step Segmentation Strategy

We adopt a two-stage segmentation procedure. First, we split the reasoning trace based on cognitive
behavior tokens such as </think>, Wait, But, However, Hmm, Alternatively, which typically
mark transitions in reasoning patterns. Then, we apply a finer-grained split based on formatting: as
specified in the prompt, the LRM is instructed to separate reasoning steps using \n\n, which we use
as a delimiter. This hybrid approach ensures both rule-based and model-aligned step boundaries.
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Question 1/ 48 - Response 2 / 2 SetTimer | Countdown: 355

Question

Please answer the following math question. You should provide your final answer in the format
\boxed{YOUR_ANSWERY}.

and separate your following steps using \n\n.

Question:

Let 0(0,0), A(3,0), and B(0, *42) be points in the coordinate plane. Let F be the family of segments PQ
of unit length lying in the first quadrant with P on the z—axis and Q on the y~axis. There is a unique point C
on AB, distinct from A and B, that does not belong to any segment from F other than AB. Then OC? = £,
where p and g are relatively prime positive integers. Find p + g.

Response 2 / 2

< | begin__of_sentence | >< | User | >Please answer the following math question. You should
provide your final answer in the format \boxed{YOUR_ANSWER}.

and separate your following steps using \n\n.

Question:

Let 0(0,0), A(%,0), and B(0, 42) be points in the coordinate plane. Let  be the family of
segments PQ of unit length lying in the first quadrant with P on the z-axis and Q on the y-axis.
There is a unique point C on AB, distinct from A and B, that does not belong to any segment
from F other than AB. Then OC? = 2, where p and g are relatively prime positive integers. Find
P+ g.< | Assistant | >

Okay, so | have this geometry problem here. Let me try to parse it step by step.

We have three points: O at (0,0), A at (1/2, 0), and B at (0, sqrt(3)/2). So O is the origin, A is on
the x-axis, and B is on the y-axis. The triangle OAB is formed by connecting these points.

Then there's this family of segments F, which consists of all segments PQ of unit length Iying in
the first quadrant. Each segment has P on the x-axis and Q on the y-axis. So, for any point P on
the x-axis and point Q on the y-axis, if the distance between P and Q is 1, then PQ is a member
of F.

Now, the question is about a point C on segment AB, distinct from A and B, such that C does not
lie on any other segment from F except for AB itself. Then we need to find OC?, which is the
square of the distance from the origin to point C, and express it as a fraction p/q where p and q
are coprime, then find p + q.

Alright, let me try to visualize this. First, | should probably figure out the equation of segment AB.
Since A is (1/2, 0) and B s (0, sqrt(3)/2), we can find the equation of the line AB.

The slope of AB would be (sart(3)/2 - 0)/(0 - 1/2) = (sart(3)/2) / (-1/2) = ~sqrt(3). So the slope is
—sart(3). Using point-slope form, starting from A: y - 0 = ~sqrt(3)(x ~ 1/2). So, y = -sart(3)x +
sqrt(3)/2. That's the equation of AB.

So any point C on AB can be parametrized. Let's let t be a parameter between O and 1, so when

=3
B o

Figure 5: Interface Display of the Data Annotation Platform.

C.3 Annotation Process

1. Automatic hallucination trace identification. To ensure precision and avoid noise caused
by random model errors, a reasoning trace is labeled as hallucinated only if its rollout becomes
incorrect with a failure rate exceeding 90% from a specific reasoning step onward, measured over 16
rollouts. We adopt a binary search—style trace slicing procedure inspired by OmegaProcess [29] to
efficiently identify hallucination points. This strategy ensures stability and causality in hallucination
step detection, avoiding incidental errors due to sampling randomness. For the Science domain,
which mainly consists of multiple-choice questions and may contain correct guesses, we additionally

perform multiple random rollouts for traces with correct answers to ensure a success rate above 90%
before labeling them as truthful.

2. Filtering non-hallucination failures. We use GPT-40-Mini to exclude samples where the incorrect
final answer is due to clearly flawed or illogical reasoning, which does not satisfy our definition of

hallucination (i.e., coherent and persuasive chains with underlying logical or factual errors). The
filtering prompt is:

Please evaluate if the following reasoning for the given question is logically sound and leads
to a correct solution.

Only respond with a score between 0 and 1, where:

0: completely incorrect or illogical reasoning

1: perfectly sound and correct reasoning

Question: {question}
Reasoning: {reasoning}
Score (0-1):

3. Human validation. We further perform human annotation to verify borderline cases. Two
annotators with at least undergraduate-level backgrounds in computer science independently assess
whether the reasoning trace is valid. We developed a web-based annotation platform with a timer
to standardize reading time. Based on average reading speeds (200-300 wpm for academic
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text), and trace lengths (typically 2000-3000 words), we set the following maximum judgment times:
(1) MultiHopQA: 3 minutes (2) Math: 5 minutes (3) Science: 8 minutes

Annotators must determine within the allotted time whether a reasoning trace contains hallucinations.
If they fail to identify an error in time, the trace is labeled as correct. Cases judged correct by
humans but verified to be incorrect are labeled as hallucinations, ensuring that the resulting dataset
captures only traces that genuinely mislead users, which is aligned with the definition of reasoning
hallucination.

Final dataset statistics are shown in For the Multi-Trace Ranking Setting, we directly use
the collected hallucinated and truthful responses. For the Binary Detection Setting, which focuses
on single-response accuracy, we retain one hallucinated and one truthful response per question to
reflect more realistic ad-hoc usage scenarios.

D GSM-NoOp Construction Process

Following the construction procedure proposed in [32], we randomly sample 300 examples from the
GSMSK dataset. For each question, we use GPT-4o to generate a No-Op phrase using the following
prompt:

~ )

Given the following math question, generate a seemingly relevant but ultimately inconsequen-
tial statement (No-Op) that can be added to the question without affecting its solution.
Question: {Question }

Generate a No-Op statement that:

1. Is short and concise

2. Seems relevant to the context

3. Does not affect the mathematical reasoning

4. Is natural and fits grammatically

No-Op statement:

\. J

We then use GPT-40 to combine the generated No-Op phrase with the original question using the
following prompt:

Please combine the following math question and No-Op phrase into a single, natural-sounding
question. The No-Op phrase should be integrated smoothly without changing the mathemati-
cal meaning.

Math Question: {Question} No-Op Phrase: {NoOp Phrase}

Combined Question:

The merged questions form our constructed GSM-NoOp dataset.

To evaluate whether the generated reasoning steps are misled by the inserted No-Op phrase, we
prompt GPT-40 with the following instruction:

~ '

Please evaluate if the following reasoning step is being misled by the given No-Op phrase.
Provide a score between 0 and 1, where:

a. 0 means the step is not misled by the No-Op phrase at all

b. 1 means the step is completely misled by the No-Op phrase

c. Values in between indicate partial misleading

Note: Simply mentioning the No-Op phrase does not count as being misled. If the step
mentions the No-Op phrase but explicitly rejects or explains why it is irrelevant to solving
the problem, this should be scored as 0.

Reasoning step: {Reasoning Step} No-Op phrase: {NoOp Phrase}

Please provide only a number between 0 and 1, with up to 2 decimal places, wrapped in
\boxed{}. For example: \boxed{0.85}
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E Details of Understanding the Mechanisms Behind Reasoning Hallucination
Patterns

In this section, we focus on analyzing the underlying cause of Pattern #1, as Pattern #2 has already
been explained through the attention behavior of LRMs in the previous section. Pattern #1 highlights
that hallucinated reasoning traces tend to exhibit larger fluctuations in reasoning depth, particularly in
the early steps. Inspired by our preliminary analysis in § [3.2.1] we hypothesize that this may stem
from the model’s built-in verification capability. However, several key questions remain: Q1: What
triggers verification behavior in LRMs? Q2: Do excessively high reasoning scores genuinely indicate
overthinking? Q3: If Q2 holds, what factors lead to the emergence of such overthinking steps?

To answer these questions, we construct reasoning step triples (c1, ¢a, ¢3) with different properties
drawn from reasoning traces: Stable: The first type consists of triples from truthful traces where
adjacent steps differ in Ry.ore by less than 0.1, representing stable reasoning. Rising-1: The second
type contains hallucinated triples where Rycore(¢3) — Rgcore(c2) > 1 and Rgeore(c3) < 4, used to
analyze verification triggered by shallow pattern-matching. Rising-2: The third type is similar to
Rising-1 but with Ry (c3) > 4, aimed at understanding overthinking induced by verification.

Analysis. To investigate Q1, we analyze whether reasoning steps c; and cs in the stable and rising
(Rising-1 + Rising-2) triples are logically consistent, using GPT-40 as the judge (prompt details
in Appendix [F). As shown in[Figure 4{(a), the stable triples exhibit significantly higher consistency
between ¢y and co than rising triples, indicating that LRMs are more likely to trigger verification
when early steps are internally inconsistent.

To examine Q2, we evaluate the correctness of ¢y and c3 in Rising-2 triples. Using ground-truth
answers and GPT-4o-based annotation (prompt details in Appendix [F), we assess whether these steps
are logically aligned with the ground-truth answers. As shown in[Figure 4(b), ¢, in Rising-2 triples is
substantially more accurate than cs, confirming that verification in this case often modifies correct
reasoning into incorrect steps. These findings support the hypothesis that excessively high Rgcore
values in hallucinated reasoning traces are symptomatic of overthinking—steps that exhibit apparent
reasoning depth but in fact reflect spurious or detrimental reasoning.

To address Q3, we analyze the relationship between perplexity and Ry.ore. Specifically, we randomly
sample 200 reasoning steps from ReTruthQA and compute their perplexities as follows:

1 . .

PPL(c;) = exp Tl kz logp (th 1 [ t5,) | (10)
tm_HECk

PPL(C) = (PPL(cy), PPL(c3), ..., PPL(ck)) . (11)

where p(tf | | %, ) denotes the model’s predicted probability for token ¥, , ; given the prefix t~
within the reasoning trace. B

As shown in[Figure 4]c), perplexity and Rgcor are strongly negatively correlated—steps with higher
reasoning depth tend to have lower perplexity, which is intuitive since deep reasoning often yields
more predictable outputs. However, when comparing the final step c3 across stable and Rising-2
triples, we find an interesting phenomenon in [Figure 4(d): despite having higher Rycore, ¢3 in Rising-2
triples has higher perplexity than in stable triples. This suggests that overthinking steps induced by
an incorrect verification result in an uncertain or internally unstable generation.

We hypothesize that such overthinking may reflect spurious verification—a behavior where the model
performs superficial or misguided validation in pursuit of higher reward during RL fine-tuning. This
behavior can persist through distillation into smaller models, propagating reasoning hallucinations.
Based on this analysis, we identify a third hallucination pattern: Pattern #3: Overthinking reasoning
steps exhibit a positive correlation between R and perplexity (PPL).

F Prompt for Hallucination Patterns Analysis

Prompt for step consistency analysis of Q1:
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Figure 6: Evaluation of Pattern #1 and Pattern #2 on ReTruthQA. Asterisks indicate statistical
significance based on a t-test: * for p-value < 0.05, and *** for p-value < 0.001.

Please evaluate whether the following reasoning step introduces a new solution approach
compared to the preceding steps. Respond with a score of 0 or 1, where:

0: The step follows the same solution approach as the previous steps.

1: The step explores a new solution approach or direction.

Reasoning step: {step content}

Previous steps: {step content}

Score (0/1):

Prompt for step correctness analysis of Q2:

Please evaluate whether the following reasoning step aligns with the final answer. Respond
with a score of O or 1, where:

0: The step is inconsistent with the final answer.

1: The step is consistent with the final answer.

Reasoning step: {step}

Final answer: {answer}

Score (0/1):

G More Results of Reasoning Hallucination Pattern Analysis

The hyperparameter settings involved in Section[3.2]are as follows. The constant 7, which controls
the size of the early-step window, is empirically set to » = 2. The constant 7, which defines the
portion of late reasoning steps, is set to 7 = 0.75. The constant K, used in computing attention to
earlier steps, is set to K = 5. The threshold 7 for identifying potentially overthinking steps is set to
7 = 4. These hyperparameters are derived from case analysis and are applied consistently throughout
the subsequent reasoning hallucination detection and mitigation experiments.

The validity of Pattern #1 and Pattern #2 is verified across all domains of ReTruthQA, with exper-
imental results shown in Figure [6] where across all three domains, hallucinated reasoning traces
consistently exhibit significantly higher CV scores and Attention scores than truthful traces.
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H Evaluation and Baseline Details of Reasoning Hallucination Detection

Based on ReTruthQA, we design two evaluation settings for RHD model: (1) Binary Detection
Setting: This setting assesses the model’s ability to detect hallucinations in individual question-
reasoning pairs (@, C'), measuring detection performance using the Area Under the ROC Curve
(AUC) and Pearson Correlation Coefficient (PCC); (2) Multi-Trace Ranking Setting: This setting
evaluates the model’s ability to identify the truthful answer among multiple reasoning traces for
the same question (@, {C4,Cs,...,C3}). We follow the evaluation setup of TruthfulQA-MC [28]],
and report the following metrics: MCI: The percentage of instances where the hallucination score
of the most hallucinated reasoning trace exceeds that of all truthful traces; MC2: The normalized
total hallucination score assigned to the hallucinated reasoning traces; MC3: The percentage of
hallucinated reasoning traces that receive a higher hallucination score than all truthful traces. These
metrics collectively measure the ranking quality of hallucination detection in multi-sample generation
settings.

For baselines, we consider the following categories: (1) Ensemble-based self-evaluation meth-
ods, where hallucination scores are obtained through repeated generation, self-verification, or
peer voting among LLMs. This category includes ChainPoll [[14], LMVvLM [8], and SelfCheck-
GPT [31]]. (2) Uncertainty-based methods, which estimate hallucination likelihood based on
model uncertainty, including P(True) [21], LN-Entropy [40]], and Perplexity (PPL) [30]. (3) Self-
awareness-based methods, which rely on internal model representations to detect hallucinations,
such as UQAC [25] and EigenScore [5]. (4) LLM-as-Critic models, including GPT-40 [1] and
Qwen?2.5-32B [54], which act as external evaluators of reasoning traces. (5) Process reward models,
such as Qwen2.5-Math-7B-PRM800K [59] and Qwen2.5-Math-PRM-7B [58], trained with step-level
supervision for reasoning evaluation. (6) Length-based scoring, motivated by recent findings that
longer reasoning traces are more prone to hallucinations [57]], we include Length-Score, which
directly uses the length of the reasoning trace as its hallucination score.

I Implementation Details for Reasoning Hallucination Detection

We conduct all experiments on machines equipped with NVIDIA A6000 GPUs and 52-core Intel(R)
Xeon(R) Gold 6230R CPUs running at 2.10GHz. We utilize the Huggingface Transformers and
TRL libraries to implement and run our experiments. During response generation, we use random
sampling with a temperature of 0.7 and a maximum decoding length of 15,000 tokens for Math tasks
and 10,000 tokens for all other tasks. For Reasoning Hallucination Detection (RHD), we perform
two-fold validation to select optimal hyperparameters, while baselines are tuned within the ranges
specified in their original works. To ensure stability, all randomized experiments are repeated three
times and the average results are reported.

We perform a grid search over the interval [0, 1] with a step size of 0.1 to determine the best
combination of reasoning score weights a1, a, ag, and oy using two-fold validation to select the
hyperparameters. For R1-7B, the best weights in the Math domain are a; = 0, oy = 0.4, a3 = 0,
and a4 = 0.3 for the Multi-Trace Ranking setting, and a; = 0, ag = 0.9, a3 = 0.8, and oy = 0.4
for the Binary Detection setting. In the Science domain, the best weights are a; = 0.1, ag = 1.0,
as = 0, and oy = 0 for Multi-Trace Ranking, and a; = 0, ae = 0.7, a3 = 0.2, and oy = O for
Binary Detection. In the MultiHopQA domain, the best weights are o = 0.4, ag = 0.1, a3 = 0.6,
and a4 = 0.4 for Multi-Trace Ranking, and a; = 0, as = 0, ag = 0.3, and oy = 0 for Binary
Detection.

For R1-14B, the best weights in the Math domain are vy = 0.3, ae = 0.7, a3 = 0.1, and a4y = 0.1
for Multi-Trace Ranking, and a; = 0, ae = 0.3, a3 = 1.0, and oy = 0.2 for Binary Detection.
In the Science domain, we obtain oy = 0, as = 0.5, a3 = 0.5, and a4 = 0.1 for Multi-Trace
Ranking, and oy = 0, az = 0, a3 = 0.8, and a4 = 0.1 for Binary Detection. In the MultiHopQA
domain, the optimal weights are oy = 0.7, a2 = 0.9, ag = 0.1, and ay = 0.0 for Multi-Trace
Ranking, and oy = 1.0, as = 0, ag = 0.1, and a4 = 0.1 for Binary Detection.

Candidate reasoning score layers J are selected from {14,16,18,20,22,24,26} for R1-
7B and from {32,36,40,42,44,46} for RI1-14B, while attention score layers L are
fixed across models as {1,3,5,7,9,11,13}. The models used in our experiments,
DeepSeek-R1-Distill-Qwen-7B and DeepSeek-R1-Distill-Qwen-14B, are publicly available
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Table 4: Ablation study of the RHD model on three different domains of ReTruthQA. Each row
removes one component of the hallucination score.

Model | Variant \ MATH \ Science | MultiHopQA
| | MC1 MC2 MC3 | MCI MC2 MC3 | MC1 MC2 MC3
RHD 0.6591 0.4765 0.5699 | 0.6207 0.5448 0.6009 | 0.7660 0.6255 0.7103
RHD (w/0 Avg(Reore)) | 0.6591 0.4765 0.5699 | 0.6128 0.5307 0.5934 | 0.7383 0.6032 0.7082

R1-7B | RHD (w/o CV Score) 0.6364 0.4663 0.5330 | 0.4483 03862 0.4977 | 0.7447 0.6043 0.6996
RHD (w/o Attention Score) | 0.6591 0.4765 0.5699 | 0.6207 0.5448 0.6009 | 0.6383 0.5372 0.6123
RHD (w/o PCC Score) 0.5909 0.3830 0.5210|0.6207 0.5448 0.6009 | 0.6809 0.5553 0.6323
RHD 03692 0.3005 0.4644 | 0.6667 0.4714 0.5671 |0.5785 0.4421 05154
RHD (W/0 Avg(Recore)) | 0.3538 0.2867 0.4847 | 0.7241 0.4609 0.5531 | 0.5589 0.4284 0.5290

R1-14B | RHD (w/o CV Score) 03692 0.2882 0.4725|0.6470 0.4484 0.5332|0.5455 0.4273 0.5403
RHD (w/o Attention Score) | 0.3231 0.2692 0.4503 | 0.6724 04511 0.5190 | 0.5702 0.4322 0.5180
RHD (w/o PCC Score) 03692 0.2882 0.4725|0.6724 0.4601 0.5683 | 0.5785 0.4421 05154

Table 5: Impact of selecting candidate layers from different depth layers of LRMs.

Layers \ Math \ Science \ MultiHopQA
| MC1 MC2 MC3 | MC1 MC2 MC3 | MC1 MC2 MC3

High |0.6591 0.4765 0.5699 | 0.6207 0.5448 0.6009 | 0.7234 0.5957 0.6799
Middle | 0.6591 0.4765 0.5699 | 0.6207 0.5448 0.6009 | 0.7021 0.5862 0.6678
Low 0.6591 0.4765 0.5699 | 0.6207 0.5448 0.6009 | 0.7660 0.6255 0.7103

athttps://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B andhttps://
huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen- 14B, respectively.

J Ablation Study of RHD

In this section, we analyze the contribution of each module within the RHD model to reasoning
hallucination detection. As shown in Table[d removing any single component leads to a significant
performance drop on most datasets in the Reasoning Hallucination Detection task. This validates
the effectiveness of adopting a multivariate regression formulation, where all components jointly
serve as covariates. Although some coefficients may appear less influential in certain domains,
they demonstrate notable impact in others. This observation suggests that different domains exhibit
distinct hallucination pattern preferences, further supporting the validity of the empirically discovered
patterns, which can be effectively leveraged for reasoning hallucination detection.

Math MC3 MultiHopQA MC3

0.70

e,
- /o o
O O
—O— Attention Score o —O— Attention Score
O O
CV Score CV Score o

—0— Avg Rscore 0601 ¢ —0— AvgRscore

—o— PCC Score —0— PCC Score o
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
Weight Weight
ReTruthQA (Math) ReTruthQA (MultiHopQA)

Figure 7: We conduct a sensitivity analysis of each module in RHD, using R1-7B on the Math and
MultiHopQA subsets of ReTruthQA. We vary the weights assigned to different components and
observe the resulting performance on the MC3 metric.
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K Sensitivity Analysis of RHD

In this section, we conduct sensitivity analysis experiments to investigate the impact of design choices
in RHD. Inspired by the underlying reasoning mechanism, we fix the reasoning score to be extracted
from the later layers of LRMs. Our primary focus is on selecting the appropriate layers for computing
the attention score. Specifically, we evaluate three different layer groups: shallow layers (1, 3, 5, 7, 9,
11, 13), middle layers (8, 10, 12, 14, 16, 18), and deep layers (14, 16, 18, 20, 22, 24, 26) on R1-7B.
The experimental results are shown in Table [5] We observe that, across the Math and Science
domains, the choice of attention layers has limited influence on final performance. In contrast,
for the MultiHopQA domain, shallow layers yield stronger results, aligning with the mechanistic
interpretation that earlier layers are primarily responsible for information transmission. Based on
these findings, we select the shallow layers as candidate layers for computing the attention score.

We further perform sensitivity analysis on influential feature weights in RHD across domains. We
vary the feature weights in {0.1, 0.3, 0.5, 0.7, 0.9}, and present the results in Figure ‘We observe that
most features exhibit an initial increase in performance followed by either a decline or stabilization.
The limited variance across settings indicates that the model is not overly sensitive to individual
hyperparameter values, demonstrating the robustness and stability of the RHD framework.

L. Implementation Details for Reasoning Hallucination Mitigation

We fine-tune the models for reasoning hallucination mitigation using a RL framework with the follow-
ing hyperparameters: batch size of 8, learning rate of 1.0 x 107, and 1 training epoch. We enable gra-
dient checkpointing to reduce memory usage. The model is configured with a maximum prompt length
of 512 and a maximum completion length of 7680. For parameter-efficient tuning, we adopt LoRA
with rank 7 = 16 and o = 16, applied to all linear layers (lora_target_modules=all-linear).
During each training step, we sample 16 generations per query.

The reward function is a weighted sum of three components: (1) an accuracy reward that com-
bines a rule-based parser [20] and LLM-as-a-Judge [27] to determine correctness, addressing the
issue where the final answer is correct but fails rule-based extraction (reward = 1 for correct,
0 for incorrect); (2) a format reward that ensures adherence to the required reasoning format
<think>\n...\n</think>\n<answer>\n...\n</answer> (reward = 1 if the format is correct,
0 otherwise); and (3) a tag count reward that softly encourages the inclusion of each of the four
required tags (<think>, </think>, <answer>, </answer>) by assigning 0.25 for each tag present.
The reward weights are set to 1.0, 0.1, and 0.1 for the accuracy, format, and tag count rewards,
respectively.

For evaluation, we use the same accuracy-based metric as in training, and report re-
sults by averaging over four sampled generations per input. The fine-tuned model,
DeepSeek-R1-Distill-Qwen-1.5B, is publicly available at https://huggingface.co/
deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B.

Sensitivity Analysis (Qwen2.5-1.5B-Instruct) Sensitivity Analysis (DeepSeek-R1-1.5B)
0.5
o MATH500 08 O/O\O/O
AIME(2024)
0.4 & 0.7
: GPQA(diamond) MATH500
@ GPQA(main) o 06 AIME(2024)
g03 GPQA (extended) S GPQA(diamond)
@ o S £ 0.5 GPQA(main)
0.2 & o GPQA(extended)
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0.1 0.3
0.05 0.10 0.20 0.30 0.05 0.10 0.20 0.30
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Figure 8: We conduct a sensitivity analysis on the weight of the reasoning score reward in GRPO-R,
evaluating its impact on the accuracy metric. Experiments are carried out on both Qwen2.5-1.5B-
Instruct and DeepSeek-R1-1.5B by varying the weight parameter a.
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Table 6: Accuracy of distilled models across benchmarks using different sampling strategies. Distil-
lation is performed on Qwen2.5-1.5B-Instruct using reasoning traces from R1-14B.

Method | MATH500 AIME (2024) GPQA (diamond) GPQA (main) GPQA (extended)
Qwen2.5-1.5B-Instruct \ 0.466 0.100 0.202 0.197 0.211
Random 20% 0.504 0.100 0.247 0.230 0.242
RHD 20% 0.520 0.100 0.263 0.210 0.249
Random 50% 0.488 0.033 0.187 0.248 0.266
RHD 50% 0.516 0.200 0.247 0.250 0.242
100% | 0488 0.100 0.217 0.210 0.214

M Sensitivity Analysis of Reasoning Score Weight in GRPO-R

To investigate the sensitivity of the reasoning score reward weight o in the GRPO-R objective, we
conduct experiments on both DeepSeek-R1-1.5B and Qwen2.5-1.5B-Instruct. We vary « in
the range [0.05, 0.1, 0.2, 0.3] and evaluate the models’ performance accordingly.

Experimental results in [Figure §|indicate that both models achieve the best average performance
when o = 0.1. As « increases beyond this value, we observe a gradual decline in performance.
These results suggest that incorporating the reasoning score reward can effectively mitigate reasoning
hallucinations without compromising accuracy, as long as it remains a secondary signal. However,
overemphasizing the reasoning score (i.e., assigning it a large weight) can lead to a degradation in the
model’s ability to optimize for correctness, indicating that the reasoning signal should not dominate
the outcome-based reward objective.

N RHD-Guided Reasoning Distillation

Distilling long-chain-of-thought data from large reasoning models to fine-tune smaller LLMs has
become a widely adopted strategy for improving reasoning capabilities [[10]. However, directly fine-
tuning small LLMs on raw LRM-generated data risks transferring undesirable reasoning behaviors
such as shallow pattern matching or overthinking, potentially introducing reasoning hallucinations
into the smaller models. To address this issue, we propose using the RHD score to rank distillation
data and select more truthful samples for training.

The distillation setup uses a learning rate of 5.0 x 10~?, batch size of 8, and LoRA applied to all
linear layers with parameters lora_r = 16 and lora_alpha = 16. We use the training data from
the hallucination mitigation experiment where R1-14B produces correct answers, along with their
corresponding reasoning traces and final answers. We then score each reasoning trace using the RHD
metric and sort the data in descending order. The top 20% and 50% of ranked samples are distilled
into a smaller model, R1-1.5B, and compared against randomly sampled subsets of 20%, 50%, and
100% of the same data.

Results, as shown in Table [6] demonstrate that RHD-guided distillation consistently yields better
performance across most evaluation benchmarks. In contrast, distillation using 100% of the raw data
results in degraded performance, likely due to noise introduced by hallucinated or low-quality samples.
These findings validate the effectiveness of RHD in selecting high-quality data and mitigating
reasoning hallucinations in downstream small LL.Ms during the distillation process.
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