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ABSTRACT

Transition path sampling (TPS) is an important method for studying rare events,
such as they happen in chemical reactions or protein folding. These events occur
so infrequently that traditional simulations are often impractical, and even recent
machine-learning approaches struggle to address this issue for larger systems. In
this paper, we propose using modern deep learning techniques to improve the scal-
ability of TPS methods significantly. We highlight the need for better evaluations
in the existing literature and start by formulating TPS as a sampling problem over
an unnormalized target density and introduce relevant evaluation metrics to assess
the effectiveness of TPS solutions from this perspective. To develop a scalable
approach, we explore several design choices, including a problem-informed neural
network architecture, simulated annealing, the integration of prior knowledge into
the sampling process, and attention mechanisms. Finally, we conduct a compre-
hensive empirical study and compare these design choices with other recently
developed deep-learning methods for rare event sampling.

1 INTRODUCTION

Understanding the mechanisms of transitions between metastable states in molecular systems, such as
protein folding and chemical reactions (Mulholland, 2005; Piana et al., 2012; Ahn et al., 2019; Spotte-
Smith et al., 2022), is a critical challenge in drug discovery and material design. Transition path
sampling (TPS), developed by Pratt (1986) and expanded by others (Bolhuis et al., 2002), examines
the collection of transition paths that facilitate rare events, which can provide deeper insights into
transition mechanisms and transition rates. However, directly sampling transition paths through
molecular dynamics (MD) simulations is often computationally impractical due to high-energy
barriers that result in an exponentially low probability of transitions (Pechukas, 1981).

To overcome this challenge, various enhanced sampling techniques have been developed(Appendix
B), where an essential component for many of these methods is the use of collective variables
(CVs)—functions of atomic coordinates that describe the slow modes of a system’s transition. While
these methods are effective for certain systems, they heavily rely on detailed domain knowledge
to define CVs, significantly limiting their applicability to systems where such variables are poorly
understood (e.g., intrinsically disordered proteins).

Recently, deep Learning has gained traction as a powerful alternative for transition path sampling
without predefined CVs (Das et al., 2021; Holdijk et al., 2023; Lelievre et al., 2023; Plainer et al.,
2023; Seong et al., 2024; Du et al., 2024). These approaches leverage neural networks to parameterize
bias forces or neural splines, enabling the generation of realistic transition paths. Despite the growing
body of literature in TPS, a lack of standardized metrics remains a key challenge - hindering both
the direct comparison and advancement of existing methods. This paper addresses these issues with
several contributions:

* Unified perspective on transition path sampling. By formulating the TPS problem as sampling
from an unnormalized density, we offer a framework for understanding machine learning-based
path sampling methods and standardize their evaluation using length-adjusted path log-likelihood
and reverse KL divergence.

* Empirical studies on existing TPS methods. We analyze the effectiveness of existing solutions
and demonstrate how they can be improved by using simulated annealing and a physics-inspired
initial interpolation path.
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* Scalable solution to TPS problem with deep learning. We present Doob’s Seq2Seq, a scalable
framework that integrates fixed-window attention with a simulation-free objective to improve TPS
performance and enable scalability to larger systems.

In the following sections, we first formally define the TPS problem, which involves sampling from
a stochastic differential equation conditioned on a specified target state, and present Doob’s h-
transform as a method for addressing this challenge(Section 2). Next, we treat the TPS problem as a
high-dimensional sampling task from an unnormalized density, and propose the path log-likelihood
and reverse KL divergence as appropriate metrics for solving this problem. We then introduce
enhancements to existing TPS methods and propose a novel deep learning objective, Doob’s Seq2Seq,
which offers a scalable solution to the TPS problem(Section 3). Finally, we empirically evaluate the
performance of these methods in Section 4.

2 BACKGROUND

2.1 PROBLEM SETUP

sampled trajectory X
x; ~ m(X)

Molecular dynamics We consider MD simulations on a fixed
time interval [0, T'] that describe motions of a molecular state
X; = (x,v;) € RSN at time ¢, where N is the number of
atoms, x; € R3Y is the atom-wise positions and v, € R3V
is the atom-wise velocities. In particular, we assume that our
systems evolve under second order Langevin dynamics (Bussi &
Parrinello, 2007) defined by the stochastic differential equation
(SDE)

dwy = vy - dt | 0 S —

_ (-l _ . \/f .
dot _( M= VU (z:) rwt) b+ V2M = ykpT - dW: Figure 1: Sampling transition paths.

where U and W; denotes the potential energy function and the This figure illustrates the change in
standard Wiener process, respectively. We denote the Boltz- marginal densities over time as samples
mann constant as kp, temperature of the environment as 77, move from A to B. In this case, the
atoms mass matrix as M, and the friction coefficient as . path describes the folding of a protein.

time ¢

In the overdamped regime (y > 1), we obtain the first-order
SDE,

dz; = (_%M—lsz(mtO dt +\/2M kT~ tdW,. 2)

To sample trajectories of a molecule, we draw an initial configuration from the Boltzmann distribution
Xy = (xg,v9) ~ 7 and run a MD simulation for a fixed time duration. This process generates
trajectories x., of length 7 that are samples from the probability distribution over trajectories

m(Xo.r) = 76(Xo) - [ [N(Xelpe—1,%:-1),  where 3

t=1
pe = (v -dt, =M 'V, U(z) - dt — v, -dt)T, By = 2M~ 'ykpT.

Transition path sampling. In this context, we focus on trajectories that begin and end in specific
predefined states. Formally, these states are denoted as 2o € A C R3" and x, € B C R3". For
instance, .4 may represent the unfolded state of the protein and 5 the folded state.

The distribution over such constrained trajectories X., is referred to as the transition path (TP)
distribution (Dellago et al., 1998) and its corresponding probability is

* 1 1
ma5(Xo:r) = Zla(@o) - m(Xoir) - Is(2r) = Zm6(Xo)La(zo) - 7(X1:r| Xo) - Is(ar), “4)
with Z being a normalizing constant and I an indicator function.
2.2 DOOB’S h-TRANSFORM

The celebrated Doob h-transform addresses the question of conditioning Brownian motion dynamics
to satisfy a terminal condition z, € B (Doob, 1957; Siarkkd & Solin, 2019). In the first-order



Under review as a conference paper at ICLR 2025

case, the optimal solution modifies the SDE dynamics in Equation 2 using a biasing potential
bi (z4,t) = €2V, log hp(xy,t) = €2V, logn(x, € Blx,) where €2 = 2M 'kpT~y~! is the
diffusion coefficient. This biasing potential ensures that the endpoint condition Iz[x ] is satisfied. In
particular, consider

* 1
My p: o~ AWG(JUO)HA[%], (5)

1
dx, = <—71\471V1U(zt) + bf(mt,t)> dt +2M=1kpTy=LdW,
0l

where IT% ;; denotes a measure over paths C([0, 1] — R3") and Z¢_4 normalizes the initial sampling
distribution.

It can be shown that this stochastic process simulates the desired (discretized) transition path 77 5 in
Equation 4, thus solving the TPS problem (Das & Limmer, 2019; Das et al., 2021; Koehl & Oriand,
2022; Du et al., 2024). However, note that naive simulation-based methods for learning the biasing
potential directly can be extremely inefficient (Holdijk et al., 2024).

3 METHODOLOGY

In this section, we begin by framing TPS solely as a sampling problem and introduce approximations
of the optimal transition path distribution, 77 . in Section 3.1. Building on these approximations,
we define evaluation metrics in Section 3.2, drawing from established practices in the ML community
for evaluating high-dimensional distributions (Burda et al., 2016). We then continue by showing
techniques on how existing solutions can be scaled and improved in Section 3.3. Finally, these
techniques are assessed using the proposed metrics in Section 4.

3.1 APPROXIMATIONS OF THE TARGET MEASURE

We start by approximating the initial sampling distribution using

ma(2o,v0) = N (20| A, 0%, )N (volua,, 04,) = 7 (Xo)la(wo). (6)
Here we assume that the initial velocity is unknown and randomly sampled from a normal distribu-

tion (Castellan, 1983) and consider only paths that start close to A. Similarly, we relax the indicator
function on the endpoint conditioning set to be

75(x.) = N(z.|B,op,) ~Ip(z,). 7

In practice, the parameters aiw,a%w , Av,aiv can be estimated empirically through short MD
simulations around metastable states A and B. These simulations are conducted over a short duration,
chosen to ensure the system remains within the vicinity of each metastable state and does not reach the
other state, to quantify the local fluctuations. Depending on the concrete SDE being used, the system
evolves following different assumptions, and thus the transition probability needs to be computed
differently.

First Order System. For the overdamped regime in Equation 2, we obtained a first-order SDE in the
position variables. For the intermediate dynamics of the reference process 7 (xz¢.n ), we consider a
discrete-time approximate yielding the standard normal transition kernel

k(zealee) = N(@ei|oe — M7 IVLU (23)dt, 2kTy ™" dt), (8)
allowing us to compute the step probability. Putting everything together, the resulting approximation
to the TP distribution from Equation 4 can then be written as

t=N—

~ %
TI'A’B(:C()N N TA ZC() < H xt+1|:ct )ﬂ'B(ZEN).

Second Order System. For the second order dynamics in Equation 1, we make similar discrete-time
approximations for the intermediate dynamics of the reference process 7(xo.y ), yielding similar
results as in Plainer et al. (2023), where

— g — %@t)dt, 2M’kaTdt> .

(€))

E(zer1,0001]2e, ve) = N(@pq1 |2 + vedt, 62) N (’Ut+1
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Expanding Xo.ny = ((z0,v0), ...(n,vN)), yields an approximation of transition path distribution
in Equation 4

N-1
7a,5(Xo:n) &~ Ta(zo,v0) H kE(xig1, vip1|ze, ve)mB(2N).
t=0
To sample from our approximate target distribution 7% 5, we next introduce a parameterized or

variational approximation ¢. Noting that we can initialize qo (g, vo) = 74 (0, vo) using the approxi-
mation in Equation 6, we are left with a sampling problem over the remaining transitions

1

71’* (X1,7|X0) = mﬂ'

(X1:7| X0)IB(2F), (10)
where we need to normalize to account for the restriction to x, = B.

3.2 EVALUATION METRICS

Length-adjusted path log likelihood. Consider a sampled trajectory {Xo, ..., Xy} with the
known starting point A and the target end point B, where X; = z; for the first order system, and
Xt = (x4, vy) for the second order system. The length-adjusted log likelihood of the path is defined
as

o log k(X 41| Xy)

N

where k(X;11|X}) is the transition kernel density. We evaluate the density of each sampled trajectory
using the underlying synthetic potential or force field U. Specifically, we keep the log densities at
given boundary intact and we normalize the log transition densities by the trajectory length. This
normalization ensures comparability across trajectories of variable lengths.

log ma(Xo) +

+ logmp(xzN),

While this approach deviates from the exact path distribution defined above, it provides a practical
approximation that aligns with the constraints of the system and facilitates meaningful comparisons
between trajectories.

Reverse KL-divergence. Let Ily.r denote the reference distribution over trajectories and Q.
denote the learned distribution. The reverse KL divergence of two path measures is defined as

Dk Q0.7 ||/ Ho:r] = Eqv [log HO:T} .
0:T

IIy.7 can be computed as the time-adjusted path log-likelihood under the reference process. To
evaluate (.7, the calculation depends on the sampling method employed.

For methods that learn biasing potentials, the transition probabilities can be expressed as
(VU (zi) + b(xe,v¢))dt
M

where the first term models the positional update, and the second term incorporates the velocity
update influenced by biased forces. For models that directly learn the drifts of the stochastic processes,
the KL divergence can be calculated using the Girsanov theorem

QS:T : d.’Et = ’Ut(a?t)dt-f— gt th, HO;T : dxt = Ut(.%’t)dt—FO't th, (11)

T
v 1
D Qi) =Bar | [ 5halloten) - wwolat].
0o <0

]%(l‘prl, vi+1|xi, ’Ui) = N($i+1|x¢ + ’Uidt, 62) ‘N(Ui+1| — YV — ,ZM’kaTdt),

3.3 SCALING TPS IN PRACTICE

We present two scalable simulation-free training algorithms: the first combines the variational objec-
tive of Doob’s Lagrangian(Appendix C) with fixed window attention("Doob’s Seq2Seq"), while the
second identifies a single transition path by maximizing the log-likelihood of the path("MaxLL"). We
then introduce two key techniques—temperature annealing and physics-inspired initial interpolation—
that enhance optimization and empirically evaluate their effects in Section 4.

3.3.1 TRAINING OBJECTIVES
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Figure 2: Doob’s Seq2Seq with enhanced path initialization. We propose constructing a trivial initial (possibly
wrong) trajectory connecting the states and feeding it to the neural network as input. We apply fixed window
attention on this trajectory and learn to predict the mean and sigma of trajectories with Doob’s Lagrangian
objective. While the training itself is simulation-free, consistent trajectories can be constructed by solving the
vector field defined by the sequence of Gaussians, allowing for fast inference time.

Doob’s quZSeq. Algorith,m I presents the com- Algorithm 1 Doob’s Seq2Seq. Modifications from
plete training loop of Doob’s Seq2Seq. The fixed- pgob’s Lagrangian are highlighted in BLUE
window attention mechanism operates on a time Input: Reference drift by, diffusion matrix Gy
window ( — dt,t + dt) with a discretized step gy 04 window dt, initial i’nterpolation I ’
size dt, centered at each sampled time ¢. The core While not conv ; ddo
ideas behind Doob’s Seq2Seq are illustrated in Sample ;)SOU (g gTe)

)

Figure 2.
Compute tyindow = [t — dt, t,t + dt]
Sample z; ~ qt\O T(Ita twindow) (Eq. 12 - 14)

Motivation. By focusing on nearby time steps,
the model effectively learns short-range correla-
tions crucial for simulating molecular processes, Compute t|0 0 () (Eq. 17)
while remaining highly parallelizable, as attention Compute v%:%  (z,) (Eq. 18)
is restricted to local windows. This enables effi- t|0 T

cient training and inference, even for large systems Compute loss: L= <Uf\’g,T($t) Gtvt|0 r(@))
with slow folding dynamics. Update 6 «+ optimizer(8, VL)
We parameterize the mean p;), 7 and covariance End while

’ Return ¢

¥¢jo,7 of the Gaussian path measure g;|o, using

a neural network. Following prior work, we adopt
a diagonal representation of the covariance matrix
such that

. 2 D
0,0 = diag({oyjo,r,atd=1)-
To achieve this, we define a neural network

NNET : [0, 7] x R x R? — R” x R”

that takes as input the time ¢, the initial interpolation path I; where Iy = A, I; = B, and the time
window (¢ — dt,t + dt), producing outputs for the mean perturbation and per-dimension variance.
The parameterized path distribution is then given by

Tyjo,r = /LE‘GO) r+ ZilgO)Te, where € ~ N(0,Ip) (12)
t
,UE‘OO T = Iy + T (1 - T) NNETO(t Iy, WmeW)[ D] (13)
t
EE%T =7 (1 - f) diag (NNETg(t, I, twindow)[D:]) + OminlD- (14)

This formulation ensures that the learned path measure aligns with the correct boundary conditions.
Since gy|o,7 is Gaussian, we can analytically compute the vector fields u§|06%( +) and Ut\o T(xt) (See
Appendix D for more details.)
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MaxLL. Instead of finding distribution of the
paths, we focus on identifying the most proba-
ble single transition path by directly maximiz-
ing the path likelihood. Specifically, we utilize
only the parameterized fi4)9,7 from Equation
13 and maximize log transition probabilities
between g0, and pi;yqj0,7- The training
loop for the MaxLL objective in the first-order
case is detailed in Algorithm 2, following
Equation 8. Similarly, the second order ob-
jective can be straightforwardly constructed
by maximizing the transition probabilities de-
fined in Equation 9.

Algorithm 2 MaxLL (First Order)

Input: Reference drift b, diffusion coefficient matrix =,
offset dt, initial interpolation /¢

While not converged do

Sample t ~ U(0,T)

Compute

H?\O,T =1+ %(1 - %)NNETO(@ It)

11 arjo,r = Trrart 2 (12 )NNET (t+dt, It ar)
Compute F = —VmU(,uf"g’T)

Compute firgnd = uf"ng — (“ff(?,T + F - dt)

Compute loss: £ = NLL(pirand; 0, Z¢ - dt)

Update 6 < optimizer(6, VL)

End while

Return 6

3.3.2 OPTIMIZATION TECHNIQUES

Temperature Annealing. In molecular or

physical systems with rugged potential energy

surfaces, the existence of multiple local minima can make optimization challenging. High-temperature
environments effectively flatten these surfaces, reducing the likelihood of the model getting trapped
in suboptimal regions.

For methods based on the biased MD framework, temperature annealing plays a crucial role. Without
annealing, the RMSD between the desired target state and the end state sampled from the bias
force fails to converge (Seong et al., 2024). While we can avoid the said issue by following the
gaussian parameterization in Equation 13, which guarantees boundary conditions by construction, we
empirically demonstrate the benefits of temperature annealing in Section 4.

Improved initial interpolation. In prior works, the initial guess of the transition path is often made
by linearly interpolating Cartesian coordinates between the initial state r,, and the target state rg.

An alternative, more sophisticated, way to define the initial path is by interpolating the pairwise
atomic distances, termed image dependent pair potential (IDPP) (Smidstrup et al., 2014), where the
pairwise atomic distance d;; is calculated as

dij =

Z (Tie — Tj,0)

oe{z,y,z}

o represents the Cartesian components x, y, and z. Then, we optimize the interpolated distances with
the objective function given as
2

Z (Ti,a - Tj,o')Q )

oe{z,y,z}

SIDPP,N(I') = Z Zw(dij) dr,ij —

i g>i

where w(d;;) is the weighting function that places more emphasis on short distances to avoid atoms
being too close, and d,; ;; being the target pairwise distance for image .

The optimal path on the IDPP surface is significantly closer to a minimum energy path than a linear
interpolation of the Cartesian coordinates. Furthermore, this interpolation can be computed efficiently,
making it a cost-effective approach for generating initial pathways as the starting point for sampling
transition paths.

4 EXPERIMENT

We begin by visually illustrating the TPS problem with lower-dimensional toy example: a synthetic
maze (Section 4.1), which motivates the use of improved optimization techniques in solving TPS,
and the Miiller-Brown potential (Appendix F.1). Next, we quantitatively analyze the effects of
the optimization techniques discussed in Section 3.3.2, such as temperature annealing and initial
interatomic interpolation, comparing their impact on both existing and proposed baselines through an
ablation study on Alanine Dipeptide. Finally, we evaluate the performance and robustness of different
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training objectives—Doob’s Lagrangian, Doob’s Seq2Seq, and MaxLL—on the larger Chignolin
system to assess how well each method adapts to increasing system complexity.

Baselines. For non-ML baselines, we consider the MCMC-based two-way shooting method with
uniform point selection, which generates variable-length trajectories. For ML baselines, we evaluate
two recent CV-free transition path sampling approaches: (Seong et al., 2024, TPS-DPS) and (Du
et al., 2024, Doob’s Lagrangian). A brief overview of these methods is provided in Appendix C.
We then compare the performance of Doob’s Seq2Seq and MaxLL against these baselines, focusing
on settings where models are trained in Cartesian coordinate space without solvent. We provide an
extended comparison with models trained in internal coordinate space in Appendix G.

Evaluation. We report the length-adjusted path log-likelihood and the reverse KL divergence as
discussed in Section 3.2, along with the total GPU hours required for training estimated based on
the experiments on a single NVIDIA H100 GPU. We additionally report the minimum and average
maximum energy per sampled path ensemble, which represent the highest energy barrier encountered
during the transition. This serves as an approximate indicator of the probability of the transition
occurring, as higher barriers correspond to rarer crossing events.

4.1 SYNTHETIC MAZE POTENTIAL

Sampling transition paths is akin to navigating a maze
in the dark, where the route to the end state is un-
known. In this analogy, high potential values repre-
sent the maze walls. Unlike real mazes, however, par-
ticles can tunnel through walls, although such paths
become less likely with sufficiently steep gradients.

(a) Maze  (b) MCMC (c) Doob’s (d) Ours
(easy)

We use trajectories generated by MCMC as ground-
truth data for approximation. While MCMC can
solve both mazes, it requires significantly more com-
putation due to their sequential approach. While all
methods succesfully solve the easy maze, Doob’s
(e)Maze (f) MCMC (g) Doob’s  (h) Ours [ agrangian fails to solve a slightly more challeng-
ing maze, opting to pass directly through the walls
(Figure (g)). In contrast, initializing the interpola-
tion with a more physically plausible path allows the
model to learn to navigate the maze, producing trajec-
tories with lower overall energy and, therefore, more
probable solutions (Figure (h)).

Figure 3: Comparing TPS methods on two dif-
ferent mazes. We evaluate how different transition
path sampling methods solve easy and hard maze-
like potentials.

4.2 ALANINE DIPEPTIDE CONFORMATION CHANGE

Alanine dipeptide is a well-studied system consisting of 2 amino acids and 22 atoms (66 total
degrees of freedom), where the molecule can be described by two collective variables (CV), the
dihedral angles ¢, ©. Here, we perform an extensive empirical study on the effects of temperature
annealing and the improved initial interpolation by incorporating them with three simulation-free
methods, Doob’s Lagrangian, Doob’s Seq2Seq, and MaxLL baselines. In the following, we discuss
the individual aspects of the results listed in Table 1.

Temperature Annealing. We observe that temperature annealing consistently improves all metrics
without introducing additional computational complexity. Notably, the maximum likelihood objective
yields comparable or even better results to the other methods, despite its significantly shorter runtime
and simple training objective.

Improved Initialization. Interestingly, we find that initialization with a physically more accurate
path does not necessarily improve the performance of Doob’s Lagrangian. We hypothesize that this
may result from inconsistent interpolation speeds between snapshots, as evidenced by the energy
profile along transitions (see Appendix H for further discussion).

Fixed Window Attention. Incorporating attention mechanism consistently improves performance
over Doob’s Lagrangian, and we observe noticeable performance gains when combined with the
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Table 1: Transition path sampling for Alanine Dipeptide. We examine the effects of temperature annealing
and interatomic interpolation, with all evaluations conducted on 64 sampled paths. For each metric, we highlight
the best performing model in blue, while the top performing variation under each training objective is marked in
bold.

Method GPU Hours (|) Log Likelihood (1) KL Divergence () Max Energy (|)
MCMC 30 -1072 £ 1577.73 - 303.82 £ 131.24
TPS-DPS 12 1562.79 £ 9.39 -0.25 26.44 £ 16.07
Doob’s Lagrangian 0.65 1446.26 £ 0.51 224.93 730.66 £ 0.04
w/ Temperature Annealing 0.65 1549.28 + 0.47 121.37 280.22 £ 0.26
w/ Interatomic Interpolation 0.65 1109.38 +0.76 561.53 868.04 £ 0.05
Doob’s Seq2Seq 2.5 1505.6 £0.45 164.93 245.05 £0.02
w/ Temperature Annealing 25 1583.18 £0.3 128 592.13 £0.26
w/ Interatomic Interpolation 2.5 1601.57 +0.53 41.75 3.46 = 0.03
MaxLL 0.2 1532.45 69 615

w/ Temperature Annealing 0.2 1599.03 37 233

w/ Interatomic Interpolation 0.2 1545.32 40 619

Table 2: Transition path sampling for Chignolin. We compare the performance of different training objectives
without the use of additional optimization techniques. All evaluations are conducted on 64 sampled paths, with
the best-performing model highlighted in blue.

Method GPU Hours () Log Likelihood (1) KL Divergence (/) Max Energy ()
Doob’s Lagrangian 2.5 9289.54 £ 1.19 1235.23 3828.38 £0.1

Doob’s Seq2Seq 12 9898.07 £ 0.28 626.9 1858.75 £ 0.07
MaxLL 1 5153.18 £ 0.36 881.11 9742.43 £ 0.29

improved initialization. We attribute this to Doob’s Seq2Seq capturing local structural dependen-
cies, allowing the model to leverage the additional physical consistency provided by interatomic
interpolation.

4.3 CHIGNOLIN FOLDING

Chignolin is an artificial protein composed of 10 amino acids with 138 atoms (414 total degrees
of freedom) that folds into a characteristic S-hairpin structure stabilized by hydrogen bonds. In
this section, we focus on comparing different training objectives without incorporating additional
optimization techniques to evaluate their effectiveness in addressing higher-dimensional TPS prob-
lems. While TPS-DPS also tackles the TPS problem for Chignolin, we restrict the comparison of
our methods to Doob’s Lagrangian due to differences in the training environments. Specifically,
TPS-DPS utilizes a force field with implicit solvent, whereas both Doob’s Lagrangian and Doob’s
Seq2Seq are trained in a vacuum, as DMFF currently does not support implicit solvent models.

Consistent with the findings in Section 4.2, Doob’s Seq2Seq demonstrates superior performance
compared to Doob’s Lagrangian in Cartesian space across all evaluation metrics. However, MaxLL
objective does not perform as well for Chignolin, in contrast to its favorable results on smaller systems
such as Alanine Dipeptide and Miiller-Brown potential (F.1).

5 CONCLUSION

In this paper, we propose a standardized framework for evaluating TPS methods by treating them
as high-dimensional sampling problems, a well-studied area in machine learning. Specifically, we
propose path log-likelihood and reverse KL divergence as quantitative metrics, framing TPS as a
sampling problem from an unnormalized density. We also focus on enhancing the computational
efficiency and scalability of TPS, offering a potential pathway toward studying complex molecular
systems with slow-folding dynamics—where simulation-based approaches remain prohibitively
expensive due to significantly longer MD simulation times. We introduce Doob’s Seq2Seq, a scalable
framework that integrates fixed-window attention, which captures local dependencies between
neighboring states, with a simulation-free objective derived from Doob’s Lagrangian, leveraging a
variational formulation of Doob’s h-transform. Additionally, we demonstrate that techniques such as
temperature annealing and enhanced initialization can further improve solutions to the TPS problem.



Under review as a conference paper at ICLR 2025

REFERENCES

Seihwan Ahn, Mannkyu Hong, Mahesh Sundararajan, Daniel H Ess, and Mu-Hyun Baik. Design and
optimization of catalysts based on mechanistic insights derived from quantum chemical reaction
modeling. Chemical reviews, 119(11):6509-6560, 2019.

Emmanuel Bengio, Moksh Jain, Maksym Korablyov, Doina Precup, and Yoshua Bengio. Flow
network based generative models for non-iterative diverse candidate generation. Advances in
Neural Information Processing Systems, 34:27381-27394, 2021.

Peter G. Bolhuis, David W. Chandler, Christoph Dellago, and Phillip L. Geissler. Transition path
sampling: throwing ropes over rough mountain passes, in the dark. Annual review of physical
chemistry, 53:291-318, 2002. URL https://api.semanticscholar.org/CorpusID:
16361128.

E.E. Borrero and Christoph Dellago. Avoiding traps in trajectory space: Metadynamics enhanced
transition path sampling. The European Physical Journal Special Topics, 225(8-9):1609-1620,
July 2016.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL
http://github.com/google/ jax.

Davide Branduardi, Giovanni Bussi, and Michele Parrinello. Metadynamics with adaptive gaussians.
Journal of chemical theory and computation, 8(7):2247-2254, 2012.

Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Importance weighted autoencoders, 2016.
URL https://arxiv.org/abs/1509.005109.

Giovanni Bussi and Davide Branduardi. Free-energy calculations with metadynamics: Theory and
practice. Reviews in Computational Chemistry Volume 28, pp. 1-49, 2015.

Giovanni Bussi and Michele Parrinello. Accurate sampling using langevin dynamics. Physical
Review E, 75(5):056707, 2007.

Gilbert William Castellan. Physical Chemistry. Addison-Wesley, Reading, Mass, 3rd ed edition,
1983.

Jeffrey Comer, James C Gumbart, Jérdme Hénin, Tony Lelievre, Andrew Pohorille, and Christophe
Chipot. The adaptive biasing force method: Everything you always wanted to know but were
afraid to ask. The Journal of Physical Chemistry B, 119(3):1129-1151, 2015.

Avishek Das and David T Limmer. Variational control forces for enhanced sampling of nonequilibrium
molecular dynamics simulations. The Journal of chemical physics, 151(24), 2019.

Avishek Das, Dominic C Rose, Juan P Garrahan, and David T Limmer. Reinforcement learning of
rare diffusive dynamics. The Journal of Chemical Physics, 155(13), 2021.

Christoph Dellago, Peter G Bolhuis, and David Chandler. Efficient transition path sampling: Applica-
tion to lennard-jones cluster rearrangements. The Journal of chemical physics, 108(22):9236-9245,
1998.

Joseph L Doob. Conditional brownian motion and the boundary limits of harmonic functions. Bulletin
de la Société Mathématique de France, 85:431-458, 1957.

Yuanqgi Du, Michael Plainer, Rob Brekelmans, Chenru Duan, Frank No’e, Carla P. Gomes,
Al’an Aspuru-Guzik, and Kirill Neklyudov. Doob’s lagrangian: A sample-efficient varia-
tional approach to transition path sampling. ArXiv, abs/2410.07974, 2024. URL https:
//api.semanticscholar.org/CorpusID:273233602.


https://api.semanticscholar.org/CorpusID:16361128
https://api.semanticscholar.org/CorpusID:16361128
http://github.com/google/jax
https://arxiv.org/abs/1509.00519
https://api.semanticscholar.org/CorpusID:273233602
https://api.semanticscholar.org/CorpusID:273233602

Under review as a conference paper at ICLR 2025

Peter Eastman, Jason Swails, John D. Chodera, Robert T. McGibbon, Yutong Zhao, Kyle A.
Beauchamp, Lee-Ping Wang, Andrew C. Simmonett, Matthew P. Harrigan, Chaya D. Stern,
Rafal P. Wiewiora, Bernard R. Brooks, and Vijay S. Pande. OpenMM 7: Rapid development
of high performance algorithms for molecular dynamics. PLOS Computational Biology, 13(7):
€1005659, July 2017.

Bernd Ensing, Marco De Vivo, Zhiwei Liu, Preston Moore, and Michael L Klein. Metadynamics as a
tool for exploring free energy landscapes of chemical reactions. Accounts of chemical research, 39
(2):73-81, 2006.

Sebastian Falkner, Alessandro Coretti, Salvatore Romano, Phillip Geissler, and Christoph Dellago.
Conditioning normalizing flows for rare event sampling. arXiv preprint arXiv:2207.14530, 2023.

Lars Holdijk, Yuanqi Du, Ferry Hooft, Priyank Jaini, Berend Ensing, and Max Welling. Stochastic
optimal control for collective variable free sampling of molecular transition paths. Advances in
Neural Information Processing Systems, 36, 2023.

Lars Holdijk, Yuanqi Du, Ferry Hooft, Priyank Jaini, Berend Ensing, and Max Welling. Stochastic
optimal control for collective variable free sampling of molecular transition paths. Advances in
Neural Information Processing Systems, 36, 2024.

Sergei Izrailev, Sergey Stepaniants, Barry Isralewitz, Dorina Kosztin, Hui Lu, Ferenc Molnar,
Willy Wriggers, and Klaus Schulten. Steered molecular dynamics. In Computational Molecular
Dynamics: Challenges, Methods, Ideas: Proceedings of the 2nd International Symposium on
Algorithms for Macromolecular Modelling, Berlin, May 21-24, 1997, pp. 39-65. Springer, 1999.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Zidek, Anna Potapenko, et al. Highly accurate
protein structure prediction with alphafold. nature, 596(7873):583-589, 2021.

Hendrik Jung, Kei ichi Okazaki, and Gerhard Hummer. Transition path sampling of rare events by
shooting from the top. The Journal of Chemical Physics, 147(15), August 2017.

Hendrik Jung, Roberto Covino, A. Arjun, Christian Leitold, Christoph Dellago, Peter G. Bolhuis,
and Gerhard Hummer. Machine-guided path sampling to discover mechanisms of molecular
self-organization. Nature Computational Science, 3(4):334-345, April 2023.

Jarek Juraszek and Peter G. Bolhuis. Rate constant and reaction coordinate of trp-cage folding in
explicit water. Biophysical Journal, 95(9):4246-4257, November 2008.

Johannes Kistner. Umbrella sampling. Wiley Interdisciplinary Reviews: Computational Molecular
Science, 1(6):932-942, 2011.

Yuri Kifer. Random perturbations of dynamical systems. Nonlinear Problems in Future Particle
Accelerators, 189, 1988.

Leon Klein and Frank Noé. Transferable boltzmann generators, 2025. URL https://arxiv.
org/abs/2406.14426.

Patrice Koehl and Henri Orland. Sampling constrained stochastic trajectories using brownian bridges.
The Journal of Chemical Physics, 157(5), 2022.

Tony Lelievre, Genevieve Robin, Innas Sekkat, Gabriel Stoltz, and Gabriel Victorino Cardoso.
Generative methods for sampling transition paths in molecular dynamics. ESAIM: Proceedings
and Surveys, 73:238-256, 2023.

James A Maier, Carmenza Martinez, Koushik Kasavajhala, Lauren Wickstrom, Kevin E Hauser, and
Carlos Simmerling. ff14sb: improving the accuracy of protein side chain and backbone parameters
from ff99sb. Journal of chemical theory and computation, 11(8):3696-3713, 2015.

Adrian J Mulholland. Modelling enzyme reaction mechanisms, specificity and catalysis. Drug
discovery today, 10(20):1393-1402, 2005.

10


https://arxiv.org/abs/2406.14426
https://arxiv.org/abs/2406.14426

Under review as a conference paper at ICLR 2025

Frank Noé, Simon Olsson, Jonas Kohler, and Hao Wu. Boltzmann generators: Sampling equilibrium
states of many-body systems with deep learning. Science, 365(6457):eaaw1147, 2019.

Nikolas Niisken and Lorenz Richter. Solving high-dimensional hamilton—jacobi—bellman pdes using
neural networks: perspectives from the theory of controlled diffusions and measures on path space.
Partial differential equations and applications, 2(4):48, 2021.

Philip Pechukas. Transition state theory. Annual Review of Physical Chemistry, 32(1):159-177, 1981.

Stefano Piana, Kresten Lindorff-Larsen, and David E Shaw. Protein folding kinetics and thermody-
namics from atomistic simulation. Proceedings of the National Academy of Sciences, 109(44):
17845-17850, 2012.

Michael Plainer, Hannes Stérk, Charlotte Bunne, and Stephan Giinnemann. Transition path sampling
with boltzmann generator-based mcmc moves. In Generative Al and Biology Workshop, 2023.

Lawrence R Pratt. A statistical method for identifying transition states in high dimensional problems.
Journal of Chemical Physics, 85:5045-5048, 1986. URL https://api.semanticscholar.
org/CorpusID:97358086.

Dominic C Rose, Jamie F Mair, and Juan P Garrahan. A reinforcement learning approach to rare
trajectory sampling. New Journal of Physics, 23(1):013013, 2021.

Simo Sirkkéd and Arno Solin. Applied stochastic differential equations, volume 10. Cambridge
University Press, 2019.

Jurgen Schlitter, Michael Engels, and Peter Kriiger. Targeted molecular dynamics: a new approach
for searching pathways of conformational transitions. Journal of molecular graphics, 12(2):84-89,
1994.

Marcin Sendera, Minsu Kim, Sarthak Mittal, Pablo Lemos, Luca Scimeca, Jarrid Rector-Brooks,
Alexandre Adam, Yoshua Bengio, and Nikolay Malkin. Improved off-policy training of diffusion
samplers. In The Thirty-Eighth Annual Conference on Neural Information Processing Systems, pp.
1-30. ACM, 2024.

Kiyoung Seong, Seonghyun Park, Seonghwan Kim, Woo Youn Kim, and Sungsoo Ahn. Transition
path sampling with improved off-policy training of diffusion path samplers. 2024. URL https:
//api.semanticscholar.org/CorpusID:2701231009.

Aditya N Singh and David T Limmer. Variational deep learning of equilibrium transition path
ensembles. The Journal of Chemical Physics, 159(2), 2023.

Sgren Smidstrup, Andreas Pedersen, Kurt Stokbro, and Hannes Jénsson. Improved initial guess for
minimum energy path calculations. The Journal of chemical physics, 140 21:214106, 2014. URL
https://api.semanticscholar.org/CorpusID:42575358.

Justin S Smith, Olexandr Isayev, and Adrian E Roitberg. Ani-1: an extensible neural network
potential with dft accuracy at force field computational cost. Chemical science, 8(4):3192-3203,
2017.

Evan Walter Clark Spotte-Smith, Ronald L Kam, Daniel Barter, Xiaowei Xie, Tingzheng Hou,
Shyam Dwaraknath, Samuel M Blau, and Kristin A Persson. Toward a mechanistic model of

solid—electrolyte interphase formation and evolution in lithium-ion batteries. ACS Energy Letters,
7(4):1446-1453, 2022.

Glenn M Torrie and John P Valleau. Nonphysical sampling distributions in monte carlo free-energy
estimation: Umbrella sampling. Journal of computational physics, 23(2):187-199, 1977.

Eric Vanden-Eijnden and Matthias Heymann. The geometric minimum action method for computing
minimum energy paths. The Journal of chemical physics, 128(6), 2008.

Haibo Wang, Yuxuan Qiu, Yanze Wang, Rob Brekelmans, and Yuanqi Du. Generalized flow matching
for transition dynamics modeling. arXiv preprint arXiv:2410.15128, 2024.

11


https://api.semanticscholar.org/CorpusID:97358086
https://api.semanticscholar.org/CorpusID:97358086
https://api.semanticscholar.org/CorpusID:270123109
https://api.semanticscholar.org/CorpusID:270123109
https://api.semanticscholar.org/CorpusID:42575358

Under review as a conference paper at ICLR 2025

Han Wang, Linfeng Zhang, Jiequn Han, and E Weinan. Deepmd-kit: A deep learning package
for many-body potential energy representation and molecular dynamics. Computer Physics
Communications, 228:178-184, 2018.

Xinyan Wang, Jichen Li, Lan Yang, Feiyang Chen, Yingze Wang, Junhan Chang, Junmin Chen, Wei
Feng, Linfeng Zhang, and Kuang Yu. DMFF: An open-source automatic differentiable platform
for molecular force field development and molecular dynamics simulation. Journal of Chemical
Theory and Computation, 19(17):5897-5909, 2023.

E Weinan and Eric Vanden-Eijnden. Transition-path theory and path-finding algorithms for the study
of rare events. Annual review of physical chemistry, 61(2010):391-420, 2010.

M M Yamashita, R J Almassy, C A Janson, D Cascio, and D Eisenberg. Refined atomic model of
glutamine synthetase at 3.5 A resolution. Journal of Biological Chemistry, 264(30):17681-17690,
1989.

Jiawei Yan, Hugo Touchette, and Grant M Rotskoff. Learning nonequilibrium control forces to
characterize dynamical phase transitions. Physical Review E, 105(2):024115, 2022.

A LIMITATIONS AND FUTURE WORKS

Our current results are based on small to medium-sized systems, but there is great potential to extend
this work to more complex biomolecular transitions, further bridging the gap between deep learning-
based TPS methods and real-world simulation challenges. Additionally, while our implementation
relies on MLP and the standard transformer architecture, future studies could benefit from exploring
equivariant spatial embeddings and attention mechanisms. These methods have shown promise in
other areas, such as protein structure prediction Jumper et al. (2021) and machine learning-driven
interatomic potentials Wang et al. (2018); Smith et al. (2017), and could enhance TPS performance
in high-dimensional settings. Furthermore, while our proposed evaluation metrics focus on treating
TPS as a sampling problem, future work could explore alternatives based on physical or chemical
consistency, such as free energy differences, committor probabilities, or kinetic rate predictions, to
better align learning objectives with real-world systems.

B RELATED WORKS

The most widely used algorithms for sampling transition paths include shooting methods (Juraszek
& Bolhuis, 2008; Borrero & Dellago, 2016; Jung et al., 2017; Falkner et al., 2023; Jung et al.,
2023), steered molecular dynamics (SMD) (Schlitter et al., 1994; Izrailev et al., 1999), umbrella
sampling (Torrie & Valleau, 1977; Kistner, 2011), metadynamics (Ensing et al., 2006; Branduardi
et al., 2012; Bussi & Branduardi, 2015), and adaptive biasing force (ABF) methods (Comer et al.,
2015).

Recent advances in machine learning have spurred the development of reinforcement learning and
stochastic control approaches, leveraging neural network ansatz for transition path sampling (Rose
etal., 2021; Das et al., 2021; Yan et al., 2022; Holdijk et al., 2023; Singh & Limmer, 2023; Seong et al.,
2024; Wang et al., 2024). Among these, PIPS employs a stochastic control framework that optimizes
the endpoint distribution using a KL. divergence objective (Holdijk et al., 2023). This method has
been further improved by incorporating a log-variance divergence objective along with a replay buffer
to enhance training stability (Seong et al., 2024). In contrast, Doob’s Lagrangian (Du et al., 2024)
adopts a collocation-based approach, explicitly satisfying boundary conditions by optimizing over
tractable Gaussian paths conditioned on both endpoints.

A closely related concept is the minimum energy pathway, which corresponds to the most probable
transition path as derived from the Freidlin-Wentzell functional (Kifer, 1988). To solve this prob-
lem, various iterative and optimization-based methods have been proposed. Classical approaches
include the string method and nudged elastic band method, which iteratively refine transition path-
ways (Weinan & Vanden-Eijnden, 2010). Additionally, variational formulations, such as the minimum
action method, solve the problem by directly minimizing the action functional (Vanden-Eijnden &
Heymann, 2008).
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C SAMPLING FROM THE TRANSITION PATH DISTRIBUTION

To sample from the approximate target distribution 7% s(Equation 4), existing ML methods introduce
a variational approximation parameterized by either a biasing potential b; or a path of intermediate
marginals of ¢; of the transition path.

Off-policy diffusion sampling. (Seong et al., 2024) consider learning an approximate biasing
potential b; using the log-variance divergence (Niisken & Richter, 2021) which is closely related to
the trajectory balance objective in Generative Flow Networks (Bengio et al., 2021; Sendera et al.,
2024). The off-policy nature of these objectives allows for flexible exploration strategies and avoids
backpropagation through trajectories simulated with the learned bias potential. Concretely, for a
sampling distribution g, this method may be viewed as minimizing the log-variance divergence
(Seong et al., 2024; Niisken & Richter, 2021)

min DI [¢" (X1 | Xo) [7* (X111 Xo0)

— Vary, [log LXurXo) [
T (X 1.7 |X 0)
Doob’s Lagrangian. Instead of approximating the biasing drift in Equation 5 directly, (Du et al.,

2024) propose to parameterize a path distribution ¢°(X.,| X) within a tractable variational family,
where b = b(X4,t) indicates an induced, approximate biasing potential. Notably, for point-mass
conditioning sets, the variational family preserves x, = B by design. The stochastic control
objective in (Du et al., 2024) can be viewed as minimizing the reverse KL divergence to the target TP
distribution

min D [q" (X1 | Xo) 7" (X1.r| Xo)] (16)
q

(Du et al., 2024) consider (mixture of) Gaussian parameterizations for ¢°, where the corresponding
b(X,t) can be recovered through simple identities and is used to simulate transition path trajectories
at inference time.

D COMPUTATION OF VECTOR FIELDS uj), ; AND v 1

We follow the result from Du et al. (2024) for analytical computation of vector fields “f\o o and

UtG\O,T‘
0 10%
(¢,0) . Oltjo,T 0,7 — _
th,T( ) — ot + |:2 ot Et\(},T - Gtztlé’Til (x — ,ut‘()’T), (17)
| 0
ot r(@) = 56 (@) — b)) (18)
We start from the optimization objective of Doob’s Lagrangian,
T
S = min / dt /dx tjo,7() <1}t|0)T(Z),Gt vt|0}T(x)> , (19a)
dtjo,7,>Vt|0,T J(
s.t. qo7(2)t = = (Va, qjo,7(2) (be(x) + 2G4 vyjo,r(x))) + Zij(Gt)ij2$i3$th|o,T($)7
(19b)
qo(z) = d(x — A), qgr(z) =6(x — B). (19¢)

where they show that the said Lagrangian action functional has a unique solution that matches the
Doob’s h-transform given by the condition of reaching the endpoint B at predefined time 7. We
first re-write the Fokker-Planck constraint in Equation 19b with all drift terms absorbed into a single
vector field uy 0,7,

9qyj0,7(7) A
— 5 =~ (Ve anor(@) uo.r(w)) + %:(Gt)ijm%lo,ﬂx)- (20)
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When we parameterize g o,r as the family of endpoint-conditioned gaussian marginals
N(z| Htjo,T» Zt\O,T)’

0 10%

(9.0) (. ._ 9Htl0.T t0,T ¢\—1 -1

t|0,T( ) — ot § ot Et|O,T -Gy Et|o,T (:v - “tw,T) 2
satisfies the Fokker-Planck equation Equation 20 for g9 7 and diffusion coefficients Gy = %EtEgF
Given ug‘qoe% corresponding to g, 7, we can simply solve for the vy, 7 satisfying the Fokker-Planck

equation in Equation 19b in our variational Doob objective Equation 19. Since G; was assumed to be
invertible and the base drift b; is known, we have

() = 5 (G (w2 @)~ () @)

For detailed proofs and derivations of the result, please refer to the original work.

E EXPERIMENT SETUP

E.1 MOLECULAR SYSTEM CONFIGURATIONS

For molecular dynamics simulations, we use the AMBERI4 force field
(amberld/protein.f£14SB Maier et al. (2015)) without a solvent as implemented in
OpenMM (Eastman et al., 2017). However, since OpenMM does not support auto-differentiation, we
do not use it for simulations directly. Instead, we leverage DMFF (Wang et al., 2023), a differentiable
molecular simulation framework built with JAX (Bradbury et al., 2018). This is necessary because,
during training, we compute

() (0)
VoU (xt\o,T ~ N(Mﬂo,T’ Et\o,T)) ;

where x4, 7 is sampled based on the neural network parameters.

For the simulations, we use a timestep of dt = 1 fs, v = 1 ps, and a temperature of 300 K. The total
simulation time is 7 = 1 ps for Alanine Dipeptide and 7 = 5 ps for Chignolin. To compute the
MCMC two-way shooting baselines, we use the same settings and consider trajectories as failed if
they exceed 2,000 steps without reaching the target.

E.2 MODEL CONFIGURATIONS

For TPS-DPS, we follow the model configurations reported by Seong et al. (2024) for Alanine
Dipeptide.

For Doob’s Lagrangian, we parameterize the model using a 5-layer MLP with ReLLU activations,
employing 256 hidden units for Alanine Dipeptide and 512 hidden units for Chignolin. Optimization
is performed using the Adam optimizer with a learning rate of 10~%, as reported in (Du et al., 2024).
When training Doob’s Lagrangian with internal coordinates, we represent the molecule using bond
lengths, bond angles, and dihedral angles, following the parameterization in (Noé et al., 2019).

For Doob’s Seq2Seq, the model for Alanine Dipeptide consists of a 5-layer MLP with 256 hidden
units, combined with 3-layer single-head attention blocks with 128 hidden units. For Chignolin, we
use a 3-layer MLP with 512 hidden units alongside 3-layer single-head attention blocks with 256
hidden units. Training is performed using the Adam optimizer with a learning rate of 10~%.

E.3 TRAINING EFFICIENCY

For enhanced shooting methods such as TPS-DPS, runtime is primarily determined by the number of
rollouts (simulations) and the computational cost per rollout. While the simulation enables flexible
and accurate exploration of transition dynamics, it also leads to increased computational costs as
system size and complexity grow. As noted by (Seong et al., 2024), training on larger proteins such
as Glutamine Synthetase (Yamashita et al., 1989) would require over 1,700 GPU hours due to the

14



Under review as a conference paper at ICLR 2025

significantly longer MD simulation times, illustrating the scaling challenges of simulation-based
sampling.

In contrast, Doob’s Lagrangian, Doob’s Seq2Seq, and the maximum likelihood objective are trained
without sequential simulations. While the computational overhead increases with system size, this
overhead does not scale exponentially with simulation time, possibly making these methods more
computationally efficient.

F Toy EXPERIMENT

F.1 MULLER-BROWN SYNTHETIC POTENTIAL ENERGY SURFACE

The Miiller-Brown potential is a popular benchmark to study transition path sampling between
metastable states. It consists of three local minima, and we aim to sample transition paths connecting
state at the top left and bottom right. In Figure 4, we visualize the potential and the sampled paths
under each method. We see that for the low dimensional system, simple maximum likelihood
objective performs the best across all metrics.

Table 3: Transition path sampling for Miiller-Brown potential

Method Log-Likelihood (1) | KL Divergence () | Max Energy ()
MCMC 3.13 £0.05 - -13.77 £ 16.43
TPS-DPS 8.6 +3.9 741.47 2.35£285
Doob’s Lagrangian 8.21 +0.39 290.47 -14.81 £ 13.73
Doob’s Seq2Seq 8.29 +0.24 300.05 -6.48 £ 154
MaxLL 9.63 10.16 -40.27

(b) TPS-DPS

(a) MCMC

(c) Doob’s (d) Doob’s Seq2Seq

(e) Max Likelihood

Figure 4: Comparing TPS methods under the Miiller-Brown potential

G EXTENDED RESULTS ON MOLECULAR SYSTEMS

Table 4: Extended transition path sampling result for Alanine Dipeptide. For models trained in Cartesian
coordinate, we report the best performing variation from Table 1. All evaluations are conducted on 64 sampled
paths. For each metric, we highlight the best performing model in blue, while the top performing method under
Cartesian coordinate system is marked in bold.

Method Coordinate GPU Hours (|) Log Likelihood (1) KL Divergence () Max Energy ({)
TPS-DPS Cartesian 12 1562.79 £9.39 -0.25 26.44 £ 16.07
Doob’s Seq2Seq Cartesian 2.5 1601.57 +0.53 41.75 3.46 £+ 0.03
MaxLL Cartesian 0.2 1599.03 37 233
Doob’s Lagrangian Cartesian 0.65 1549.28 £ 0.47 121.37 280.22 £ 0.26
Doob’s Lagrangian Internal 0.65 1647.88 + 0.28 23.87 -16.9 + 0.02

We train Doob’s Lagrangian in internal coordinate space and compare its performance against models
trained in Cartesian coordinate space. For both Alanine Dipeptide and Chignolin, we find that the
internal coordinate representation outperforms all models operating on Cartesian coordinates.
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Table 5: Extended transition path sampling result for Chignolin. All models are trained without enhanced
optimization techniques, and the evaluations are conducted on 64 sampled paths. For each metric, we highlight
the best performing model in blue, while the top performing method under Cartesian coordinate system is
marked in bold.

Method Coordinate GPU Hours (/) Log Likelihood (1) KL Divergence () Max Energy (|)
Doob’s Seq2Seq Cartesian 12 9898.07 + 0.28 626.9 1858.75 + 0.07
MaxLL Cartesian 1 5153.18 £0.36 881.11 9742.43 £0.29
Doob’s Lagrangian ~ Cartesian 2.5 9289.54 £ 1.19 1235.23 3828.38 + 0.1

Doob’s Lagrangian Internal 2.5 10169.42 £+ 0.37 355.99 1754.81 £ 0.09

Internal coordinates efficiently capture molecular geometry by focusing on bond lengths, angles,
and dihedral angles—the primary degrees of freedom governing conformational changes. This
reduces the redundancy inherent in Cartesian coordinates and highlights the most relevant collective
motions along transition pathways. However, models trained in internal coordinate space may
face limitations in certain scenarios: The choice of internal coordinates is system-specific, posing
challenges when transferring a model trained on one system to a different one (Klein & Noé, 2025).
Additionally, internal coordinates are less suitable for systems with dynamic topologies, such as
those undergoing bond-breaking or bond-forming events, where the definition of internal coordinates
becomes ambiguous.

In contrast, while lacking the inductive biases provided by internal coordinates, Cartesian coordinates
offer a consistent representation across diverse molecular systems, regardless of size, topology, or
dynamic bonding changes. This generalizability makes them well-suited for benchmarking and
comparative studies. For this reason, we conducted our main experiments in Cartesian coordinate
space to establish a baseline for performance comparisons.

Nonetheless, internal coordinate representations can offer advantages when working within a single
system where dynamic topologies are not a concern, such as protein-folding events. By focusing on
the most relevant degrees of freedom, models can converge faster and achieve improved accuracy in
capturing transition dynamics, as demonstrated in Table 4 and Table 5.

H VISUALIZATION OF PAIRWISE INTERATOMIC DISTANCE INTERPOLATION

Here we present the energy profile along transitions of the 100 interpolated snapshots using the method
described in Section 3.3.2, revealing irregular dynamics throughout the transition. A visualization of
ten of these 100 snapshots is depicted in Figure 6.
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Figure 5: Visualization of transition energy along an initial interpolated path.
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Figure 6: Visualization of ten frames of the trajectory for Alanine Dipeptide for an interpolated path. We can see
that some atoms jump back and forth (compare the red oxygen) which highlights the noise in the transition.

17



	Introduction
	Background
	Problem Setup
	Doob's h-Transform

	Methodology
	Approximations of the Target Measure
	Evaluation Metrics
	Scaling TPS in Practice
	Training Objectives
	Optimization Techniques


	Experiment
	Synthetic Maze Potential
	Alanine Dipeptide Conformation Change
	Chignolin Folding

	Conclusion
	Limitations and Future Works
	Related Works
	Sampling from the Transition Path Distribution
	Computation of vector fields ut|0,T and  vt|0,T
	Experiment Setup
	Molecular System Configurations
	Model configurations
	Training Efficiency

	Toy Experiment
	Müller-Brown Synthetic Potential Energy Surface

	Extended Results on Molecular Systems
	Visualization of pairwise interatomic distance interpolation

