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Abstract

Large Reasoning Models (LRMs) have shown impressive capabilities in multi-step1

reasoning tasks. However, alongside these successes, a more deceptive form of2

model error has emerged—Reasoning Hallucination—where logically coherent3

but factually incorrect reasoning traces lead to persuasive yet faulty conclusions.4

Unlike traditional hallucinations, these errors are embedded within structured rea-5

soning, making them more difficult to detect and potentially more harmful. In6

this work, we investigate reasoning hallucinations from a mechanistic perspective.7

We propose the Reasoning Score, which quantifies the depth of reasoning by8

measuring the divergence between logits obtained from projecting late layers of9

LRMs to the vocabulary space, effectively distinguishing shallow pattern-matching10

from genuine deep reasoning. Using this score, we conduct an in-depth analysis on11

the ReTruthQA dataset and identify two key reasoning hallucination patterns: early-12

stage fluctuation in reasoning depth and incorrect backtracking to flawed prior steps.13

These insights motivate our Reasoning Hallucination Detection (RHD) framework,14

which achieves state-of-the-art performance across multiple domains. To mitigate15

reasoning hallucinations, we further introduce GRPO-R, an enhanced reinforce-16

ment learning algorithm that incorporates step-level deep reasoning rewards via17

potential-based shaping. Our theoretical analysis establishes stronger generaliza-18

tion guarantees, and experiments demonstrate improved reasoning quality and19

reduced hallucination rates. The source code and dataset are available at: https:20

//anonymous.4open.science/r/Reasoning_Hallucination-B7F8/.21

1 Introduction22

Hallucination has long been a critical safety challenge for Large Language Models (LLMs). In23

this context, hallucination refers to outputs that appear fluent and coherent but are semantically24

inaccurate or lack factual grounding. With the advent of Large Reasoning Models (LRMs)—such25

as DeepSeek-R1 [10] and OpenAI’s O-series [36]—AI systems have demonstrated unprecedented26

potential in solving complex real-world tasks. These models are typically trained with outcome-based27

reinforcement learning (RL) and explicitly generate multi-step reasoning traces prior to final answers.28

Recent studies have uncovered a subtler form of hallucination emerging in LRMs [45, 48, 36], which29

we refer to as Reasoning Hallucination. Unlike traditional hallucinations, reasoning hallucinations30

are often embedded within logically coherent reasoning traces, making incorrect information more31

persuasive and harder to detect. This form of “plausible but incorrect” reasoning can elicit user trust,32

resembling the conjunction fallacy, where detailed yet misleading explanations are perceived as more33

credible than simpler ones [44, 47]. Prior studies mainly assess the correctness of reasoning paths34

in standard Chain-of-Thought (CoT) tasks over relatively simple problems [52, 37], with limited35

investigation into the mechanisms of hallucinations in LRMs. Recent work has extended evaluation to36

long CoT generated by LRMs [59], yet remains focused on error identification rather than uncovering37

underlying causes. However, directly analyzing model-generated traces can be misleading due to38
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the subtle nature of reasoning hallucinations. The emergence of Latent CoT, where reasoning is39

embedded in hidden states rather than surface text, further obscures detection [17]. These challenges40

call for probing the internal mechanisms behind reasoning hallucinations, enabling interpretable and41

robust hallucination detection.42

Recent studies on the reasoning capabilities of LRMs [32, 53] have shown that models often produce43

incorrect answers when their reasoning process relies on shallow pattern-matching rather than genuine44

deep reasoning. This mirrors findings in cognitive science, where human thinking patterns are closely45

linked to the emergence of cognitive illusions [22, 4, 50]. Inspired by these observations, we46

investigate reasoning hallucinations in LRMs through the lens of internal thinking patterns, where47

a central challenge is how to quantify whether a model is performing deep reasoning or merely48

matching surface-level patterns from training data. Prior mechanistic interpretability studies highlight49

a functional division within language models: early layers primarily transmit information, while later50

layers perform more complex reasoning over aggregated context [34, 6]. Based on this insight, we51

introduce Reasoning Score, which measures the divergence between logits obtained from projecting52

late layers of LRMs to the vocabulary space. Through synthetic experiments, we validate the53

effectiveness of the Reasoning Score in measuring the depth of reasoning in LRMs, which reflects54

whether the model engages in shallow pattern-matching or deep reasoning (§ 3.1).55

Building on the proposed reasoning score, we conduct extensive analyses on reasoning hallucinations56

using the ReTruthQA dataset. We identify three key patterns of reasoning hallucination: Pattern #1:57

large fluctuations in reasoning depth during the early steps, and Pattern #2: incorrect backtracking58

from later steps to earlier incorrect steps. We attribute these patterns to the presence of shallow59

pattern-matching and overthinking steps, which undermine the LRM’s inherent abilities in self-60

verification and backtracking, ultimately leading to reasoning hallucinations (§ 3.2). Moreover, we61

observe that Pattern #3: overthinking steps exhibit a positive correlation between reasoning scores62

and perplexity, indicating spurious verification behaviors (§ 3.3). Based on these findings, we design63

the Reasoning Hallucination Detection (RHD) method, which significantly outperforms baselines64

across diverse domains in the reasoning hallucination detection dataset (§ 4.1).65

We further investigate the underlying cause of shallow pattern-matching and overthinking steps in66

LRMs and attribute it to the outcome-based RL paradigm commonly used during training. This67

paradigm incentivizes correct final answers but neglects whether intermediate reasoning steps reflect68

deep and meaningful thinking. To address this challenge, we introduce a step-level deep reasoning69

reward based on the reasoning score and propose GRPO-R, a variant of Group Relative Policy70

Optimization (GRPO) [41, 10] that incorporates potential-based reward shaping. GRPO-R encourages71

deep—but not excessive—reasoning during RL fine-tuning. Our theoretical analysis shows that72

GRPO-R leads to better generalization in outcome-based RL, and empirical results confirm that it73

improves reasoning accuracy compared to standard GRPO (§ 4.2).74

2 Related Works75

Hallucination of Language Models. Hallucination remains a fundamental safety concern for LLMs,76

and outcome-supervised LRMs [10, 36] exacerbate this issue by generating logically flawed but77

persuasive reasoning traces, a consequence of reward-seeking behavior induced by outcome-based78

RL without step-level supervision [7, 47, 45]. Detection approaches span uncertainty estimation [21,79

30, 40], internal signal probing [5, 25, 24], process-level critique models [18], and Process Reward80

Models (PRMs) [58], though challenges remain due to the deceptive nature of hallucinated traces and81

the poor generalization of PRM signals [60]. We address this by conducting a mechanistic analysis82

of reasoning hallucinations and proposing a detection method grounded in internal model behavior.83

Mechanistic Interpretability. Mechanistic interpretability [13, 9] seeks to explain model behavior84

by attributing predictions to internal components. In transformers, attention heads contextualize85

token representations [12, 51], while FFNs act as knowledge storage [15]. Recent work has applied86

intervention-based techniques from mechanistic interpretability to analyze how LLMs perform87

reasoning, revealing a functional division of labor across layers in various tasks such as math88

reasoning and multimodal reasoning: early layers primarily transmit contextual information, and89

the reasoning process is predominantly carried out by the later layers. [6, 34, 26]. These insights90

motivate our design of the Reasoning Score, which captures thinking patterns by quantifying hidden91

state shifts in later layers, laying the groundwork for analyzing reasoning hallucinations in LRMs.92
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Figure 1: The illustration of the calculation processes for the Reasoning Score (Eq. 2), CV Score
(Eq. 3), and Attention Score (Eq. 4).

3 Empirical Study of Reasoning Hallucination93

Our empirical study investigates the relationship between reasoning hallucinations and the thinking94

patterns of LRMs, where thinking patterns are quantified using a reasoning score derived from95

mechanistic interpretability. This analysis reveals key reasoning hallucination patterns and guides the96

design of more effective detection and mitigation strategies.97

3.1 Reasoning Score: Measuring Reasoning Depth in Large Reasoning Model98

To determine whether a reasoning step is generated via shallow pattern matching or genuine deep99

reasoning, we propose a Reasoning Score inspired by mechanistic interpretability. Prior studies100

analyzing the internal mechanisms of language models reveal a layered functional division: early101

layers primarily transmit information, while later layers perform more complex reasoning over102

aggregated context to produce correct outputs [42, 34, 26]. Building on this insight, we define the103

reasoning score under the hypothesis that deeper reasoning is reflected by meaningful transformations104

in later-layer representations during generation.105

Formally, a LRM-generated reasoning trace C = [c1, c2, . . . , cK ] consists of multiple reasoning steps,106

each associated with a step-level reasoning score Rk
score that quantifies the depth of reasoning in step107

ck. Each reasoning step ck = ⟨tk1 , . . . , tkM ⟩ is composed of M tokens. The overall reasoning trace108

score Rscore is represented as a sequence [R1
score, R

2
score, . . . , R

K
score], capturing the model’s reasoning109

dynamics across steps. As shown in Figure 1, each score is defined as the mean Jensen–Shannon110

divergence (JSD) between vocabulary distributions induced by hidden states from selected later layers111

and the anchor distribution from the final layer. To obtain the output distribution from each token112

hidden state h
(j)
m,k of token tkm at layer j, we apply the LogitLens [35], which projects each layer-113

normalized hidden state into vocabulary space via the unembedding matrix WU : LogitLens(h(j)
m,k) =114

LayerNorm(h
(j)
m,k)WU . This provides a layer-wise interpretation of token prediction behavior and115

has been widely adopted for interpreting LLM internal representations [16, 61, 56].116

The final step-level Reasoning Score Rk
score is computed as:117

Rk
score =

1

|ck|
∑

tkm+1∈ck

1

|J |
∑
j∈J

JSD
(
qN
(
tkm+1

)
, qj
(
tkm+1

))
, (1)

qj
(
tkm+1

)
= softmax

(
LogitLens

(
h
(j)
m,k

))
, j ∈ J , (2)

where J denotes the set of selected later layers and qN is the anchor distribution from the final layer.118
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Correct Verification:

Step 2 (Shallow Pattern Matching)→ Step 3

Incorrect Verification:
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Incorrect Backtracking :

Step 73 (Misguided Attention)

Liam wants to buy some school supplies. He buys 24 erasers that now cost $6.75 each, 10 notebooks that now cost $11.0 each, and a ream of bond 

paper that now costs $19. How much should Liam pay now, assuming that due to inflation, prices were 10% cheaper last year?

Question

Step 2: But if the new total cost is less than the original total cost, subtract the new total from the original total, otherwise, subtract the original total from the new total.

Step 3: Wait. … So, to find the amount Liam should pay now, we just calculate the new total cost.

Step 44: … Suppose this year’s price is $100 ... So, if this year's prices are P, last year's prices were 0.9P… So, to find how much Liam should pay now, it's P.

Step 45: But the question is asking "how much should Liam pay now, assuming that due to inflation, prices were 10% cheaper last year".

Step 73: But the question asks how much he should pay now, which is the new total cost. So, the final answer is $261.9.

Hallucinated Steps Information

StableFluctuating

Golden Answer: $291

Correct Verification:
Step 23(Shallow Pattern Matching) → Step 24

Step 23: ... So, perhaps the question is asking for the amount he should pay now considering the inflation, which would be the last year's total multiplied by 1.10.

Step 24: … So, last year's total is $261.90, and this year's is $291. So, if the question is asking how much should he pay now, it's $291.

Truthful Steps Information

(a)

(b) (c) (d)

High Attention

Figure 2: Case study from GSM-NoOp dataset [32] on R1-7B. We sample both a hallucinated
reasoning trace (left) and a truthful reasoning trace (right) for the same question as a preliminary
analysis of reasoning hallucinations. Reasoning scores are scaled by 1e5.

Intuitively, a larger score Rscore indicates substantial transformation in output distributions within late119

layers, suggesting the model is actively engaging in deep reasoning by integrating earlier contextual120

information. In contrast, a smaller score implies distributional stability in late layers, indicating121

shallow pattern matching or heuristic-based processing without further reasoning, consistent with122

prior findings on the differential roles of early versus later layers.123

Validating the Reasoning Score with GSM-NoOp. We validate whether the Reasoning Score124

faithfully reflects reasoning depth using GSM-NoOp [32], a GSM8K-derived dataset where semanti-125

cally irrelevant but plausible No-Op phrases are injected into problems. Although these phrases do126

not alter the correct reasoning path, prior work shows that LRMs are often misled by them, revealing127

their reliance on shallow pattern matching [32]. This makes GSM-NoOp a suitable testbed: if the128

Reasoning Score captures reasoning depth, then steps misled by No-Op phrases should yield lower129

scores. We validate this using correct outputs from DeepSeek-R1-Distill-Qwen-7B (R1-7B) to130

avoid confounds from hallucinated traces. Misled steps are labeled via GPT-4o. As GSM-NoOp is not131

publicly available, we re-implement a compatible version following the original paper’s methodology,132

with prompts and details provided in Appendix D.133

Results. Our empirical results in Figure 3 (a) show that reasoning steps misled by No-Op phrases134

consistently receive significantly lower Reasoning Scores compared to non-misled steps. This135

supports our hypothesis that the Reasoning Score effectively captures shallow pattern-matching136

behavior and serves as an indicator of whether a model is engaging in deep reasoning.137

3.2 Reasoning Hallucination Analysis Based on Reasoning Score138

In this section, we leverage the mechanistically derived Reasoning Score as a proxy for the thinking139

patterns of LRMs and investigate its relationship with the emergence of reasoning hallucinations. We140

begin with a preliminary analysis to identify characteristic patterns associated with hallucinated rea-141

soning traces. We then analyze the generality of these patterns across domains using the ReTruthQA142

dataset, and further examine the underlying mechanism that leads LRMs to exhibit such behaviors.143

3.2.1 Case Analysis on GSM-NoOps144

In this section, we conduct a preliminary analysis using the LRM R1-7B on a question from GSM-145

NoOp [32], where a “NoOp” statement is appended to the end of a math problem. To enable controlled146

comparison of reasoning hallucination patterns, we sample both a truthful and a hallucinated response147

4



Misleading Non-Misleading
0

1

2

3

4

M
ea

n 
R

ea
so

ni
ng

 S
co

re
2.671

3.267

*

Reasoning Score Verification

Overall Mean

(a)

Truth Hallucination
0.00

0.05

0.10

0.15

0.20

0.25

M
ea

n 
C

V
 S

co
re

***

0.150

0.239

CV Score Comparison (MATH)

Overall Mean

(b)

Truth Hallucination
0.0

0.1

0.2

0.3

0.4

0.5

M
ea

n 
A

tt
en

tio
n 

Sc
or

e

***

0.307

0.382

Attention Scores Comparison (MATH)

Overall Mean

(c)

Figure 3: (a) Reasoning Score validation on GSM-NoOp. (b) Evaluation of Pattern #1 (early
fluctuations), and (c) Pattern #2 (misguidedly attention) on ReTruthQA. Asterisks indicate statistical
significance based on a t-test: * for p-value < 0.05, and *** for p-value < 0.001.

from R1-7B on the same question. Figure 2 presents the question along with step-level reasoning148

scores Rscore, which quantify the depth of thinking at each step.149

We observe that when the model generates reasoning steps that attend to the added NoOp content,150

these steps typically receive lower Rscore, which in turn triggers the model’s Self-Verification mecha-151

nism [23], producing later steps with higher Rscore that attempt to correct the earlier deviation (e.g.,152

(a) and (d) in Figure 2). However, in the hallucinated reasoning trace, we also observe overthinking153

phenomena—steps with excessively high Rscore that incorrectly revise the previous correct reasoning154

steps (e.g., (b) in Figure 2). These hallucinated traces contain more shallow pattern-matching and155

overthinking steps, resulting in an overall unstable reasoning trajectory. From this case study, we156

identify the reasoning hallucination Pattern #1: hallucinated traces typically exhibit large fluctuations157

in reasoning score, especially during the early steps of the process.158

Furthermore, we observe that even when the model briefly arrives at correct intermediate steps, it159

often fails to maintain this correctness. In later steps, it performs Incorrect Backtracking, attending to160

earlier shallow or overthinking steps, ultimately leading to hallucination (e.g., (c) in Figure 2). This161

motivates the reasoning hallucination Pattern #2: in the later stages of reasoning, the model tends to162

misguidedly attend to earlier hallucinated steps, either shallow or overthinking, making it difficult to163

correct earlier errors and leading to hallucinated reasoning.164

3.2.2 Reasoning Hallucination Pattern Analysis165

In this section, we validate the two reasoning hallucination patterns identified in preliminary analy-166

sis(§ 3.2.1): Pattern #1: large fluctuations in reasoning scores during early steps, and Pattern #2:167

incorrect backtracking to earlier hallucinated reasoning steps in later stages. We aim to assess whether168

these patterns generalize across broader domains and tasks. To this end, we conduct experiments on169

the ReTruthQA dataset using the R1-7B model. ReTruthQA covers three reasoning domains: Math,170

Science, and MultiHopQA (Details in § 5.1). For each domain, we construct two balanced subsets171

using gold hallucination labels: one with hallucinated traces and one with truthful traces.172

To evaluate Pattern #1, we measure the fluctuation of reasoning depth in the early phase of reasoning173

using the Coefficient of Variation (CV Score) [11], a standard metric for quantifying sequence174

variability (shown in Figure 1). Specifically, we focus on the first ⌈K/r⌉ steps of the reasoning trace175

C = ⟨c1, c2, . . . , cK⟩, and define: Rearly
score =

[
R1

score, R
2
score, . . . , R

⌈K/r⌉
score

]
, where r > 1 is a constant176

controlling the size of the early-step window. The CV score over early reasoning steps is then given177

by:178

CV(C) = σ(Rearly
score)

µ(Rearly
score)

, (3)

where µ(·) and σ(·) denote the mean and standard deviation, respectively.179

To assess Pattern #2, we introduce a Attention Score that quantifies the extent to which later180

reasoning steps attend to earlier shallow-pattern matching or overthinking steps (Figure 1). Let the full181

reasoning trace be C = ⟨c1, c2, . . . , cK⟩, and define the later reasoning steps as Clater = {ck}Kk=⌈ηK⌉.182
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Figure 4: Analysis of Pattern #1: (a) Consistency Analysis (Q1); (b) Accuracy Comparison in Rising-
2 triples (Q2); (c) Reasoning score vs. perplexity and (d) Perplexity of Rising-2 vs. Stable (Q3).

For a step ck ∈ Clater, we compute the mean attention from ck to each earlier step cj as:183

āk→j =
1

|ck||cj |
∑
t∈ck

∑
s∈cj

(
1

|L|
∑
l∈L

1

H

H∑
h=1

al,ht,s

)
,

where al,ht,s denotes the attention weight from token t to token s at head h in layer l, H is the number184

of heads per layer, L is the set of selected layers for aggregation, and the constant η defines late steps.185

We then identify the top-K most attended earlier steps based on āk→j : Tk = TopK
(
{āk→j}k−1

j=1 ,K
)
,186

where Tk is the set of indices corresponding to the top-attended steps. The step-level attention score187

for ck is then defined as the proportion of these steps whose Reasoning Scores fall outside the normal188

range, either in the lower quartile or exceeding a high threshold τ :189

AttnScore(ck) =
1

K

∑
j∈Tk

1(Rj
score≤Quantile1/4(Rscore) or Rj

score≥τ),

where 1(·) is the indicator function, Quantile1/4(Rscore) denotes the first quartile of the reasoning190

scores (i.e., potentially shallow pattern-matching steps), and τ is a threshold identifying potentially191

overthinking steps.192

The trace-level attention score is computed by averaging over all later steps:193

AttnScore(C) = 1

|Clater|
∑

ck∈Clater

AttnScore(ck), (4)

which reflects the extent to which later reasoning steps attend to earlier incorrect steps.194

Results. As shown in Figure 3(b) and (c) and Appendix G, across all three domains, hallucinated195

reasoning traces consistently yield significantly higher CV scores and Attention scores than truthful196

traces. This confirms that hallucinated traces are more fluctuating in reasoning depth (Pattern #1) and197

more likely to attend prior incorrect steps (Pattern #2), demonstrating the generalizability of both198

patterns beyond the initial case study (Section 3.2.1). Detailed settings are shown in Appendix G.199

3.3 Analyzing the Mechanisms Behind Reasoning Fluctuation200

We investigate the underlying mechanism behind Pattern #1, where hallucinated reasoning traces201

exhibit large fluctuations in reasoning depth. Building on our case study in Section 3.2.1, we202

hypothesize this stems from a built-in self-verification mechanism. Key questions still include: Q1:203

What triggers verification behavior in LRMs? Q2: Do excessively high reasoning scores reliably204

signal overthinking? Q3: If Q2 holds, what factors lead to the emergence of such overthinking steps?205

To explore these, we construct step triples (c1, c2, c3) from reasoning traces: (1) Stable triples with206

minimal score variation from truthful traces; (2) Rising-1 triples from hallucinated traces with a207

moderate score spike (Rscore(c3) < 4), potentially triggered by shallow pattern-matching in c2; and208

(3) Rising-2 triples with extreme score spikes (Rscore(c3) > 4), to probe overthinking behaviors.209

Analysis. For Q1, we compare the logical consistency between c1 and c2 in Rising vs. Stable triples210

using GPT-4o judgments. As shown in Figure 4(a), stable triples show significantly higher consistency,211

suggesting that verification is more likely to be triggered when earlier steps are inconsistent.212
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Regarding Q2, we assess the accuracy of c2 and c3 in Rising-2 triples. Figure 4(b) shows that while213

c2 is often correct, c3 introduces errors, confirming that excessively high reasoning scores reliably214

signal overthinking. Prompts of Q1 and Q2 are shown in Appendix F.215

To investigate Q3, we firstly analyze the correlation between reasoning depth and perplexity. As216

shown in Figure 4(c), reasoning steps with higher Rscore generally exhibit lower perplexity, indicating217

more certainty outputs. However, Figure 4(d) reveals that in Rising-2 triples, c3 steps, despite higher218

reasoning scores, have higher perplexity than those in stable triples, suggesting that overthinking may219

produce internally unstable generations. We term this phenomenon spurious verification, where the220

model performs misguided validation driven by outcome-based reward optimization. This insight221

leads us to identify a new hallucination pattern: Pattern #3: Overthinking steps exhibit a positive222

correlation between Rscore and perplexity. More details are provided in Appendix E.223

4 Methods224

4.1 Reasoning Hallucination Detection225

Building upon the patterns uncovered in our empirical study, we propose the Reasoning Hallucination226

Detection algorithm (RHD). Our approach leverages the step-level Reasoning Score Rscore to quan-227

tify thinking depth throughout the reasoning trace, and incorporates three identified indicators of228

hallucination: (1) Pattern #1: large fluctuations in reasoning scores during early steps, (2) Pattern #2:229

incorrect backtracking to earlier shallow or overthinking steps in later stages, and (3) Pattern #3:230

overthinking behavior where Rscore and perplexity exhibit a positive correlation.231

Given a question Q and its reasoning trace C with step-level scores Rscore, we define the overall232

Reasoning Hallucination Score as:233

HC = α1 ·Avg(Rscore)︸ ︷︷ ︸
Overall Reasoning Depth

+α2 · CV(C)︸ ︷︷ ︸
Pattern #1

+α3 ·AttnScore(C)︸ ︷︷ ︸
Pattern #2

+α4 · PCC(Rscore,PPL(C))︸ ︷︷ ︸
Pattern #3

, (5)

where α1, α2, α3, α4 ≥ 0 are regression coefficients. Avg denotes the average reasoning score, CV234

(Eq. 3) measures fluctuations during early-steps, AttnScore (Eq. 4) captures attention on earlier235

hallucinated steps, and PCC refers to the Pearson correlation coefficient between reasoning scores236

and step-level perplexity PPL(C), computed according to Eq. 11.237

4.2 Mitigating Reasoning Hallucinations via Step-Level Reasoning Score Shaping238

Reasoning hallucinations often stem from two types of flawed steps: (1) shallow pattern-matching,239

reflecting shortcut behaviors, and (2) overthinking, induced by excessive and misguided verification.240

A core factor is outcome-based RL, which only rewards the final answer and neglects intermediate241

steps [7, 47, 45], encouraging reward-hacking heuristics that may propagate through distillation [49].242

To address this, we introduce an auxiliary process-level reward based on the reasoning score Rscore243

from Section 3.1, which measures the reasoning depth at each step. This encourages meaningful244

reasoning while penalizing shallow or overthinking steps. We model the reasoning process as a245

finite-horizon MDP (S,A, P, r, γ), where st ∈ S is the reasoning state at step t, at ∈ A denotes the246

next reasoning step, P is the transition probability and rt is the reward:247

rt =

{
0, t < T,

Rfinal, t = T.

Reward Shaping with Reasoning Score. We apply potential-based reward shaping [33]:248

r̄t = rt + γΦ(st+1)− Φ(st), with Φ(sT ) = 0,

which preserves the optimal policy while redistributing credit: V ′(st) = V (st) − Φ(st), where249

V (st) = Eπ

[∑T
k=t γ

k−trk

∣∣∣ st] is the value function of original reward and V ′(st) is the shaped.250

Potential Function Design. To avoid encouraging overthinking, we clip the reasoning score:251

R̃score(st) =

{
α ·Rscore(st), Rscore(st) ≤ τ,

0, otherwise,
Φ(st) = −R̃score(st),
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Table 1: Performance comparisons between RHD and baselines for Reasoning Hallucination Detec-
tion. The boldface represents the best performance, and the underline represents the second-best.

LRMs Categories Methods ReTruthQA (MATH) ReTruthQA (Science) ReTruthQA (MultiHopQA)

AUC PCC MC1 MC2 MC3 AUC PCC MC1 MC2 MC3 AUC PCC MC1 MC2 MC3

R1-7B

Ensemble
ChainPoll [14] 0.6384 0.2603 0.3020 0.2952 0.3583 0.6468 0.2612 0.2700 0.2580 0.3098 0.6297 0.2233 0.4208 0.3019 0.3954
LMvLM [8] 0.6364 0.3728 0.3204 0.2504 0.3402 0.5345 0.1890 0.2600 0.2100 0.3113 0.6331 0.2759 0.3649 0.3049 0.3984
SelfCheckGPT [31] 0.7727 0.4598 0.4091 0.2784 0.4119 0.6819 0.2669 0.3793 0.3655 0.5320 0.6886 0.2955 0.2553 0.1915 0.3118

Uncertainty
P(True) [21] 0.7216 0.2681 0.5455 0.4068 0.5182 0.6207 0.2572 0.5172 0.4276 0.5533 0.5400 0.1684 0.4026 0.3030 0.4032
LN-Entropy [40] 0.6896 0.3099 0.5000 0.3917 0.5096 0.5553 0.1129 0.3700 0.3200 0.4329 0.6123 0.2149 0.4156 0.3208 0.4461
PPL [30] 0.7025 0.2856 0.5909 0.4205 0.5267 0.5434 0.1144 0.3793 0.3034 0.3990 0.6432 0.2249 0.5745 0.4532 0.5241

Length Length-Score [57] 0.5351 0.0922 0.4318 0.2568 0.3408 0.5510 0.0911 0.5793 0.5034 0.5737 0.5815 0.1496 0.5106 0.3887 0.4674

PRM Qwen2.5-PRM800K [59] 0.6601 0.2746 0.4773 0.3000 0.4572 0.6153 0.2203 0.4400 0.3605 0.4444 0.5694 0.1074 0.5065 0.4167 0.4990
Qwen2.5-PRM-7B [58] 0.5563 0.1354 0.4318 0.2701 0.3913 0.5690 0.1275 0.2200 0.1425 0.2382 0.5422 0.0866 0.4026 0.2952 0.3947

LCM GPT4-o [1] 0.7513 0.3794 0.4091 0.2705 0.4131 0.7045 0.2026 0.2500 0.2965 0.3200 0.7123 0.2204 0.4043 0.2830 0.3704
Qwen2.5-32B [54] 0.6942 0.2082 0.2500 0.1955 0.2935 0.6525 0.2635 0.3103 0.2897 0.4458 0.6424 0.2056 0.4400 0.3300 0.4187

Self-Aware UQAC [25] 0.6671 0.2902 0.5833 0.3715 0.5298 0.6303 0.2369 0.4700 0.3925 0.4885 0.6736 0.2583 0.6623 0.5335 0.6425
EigenScore [5] 0.7539 0.3868 0.4583 0.3250 0.3007 0.6488 0.2601 0.4260 0.3777 0.3815 0.6696 0.2858 0.5195 0.4113 0.3885

Ours RHD 0.7978 0.4852 0.6591 0.4765 0.5699 0.6528 0.2662 0.6207 0.5448 0.6009 0.7361 0.3863 0.7660 0.6255 0.7103

R1-14B

Ensemble
ChainPoll [14] 0.5858 0.1658 0.2704 0.2535 0.3394 0.6640 0.3134 0.3261 0.1775 0.2188 0.5846 0.1607 0.2319 0.1972 0.2638
LMvLM [8] 0.6620 0.3835 0.2563 0.2507 0.3133 0.5435 0.2132 0.3333 0.2300 0.3421 0.6250 0.2914 0.2042 0.1885 0.2506
SelfCheckGPT [31] 0.5714 0.2774 0.2462 0.2167 0.2930 0.5109 0.1048 0.3287 0.2566 0.3683 0.5208 0.1268 0.3167 0.3083 0.0320

Uncertainty
P(True) [21] 0.6460 0.1443 0.2615 0.2374 0.4570 0.6645 0.2582 0.4828 0.3460 0.4885 0.6090 0.2057 0.3147 0.2508 0.4107
LN-Entropy [40] 0.6423 0.2242 0.3479 0.2939 0.4754 0.6248 0.2134 0.5862 0.4147 0.5264 0.5337 0.0494 0.3125 0.2340 0.3678
PPL [30] 0.6526 0.2330 0.3846 0.2744 0.4444 0.6219 0.1182 0.6000 0.4215 0.5162 0.5337 0.1701 0.3058 0.2521 0.3630

Length Length-Score [57] 0.5184 0.0810 0.2817 0.2329 0.3400 0.5814 0.1487 0.5345 0.3848 0.4211 0.5971 0.1843 0.4711 0.3434 0.4284

PRM Qwen2.5-PRM800K [59] 0.5708 0.1285 0.3077 0.2697 0.4028 0.7267 0.4100 0.5862 0.3819 0.5132 0.6579 0.2451 0.4476 0.3366 0.4702
Qwen2.5-PRM-7B [58] 0.5416 0.1249 0.3538 0.2918 0.4429 0.6983 0.3633 0.6133 0.4556 0.5449 0.6674 0.2758 0.5045 0.3642 0.4853

LCM GPT4-o [1] 0.6604 0.2458 0.2154 0.1785 0.3073 0.6265 0.1344 0.3333 0.1628 0.1933 0.6328 0.2356 0.2517 0.1878 0.2683
Qwen2.5-32B [54] 0.6650 0.3055 0.2676 0.2451 0.3632 0.6974 0.2381 0.3833 0.2150 0.3428 0.7071 0.2716 0.3472 0.2517 0.4177

Self-Aware UQAC [25] 0.6374 0.2303 0.3444 0.2836 0.5104 0.7157 0.3732 0.6207 0.4170 0.5050 0.6952 0.3397 0.5417 0.4222 0.4988
EigenScore [5] 0.6706 0.3496 0.3282 0.2282 0.3388 0.6146 0.2228 0.4469 0.3508 0.3337 0.6719 0.3056 0.3694 0.3542 0.3750

Ours RHD 0.7292 0.3476 0.3692 0.3005 0.4644 0.7649 0.4506 0.6667 0.4714 0.5671 0.7255 0.3742 0.5785 0.4421 0.5154

where α > 0 and τ control the weighting strength and the threshold for overthinking, respectively.252

To understand the generalization benefit of our proposed reasoning score–based shaping, we derive a253

uniform convergence bound under augmented rewards:254

Theorem 1 (Generalization Gap with Augmented Rewards). Let the policy class Π be such that255

for any π ∈ Π, the augmented return R(π, ξ) =
∑T

t=1 γ
t−1r̄t(ξ) is uniformly bounded in [0, R̄max]256

for any trajectory ξ sampled from the environment. Each trajectory ξ = (s1, a1, r̄1, . . . , sT , aT , r̄T )257

denotes a complete multi-step reasoning trace. Suppose that Π has Rademacher complexity Rn(Π)258

based on n independent training samples {ξi}ni=1. Then, with probability at least 1 − δ, for any259

π ∈ Π the following holds:260

Jtest(π)− Jtrain(π) ≤ 2R̄max Rn(Π) + R̄max

√
log(1/δ)

2n
,

where Jtest(π) = Eξ[R(π, ξ)] is the expected test return and Jtrain(π) = 1
n

∑n
i=1 R(π, ξi) is the261

empirical training return.262

The proof is given in Appendix A. Intuitively, our reasoning score acts as a regularizer that encourages263

logically consistent behaviors and effectively reduces the Rademacher complexity Rn(Π), thereby264

tightening the bound and improving generalization to unseen reasoning tasks.265

Integrate into GRPO. To demonstrate compatibility with standard RL algorithms, we integrate266

the reasoning score shaping framework into the Group Relative Policy Optimization (GRPO), a267

scalable and widely used RL algorithm for reasoning model training [10, 41], yielding GRPO-R. All268

implementation and formulation details of GRPO-R are provided in Appendix B.269

5 Experiments270

5.1 Reasoning Hallucination Detection271

Data and Evaluation. We evaluate our RHD method on the ReTruthQA dataset spanning three272

reasoning domains: Math, Science, and MultiHopQA (construction details in Appendix C). We273

adopt two evaluation settings: (1) Binary Detection, which assesses the model’s ability to detect274

hallucinations in individual (Q,C) pairs using AUC and PCC; (2) Multi-Trace Ranking, which eval-275

uates whether the model can rank truthful traces higher among multiple candidates (Q, {C1, ..., CN}),276
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Table 2: Performance comparisons between GRPO-R and baselines. Bold indicates the best result.

Models DeepSeek-R1-1.5B Qwen2.5-1.5B-Instruct

MATH500 AIME(2024) GPQA(diamond) GPQA(main) GPQA(extended) MATH500 AIME(2024) GPQA(diamond) GPQA(main) GPQA(extended)

Base 0.772 0.333 0.354 0.333 0.339 0.466 0.100 0.202 0.197 0.211
+GRPO 0.770 0.333 0.359 0.335 0.359 0.480 0.033 0.247 0.214 0.266
+GRPO-R 0.788 0.367 0.414 0.371 0.357 0.490 0.133 0.247 0.243 0.275

following TruthfulQA-MC [28]. We report MC1, MC2, and MC3 to measure hallucination ranking277

accuracy (Evaluation details are in Appendix H).278

Models and Baselines. We conduct experiments on two open-source LRM:279

DeepSeek-R1-Distill-Qwen-7B (R1-7B) and DeepSeek-R1-Distill-Qwen-14B (R1-14B)280

[10]. We compare our method against six categories of hallucination detection baselines:281

(1) Ensemble based self-evaluation (e.g., ChainPoll [14]); (2) Uncertainty based methods (e.g.,282

P(True) [21]); (3) Self-Awareness based approaches (e.g., UQAC [25]); (4) LLM-as-Critic (LCM)283

models (e.g., GPT-4o); (5) Process Reward Models (PRMs) with step-level supervision (e.g.,284

Qwen2.5-Math-PRM); (6) Length-based scoring, which uses trace length as a proxy for hallucination285

likelihood. Baselines and RHD implementation details are provided in Appendix H and I.286

Main Results. As shown in Table 1, RHD consistently outperforms most baselines across all287

ReTruthQA domains, model backbones, and evaluation settings, demonstrating strong robustness.288

Ensemble and LCM methods perform well in binary detection but struggle in multi-trace ranking,289

indicating difficulty in fine-grained comparison. Uncertainty-based methods are sensitive to output290

length, while Process Reward Models often suffer from limited generalization. In contrast, RHD291

directly leverages reasoning mechanisms for more accurate detection. Self-awareness methods292

perform competitively but lack explicit reasoning analysis. Interestingly, the Length-based baseline293

performs well in multi-trace settings—supporting the intuition that overly long traces are more294

error-prone, but underperforms in binary detection, limiting its generality. These findings highlight295

the effectiveness of RHD modeling internal reasoning patterns for hallucination detection. Additional296

ablations and sensitivity studies are provided in Appendix J and K.297

5.2 Reasoning Hallucination Mitigation298

Experimental Setting. To assess the effectiveness of GRPO-R in reducing reasoning hallucina-299

tions, we fine-tune Qwen2.5-1.5B-Instruct and DeepSeek-R1-1.5B on 2,000 examples from300

OpenR1-Math-220K [43] using either GRPO or our proposed GRPO-R. We evaluate the accu-301

racy [20] on two in-domain math benchmarks—MATH500 [27] and AIME 2024 [2]—and an out-of-302

distribution science benchmark—GPQA [39]. Implementation details are in Appendix L.303

Main Results. As shown in Table 2, GRPO-R outperforms GRPO across most of the tasks, indicating304

that shaping reasoning steps via the reasoning score enhances both factual accuracy and reasoning305

reliability. Gains on GPQA further suggest improved generalization beyond training distribution.306

Additional sensitivity analyses are in Appendix M. Hallucination mitigation experiments in data307

distillation in Appendix N further validate the effectiveness of our proposed RHD model.308

6 Conclusion and Limitation309

We tackle the challenge of Reasoning Hallucination in LRMs, where models produce logically310

coherent but factually incorrect reasoning traces. To address this, we propose the Reasoning Score,311

a step-level metric derived from the mechanistic interpretability of reasoning, which effectively312

quantifies reasoning depth. Based on this score, we identify three key hallucination patterns: early-313

stage depth fluctuations, incorrect backtracking and spurious verification-induced overthinking—and314

develop the RHD framework for hallucination detection. Building on these insights, we introduce315

GRPO-R, a reinforcement learning method that integrates step-level reasoning rewards via potential-316

based shaping, improving both accuracy and robustness across reasoning benchmarks.317

Limitation. RHD relies on internal model activations and is thus limited to open-source LRMs with318

accessible activations. Its application to black-box models remains an open challenge. Nonetheless,319

the discovered patterns and metrics could inspire proxy-based extensions. Additionally, experiments320

are conducted on moderate-scale models and datasets due to computational constraints; future work321

includes scaling up to broader domains and model families.322
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A Proof of Generalization Gap with Augmented Rewards477

Proof of Theorem 1. For any policy π ∈ Π, define the augmented return478

R(π, ξ) =

T∑
t=1

γt−1r̄t(ξ).

Assume that r̄t(ξ) ∈ [0, r̄max] for each t, so that479

R(π, ξ) ∈ [0, R̄max].

Define the expected return:480

Jtest(π) = Eξ∼D [R(π, ξ)] ,

and the empirical return:481

Jtrain(π) =
1

n

n∑
i=1

R(π, ξi).

We aim to bound the expected generalization gap between the test return and empirical return for482

policies in class Π via Rademacher complexity. Let the function class be defined as483

F = {fπ(ξ) = R(π, ξ) | π ∈ Π} ,

where R(π, ξ) is the total return over trajectory ξ under policy π using the augmented reward r̄t. Our484

goal is to bound:485

sup
π∈Π

|Jtest(π)− Jtrain(π)| = sup
f∈F

∣∣∣∣∣E[f(ξ)]− 1

n

n∑
i=1

f(ξi)

∣∣∣∣∣ .
Let ξ1, . . . , ξn be the training samples drawn i.i.d. from the environment distribution D, and486

ξ′1, . . . , ξ
′
n be another independent copy drawn from the same distribution. By using an independent487

ghost sample set and the triangle inequality, we have:488

E{ξi}

[
sup
f∈F

(
Eξ∼D[f(ξ)]−

1

n

n∑
i=1

f(ξi)

)]
= E{ξi},{ξ′i}

[
sup
f∈F

(
1

n

n∑
i=1

f(ξ′i)− f(ξi)

)]

≤ E{ξi},{ξ′i}

[
sup
f∈F

1

n

n∑
i=1

(f(ξ′i)− f(ξi))

]
.
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To simplify the expression, we now introduce independent Rademacher variables σ1, . . . , σn ∈489

{−1,+1}, where each σi takes value +1 or −1 with equal probability. Since f(ξ′i) − f(ξi) is490

symmetric around zero due to ξi ∼ ξ′i, we can write:491

E{ξi},{ξ′i}

[
sup
f∈F

1

n

n∑
i=1

(f(ξ′i)− f(ξi))

]
= E{ξi},{ξ′i},{σi}

[
sup
f∈F

1

n

n∑
i=1

σi (f(ξ
′
i)− f(ξi))

]
.

We now apply the triangle inequality again:492

sup
f∈F

n∑
i=1

σi (f(ξ
′
i)− f(ξi)) ≤ sup

f∈F

n∑
i=1

σif(ξ
′
i) + sup

f∈F

n∑
i=1

(−σi)f(ξi).

Since −σi is still a Rademacher variable and ξi and ξ′i have the same distribution, the two expectations493

are equal. Thus, we obtain:494

E{ξi},{ξ′i}

[
sup
f∈F

1

n

n∑
i=1

(f(ξ′i)− f(ξi))

]
≤ 2E{ξi},{σi}

[
sup
f∈F

1

n

n∑
i=1

σif(ξi)

]
= 2Rn(F),

where Rn(F) is the empirical Rademacher complexity of F .495

Assume every return is bounded, 0 ≤ fπ(ξ) ≤ R̄max, and that fπ(ξ) is linear in the augmented496

per–step rewards r̄t(ξ):497

fπ(ξ) =

T∑
t=1

γt−1r̄t(ξ).

Introduce the normalised return f̃π(ξ) := fπ(ξ)
/
R̄max ∈ [0, 1] and let F̃ := {f̃π | π ∈ Π}. Because498

Rademacher complexity is positively homogeneous in its function class,499

Rn(F) = Rn

(
R̄max F̃

)
= R̄max Rn(F̃).

We measure the complexity of the policy class precisely through these normalised returns and set500

Rn(Π) := Rn(F̃).

Justification. Even if the mapping π 7→ f̃π is not injective, Rademacher complexity is monotone501

with respect to set inclusion: enlarging the function class can only increase Rn. Hence analysing the502

(possibly larger) class F̃ yields a conservative upper bound on the true policy complexity—exactly503

what we need for a valid generalisation bound.504

Combining the two displays yields505

Rn(F) ≤ R̄max Rn(Π)

(the identity can be written as “≤” because any alternative normalisation would only shrink the506

right–hand side).507

Substituting the above bound into the symmetrisation result, we obtain508

E
[
sup
π∈Π

∣∣Jtest(π)− Jtrain(π)
∣∣] ≤ 2 R̄max Rn(Π),

We now move from the expected generalization gap to a high-probability bound that holds uniformly509

over all policies π ∈ Π.510

Let Xi = R(π, ξi) =
∑T

t=1 γ
t−1r̄t(ξi) be the augmented return of policy π on the i-th training511

trajectory. Then Jtrain(π) =
1
n

∑n
i=1 Xi and Jtest(π) = Eξ∼D[Xi]. By assumption, Xi ∈ [0, R̄max].512

Applying Hoeffding’s inequality for bounded i.i.d. variables, we have for any fixed π ∈ Π:513

Pr (|Jtest(π)− Jtrain(π)| ≥ ε) ≤ 2 exp

(
− 2nε2

(R̄max)2

)
.
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Solving for ε yields that with probability at least 1− δ,514

|Jtest(π)− Jtrain(π)| ≤ R̄max

√
log(1/δ)

2n
. (16)

Define the worst-case generalization gap over the policy class:515

∆(S) := sup
π∈Π

(Jtest(π)− Jtrain(π)) ,

where S = {ξ1, . . . , ξn} is the training set.516

(i) Expected bound from above: Using symmetrization and Rademacher complexity arguments, we517

already established:518

ES [∆(S)] ≤ 2R̄maxRn(Π). (6)

(ii) High-probability deviation bound via McDiarmid’s inequality: Let us show that ∆(S) concentrates519

around its expectation. Consider replacing any single sample ξi in S by an independent copy ξ′i.520

Because each return Xi = R(π, ξi) is bounded in [0, R̄max] and each contributes 1
n to the empirical521

mean, the influence of changing ξi is bounded by:522 ∣∣∣∆(S)−∆(S(i))
∣∣∣ ≤ R̄max

n
.

Hence, ∆(S) is R̄max/n-Lipschitz in each of its n arguments.523

Applying McDiarmid’s inequality:524

Pr (∆(S)− E[∆(S)] ≥ ε) ≤ exp

(
− 2ε2∑n

i=1(R̄max/n)2

)
= exp

(
− 2nε2

(R̄max)2

)
.

Solving for ε again yields that with probability at least 1− δ,525

∆(S) ≤ E[∆(S)] + R̄max

√
log(1/δ)

2n
. (7)

(iii) Final generalization gap: Combining Equation 6 and 7, with probability at least 1− δ over the526

random draw of the training set S, we obtain:527

sup
π∈Π

[Jtest(π)− Jtrain(π)] ≤ 2R̄maxRn(Π) + R̄max

√
log(1/δ)

2n
.

Equivalently, for all π ∈ Π,528

Jtest(π)− Jtrain(π) ≤ 2R̄max Rn(Π) + R̄max

√
log(1/δ)

2n
(8)

529

Conclusion. Equation 8 provides a uniform generalization gap for any policy π ∈ Π, showing530

that the expected test-time performance is lower bounded by the training performance minus a531

complexity-dependent regularization term. According to this theorem, as the augmented reward532

Rscore(st) is well-aligned with genuine logical reasoning, it acts as a regularizer that effectively533

reduces the Rademacher complexity Rn(Π), thereby tightening the bound. This theoretical result534

highlights that our proposed process supervision framework not only improves credit assignment535

during training but also enhances generalization to unseen reasoning tasks.536

B Detailed Implementation of GRPO-R537

Our proposed process-level reasoning score supervision is compatible with any token-level RL538

algorithm. In this work, we instantiate it within Group Relative Policy Optimization (GRPO),539

yielding GRPO-R. GRPO is a scalable and widely used RL framework for reasoning model training,540
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Table 3: Statistics of ReTruthQA dataset across domains.

Dataset #Samples #Traces Avg Truthful Traces Avg Hallucination Traces

MATH 57 417 3.35 3.96
Science 88 541 3.05 3.10
MultiHopQA 184 1186 2.74 3.70

which promotes the generation of high-quality reasoning trajectories by ranking G candidate outputs541

based on their relative returns, without relying on explicit value estimation [10, 41].542

Given a prompt q and G outputs {oi}Gi=1, each output oi corresponds to a sequence of reasoning543

states {si,1, . . . , si,K} produced over K reasoning steps. In the original GRPO setup, only the final544

step receives a nonzero reward:545

rstepi (j) =

{
rfinali , j = K,

0, j < K,

where rfinali denotes the scalar reward assigned to the final outcome.546

We replace this sparse signal with our shaped step-level reward using potential-based reward shaping:547

r̄stepi (j) = r̃stepi (j) − γ R̃score(si,j+1) + R̃score(si,j),

where R̃score(s) = min
(
Rscore(s), τ

)
and we set γ = 1. These shaped rewards are collected into the548

set R′, standardized as:549

r̂stepi (j) =
r̄stepi (j)− mean(R′)

std(R′)
,

and used to compute token-level advantages:550

Âi,t =
∑

j: step(j)≥t

r̂stepi (j).

Finally, we optimize the policy using the enhanced GRPO objective, termed GRPO-R:551

JGRPO-R(θ) = Eq∼P (Q), {oi}∼πθold (O|q)

[
G∑
i=1

|oi|∑
t=1

min
( πθ(oi,t | q, oi,<t)

πθold(oi,t | q, oi,<t)
Âi,t,

clip
( πθ(oi,t | q, oi,<t)

πθold(oi,t | q, oi,<t)
, 1− ϵ, 1 + ϵ

)
Âi,t

)
− β ·DKL [πθ∥πref]

]
. (9)

C ReTruthQA Construction552

C.1 Data Sources and Models553

Due to the lack of dedicated datasets for evaluating reasoning hallucination detection methods,554

especially for strong open-source models such as DeepSeek-R1-7B and R1-14B, we construct a new555

benchmark tailored for hallucination detection in multi-step reasoning tasks. We select three major556

categories of reasoning tasks: Math, Science, and MultiHopQA.557

For Math, we construct the dataset using benchmark datasets commonly used for evaluating mathe-558

matical reasoning capabilities, including MATH500 [27], AMC 2023 [3], and AIME 2024 [2].559

For Science, we adopt GPQA [39], a PhD-level science multiple-choice QA dataset with questions560

authored by domain experts in physics, chemistry, and biology.561

For MultiHopQA, we randomly sample 1000 questions from four multi-hop QA datasets:562

HotpotQA [55], 2WikiMultihopQA [19], MuSiQue [46], and Bamboogle [38].563
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For each question, we generate 20 responses using DeepSeek-R1-Distill-Qwen-7B and564

DeepSeek-R1-Distill-Qwen-14B via random sampling. The prompting format is as follows:565

Math:566

Please answer the following math question.
You should provide your final answer in the format \boxed{YOUR_ANSWER}.
Separate your following steps using \n\n.
Question:\n\n

567

Science:568

Please answer the following multiple-choice question.
You should provide your final choice in the format \boxed{YOUR_CHOICE}.
Separate your following steps using \n\n.
Question:\n\n

569

MultiHopQA:570

Please answer the following question.
You should provide your final answer in the format \boxed{YOUR_ANSWER}.
Separate your following steps using \n\n.
Question:\n\n

571

C.2 Reasoning Step Segmentation Strategy572

We adopt a two-stage segmentation procedure. First, we split the reasoning trace based on cognitive573

behavior tokens such as </think>, Wait, But, However, Hmm, Alternatively, which typically574

mark transitions in reasoning patterns. Then, we apply a finer-grained split based on formatting: as575

specified in the prompt, the LRM is instructed to separate reasoning steps using \n\n, which we use576

as a delimiter. This hybrid approach ensures both rule-based and model-aligned step boundaries.577

C.3 Annotation Process578

1. Automatic hallucination trace identification. To ensure precision and avoid noise caused579

by random model errors, a reasoning trace is labeled as hallucinated only if its rollout becomes580

incorrect with a failure rate exceeding 90% from a specific reasoning step onward, measured over 16581

rollouts. We adopt a binary search–style trace slicing procedure inspired by OmegaProcess [29] to582

efficiently identify hallucination points. This strategy ensures stability and causality in hallucination583

step detection, avoiding incidental errors due to sampling randomness. For the Science domain,584

which mainly consists of multiple-choice questions and may contain correct guesses, we additionally585

perform multiple random rollouts for traces with correct answers to ensure a success rate above 90%586

before labeling them as truthful.587

2. Filtering non-hallucination failures. We use GPT-4o-Mini to exclude samples where the incorrect588

final answer is due to clearly flawed or illogical reasoning, which does not satisfy our definition of589

hallucination (i.e., coherent and persuasive chains with underlying logical or factual errors). The590

filtering prompt is:591
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Figure 5: Interface Display of the Data Annotation Platform.

Please evaluate if the following reasoning for the given question is logically sound and leads
to a correct solution.
Only respond with a score between 0 and 1, where:
0: completely incorrect or illogical reasoning
1: perfectly sound and correct reasoning

Question: {question}
Reasoning: {reasoning}
Score (0–1):

592

3. Human validation. We further perform human annotation to verify borderline cases. Two593

annotators with at least undergraduate-level backgrounds in computer science independently assess594

whether the reasoning trace is valid. We developed a web-based annotation platform with a timer595

(Figure 5) to standardize reading time. Based on average reading speeds (200–300 wpm for academic596

text), and trace lengths (typically 2000–3000 words), we set the following maximum judgment times:597

(1) MultiHopQA: 3 minutes (2) Math: 5 minutes (3) Science: 8 minutes598

Annotators must determine within the allotted time whether a reasoning trace contains hallucinations.599

If they fail to identify an error in time, the trace is labeled as correct. Cases judged correct by600

humans but verified to be incorrect are labeled as hallucinations, ensuring that the resulting dataset601

captures only traces that genuinely mislead users, which is aligned with the definition of reasoning602

hallucination.603

Final dataset statistics are shown in Table 3. For the Multi-Trace Ranking Setting, we directly use604

the collected hallucinated and truthful responses. For the Binary Detection Setting, which focuses605

on single-response accuracy, we retain one hallucinated and one truthful response per question to606

reflect more realistic ad-hoc usage scenarios.607
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D GSM-NoOp Construction Process608

Following the construction procedure proposed in [32], we randomly sample 300 examples from the609

GSM8K dataset. For each question, we use GPT-4o to generate a No-Op phrase using the following610

prompt:611

Given the following math question, generate a seemingly relevant but ultimately inconsequen-
tial statement (No-Op) that can be added to the question without affecting its solution.
Question: {Question}
Generate a No-Op statement that:
1. Is short and concise
2. Seems relevant to the context
3. Does not affect the mathematical reasoning
4. Is natural and fits grammatically
No-Op statement:

612

We then use GPT-4o to combine the generated No-Op phrase with the original question using the613

following prompt:614

Please combine the following math question and No-Op phrase into a single, natural-sounding
question. The No-Op phrase should be integrated smoothly without changing the mathemati-
cal meaning.
Math Question: {Question} No-Op Phrase: {NoOp Phrase}
Combined Question:

615

The merged questions form our constructed GSM-NoOp dataset.616

To evaluate whether the generated reasoning steps are misled by the inserted No-Op phrase, we617

prompt GPT-4o with the following instruction:618

Please evaluate if the following reasoning step is being misled by the given No-Op phrase.
Provide a score between 0 and 1, where:
a. 0 means the step is not misled by the No-Op phrase at all
b. 1 means the step is completely misled by the No-Op phrase
c. Values in between indicate partial misleading

Note: Simply mentioning the No-Op phrase does not count as being misled. If the step
mentions the No-Op phrase but explicitly rejects or explains why it is irrelevant to solving
the problem, this should be scored as 0.
Reasoning step: {Reasoning Step} No-Op phrase: {NoOp Phrase}
Please provide only a number between 0 and 1, with up to 2 decimal places, wrapped in
\boxed{}. For example: \boxed{0.85}

619

E Details of Understanding the Mechanisms Behind Reasoning Hallucination620

Patterns621

In this section, we focus on analyzing the underlying cause of Pattern #1, as Pattern #2 has already622

been explained through the attention behavior of LRMs in the previous section. Pattern #1 highlights623

that hallucinated reasoning traces tend to exhibit larger fluctuations in reasoning depth, particularly in624

the early steps. Inspired by our preliminary analysis in § 3.2.1, we hypothesize that this may stem625

from the model’s built-in verification capability. However, several key questions remain: Q1: What626

triggers verification behavior in LRMs? Q2: Do excessively high reasoning scores genuinely indicate627

overthinking? Q3: If Q2 holds, what factors lead to the emergence of such overthinking steps?628

To answer these questions, we construct reasoning step triples (c1, c2, c3) with different properties629

drawn from reasoning traces: Stable: The first type consists of triples from truthful traces where630

adjacent steps differ in Rscore by less than 0.1, representing stable reasoning. Rising-1: The second631
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type contains hallucinated triples where Rscore(c3) − Rscore(c2) > 1 and Rscore(c3) < 4, used to632

analyze verification triggered by shallow pattern-matching. Rising-2: The third type is similar to633

Rising-1 but with Rscore(c3) > 4, aimed at understanding overthinking induced by verification.634

Analysis. To investigate Q1, we analyze whether reasoning steps c1 and c2 in the stable and rising635

(Rising-1 + Rising-2) triples are logically consistent, using GPT-4o as the judge (prompt details636

in Appendix F). As shown in Figure 4(a), the stable triples exhibit significantly higher consistency637

between c1 and c2 than rising triples, indicating that LRMs are more likely to trigger verification638

when early steps are internally inconsistent.639

To examine Q2, we evaluate the correctness of c2 and c3 in Rising-2 triples. Using ground-truth640

answers and GPT-4o-based annotation (prompt details in Appendix F), we assess whether these steps641

are logically aligned with the ground-truth answers. As shown in Figure 4(b), c2 in Rising-2 triples is642

substantially more accurate than c3, confirming that verification in this case often modifies correct643

reasoning into incorrect steps. These findings support the hypothesis that excessively high Rscore644

values in hallucinated reasoning traces are symptomatic of overthinking—steps that exhibit apparent645

reasoning depth but in fact reflect spurious or detrimental reasoning.646

To address Q3, we analyze the relationship between perplexity and Rscore. Specifically, we randomly647

sample 200 reasoning steps from ReTruthQA and compute their perplexities as follows:648

PPL(ck) = exp

− 1

|ck|
∑

tkm+1∈ck

log p
(
tkm+1 | tk≤m

) , (10)

PPL(C) = ⟨PPL(c1),PPL(c2), . . . ,PPL(cK)⟩ . (11)

where p(tkm+1 | tk≤m) denotes the model’s predicted probability for token tkm+1 given the prefix tk≤m649

within the reasoning trace.650

As shown in Figure 4(c), perplexity and Rscore are strongly negatively correlated—steps with higher651

reasoning depth tend to have lower perplexity, which is intuitive since deep reasoning often yields652

more predictable outputs. However, when comparing the final step c3 across stable and Rising-2653

triples, we find an interesting phenomenon in Figure 4(d): despite having higher Rscore, c3 in Rising-2654

triples has higher perplexity than in stable triples. This suggests that overthinking steps induced by655

an incorrect verification result in an uncertain or internally unstable generation.656

We hypothesize that such overthinking may reflect spurious verification—a behavior where the model657

performs superficial or misguided validation in pursuit of higher reward during RL fine-tuning. This658

behavior can persist through distillation into smaller models, propagating reasoning hallucinations.659

Based on this analysis, we identify a third hallucination pattern: Pattern #3: Overthinking reasoning660

steps exhibit a positive correlation between Rscore and perplexity (PPL).661

F Prompt for Hallucination Patterns Analysis662

Prompt for step consistency analysis of Q1:663

Please evaluate whether the following reasoning step introduces a new solution approach
compared to the preceding steps. Respond with a score of 0 or 1, where:
0: The step follows the same solution approach as the previous steps.
1: The step explores a new solution approach or direction.
Reasoning step: {step content}
Previous steps: {step content}
Score (0/1):

664

Prompt for step correctness analysis of Q2:665
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Figure 6: Evaluation of Pattern #1 and Pattern #2 on ReTruthQA. Asterisks indicate statistical
significance based on a t-test: * for p-value < 0.05, and *** for p-value < 0.001.

Please evaluate whether the following reasoning step aligns with the final answer. Respond
with a score of 0 or 1, where:
0: The step is inconsistent with the final answer.
1: The step is consistent with the final answer.
Reasoning step: {step}
Final answer: {answer}
Score (0/1):

666

G More Results of Reasoning Hallucination Pattern Analysis667

The hyperparameter settings involved in Section 3.2 are as follows. The constant r, which controls668

the size of the early-step window, is empirically set to r = 2. The constant η, which defines the669

portion of late reasoning steps, is set to η = 0.75. The constant K, used in computing attention to670

earlier steps, is set to K = 5. The threshold τ for identifying potentially overthinking steps is set to671

τ = 4. These hyperparameters are derived from case analysis and are applied consistently throughout672

the subsequent reasoning hallucination detection and mitigation experiments.673

The validity of Pattern #1 and Pattern #2 is verified across all domains of ReTruthQA, with exper-674

imental results shown in Figure 6, where across all three domains, hallucinated reasoning traces675

consistently exhibit significantly higher CV scores and Attention scores than truthful traces.676

H Evaluation and Baseline Details of Reasoning Hallucination Detection677

Based on ReTruthQA, we design two evaluation settings for RHD model: (1) Binary Detection678

Setting: This setting assesses the model’s ability to detect hallucinations in individual question-679

reasoning pairs (Q,C), measuring detection performance using the Area Under the ROC Curve680

(AUC) and Pearson Correlation Coefficient (PCC); (2) Multi-Trace Ranking Setting: This setting681

evaluates the model’s ability to identify the truthful answer among multiple reasoning traces for682

the same question (Q, {C1, C2, . . . , C3}). We follow the evaluation setup of TruthfulQA-MC [28],683

and report the following metrics: MC1: The percentage of instances where the hallucination score684

of the most hallucinated reasoning trace exceeds that of all truthful traces; MC2: The normalized685

total hallucination score assigned to the hallucinated reasoning traces; MC3: The percentage of686

hallucinated reasoning traces that receive a higher hallucination score than all truthful traces. These687

metrics collectively measure the ranking quality of hallucination detection in multi-sample generation688

settings.689

21



For baselines, we consider the following categories: (1) Ensemble-based self-evaluation meth-690

ods, where hallucination scores are obtained through repeated generation, self-verification, or691

peer voting among LLMs. This category includes ChainPoll [14], LMvLM [8], and SelfCheck-692

GPT [31]. (2) Uncertainty-based methods, which estimate hallucination likelihood based on693

model uncertainty, including P(True) [21], LN-Entropy [40], and Perplexity (PPL) [30]. (3) Self-694

awareness-based methods, which rely on internal model representations to detect hallucinations,695

such as UQAC [25] and EigenScore [5]. (4) LLM-as-Critic models, including GPT-4o [1] and696

Qwen2.5-32B [54], which act as external evaluators of reasoning traces. (5) Process reward models,697

such as Qwen2.5-Math-7B-PRM800K [59] and Qwen2.5-Math-PRM-7B [58], trained with step-level698

supervision for reasoning evaluation. (6) Length-based scoring, motivated by recent findings that699

longer reasoning traces are more prone to hallucinations [57], we include Length-Score, which700

directly uses the length of the reasoning trace as its hallucination score.701

I Implementation Details for Reasoning Hallucination Detection702

We conduct all experiments on machines equipped with NVIDIA A6000 GPUs and 52-core Intel(R)703

Xeon(R) Gold 6230R CPUs running at 2.10GHz. We utilize the Huggingface Transformers and704

TRL libraries to implement and run our experiments. During response generation, we use random705

sampling with a temperature of 0.7 and a maximum decoding length of 15,000 tokens for Math tasks706

and 10,000 tokens for all other tasks. For Reasoning Hallucination Detection (RHD), we perform707

two-fold validation to select optimal hyperparameters, while baselines are tuned within the ranges708

specified in their original works. To ensure stability, all randomized experiments are repeated three709

times and the average results are reported.710

We perform a grid search over the interval [0, 1] with a step size of 0.1 to determine the best711

combination of reasoning score weights α1, α2, α3, and α4 using two-fold validation to select the712

hyperparameters. For R1-7B, the best weights in the Math domain are α1 = 0, α2 = 0.4, α3 = 0,713

and α4 = 0.3 for the Multi-Trace Ranking setting, and α1 = 0, α2 = 0.9, α3 = 0.8, and α4 = 0.4714

for the Binary Detection setting. In the Science domain, the best weights are α1 = 0.1, α2 = 1.0,715

α3 = 0, and α4 = 0 for Multi-Trace Ranking, and α1 = 0, α2 = 0.7, α3 = 0.2, and α4 = 0 for716

Binary Detection. In the MultiHopQA domain, the best weights are α1 = 0.4, α2 = 0.1, α3 = 0.6,717

and α4 = 0.4 for Multi-Trace Ranking, and α1 = 0, α2 = 0, α3 = 0.3, and α4 = 0 for Binary718

Detection.719

For R1-14B, the best weights in the Math domain are α1 = 0.3, α2 = 0.7, α3 = 0.1, and α4 = 0.1720

for Multi-Trace Ranking, and α1 = 0, α2 = 0.3, α3 = 1.0, and α4 = 0.2 for Binary Detection.721

In the Science domain, we obtain α1 = 0, α2 = 0.5, α3 = 0.5, and α4 = 0.1 for Multi-Trace722

Ranking, and α1 = 0, α2 = 0, α3 = 0.8, and α4 = 0.1 for Binary Detection. In the MultiHopQA723

domain, the optimal weights are α1 = 0.7, α2 = 0.9, α3 = 0.1, and α4 = 0.0 for Multi-Trace724

Ranking, and α1 = 1.0, α2 = 0, α3 = 0.1, and α4 = 0.1 for Binary Detection.725

Candidate reasoning score layers J are selected from {14, 16, 18, 20, 22, 24, 26} for R1-726

7B and from {32, 36, 40, 42, 44, 46} for R1-14B, while attention score layers L are727

fixed across models as {1, 3, 5, 7, 9, 11, 13}. The models used in our experiments,728

DeepSeek-R1-Distill-Qwen-7B and DeepSeek-R1-Distill-Qwen-14B, are publicly available729

at https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B and https://730

huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-14B, respectively.731

J Ablation Study of RHD732

In this section, we analyze the contribution of each module within the RHD model to reasoning733

hallucination detection. As shown in Table 4, removing any single component leads to a significant734

performance drop on most datasets in the Reasoning Hallucination Detection task. This validates735

the effectiveness of adopting a multivariate regression formulation, where all components jointly736

serve as covariates. Although some coefficients may appear less influential in certain domains,737

they demonstrate notable impact in others. This observation suggests that different domains exhibit738

distinct hallucination pattern preferences, further supporting the validity of the empirically discovered739

patterns, which can be effectively leveraged for reasoning hallucination detection.740
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Table 4: Ablation study of the RHD model on three different domains of ReTruthQA. Each row
removes one component of the hallucination score.

Model Variant MATH Science MultiHopQA

MC1 MC2 MC3 MC1 MC2 MC3 MC1 MC2 MC3

R1-7B

RHD 0.6591 0.4765 0.5699 0.6207 0.5448 0.6009 0.7660 0.6255 0.7103
RHD (w/o Avg(Rscore)) 0.6591 0.4765 0.5699 0.6128 0.5307 0.5934 0.7383 0.6032 0.7082
RHD (w/o CV Score) 0.6364 0.4663 0.5330 0.4483 0.3862 0.4977 0.7447 0.6043 0.6996
RHD (w/o Attention Score) 0.6591 0.4765 0.5699 0.6207 0.5448 0.6009 0.6383 0.5372 0.6123
RHD (w/o PCC Score) 0.5909 0.3830 0.5210 0.6207 0.5448 0.6009 0.6809 0.5553 0.6323

R1-14B

RHD 0.3692 0.3005 0.4644 0.6667 0.4714 0.5671 0.5785 0.4421 0.5154
RHD (w/o Avg(Rscore)) 0.3538 0.2867 0.4847 0.7241 0.4609 0.5531 0.5589 0.4284 0.5290
RHD (w/o CV Score) 0.3692 0.2882 0.4725 0.6470 0.4484 0.5332 0.5455 0.4273 0.5403
RHD (w/o Attention Score) 0.3231 0.2692 0.4503 0.6724 0.4511 0.5190 0.5702 0.4322 0.5180
RHD (w/o PCC Score) 0.3692 0.2882 0.4725 0.6724 0.4601 0.5683 0.5785 0.4421 0.5154

Table 5: Impact of selecting candidate layers from different depth layers of LRMs.

Layers Math Science MultiHopQA

MC1 MC2 MC3 MC1 MC2 MC3 MC1 MC2 MC3

High 0.6591 0.4765 0.5699 0.6207 0.5448 0.6009 0.7234 0.5957 0.6799
Middle 0.6591 0.4765 0.5699 0.6207 0.5448 0.6009 0.7021 0.5862 0.6678
Low 0.6591 0.4765 0.5699 0.6207 0.5448 0.6009 0.7660 0.6255 0.7103

K Sensitivity Analysis of RHD741

In this section, we conduct sensitivity analysis experiments to investigate the impact of design choices742

in RHD. Inspired by the underlying reasoning mechanism, we fix the reasoning score to be extracted743

from the later layers of LRMs. Our primary focus is on selecting the appropriate layers for computing744

the attention score. Specifically, we evaluate three different layer groups: shallow layers (1, 3, 5, 7, 9,745

11, 13), middle layers (8, 10, 12, 14, 16, 18), and deep layers (14, 16, 18, 20, 22, 24, 26) on R1-7B.746

The experimental results are shown in Table 5. We observe that, across the Math and Science747

domains, the choice of attention layers has limited influence on final performance. In contrast,748

for the MultiHopQA domain, shallow layers yield stronger results, aligning with the mechanistic749

interpretation that earlier layers are primarily responsible for information transmission. Based on750

these findings, we select the shallow layers as candidate layers for computing the attention score.751

We further perform sensitivity analysis on influential feature weights in RHD across domains. We752

vary the feature weights in {0.1, 0.3, 0.5, 0.7, 0.9}, and present the results in Figure 7. We observe that753

most features exhibit an initial increase in performance followed by either a decline or stabilization.754

The limited variance across settings indicates that the model is not overly sensitive to individual755

hyperparameter values, demonstrating the robustness and stability of the RHD framework.756

L Implementation Details for Reasoning Hallucination Mitigation757

We fine-tune the models for reasoning hallucination mitigation using a RL framework with the follow-758

ing hyperparameters: batch size of 8, learning rate of 1.0×10−6, and 1 training epoch. We enable gra-759

dient checkpointing to reduce memory usage. The model is configured with a maximum prompt length760

of 512 and a maximum completion length of 7680. For parameter-efficient tuning, we adopt LoRA761

with rank r = 16 and α = 16, applied to all linear layers (lora_target_modules=all-linear).762

During each training step, we sample 16 generations per query.763

The reward function is a weighted sum of three components: (1) an accuracy reward that com-764

bines a rule-based parser [20] and LLM-as-a-Judge [27] to determine correctness, addressing the765

issue where the final answer is correct but fails rule-based extraction (reward = 1 for correct,766

0 for incorrect); (2) a format reward that ensures adherence to the required reasoning format767

<think>\n...\n</think>\n<answer>\n...\n</answer> (reward = 1 if the format is correct,768

0 otherwise); and (3) a tag count reward that softly encourages the inclusion of each of the four769
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Figure 7: We conduct a sensitivity analysis of each module in RHD, using R1-7B on the Math and
MultiHopQA subsets of ReTruthQA. We vary the weights assigned to different components and
observe the resulting performance on the MC3 metric.

required tags (<think>, </think>, <answer>, </answer>) by assigning 0.25 for each tag present.770

The reward weights are set to 1.0, 0.1, and 0.1 for the accuracy, format, and tag count rewards,771

respectively.772

For evaluation, we use the same accuracy-based metric as in training, and report re-773

sults by averaging over four sampled generations per input. The fine-tuned model,774

DeepSeek-R1-Distill-Qwen-1.5B, is publicly available at https://huggingface.co/775

deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B.776
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Figure 8: We conduct a sensitivity analysis on the weight of the reasoning score reward in GRPO-R,
evaluating its impact on the accuracy metric. Experiments are carried out on both Qwen2.5-1.5B-
Instruct and DeepSeek-R1-1.5B by varying the weight parameter α.

M Sensitivity Analysis of Reasoning Score Weight in GRPO-R777

To investigate the sensitivity of the reasoning score reward weight α in the GRPO-R objective, we778

conduct experiments on both DeepSeek-R1-1.5B and Qwen2.5-1.5B-Instruct. We vary α in779

the range [0.05, 0.1, 0.2, 0.3] and evaluate the models’ performance accordingly.780

Experimental results in Figure 8 indicate that both models achieve the best average performance781

when α = 0.1. As α increases beyond this value, we observe a gradual decline in performance.782

These results suggest that incorporating the reasoning score reward can effectively mitigate reasoning783

hallucinations without compromising accuracy, as long as it remains a secondary signal. However,784

overemphasizing the reasoning score (i.e., assigning it a large weight) can lead to a degradation in the785

model’s ability to optimize for correctness, indicating that the reasoning signal should not dominate786

the outcome-based reward objective.787

N RHD-Guided Reasoning Distillation788

Distilling long-chain-of-thought data from large reasoning models to fine-tune smaller LLMs has789

become a widely adopted strategy for improving reasoning capabilities [10]. However, directly fine-790
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Table 6: Accuracy of distilled models across benchmarks using different sampling strategies. Distil-
lation is performed on Qwen2.5-1.5B-Instruct using reasoning traces from R1-14B.

Method MATH500 AIME (2024) GPQA (diamond) GPQA (main) GPQA (extended)
Qwen2.5-1.5B-Instruct 0.466 0.100 0.202 0.197 0.211

Random 20% 0.504 0.100 0.247 0.230 0.242
RHD 20% 0.520 0.100 0.263 0.210 0.249
Random 50% 0.488 0.033 0.187 0.248 0.266
RHD 50% 0.516 0.200 0.247 0.250 0.242

100% 0.488 0.100 0.217 0.210 0.214

tuning small LLMs on raw LRM-generated data risks transferring undesirable reasoning behaviors791

such as shallow pattern matching or overthinking, potentially introducing reasoning hallucinations792

into the smaller models. To address this issue, we propose using the RHD score to rank distillation793

data and select more truthful samples for training.794

The distillation setup uses a learning rate of 5.0 × 10−5, batch size of 8, and LoRA applied to all795

linear layers with parameters lora_r = 16 and lora_alpha = 16. We use the training data from796

the hallucination mitigation experiment where R1-14B produces correct answers, along with their797

corresponding reasoning traces and final answers. We then score each reasoning trace using the RHD798

metric and sort the data in descending order. The top 20% and 50% of ranked samples are distilled799

into a smaller model, R1-1.5B, and compared against randomly sampled subsets of 20%, 50%, and800

100% of the same data.801

Results, as shown in Table 6, demonstrate that RHD-guided distillation consistently yields better802

performance across most evaluation benchmarks. In contrast, distillation using 100% of the raw data803

results in degraded performance, likely due to noise introduced by hallucinated or low-quality samples.804

These findings validate the effectiveness of RHD in selecting high-quality data and mitigating805

reasoning hallucinations in downstream small LLMs during the distillation process.806
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puter resources (type of compute workers, memory, time of execution) needed to reproduce974

the experiments?975

Answer: [Yes]976

Justification: See Section I.977

Guidelines:978

• The answer NA means that the paper does not include experiments.979

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,980

or cloud provider, including relevant memory and storage.981

• The paper should provide the amount of compute required for each of the individual982

experimental runs as well as estimate the total compute.983

• The paper should disclose whether the full research project required more compute984

than the experiments reported in the paper (e.g., preliminary or failed experiments that985

didn’t make it into the paper).986

9. Code of ethics987

Question: Does the research conducted in the paper conform, in every respect, with the988

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?989

Answer: [Yes]990

Justification: We follow the Code of Ethics.991

Guidelines:992

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.993

• If the authors answer No, they should explain the special circumstances that require a994

deviation from the Code of Ethics.995

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-996

eration due to laws or regulations in their jurisdiction).997

10. Broader impacts998

Question: Does the paper discuss both potential positive societal impacts and negative999

societal impacts of the work performed?1000

Answer: [Yes]1001

Justification: Our reasoning hallucination detection framework enhances the trustworthiness1002

of LRMs across various societal applications, as discussed in Section 1.1003

Guidelines:1004

• The answer NA means that there is no societal impact of the work performed.1005

• If the authors answer NA or No, they should explain why their work has no societal1006

impact or why the paper does not address societal impact.1007

• Examples of negative societal impacts include potential malicious or unintended uses1008

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations1009

(e.g., deployment of technologies that could make decisions that unfairly impact specific1010

groups), privacy considerations, and security considerations.1011
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• The conference expects that many papers will be foundational research and not tied1012

to particular applications, let alone deployments. However, if there is a direct path to1013

any negative applications, the authors should point it out. For example, it is legitimate1014

to point out that an improvement in the quality of generative models could be used to1015

generate deepfakes for disinformation. On the other hand, it is not needed to point out1016

that a generic algorithm for optimizing neural networks could enable people to train1017

models that generate Deepfakes faster.1018

• The authors should consider possible harms that could arise when the technology is1019

being used as intended and functioning correctly, harms that could arise when the1020

technology is being used as intended but gives incorrect results, and harms following1021

from (intentional or unintentional) misuse of the technology.1022

• If there are negative societal impacts, the authors could also discuss possible mitigation1023

strategies (e.g., gated release of models, providing defenses in addition to attacks,1024

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from1025

feedback over time, improving the efficiency and accessibility of ML).1026

11. Safeguards1027

Question: Does the paper describe safeguards that have been put in place for responsible1028

release of data or models that have a high risk for misuse (e.g., pretrained language models,1029

image generators, or scraped datasets)?1030

Answer: [NA]1031

Justification: The paper poses no such risks.1032

Guidelines:1033

• The answer NA means that the paper poses no such risks.1034

• Released models that have a high risk for misuse or dual-use should be released with1035

necessary safeguards to allow for controlled use of the model, for example by requiring1036

that users adhere to usage guidelines or restrictions to access the model or implementing1037

safety filters.1038

• Datasets that have been scraped from the Internet could pose safety risks. The authors1039

should describe how they avoided releasing unsafe images.1040

• We recognize that providing effective safeguards is challenging, and many papers do1041

not require this, but we encourage authors to take this into account and make a best1042

faith effort.1043

12. Licenses for existing assets1044

Question: Are the creators or original owners of assets (e.g., code, data, models), used in1045

the paper, properly credited and are the license and terms of use explicitly mentioned and1046

properly respected?1047

Answer: [Yes]1048

Justification: See Section C and Section 5.1049

Guidelines:1050

• The answer NA means that the paper does not use existing assets.1051

• The authors should cite the original paper that produced the code package or dataset.1052

• The authors should state which version of the asset is used and, if possible, include a1053

URL.1054

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.1055

• For scraped data from a particular source (e.g., website), the copyright and terms of1056

service of that source should be provided.1057

• If assets are released, the license, copyright information, and terms of use in the1058

package should be provided. For popular datasets, paperswithcode.com/datasets1059

has curated licenses for some datasets. Their licensing guide can help determine the1060

license of a dataset.1061

• For existing datasets that are re-packaged, both the original license and the license of1062

the derived asset (if it has changed) should be provided.1063
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• If this information is not available online, the authors are encouraged to reach out to1064

the asset’s creators.1065

13. New assets1066

Question: Are new assets introduced in the paper well documented and is the documentation1067

provided alongside the assets?1068

Answer: [Yes]1069

Justification: See Section C.1070

Guidelines:1071

• The answer NA means that the paper does not release new assets.1072

• Researchers should communicate the details of the dataset/code/model as part of their1073

submissions via structured templates. This includes details about training, license,1074

limitations, etc.1075

• The paper should discuss whether and how consent was obtained from people whose1076

asset is used.1077

• At submission time, remember to anonymize your assets (if applicable). You can either1078

create an anonymized URL or include an anonymized zip file.1079

14. Crowdsourcing and research with human subjects1080

Question: For crowdsourcing experiments and research with human subjects, does the paper1081

include the full text of instructions given to participants and screenshots, if applicable, as1082

well as details about compensation (if any)?1083

Answer: [NA]1084

Justification: The data labelling was conducted entirely by the authors, without involving1085

crowdsourced participants or external human subjects. Hence, this does not fall under1086

the scope of crowdsourcing or research with human subjects as defined by the conference1087

guidelines.1088

Guidelines:1089

• The answer NA means that the paper does not involve crowdsourcing nor research with1090

human subjects.1091

• Including this information in the supplemental material is fine, but if the main contribu-1092

tion of the paper involves human subjects, then as much detail as possible should be1093

included in the main paper.1094

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1095

or other labor should be paid at least the minimum wage in the country of the data1096

collector.1097

15. Institutional review board (IRB) approvals or equivalent for research with human1098

subjects1099

Question: Does the paper describe potential risks incurred by study participants, whether1100

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1101

approvals (or an equivalent approval/review based on the requirements of your country or1102

institution) were obtained?1103

Answer: [No]1104

Justification: The paper does not involve crowdsourcing or research with human subjects.1105

Guidelines:1106

• The answer NA means that the paper does not involve crowdsourcing nor research with1107

human subjects.1108

• Depending on the country in which research is conducted, IRB approval (or equivalent)1109

may be required for any human subjects research. If you obtained IRB approval, you1110

should clearly state this in the paper.1111

• We recognize that the procedures for this may vary significantly between institutions1112

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1113

guidelines for their institution.1114
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• For initial submissions, do not include any information that would break anonymity (if1115

applicable), such as the institution conducting the review.1116

16. Declaration of LLM usage1117

Question: Does the paper describe the usage of LLMs if it is an important, original, or1118

non-standard component of the core methods in this research? Note that if the LLM is used1119

only for writing, editing, or formatting purposes and does not impact the core methodology,1120

scientific rigorousness, or originality of the research, declaration is not required.1121

Answer: [No]1122

Justification: This research does not involve LLMs as any important, original, or non-1123

standard components.1124

Guidelines:1125

• The answer NA means that the core method development in this research does not1126

involve LLMs as any important, original, or non-standard components.1127

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)1128

for what should or should not be described.1129

32

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Works
	Empirical Study of Reasoning Hallucination
	Reasoning Score: Measuring Reasoning Depth in Large Reasoning Model
	Reasoning Hallucination Analysis Based on Reasoning Score
	Case Analysis on GSM-NoOps
	Reasoning Hallucination Pattern Analysis

	Analyzing the Mechanisms Behind Reasoning Fluctuation

	Methods
	Reasoning Hallucination Detection
	Mitigating Reasoning Hallucinations via Step-Level Reasoning Score Shaping

	Experiments
	Reasoning Hallucination Detection
	Reasoning Hallucination Mitigation

	Conclusion and Limitation
	Proof of Generalization Gap with Augmented Rewards
	Detailed Implementation of GRPO-R
	ReTruthQA Construction
	Data Sources and Models
	Reasoning Step Segmentation Strategy
	Annotation Process

	GSM-NoOp Construction Process
	Details of Understanding the Mechanisms Behind Reasoning Hallucination Patterns
	Prompt for Hallucination Patterns Analysis
	More Results of Reasoning Hallucination Pattern Analysis
	Evaluation and Baseline Details of Reasoning Hallucination Detection
	Implementation Details for Reasoning Hallucination Detection
	Ablation Study of RHD
	Sensitivity Analysis of RHD
	Implementation Details for Reasoning Hallucination Mitigation
	Sensitivity Analysis of Reasoning Score Weight in GRPO-R
	RHD-Guided Reasoning Distillation

