
Published as a conference paper at ICLR 2025

A TRAINING-FREE SUB-QUADRATIC COST
TRANSFORMER MODEL SERVING FRAMEWORK WITH
HIERARCHICALLY PRUNED ATTENTION

Heejun Lee∗, Geon Park,∗ Youngwan Lee,∗ Jaduk Suh,∗ Jina Kim
Graduate School of Artificial Intelligence (AI)
Korea Advanced Institute of Science and Technology (KAIST)
Seoul, South Korea
{ainl,geon.park,ywlee88,jaduksuh,jinakim}@kaist.ac.kr

Wonyong Jeong, Bumsik Kim, Hyemin Lee
LLMOps Team
DeepAuto.ai
Seoul, South Korea
{young,liam,hailey}@deepauto.ai

Myeongjae Jeon
Graduate School of AI
POSTECH
Pohang, South Korea
mj.jeon@postech.ac.kr

Sung Ju Hwang
Graduate School of AI
KAIST, DeepAuto.ai
Seoul, South Korea
sjhwang@kaist.ac.kr

ABSTRACT

In modern large language models (LLMs), increasing the context length is crucial
for improving comprehension and coherence in long-context, multi-modal, and
retrieval-augmented language generation. While many recent transformer models
attempt to extend their context length over a million tokens, they remain imprac-
tical due to the quadratic time and space complexities. Although recent works
on linear and sparse attention mechanisms can achieve this goal, their real-world
applicability is often limited by the need to re-train from scratch and significantly
worse performance. In response, we propose a novel approach, Hierarchically
Pruned Attention (HiP), which reduces the time complexity of the attention mech-
anism to O(T log T) and the space complexity to O(T), where T is the sequence
length. We notice a pattern in the attention scores of pretrained LLMs where
tokens close together tend to have similar scores, which we call “attention local-
ity”. Based on this observation, we utilize a novel tree-search-like algorithm that
estimates the top-k key tokens for a given query on the fly, which is mathemat-
ically guaranteed to have better performance than random attention pruning. In
addition to improving the time complexity of the attention mechanism, we further
optimize GPU memory usage by implementing KV cache offloading, which stores
onlyO(log T) tokens on the GPU while maintaining similar decoding throughput.
Experiments on benchmarks show that HiP, with its training-free nature, signifi-
cantly reduces both prefill and decoding latencies, as well as memory usage, while
maintaining high-quality generation with minimal degradation. HiP enables pre-
trained LLMs to scale up to millions of tokens on commodity GPUs, potentially
unlocking long-context LLM applications previously deemed infeasible.

1 INTRODUCTION

Large Transformer-based generative language models (LLM) trained on huge datasets have recently
demonstrated remarkable abilities in various problem domains, such as natural language under-
standing (Touvron et al., 2023), code generation (Rozière et al., 2024), and multi-modal question
answering (Liu et al., 2023a). This is made possible by the effectiveness of the attention mecha-
nism, which learns T 2 pairwise relationships between all tokens in a sequence of T tokens. Despite
their success, the quadratic complexity of the attention mechanism makes it increasingly challenging
to meet growing resource demands when processing longer sequences.

∗Equal contributors

1

Published as a conference paper at ICLR 2025

Hierarchy of Language

P
a

ra
g

ra
p

h

S
e

n
te

n
ce

Rat

Which cat is the

�rst house cat?

Information has locality

inside of each hierarchy

Hierarchically Pruned Attention (HiP)

human settlement

Since there is no evidence of native mammalian fauna on Cyprus, the inhabitants of this
Neolithic village most likely brought the cat and other wild mammals to the island from
the Middle Eastern mainland. Scientists therefore assume that ...

Query

?

in the Fertile Crescent by rodents, in particular the house mouse (Mus musculus), and
were tamed by Neolithic farmers. This mutual relationship between early farmers and
tamed cats lasted thousands of years.

Since there is no evidence of native mammalian fauna on Cyprus, the inhabitants of this
Neolithic village most likely brought the cat and other wild mammals to the island ...

African wildcat were attracted to

0 Divide Sequence into Chunks

1 Select Representative Token in Chunks

3 Select Top-k Important Chunk

2
Measure chunk importance by comparing

between query and representative token

I
lo
v
e

ca
t.

ca
t

is
ca
t

I
lo
v
e

ca
t.

ca
t

is
ca
t

I
lo
v
e

ca
t.

ca
t

is
ca
t

I
lo
v
e

ca
t.

ca
t

is
ca
t

Finding Imporatnt

Token Hierarchically

I
lo
v
e

ca
t.

ca
t

is
ca
t

HiP

Key

Tokens

early

Cat

Evolution of Cat

Dog

Behavior of Cat

Domestication

Color of Cat

HW-aware Block Sparsity

16 Key Blocks

1
6

 Q
u

e
ry

 B
lo

ck
s

Active Blocks

Blocks Pruned by HiP

Thread Block

(1 TensorCore)

I love the cat

I
lo

v
e

th
e

ca
t

1.9 -1.2 -0.8 -2.5

0.1

1.2

0.1

-0.7 0.1

-2.3 -3.8 -4.8

-4.1-0.42.8

Keys

Q
u

e
ri

e
s

64 Tokens

In Sequence

3.2

Use Max Score
as Representation Score

Pruning Iteration

S
im

ila
rity

D
is

ta
n

ce
N

e
a

r
F

a
r

Figure 1: HiP Attention. HiP dynamically prunes block sparse attention depending on a given query token in
sub-quadratic cost by utilizing the hierarchy and locality of natural language.

Various approaches have been suggested to handle longer sequences efficiently to overcome this
limitation. FlashAttention (Dao et al., 2022; Dao, 2023) has reduced the space complexity to O(T)
by fusing the component computations to avoid storing T 2 attention scores at one time. However,
its time complexity remains O(T 2), making it less applicable to inference tasks with long contexts.
Many other methods (Lee et al., 2023; Beltagy et al., 2020; Zaheer et al., 2020b; Tay et al., 2020; Ki-
taev et al., 2019; Tay et al., 2021; Liu et al., 2021) tackle the issue by sparsifying the attention matrix
or approximate the attention mechanism using kernel methods to reduce its quadratic complexity.
However, these works are not widely employed in real-world LLM serving frameworks because
they often lead to performance degradation due to drastic changes in the computation flow and are
too complex to implement efficiently for actual speedups. Moreover, they often require extensive
fine-tuning or even pre-training from scratch, which can be prohibitively expensive and prevent the
timely deployment of production-ready pre-trained models.

In this paper, we define and achieve three fundamental objectives for frameworks tailored to long-
context transformer serving frameworks: (1) minimizing the algorithmic complexity of attention
mechanisms, (2) enhancing GPU compute efficiency, particularly through TensorCore utilization,
and (3) maximizing the effective use of limited GPU memory capacity.

First, to serve long sequence in a timely manner, we propose Hierarchically Pruned Attention (HiP),
an efficient training-free attention mechanism reducing the quadratic time complexity toO(T log T)
by approximating the top-k key tokens in a sequence. HiP exploits “attention locality”, where neigh-
boring tokens often have similar attention scores, as shown in Figure 1 (Left). Therefore, as shown
in Figure 1 (Center), HiP divides the input sequence into 2k chunks, and the center token in each
chunk is chosen to represent its neighbors, driven by the attention locality within the chunk. HiP
computes the attention scores of these representative tokens to approximate the importance of each
chunk for a given query. HiP iteratively refines its selection by starting with the top-k most impor-
tant chunks and progressively narrowing them down until each chunk contains a single token. This
hierarchical top-k key estimation takes O(T log T) time, which is used for sparse attention compu-
tation that costs O(T), making the overall complexity of our attention mechanism log-linear. We
provide mathematical proof demonstrating that our HiP outperforms random selection, supported
by empirical evidence from attention score statistics in Section 4.

Second, we introduce hardware-aware optimizations to enhance GPU compute efficiency for our HiP
through block-wise key sparsity, as illustrated in Figure 1 (Right). Specifically, our top-k approxima-
tion is implemented in a tiled manner (Tillet et al., 2019) so that it can fully utilize matrix multiplier
units (MMUs; e.g., TensorCores (Nvidia, 2024)) and achieve the highest possible token-processing
throughput. Additionally, we integrate our attention mechanism into throughput-optimized LLM
serving frameworks, such as vLLM (Kwon et al., 2023) and SGlang (Zheng et al., 2024), further
enhancing deployment efficiency.

Lastly, to serve extremely long sequences within the limited GPU memory, we propose a KV cache
management strategy that stores only O(log T) tokens in GPU memory (HBM) and offloads the re-
maining tokens to host memory (DRAM). The O(log T) tokens stored in GPU memory are the ones
accessed most frequently and are meant to provide quick access for the GPU’s MMUs. In contrast,
other less frequently accessed tokens reside in main memory and are transferred to GPU memory
only upon token access misses. With a high access hit ratio in HiP, our memory management scheme
effectively meets the demand for limited HBM capacity while leveraging the larger DRAM capacity,
preventing token access from becoming a bottleneck.

We validate HiP on various benchmarks by applying it to Llama3.1-8B (Meta, 2024). In Long-
Bench (Bai et al., 2023), HiP maintains 96% of its relative performance while achieving almost
2.7× speedup in the prefill stage and 16.5× speedup attention computation in the decode stage with
32k context length compared to Flash Attention. Additionally, in passkey retrieval tasks such as

2

Published as a conference paper at ICLR 2025

3.4

3.41.2 2.8

0.8 0.2

0.8

0.2

0.3 0.7

O
u

tp
u

ts

Well You can tell by the way I

Well

You

can

tell

by

the

way

I

Queries

Keys use my walk I'm a wom-

use

my

walk

I'm

a

wom-

Values

Q
u

e
ri

e
s

Estimated

Attention

MaskTop 3 Top 4

To
p

 1

Top 2

Well you can tell by the way I use my walk I'm a wom-a wom-

10.2 37.18.2 3.5

Keys

Ite
ra
tio

n
s

Key Blockcan tell
Query
Block

42.0

by theWell you use my

3.5

a wom-

walk I'm

✗ ✗Discard
Bottom
Chunks

42.0

can tell

37.1

a wom-Keep Top-
Chunks

Well you

10.2

✗

Step 2. Sparse Attention
with HiP Attention Mask

Step 1. E�cient Mask Estimation
with Hierarchical Top- Key Selection (§3.2)

(§ 3.1)

 = 4, = 2: Select 2 sections at each iteration

Attention Score

Figure 2: Overview of our HiP attention mechanism. In HiP, the model dynamically decides which k num-
ber of key tokens to attend to for each query by generating a sparse attention mask. The sparse attention mask
is generated in a tree search-like manner. At each iteration, the top-k blocks with the largest attention scores
are selected, and the rest of the branches are discarded. The final mask becomes an accurate approximation of
the top-k blocks of the true attention map. Please refer to Figure 19 for a more detailed illustration.

RULER (Hsieh et al., 2024), HiP preserves its original effective context length, while all baselines
fail to do so. We also evaluate the effectiveness of the proposed KV cache offloading framework. On
a machine capable of serving up to a 16k context length with Flash Attention, our method extends
the context length up to 64k by offloading the KV cache without significant throughput degradation.

In conclusion, by integrating the three proposed solutions, we present a single long-context serv-
ing framework that efficiently manages compute and memory resources while being transparent
and easily usable. This extension of serving context length, achieved within the constraints of lim-
ited space and compute budgets, delivers substantial benefits for long-context applications, such as
question answering with long texts (Kryściński et al., 2022), multi-agent chatbots (Hu et al., 2024),
enhanced retrieval-augmented reasoning, and long video data summarization. Furthermore, since
our approach is training-free, HiP can be seamlessly applied to pretrained LLMs without requiring
additional training. As a result, we expect our method to be highly practical for a wide range of
long-context LLM applications.

Our contributions within the proposed framework can be summarized as follows:

• We propose a novel, training-free hierarchically pruned attention mechanism that uses hierarchi-
cal score-locality-aware top-k approximation to accelerate LLM serving, reducing the quadratic
cost of the attention mechanism to O(T log T) time and O(T) space complexity (Section 3.1).

• We further optimize our HiP mechanism with a hardware-aware block-wise tiled optimization
using OpenAI Triton, achieving up to speed up to 6.83× speedup in end-to-end decoding for
128k context. (Section 3.2, Table 5)

• We implement KV cache offloading to reduce GPU memory efficiency further, increasing serving
context from 16k up to 64k tokens in an RTX 4090 with 8B model (Section 3.3).

2 RELATED WORKS

Previous studies proposed several attention approximations with linear complexity using either ker-
nel methods or sparse attention. Low-rank approximations of softmax attention via kernel methods
(Choromanski et al., 2022; Qin et al., 2022) achieve faster inference speeds but significantly alter
the data flow, leading to performance degradation that is hard to mitigate. In contrast, sparse at-
tention methods, which use attention pruning to preserve trained attention scores, allow for simple
replacement of pre-trained mechanisms. However, they often require additional fine-tuning to adapt
to static attention patterns (Beltagy et al., 2020; Zaheer et al., 2020a; Xiao et al., 2024) or the training
of an attention estimator (Lee et al., 2023; Liu et al., 2021). These methods are generally less effi-
cient than fused attention techniques (Dao et al., 2022; Dao, 2023) due to their fine-grained sparsity,
which prevents optimal MMU utilization. For more details, see Appendix E.1.

3 METHODOLOGY

Given query, key, and value sequences Q,K,V ∈ RT×d, the conventional single-head attention
output O is computed as S = QK⊤ ∈ RT×T , P = softmax(S) ∈ RT×T , O = PV ∈ RT×d,
where d denotes embedding dimension, and softmax is applied row-wise. The causal masking and

3

Published as a conference paper at ICLR 2025

constant scaling are omitted for brevity. The S and P matrices are respectively called the attention
scores and probabilities. We focus on the fact that, due to the nature of the softmax function, only
the highest attention scores significantly impact the output. Therefore, a promising approach to
approximating S in a sparse format and reducing the complexity from O(T 2) is to retain only its
top-k elements, as detailed in the following equations:

M = top k mask
(
QK⊤) ∈ {0, 1}T×T , (1)

Ŝ = maskM (QK⊤) ∈ RT×T , P̂ = softmax(Ŝ) ∈ RT×T , Ô = P̂ V ∈ RT×d, (2)

where [maskM (S)]i,j :=

{
Si,j if Mi,j = 1

−∞ if Mi,j = 0
, (3)

where top k mask(·) denotes a binary mask which selects the top-k largest elements for each row
of the given matrix. Since Ŝ is a sparse matrix with only kT valid elements, Ŝ and Ô in Equation (2)
can be computed in O(T) time using sparse matrix operations.

However, obtaining the binary mask M in sub-quadratic time is no easy task. To address this chal-
lenging problem, we exploit what we call “attention locality”. Observation of attention scores reveal
that the scores tend to exhibit local similarity, a phenomenon we refer to as attention locality. We ex-
ploit this observation by performing a tree-based search for the top-k tokens. We divide the sequence
into 2k chunks, and then select a representative token from each chunk. Due to attention locality,
a representative token have similar scores to other tokens in its chunk - thereby “representing” that
chunk. We select the top-k most important chunks based on the attention scores of the representative
tokens. By repeating this process, we refine the tokens until we can no longer divide chunks. Exact
details of our method are shown in Section 3.1. We only cover the single-head non-causal case here,
but note that our method can easily be extended to causal multi-head attention.

3.1 HIERARCHICAL SCORE-LOCALITY-AWARE TOP-k ESTIMATION

As shown in Equation (1), our goal is to select the top-k largest elements of each row of pre-
trained attention score S without computing the entire matrix. To this end, we use a greedy binary
tree search algorithm, as illustrated in the left side of Figure 2. The complete algorithm for mask
estimation is presented in Algorithm 1.

For a given query q ∈ Rd, at the first iteration, we divide the key sequence K ∈ RT×d along
the time dimension into k equal-sized chunks (f

(1)
1 : l

(1)
1), (f

(1)
2 : l

(1)
2), . . . , (f

(1)
k : l

(1)
k), where

f
(1)
j =

⌊
(j−1)·T

k

⌉
+ 1 and l(1)j =

⌊
j·T
k

⌉
are the first and last indices of the jth chunk, each.1 The

superscripts denote the iteration number. At each iteration i, we further divide each of the k chunks
into two equal-sized branches:

B(i)
2j−1 = (f

(i)
j ,m

(i)
j − 1), B(i)

2j = (m
(i)
j , l

(i)
j), where m(i)

j =
⌊
(f

(i)
j + l

(i)
j)/2

⌉
, for j = 1 .. k.

A representative key index r(i)j is the center key token index for each branch B(i)
j . We assume that

this representative key represents the entire branch. Thus, among the 2k branches, the top k branches
whose representative key’s scores are the highest are chosen for the next iteration:

(f
(i+1)
j , l

(i+1)
j) := B(i)

tj for j = 1 .. k, where {t1, . . . , tk} := argtopk
j∈[1 .. 2k]

[
q⊤K

r
(i)
j ,:

]
. (4)

We repeat the above iteration nit := ⌈log2 T ⌉ times, i.e., until the length of each branch all becomes
1. In the end, we obtain a set of indices I = {f (nit)

1 , . . . , f
(nit)
k }, which is our estimation of the

top-k indices of K which have the largest attention scores with the query q. Thus, we obtain m̂, an
estimation of a row of the attention mask M 2:

m̂ = estimate attn maskk(q,K) := [1I(1),1I(2), . . . ,1I(d)] . (5)

In conclusion, this algorithm takes O(T log T) time in total because the total number of iterations is
log2 T where each iteration takes constant time O(k), and we do this for each of the T queries.

1⌊·⌉ denotes rounding to the nearest integer.
21A(x), where A is a set, denotes the indicator function: 1A(x) = 1 if x ∈ A, and otherwise 1A(x) = 0.

4

Published as a conference paper at ICLR 2025

3.2 BLOCK APPROXIMATION OF TOP-k ESTIMATION

Despite the log-linear complexity, obtaining competitive latency to the state-of-the-art implementa-
tions of dense attention on an accelerator (e.g., GPU) is difficult. This is because the matrix multi-
plier unit (MMU) inside accelerators is optimized for dense attention, where they compute fixed-size
blocks of matrix multiplication in a few clock cycles. In contrast, the attention score computation
in the top-k estimation of HiP cannot be performed with traditional matrix multiplication because a
different key matrix is used to compute the dot product for each query vector. To utilize MMU, we
use a technique called block approximation during top-k estimation, illustrated in Figure 2 (Right).

In top-k estimation, we replace K ∈ RT×d with its tiled version K ∈ RT/bk×bk×d, and Q with
its tiled version Q ∈ RT/bq×bq×d, where bk and bq are the size of a key block and a query block.
The top-k estimation iterations are done similarly to before, except that the division and branching
of the key sequence are done block-wise (using the first dimension of K). Importantly, instead of k,
k/bk chunks are maintained at each iteration in order to select k tokens, and the score calculation
in Equation (4) is replaced with maxm∈[1:bq],n∈[1:bk]

(
q⊤
m,:Kl

(i)
j ,n,:

)
, where q ∈ Rbq×d is the given

query block. While this modification enables HiP to reduce the cost further, we internally sample
the blocks with stride bsq in the query dimension and bsk in the key dimension instead of using the
full bq × bk block.

As a result of this optimization, the estimated mask M̂ becomes block-sparse. Therefore, each
(bq/bsq) × d-block of the query can be matrix-multiplied with the same (k/bsk) × d key matrix to
obtain (bq/bsq)×(k/bsk) elements of Ŝ. Thus, bq and bsq are critical for the most efficient utilization
of the MMU: we can achieve a considerable latency reduction if we set bq/bsq to a multiple of 16 or
32, as shown in Appendix E.4. While the choice of bk and bsk is irrelevant to the MMU utilization,
it helps reduce the number of top-k estimation iterations.

3.3 KV CACHE OFFLOADING

O�oaded KV CacheC
P
U

 Used for next masking step.

Used for SA until next masking step.

Cached Mask StepMask Refresh Step

Masking
Sparse

Attention

Sparse

Attention (SA)

New

Token

New

Mask

Key

Access Log

New

Token

Read

Write

UVM Request

 Decoding Steps with KV O�oading

Store Every Key Value Tokens

G
P
U

Back Reference to Table

Access Statistics

Token Pages

Requested Token Index

Page Table

Token Index→Page Index

P
a

g
e

S
ize

 =

Page Bank

Vector HashMapor

Token Index Translation

Key-Value Tokens for Sparse Attention

Key Tokens for Masking

Figure 3: Flow of KV Cache Offloading with HiP.

Thanks to our top-k estimation algorithm, HiP
only accesses (k/bsk) log T key states per at-
tention head. Moreover, the algorithm’s mem-
ory access pattern exhibits strong temporal lo-
cality. Using this fact, we can further enhance
efficiency by exploiting the memory hierar-
chy: we offload less frequently accessed key-
value (KV) states from the GPU to the main
memory. This involves caching frequently ac-
cessed KV states (hot tokens) by tracking state
access patterns of top-k estimation and sparse
attention using the estimated HiP mask.

O�oaded KV CacheC
P
U

 Used for next masking step.

Used for SA until next masking step.

Cached Mask StepMask Refresh Step

Masking
Sparse

Attention

Sparse

Attention (SA)

New

Token

New

Mask

Key

Access Log

New

Token

Read

Write

UVM Request

 Decoding Steps with KV O�oading

Store Every Key Value Tokens

G
P
U

Back Reference to Table

Access Statistics

Token Pages

Requested Token Index

Page Table

Token Index→Page Index

P
a

g
e

S
ize

 =

Page Bank

Vector HashMapor

Token Index Translation

Key-Value Tokens for Sparse Attention

Key Tokens for Masking

Figure 4: KV Token
Index Translation

Our GPU cache that holds the hot tokens consists of two components: a token
bank containing the actual KV states and a page table with the token-bank
index mapping, as shown in Figure 4. One straightforward implementation
for the page table would be a vector map: a simple length-T array of point-
ers. While this approach is practical for typical sequence lengths (e.g., 128k
- 1M), its space complexity is O(T). We employ a linear probing hash table
to reduce the space complexity, achieving O(log T) space complexity. How-
ever, empirical results show that GPU hash map lookups introduce additional
latency compared to using a simpler vector-based page table.

Given the distinct memory access patterns in top-k estimation and in sparse
attention, we maintain two separate offloading contexts, each containing a
page table and a set of GPU-resident hot tokens, as illustrated as two separate
GPU loaded KV caches in Figure 3. For the top-k estimation stage, kcache :=
c · (k/bsk) log T key states are held in VRAM, where c is a hyperparameter
determining the cache size. For sparse attention, k key and value states are held. In summary, we
need to hold (kcache/2 + k) tokens’ equivalent of KV states in the GPU. The kernel first queries

5

Published as a conference paper at ICLR 2025

the GPU cache when accessing key or value tokens. Upon a cache miss (which is unavoidable due
to the dynamic nature of the attention access pattern), the system attempts to retrieve tokens from
the main memory. By using our cache, we can significantly speed up memory access compared to
directly accessing CPU memory from the GPU.

In conclusion, we reduce the GPU memory footprint for KV tokens fromO(T) toO(log T), but this
comes with page table overhead that can range between O(T) and O(log T) depending on the data
structure used. The overall space complexity is thus determined by the type of page table, allowing
for a configurable trade-off between GPU memory efficiency and latency. However, we suggest
that users use vector maps in many practical long-context ranges (32-512k) to achieve competitive
latency compared to Flash attention. Please refer to Section 5.5 for detailed benchmarks.

4 THEORETICAL ANALYSIS

In this section, we justify the design choices of our HiP’s approximate top-k key selection algorithm
by answering the following questions: (1) Is HiP’s key selection algorithm better than the random
selection baseline at finding keys with the biggest scores? (2) How should the representative token
in each branch be chosen? We answer these questions by providing a probabilistic analysis of HiP’s
key selection algorithm in a simplified setting (k = 1), based on the assumption of attention locality.

Observation: keys closer together exhibit higher similarity in attention scores. In each atten-
tion head of a layer in an LLM, a key sequence K ∈ RT×d is used for computing the attention
mechanism. Given a query vector q ∈ Rd, the scores for each key s = Kq ∈ RT can be computed.
We investigate how much locality these scores exhibit by studying the correlation between their dis-
tance ∆ := |i − j| and the score difference δ∆ := si − sj for every i, j ∈ [1..T], with a sample
natural language data. As shown in Figure 6, our empirical observation shows that δ∆ generally
follows a normal distribution, whose mean is almost zero and the standard deviation is an increasing
function of distance ∆. More details regarding this observation are provided in Appendix A.3.

5 0 5
Attention Score Difference

0.000

0.005

0.010

0.015

0.020

0.025

KL divergence: 0.0039
0 200 400 600 800 1000

Index difference

1.0

0.5

0.0

0.5

M
ea

n

0 200 400 600 800 1000
Index difference

1.5

2.0

2.5

3.0

St
an

da
rd

 d
ev

ia
tio

n

Figure 6: Score Difference Distribution. We collect the attention
score statistics from the 17th layer and second attention head of
Llama3.1-8B. The left figure shows the raw distribution when ∆ =
500. The middle and right figures show the mean and standard
deviation as a function of ∆.

Analysis. Based on this observa-
tion, we assume that we can ap-
proximate the difference in attention
scores between two keys separated by
∆ tokens as a scalar random vari-
able δ∆ ∼ N

(
0, σ(∆)2

)
, where

σ(∆) is an increasing function of ∆.
This can be interpreted as keys that
are closer together are more likely to
have a similar attention score, which
fits well with our observation and at-
tention locality assumption. With this assumption, the following Theorem 1 can be shown.

Theorem 1 (Informal). Consider the case of finding the location of the top-1 key token with the
maximum attention score in a context of T tokens. Suppose that our locality assumption holds true.
We divide the context into two branches with T/2 keys each. Then, the branch whose center token
has the bigger attention score is more likely to contain the top-1 key token.
The above shows the effectiveness of one iteration of HiP’s key selection algorithm. By recursive
application of HiP’s key selection iterations, we can intuitively see that the probability of HiP’s key
selection algorithm finding the location of the top-1 key would be higher than that of uniform random
selection as well. Therefore, under the attention locality assumption, on average, HiP’s key selection
algorithm on average finds the best key tokens more often than random selection. This is also the
basis for choosing the center key token as the representative in our algorithm. See Appendix A.1 for
the proof sketch and Appendix A.2 for the formal statement and proof of the theorem.

5 EXPERIMENTS

5.1 EXPERIMENT SETTINGS

Large Language Models (LLMs) are one of the most prominent models that utilize the attention
mechanism. Thus, we first apply our proposed HiP to Llama3.1-8B (Touvron et al., 2023), a pre-
trained LLM that is reported to perform well on various long-context natural language understanding

6

Published as a conference paper at ICLR 2025

25 50 75 100 125
Context length (x1024 tokens)

0

50

100

150

200

250

300

La
te

nc
y

(m
s)

Crashed

Prefill Latency

200
300
400
500
600

Decode Latency

25 50 75 100 125
Context length (x1024 tokens)

0

20

40

La
te

nc
y

(
s)

OOM

60

70

80

Crashed

PG19 Perplexity

25 50 75 100 125
Context length (x1024 tokens)

8

10

Pe
rp

le
xi

ty

OOM
Crashed

Flash Attn HiP Attn (Ours) BigBird StreamingLLM H2O H2O (stream) Hyper Attn ld=3 Hyper Attn ld=25

Figure 7: Latency and Perplexity Evaluation with Various Context Lengths. We evaluate our proposed
HiP and baselines in PG19 (Rae et al., 2019) with various context length on Llama3.1-8B (Meta, 2024). See
Appendix D for experiment details.

Table 1: Passkey Results. We evaluate our proposed HiP and baselines using passkey retrieval which is a
needle in a haystack style context utilization benchmark.

Dense Prefill Sparse Prefill
Dense Sparse Decode Dense Decode Sparse Decode

Attention
Method

FlashA
ttn

A
2k

A
4k

B
igB

ird
1k

B
igB

ird
2k

H
2 O

256

H
2 O

512

H
iP

512

H
iP

1k

A
2k

AV
D

1k

B
igB

ird
1k

B
igB

ird
2k

H
iP

512

H
iP

1k

H
iP

1k
+

V
D

A
2k

AV
D

1k

B
igB

ird
1k

B
igB

ird
2k

H
iP

512

H
iP

1k

H
iP

1k
+

V
D

Context
Length

128k 100 62.7 64.0 64.6 67.4 80.2 87.2 79.4 82.0 11.1 97.8 8.6 10.5 27.2 27.6 92.9 7.4 9.9 6.2 9.2 19.3 32.7 68.0
64k 100 64.3 66.3 72.9 77.3 84.6 99.0 90.7 94.0 23.2 95.0 15.0 20.2 57.5 77.2 100 18.4 12.7 16.7 16.7 50.0 68.2 80.4
32k 100 64.5 65.3 82.2 87.1 91.2 98.0 99.7 99.6 16.5 100 26.8 42.8 96.9 100 100 14.6 14.8 16.1 38.1 96.3 100 95.3
16k 100 66.2 67.5 90.3 98.0 93.7 98.5 94.7 100 25.3 98.6 43.9 59.5 100 100 100 19.0 13.9 29.8 55.6 98.7 100 91.3
8k 100 69.5 73.5 98.8 99.3 95.7 99.0 100 100 32.3 100 61.9 98.4 100 100 100 30.8 16.9 66.8 95.8 100 100 100
4k 100 77.3 83.1 100 100 98.6 99.7 100 100 56.8 100 90.4 100 97.8 100 100 56.8 24.7 94.1 100 98.0 100 100

Avg. 100 67.4 70.0 84.8 88.2 90.7 96.9 94.1 95.9 27.5 98.6 41.1 55.2 79.9 84.1 98.8 24.5 15.5 38.3 52.6 77.0 83.5 89.2

Prefill 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 14.6 12.1 15.3 8.4 9.1 4.9 8.5 14.6 12.1 15.3 8.4 9.1 4.9 8.5Speedup
(128k) Decode 1.0 29.1 14.8 21.8 11.3 29.1 14.5 29.9 15.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 29.1 45.0 21.8 11.3 29.9 15.1 63.9

tasks up to 128k context tokens, to evaluate the effectiveness of our HiP mechanism. We replace
all, but the initial ld attention layers with HiP in the pretrained LLM, where L is the total number of
layers, and ld denotes the remaining dense attention layers. We choose ld through an ablation study
(Appendix E.5). During LLM decoding, we cache the sparse attention mask from the previous step
and refresh it every rm step to reduce the decoding latency. The latency-performance tradeoff of rm
is discussed in Section 5.4. For a detailed description of HiP’s decoding process, see Algorithm 2 in
the appendix. Further details on the hyperparameters are in Appendix D.

Baselines. We use several sparse attention baselines: A, StreamingLLM (SLLM) (Xiao et al., 2024),
AVD (Jiang et al., 2024; Li et al., 2024), BigBird (Zaheer et al., 2020a), HyperAttention (Han et al.,
2024), and H2O (Zhang et al., 2023), chosen for their training-free and sub-quadratic properties.
Both StreamingLLM and A use a combination of global sink tokens and sliding window (Beltagy
et al., 2020), with StreamingLLM additionally using rolling RoPE indexing (Xiao et al., 2024).
AVD retains key vertical and diagonal lines in the prefill attention mask based on snapshot scores on
top of A. As it is a prefill-oriented method, A is used for decoding. BigBird uses random masking
along with the A pattern. HyperAttention is a token-clustering-style (Kitaev et al., 2019) attention
mechanism. Finally, H2O retains the top-k high-scoring KV tokens for the next step’s KV cache.

5.2 LANGUAGE MODELING PERFORMANCE EVALUATION

We evaluate HiP on the PG19 (Rae et al., 2019) datasets. We measure latency in two stages: (1)
the initial pass (prefill), where the forward pass covers the entire prompt, and (2) subsequent passes
(decode), which process one token at a time with a KV cache. In Figure 7, HiP attention is 9.00×
faster in prompt latency and 29.99× faster in decoding latency on Llama3.1-8B, with only a +0.5348
increase in perplexity on PG19 (8.1151 → 8.6499). Our method leverages block approximation to max-
imize MMU efficiency, outperforming quadratic baselines and achieving near-linear decoding la-
tency. Further details on experimental settings are in Appendix D.

7

Published as a conference paper at ICLR 2025

Table 3: LongBench Results. We evaluate HiP and baselines. We measure the speedup of prefill and decode
on 32k context length, the maximum context length of LongBench.

Dense Prefill Sparse Prefill
Dense Sparse Decode Dense Decode Sparse Decode

Attention
Method

FlashA
ttn

H
2 O

256

H
2 O

512

B
igB

ird
512

B
igB

ird
1k

H
iP

512

H
iP

1k

A
1k

AV
D

512
1k+1k

AV
D

1k2k+2k

B
igB

ird
512

B
igB

ird
1k

H
iP

512

H
iP

1k

H
iP

256
+V

D

SL
L

M
512

A
1k

AV
D

512
1k+1k

AV
D

1k2k+2k

B
igB

ird
512

B
igB

ird
1k

H
iP

512

H
iP

1k

H
iP

H
E

A
L

1k

H
iP

256
+V

D

NarrativeQA 29.5 15.8 15.3 25.9 26.0 29.0 28.9 20.2 22.0 25.5 23.5 21.4 23.9 26.8 27.1 11.4 17.4 18.8 20.6 14.9 19.4 21.4 25.1 26.9 26.4
Qasper 44.3 19.4 21.6 32.3 35.6 42.1 43.2 28.6 41.4 42.9 44.3 39.8 45.1 44.2 43.1 7.8 21.4 26.2 26.3 26.9 34.9 41.7 43.6 43.9 43.0

HotpotQA 54.6 17.3 17.8 45.7 50.9 53.9 54.5 27.8 45.6 53.4 49.0 40.7 51.6 56.1 53.8 9.9 27.1 39.5 42.5 38.6 39.0 50.4 55.0 53.6 53.7
2WikiMQA 39.5 19.3 20.6 34.7 33.7 38.9 39.5 21.6 34.6 41.7 45.0 34.1 45.8 45.1 41.2 8.6 22.2 28.9 34.5 25.1 33.0 45.2 44.0 42.4 39.8
GovReport 35.0 26.7 28.2 24.9 27.3 30.3 32.4 33.8 34.2 35.0 34.5 34.0 34.6 34.4 34.6 23.2 25.9 23.2 23.1 25.2 27.3 30.1 31.2 34.9 31.7

Subset

MultiNews 27.4 25.1 25.6 24.1 26.4 26.5 26.8 27.1 27.2 27.4 27.1 27.0 27.1 27.1 27.2 22.6 25.5 22.8 22.5 24.9 26.1 26.0 26.7 27.9 26.7

Avg. Scores 38.4 20.6 21.5 31.3 33.3 36.8 37.6 26.5 34.1 37.7 37.2 32.8 38.0 38.9 37.8 13.9 23.3 26.6 28.3 25.9 29.9 35.8 37.6 38.3 36.9
Rel. Scores (%) 100 53 56 81 87 96 98 69 89 98 97 86 99 101 99 36 61 69 74 68 78 93 98 100 96

Prefill 1.0 1.0 1.0 1.0 1.0 1.0 1.0 5.6 3.2 2.1 8.5 4.6 3.0 1.7 2.7 0.1 5.6 3.2 2.1 8.5 4.6 3.0 1.7 1.7 2.7Speedup
(32k) Decode 1.0 7.3 3.7 10.4 5.6 8.5 4.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 10.6 12.8 12.8 6.4 10.4 5.6 8.5 4.3 4.3 16.5

5.3 LONG CONTEXT PERFORMANCE

In this section, we investigate the performance of our HiP, comparing its latency and accuracy against
baselines on various benchmarks. Mainly, we build two kinds of benchmark sets: (1) long-context
utilization to verify our method can retrieve the information in a given context using a needle in
a haystack (NIAH) and (2) long-context natural language understanding to show that our method
can preserve reasoning and text generation performance of original long-context LLM. We apply
the efficient attention method to mimic various deployment settings by replacing prefill, decode, or
prefill-decode flash attention. We can find our HiP performs robustly in every scenario compared to
baselines, by applying efficient attention methods in different phases separately.

Table 2: RULER Results. We compare the effective
context lengths of HiP and baselines with Llama3.1-8B.
Accuracies surpassing 80% are marked with bold font.

Dense Prefill Sparse Prefill
Dense Sparse Dense Decode Sparse Decode

Attention
Method

FlashA
ttn

B
igB

ird
4k

H
iP

2k

B
igB

ird
4k

AV
D

2k4k+4k

H
iP

2k

H
iP

2k
+V

D

B
igB

ird
4k

AV
D

2k4k+4k

H
iP

2k

H
iP

2k
+V

D

Effective Length 32k 4k 32k 8k 16k 32k 32k 4k <4k 16k 16k

Context
Length

128k 77.0 13.9 38.9 31.3 19.1 52.0 58.2 11.0 8.3 21.1 26.5
64k 84.7 15.3 68.6 41.8 66.0 73.7 79.9 11.8 12.9 53.5 63.7
32k 87.4 16.9 82.9 58.1 77.0 86.5 89.7 12.5 15.9 77.5 84.2
16k 91.6 27.2 92.4 76.3 89.5 92.1 94.1 24.0 22.6 90.0 93.9
8k 93.8 54.5 94.3 89.5 94.1 94.6 94.7 46.1 38.6 94.4 94.6
4k 95.5 88.3 95.9 95.3 95.9 95.9 96.0 87.1 65.1 95.7 95.9

Avg. 88.3 36.0 78.8 65.4 73.6 82.5 85.4 32.1 27.2 72.0 72.6

Prefill 1.00 1.00 1.00 4.53 4.80 2.44 1.70 4.53 4.80 2.44 1.70Speedup
(128k) Decode 1.00 5.90 7.05 1.00 1.00 1.00 1.00 5.90 27.01 7.05 7.75

Passkey and RULER. First, we analyze the
result of long-context utilization performance
using passkey retrieval in Tables 1 and 2. Our
passkey retrieval test is a simple test to find
a five-digit passkey in a repeated haystack
sentence. RULER (Hsieh et al., 2024) is a
more complex benchmark containing NIAH
tests, such as finding multiple passkeys and
tracking variable changes inside complicated
essay-style haystack sentences. In Table 1,
our method is the strongest in every deploy-
ment setting. Dense prefill in general scores
high in this benchmark because the model has
no chance of overlooking the passkey tokens.
However, interestingly, AVD shows an almost
perfect score with sparse prefill + dense de-
code. We think this is because the snapshot
heuristic that captures important tokens during prefill is a perfect fit for this benchmark. However,
because of this aspect, it performs poorly on more complex tasks such as RULER and LongBench.
The combination of HiP and AVD slightly increases the performance from regular HiP, achieving
100% accuracy in passkey up to 64k context length.

LongBench. We then use the LongBench benchmark (Bai et al., 2023) to evaluate the long context
prompt and decoding performance of HiP in Table 3. We believe that this benchmark is the most
important because it shows both long context generation performance and knowledge retrieval per-
formance, which are critical in many LLM applications, such as multi-turn assistants and in-context
learning. Compared to passkey, the dense decode setting scores higher because this benchmark
is much more decoding-heavy. This means that real-world natural language question answering
and long context text generation rely more on decoding accuracy rather than prefill. Therefore,
we can see non-decode-friendly baselines such as StreamingLLM, AVD and A failing to recover
long-generation performance in GovReport and MultiNews subtasks, which decode 512 tokens. In-
terestingly, AVD completely fails on those two subsets while it works moderately well on some QA
tasks. We think this is because AVD fails to capture complex reasoning and long-term context due
to its restrictive attention mask patterns. In Appendix E.2, we illustrate this long context knowl-
edge retrieval ability by using an example from LongBench. HiP outperforms every baseline, and

8

Published as a conference paper at ICLR 2025

Table 4: Benchmark Performance on Long-Booksum Task. We evaluate the book summarization task.
2k tokens are generated for the summary of each book, whose lengths are between 32k-128k tokens. For the
‘Half’ and ‘Quarter window’ settings, the context window size of each sparse attention method is adjusted
accordingly. The speedups are measured on the Normal setting.

Method KVCache
footprint
(tokens)

Decoding
context
window
(tokens)

Llama3.1-8B-Instruct

Normal Window (×1) Half Window (×.5) Quarter Window (×.25) Decode
SpeedupROUGE-1 ROUGE-2 ROUGE-L ROUGE-1 ROUGE-2 ROUGE-L ROUGE-1 ROUGE-2 ROUGE-L

FlashAttn ∞ ∞ 41.63% 10.16% 23.58% 41.63% 10.16% 23.58% 41.63% 10.16% 23.58% 1.00x

U
n-

lim
ite

d
V

R
A

M

BigBird 4k ∞ 4K 36.05% 7.59% 19.81% 34.20% 7.02% 18.90% 31.97% 6.23% 18.71% 5.90x

R
es

tr
ic

te
d

V
R

A
M

Si
ze FlashAttn TRUNC 8K 8K 36.62% 8.33% 20.97% 36.62% 8.33% 20.97% 36.62% 8.33% 20.97% 15.68x

BigBird 2k TRUNC 8K 4K 35.44% 7.57% 19.65% 34.60% 7.20% 19.32% 32.36% 6.46% 18.62% 5.90x
AVD 8K + 8k + 8k 8K 8K 37.18% 8.28% 21.62% 36.07% 7.72% 20.60% 35.72% 7.67% 20.81% 7.51x
HiP 2k (Ours) 7K 3K 38.84% 9.11% 21.92% 38.47% 8.57% 21.50% 37.34% 8.52% 21.53% 7.75x
HiP 2k + V2k D1k 7K ∼4K 39.98% 9.61% 22.61% 39.44% 9.09% 22.05% 38.00% 8.70% 22.04% 7.05x

8 16 32 64 128
Context length (x1024 tokens)

0

25

50

75

100

La
te

nc
y

(
s)

Fl
as

h
At

te
nt

io
n

H
iP

 (M
as

k
Re

fr
es

h)
H

iP
 (M

as
k

Ca
ch

ed
)

163.1 s 303.6 s 585.3 s

Latency Breakdown in Single Layer Decoding
Linear
Flash Attention
Masking
Sparse Attention

Figure 8: End-to-end Decoding Latency. We show
two phases of HiP decoding: mask refreshing step
triggered in every rm decoding step and mask cached
sparse attention.

Table 5: End-to-end Decoding Speedup and Quality
for each rm. We show the trade-off between end-to-end
decoding speedup and decoding quality using Long-
Bench. Metrics are the comparison score to Flash At-
tention. In LongBench, we merge four tasks into ‘QA’
and merge two tasks into the ‘Summary’ column in the
table. The latency is measured with ld=0.

End-to-End Decoding Speedup LongBench

Seq. Length 8k 16k 32k 64k 128k QA Summary Avg.

HiP (rm=1) 0.99 1.51 2.31 4.05 6.83 95.9 96.1 96.0
HiP (rm=2) 1.26 1.93 3.09 5.51 9.57 94.7 95.5 95.0
HiP (rm=4) 1.58 2.44 4.02 7.28 12.97 94.2 93.3 93.9
HiP (rm=8) 1.65 2.55 4.31 7.89 14.30 93.4 90.5 92.4

with a small amount of fine-tuning with an unrelated dataset, it even recovers the original model’s
performance (‘HiP HEAL’). See Appendix D for more details and discussion about healing.

BookSum. We use the BookSum benchmark (Kryściński et al., 2022) to assess the long-context and
long-response generation capabilities of HiP. We report the average ROUGE F1-scores (Lin, 2004)
for the generated summaries in Table 4. To simulate a realistic long-context decoding scenario and
demonstrate the effectiveness of KV cache offloading, we put a limit on the GPU KV memory size
to 8K tokens. This represents a practical context length on a 24GB GPU with an 8B model without
KV offloading. Specifically, for FlashAttention and BigBird, we truncate the context to 8K tokens,
and AVD uses an 8K token length sliding window. With our method, with KV cache offloading,
we can expand the effective context length only limited by the main memory’s capacity, which is
much cheaper. HiP outperforms all other baselines in this VRAM-limited setting while maintaining
high decoding speed: over 7× faster than regular FlashAttention. Although FlashAttention with a
truncated context is faster, it suffers from significant performance degradation and, most importantly,
breaks the user’s expectation that the model can access the entire context. We observe that HiP with
a context window of only 512 still outperforms AVD with an 8k window.

5.4 LATENCY BREAKDOWN AND END-TO-END DECODING SPEEDUP

We evaluate the trade-off between attention latency and the model performance with HiP in Fig-
ure 7. We observe that our HiP’s latency-optimized setting shows about 9.00× speedup of attention
decoding latency but only increases the perplexity by 0.5348 in PG19 (Rae et al., 2019), compared
to FlashAttention2. In Figure 8, we show the latency breakdown of the HiP-applied transformer
model. Our proposed method contains two major components that contribute to the overall latency:
(1) top-k estimation iterations and (2) fused sparse attention. We observe that the HiP top-k estima-
tion kernel is the only scaling part as the sequence grows; the sparse attention and linear layer shows
constant time for each decoding step. Since the top-k estimation iteration results can be cached
and reused rm times, the latency of the HiP method is dominated by fused sparse attention in most
practical scenarios, as shown in Figure 8. On the other hand, the rm hyperparameter trades off
the generation quality for latency, especially for long decoding, as shown in Table 5. HiP achieves
6.83 times end-to-end decoding speedup with 128k context while maintaining 96.0% relative per-
formance in LongBench. We can speed up further to 14.30× when we allow a moderate amount of
performance degradation (-3.6%p).

9

Published as a conference paper at ICLR 2025

10 20 30 40 50 60
Context length (x1024 tokens)

0

1000

2000

3000

4000

5000

GP
U

 K
V

M
em

or
y

(M
B) OOMOOM

0

25

50

75

100

125

150

175

D
ec

od
e

Th
ro

ug
hp

ut
 (t

ok
/s

)

Decode Throughput and GPU KV Memory

Flash Attn w/o Offload
HiP w/o Offload
Flash Attn UVM
HiP UVM w/o Cache
HiP UVM w/ Vector Map
HiP UVM w/ Hash Map

OOMOOM

Table 6: Detailed additional data of KV cache offloading
performance on RTX 4090 24GB and A100 80GB.

Throughput
(tok/s)

RTX4090 24GB, T=64k A100 80GB, T=512k

Prefill Decode VRAM
(MB) Prefill Decode VRAM

(MB)

FA2 OOM OOM OOM OOM OOM OOM
HiP no offload OOM OOM OOM OOM OOM OOM

FA2 UVM 5678 1.91 N/A 1382 0.18 N/A
HiP UVM 9002 22.91 N/A 8225 20.94 N/A

HiP w/ VectorMap 6386 95.45 2283 4127 85.11 18404
HiP w/ HashMap 359 10.15 2104 48 2.74 10890

Figure 9: KV Cache Offloading Performance (left). We measure batched prefill and decoding throughput
(tokens/s) with our novel KV cache offloading framework with an on-device offloading cache. Straight lines
show the latency, and dashed lines show the GPU memory usage by KV caches.

5.5 KV CACHE OFFLOADING BENCHMARK

In Figure 9, we evaluate the latency and memory usage of our KV offloading framework. The
UVM variants use the CUDA unified virtual memory API to offload the whole KV cache to the
main memory. Our HiP has two variants that depend on the type of cache implementation. We use
Llama3.1-8B with 16-bit weights, and the KV states are stored in 8-bit floats. We use a single RTX
4090 24GB for the graph on the left, and to additionally test our method up to 512k tokens, we also
test on a single A100 80GB GPU. We set ld = 0, and choose the last token for the representative
key to reduce the memory access in this test. See Appendix D for details.

As shown in Figure 9, with UVM, both ours and Flash Attention slow down decoding about 5 to 7
times compared to full GPU runtime. However, we could serve until 64k context, while the same
machine can serve only 16k at maximum. Since memory access is significantly more costly with
UVM, the trend of logarithmic scaling of decode throughput is clearer than when working with pure
GPU memory. So, at 64k context length, ours is more than 50 times faster than Flash Attention with
UVM. However, UVM slows down both methods too much compared to full GPU runtime.

We test two types of cache implementation: vector map and hash map. A vector map uses a T -sized
vector of pointers pointing to the allocated bank to store the mapping between a token index and a
bank index. Our GPU-loaded KV offloading cache (Vector Map) shines by achieving 93% decoding
throughput compared to no KV offloading at all. Without a significant slowdown, we could extend
the serving context from 16k to 64k on an RTX 4090, which is 4.17× higher decoding throughput
compared to HiPUVM and 49.97× higher decoding throughput compared to Flash AttentionUVM, as
shown in Table 6. However, with the vector map, the space complexity isO(T). To reduce the space
complexity to O(log T), we use a linear probing hash map to store the index mapping. This way,
we can reduce the GPU memory consumption by 40.8% on 512k context length. However, since the
hash map lookup is not friendly to the GPU, it slows down token accesses more than naive UVM.

We present our KV offloading framework on a standard gaming PC equipped with a single RTX
4090. Our experiments confirm that the PCIe 4.0x8 bandwidth is sufficient to manage offloading
traffic through KV accesses using UVM. Furthermore, when scaled up to a single A100 80GB, our
framework demonstrates its ability to extend serving context length, even on server-grade hardware.
We anticipate that our HiP’s KV offloading framework will effectively increase serviceable context
length across a wide range of deployments, from on-device setups to cloud-based environments.

6 CONCLUSION

In this study, we present HiP Attention, a novel framework for accelerating pretrained Transformer-
based models without any training, with a focus on the acceleration of LLMs for long-context tasks.
Our proposed HiP rapidly estimates the top-k context keys for computing sparse attention, drasti-
cally reducing the computation required for long context inference and fine-tuning from O(T 2) to
O(T log T). Our HiP attention is a drop-in replacement for the core of any Transformer-based
model, such as language and multimodal models, and does not require modifying the existing
weights. This is a practical and meaningful improvement as it allows pre-trained models to be
fine-tuned and executed much more efficiently in long sequences without sacrificing quality. We
are looking forward to contributing to open-source LLM serving frameworks by combining various
efficient decoding strategies with HiP attention.

10

Published as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

We provide every experiment code and kernel code in the attached supplementary file. We also
provide detailed instructions on how to run experiments in readme markdown files, so please
read those files. And we put detailed experiment settings in Appendix D. We will try our best
to resolve further reproducibility problems. Inside the HiP library, we have multiple versions
of HiP kernels, all written with OpenAI Triton. The upstream kernel path is hip / models
/ hip attention / attention2 draft prefetch.py. Additionally, you can see the evo-
lution of our HiP from the very first HiP implementation hip / models / hip attention /
attention1.py; please feel free to enjoy our codebases. We left them all for research purposes
when someone needs various settings, such as dynamic retention ratios, that are only supported
by old versions. Our main experiment entry file is hip / main / model eval.py. Please
execute --help option to gather further information. Our offloading experiment entry file is
hip / models / hip attention / offload runner / offload runner.py. For Long-
bench and RULER, we modified the official code to run our method with vLLM. Please refer to
HiPAttentionArgs class to investigate full settings, including every subtle configuration. A,
AVD and BigBird are using the same HiP kernel since they are the same block sparse attention. We
just modify the block masks that passed to block sparse attention. StreamingLLM is implemented in
hip/models/sink attention/sink attention.py. About HiP-related environment variables
of vLLM and SGlang, please refer to HiPAttentionEnvs in vLLM and SGlang attention backend
implementations.

ACKNOWLEDGEMENTS

This work was supported by the Institute for Information & communications Technology Planning &
Evaluation(IITP) grant funded by the Korea government (MSIT) (RS-2019-II190075, Artificial In-
telligence Graduate School Program (KAIST); No.RS-2019-II191906, Artificial Intelligence Grad-
uate School Program (POSTECH); No.RS-2024-00459797, Development of ML compiler frame-
work for on-device AI; No.RS-2022-II220713, Meta-learning Applicable to Real-world Problems),
the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT)
(No. RS-2024-00354947; No. RS-2023-00256259) and the NAVER-Intel Co-Lab. The work was
conducted by KAIST and reviewed by both NAVER and Intel. Artificial intelligence industrial con-
vergence cluster development project funded by the Ministry of Science and ICT (MSIT, Korea) &
Gwangju Metropolitan City.

REFERENCES

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. Longbench: A bilingual,
multitask benchmark for long context understanding. arXiv preprint arXiv:2308.14508, 2023. 2,
8

Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The long-document transformer,
2020. URL http://arxiv.org/abs/2004.05150. 2, 3, 7, 39

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D. Lee, Deming Chen, and Tri Dao.
Medusa: Simple llm inference acceleration framework with multiple decoding heads, 2024. 44

Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane,
Tamas Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, David Belanger,
Lucy Colwell, and Adrian Weller. Rethinking attention with performers, 2022. URL http:
//arxiv.org/abs/2009.14794. 3, 39

Together Computer. Redpajama: an open dataset for training large language models, 2023. URL
https://github.com/togethercomputer/RedPajama-Data. 38

Tri Dao. FlashAttention-2: Faster attention with better parallelism and work partitioning, 2023.
URL http://arxiv.org/abs/2307.08691. 2, 3, 38, 39

11

http://arxiv.org/abs/2004.05150
http://arxiv.org/abs/2009.14794
http://arxiv.org/abs/2009.14794
https://github.com/togethercomputer/RedPajama-Data
http://arxiv.org/abs/2307.08691

Published as a conference paper at ICLR 2025

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. FlashAttention: Fast and
memory-efficient exact attention with IO-awareness, 2022. URL http://arxiv.org/abs/
2205.14135. 2, 3, 32

Yichao Fu, Peter Bailis, Ion Stoica, and Hao Zhang. Break the sequential dependency of llm infer-
ence using lookahead decoding. arXiv preprint arXiv:2402.02057, 2024. 44

Google. Our next-generation model: Gemini 1.5, 2024. URL https://blog.google/
technology/ai/google-gemini-next-generation-model-february-2024/.
46

Insu Han, Rajesh Jayaram, Amin Karbasi, Vahab Mirrokni, David Woodruff, and Amir Zandieh.
Hyperattention: Long-context attention in near-linear time. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https://openreview.net/forum?id=
Eh0Od2BJIM. 7, 38, 39, 40

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding, 2021. URL http://arxiv.
org/abs/2009.03300. 33

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, Yang
Zhang, and Boris Ginsburg. Ruler: What’s the real context size of your long-context language
models? arXiv preprint arXiv:2404.06654, 2024. 3, 8

Shengran Hu, Cong Lu, and Jeff Clune. Automated design of agentic systems. arXiv preprint
arXiv:2408.08435, 2024. 3

Hakan Inan, Kartikeya Upasani, Jianfeng Chi, Rashi Rungta, Krithika Iyer, Yuning Mao, Michael
Tontchev, Qing Hu, Brian Fuller, Davide Testuggine, and Madian Khabsa. Llama guard: Llm-
based input-output safeguard for human-ai conversations, 2023. 46

Huiqiang Jiang, Yucheng Li, Chengruidong Zhang, Qianhui Wu, Xufang Luo, Surin Ahn, Zhen-
hua Han, Amir H Abdi, Dongsheng Li, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. Minference
1.0: Accelerating pre-filling for long-context llms via dynamic sparse attention. arXiv preprint
arXiv:2407.02490, 2024. 7

Hongye Jin, Xiaotian Han, Jingfeng Yang, Zhimeng Jiang, Zirui Liu, Chia-Yuan Chang, Huiyuan
Chen, and Xia Hu. Llm maybe longlm: Self-extend llm context window without tuning, 2024. 34

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In ICLR
2020, 2019. URL https://openreview.net/forum?id=rkgNKkHtvB. 2, 7, 33, 34,
39, 40

Wojciech Kryściński, Nazneen Rajani, Divyansh Agarwal, Caiming Xiong, and Dragomir Radev.
BookSum: A collection of datasets for long-form narrative summarization, 2022. URL http:
//arxiv.org/abs/2105.08209. 3, 9

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023. 2

Heejun Lee, Jina Kim, Jeffrey Willette, and Sung Ju Hwang. SEA: Sparse linear attention with
estimated attention mask, 2023. URL http://arxiv.org/abs/2310.01777. 2, 3, 33,
34, 39, 40, 44

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In International Conference on Machine Learning, pp. 19274–19286. PMLR, 2023.
44

Bo Li*, Peiyuan Zhang*, Kaichen Zhang*, Fanyi Pu*, Xinrun Du, Yuhao Dong, Haotian
Liu, Yuanhan Zhang, Ge Zhang, Chunyuan Li, and Ziwei Liu. Lmms-eval: Accelerating
the development of large multimoal models, March 2024. URL https://github.com/
EvolvingLMMs-Lab/lmms-eval. 33

12

http://arxiv.org/abs/2205.14135
http://arxiv.org/abs/2205.14135
https://blog.google/technology/ai/google-gemini-next-generation-model-february-2024/
https://blog.google/technology/ai/google-gemini-next-generation-model-february-2024/
https://openreview.net/forum?id=Eh0Od2BJIM
https://openreview.net/forum?id=Eh0Od2BJIM
http://arxiv.org/abs/2009.03300
http://arxiv.org/abs/2009.03300
https://openreview.net/forum?id=rkgNKkHtvB
http://arxiv.org/abs/2105.08209
http://arxiv.org/abs/2105.08209
http://arxiv.org/abs/2310.01777
https://github.com/EvolvingLMMs-Lab/lmms-eval
https://github.com/EvolvingLMMs-Lab/lmms-eval

Published as a conference paper at ICLR 2025

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle
Cai, Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for before
generation. arXiv preprint arXiv:2404.14469, 2024. 7

Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In Text Summarization
Branches Out, pp. 74–81, Barcelona, Spain, July 2004. Association for Computational Linguis-
tics. URL https://aclanthology.org/W04-1013. 9

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
tuning, 2023a. URL http://arxiv.org/abs/2310.03744. 1

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In NeurIPS,
2023b. 33

Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee.
Llava-next: Improved reasoning, ocr, and world knowledge, January 2024. URL https://
llava-vl.github.io/blog/2024-01-30-llava-next/. 33

Liu Liu, Zheng Qu, Zhaodong Chen, Yufei Ding, and Yuan Xie. Transformer acceleration with
dynamic sparse attention, 2021. URL http://arxiv.org/abs/2110.11299. 2, 3

Llama Team AI @ Meta. The llama 3 herd of models, 2024. URL https://arxiv.org/abs/
2407.21783. 2, 7

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Zhengxin Zhang, Rae
Ying Yee Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, Chunan Shi, Zhuoming Chen, Daiyaan
Arfeen, Reyna Abhyankar, and Zhihao Jia. Specinfer: Accelerating large language model serv-
ing with tree-based speculative inference and verification. In Proceedings of the 29th ACM In-
ternational Conference on Architectural Support for Programming Languages and Operating
Systems, Volume 3, ASPLOS ’24. ACM, April 2024. doi: 10.1145/3620666.3651335. URL
http://dx.doi.org/10.1145/3620666.3651335. 44

Nvidia. Tensorcore: Nvidia, 2024. URL https://www.nvidia.com/en-us/
data-center/tensor-cores/. 2

Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and Enrico Shippole. Yarn: Efficient context window
extension of large language models, 2023. URL https://arxiv.org/abs/2309.00071.
34

Zhen Qin, Weixuan Sun, Hui Deng, Dongxu Li, Yunshen Wei, Baohong Lv, Junjie Yan, Lingpeng
Kong, and Yiran Zhong. cosFormer: Rethinking softmax in attention, 2022. URL http://
arxiv.org/abs/2202.08791. 3, 39

Jack W Rae, Anna Potapenko, Siddhant M Jayakumar, Chloe Hillier, and Timothy P Lillicrap.
Compressive transformers for long-range sequence modelling. arXiv preprint, 2019. URL
https://arxiv.org/abs/1911.05507. 7, 9

Luka Ribar, Ivan Chelombiev, Luke Hudlass-Galley, Charlie Blake, Carlo Luschi, and Douglas Orr.
SparQ attention: Bandwidth-efficient LLM inference, 2013. URL http://arxiv.org/abs/
2312.04985. 32, 43, 44

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Ev-
timov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong,
Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier,
Thomas Scialom, and Gabriel Synnaeve. Code llama: Open foundation models for code, 2024.
URL http://arxiv.org/abs/2308.12950. 1

Yi Tay, Dara Bahri, Liu Yang, Donald Metzler, and Da-Cheng Juan. Sparse sinkhorn attention. In
Proceedings of the 37th International Conference on Machine Learning, pp. 9438–9447. PMLR,
2020. URL https://proceedings.mlr.press/v119/tay20a.html. ISSN: 2640-
3498. 2

13

https://aclanthology.org/W04-1013
http://arxiv.org/abs/2310.03744
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/
http://arxiv.org/abs/2110.11299
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
http://dx.doi.org/10.1145/3620666.3651335
https://www.nvidia.com/en-us/data-center/tensor-cores/
https://www.nvidia.com/en-us/data-center/tensor-cores/
https://arxiv.org/abs/2309.00071
http://arxiv.org/abs/2202.08791
http://arxiv.org/abs/2202.08791
https://arxiv.org/abs/1911.05507
http://arxiv.org/abs/2312.04985
http://arxiv.org/abs/2312.04985
http://arxiv.org/abs/2308.12950
https://proceedings.mlr.press/v119/tay20a.html

Published as a conference paper at ICLR 2025

Yi Tay, Dara Bahri, Donald Metzler, Da-Cheng Juan, Zhe Zhao, and Che Zheng. Synthesizer: Re-
thinking self-attention in transformer models, 2021. URL http://arxiv.org/abs/2005.
00743. 2

Gemma Team. Gemma 2: Improving open language models at a practical size, 2024. URL https:
//arxiv.org/abs/2408.00118. 34

Philippe Tillet, Hsiang-Tsung Kung, and David D. Cox. Triton: an intermediate language and
compiler for tiled neural network computations. Proceedings of the 3rd ACM SIGPLAN Inter-
national Workshop on Machine Learning and Programming Languages, 2019. URL https:
//api.semanticscholar.org/CorpusID:184488182. 2

tinygrad. tinybox, 2024. URL https://tinygrad.org/#tinybox. 46

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
2023. URL http://arxiv.org/abs/2307.09288. 1, 6

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. In The Twelfth International Conference on Learning Rep-
resentations, 2024. URL https://openreview.net/forum?id=NG7sS51zVF. 3, 7,
32, 39

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago
Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, and Amr Ahmed. Big bird: Trans-
formers for longer sequences. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin
(eds.), Advances in Neural Information Processing Systems, volume 33, pp. 17283–17297. Curran
Associates, Inc., 2020a. URL https://proceedings.neurips.cc/paper_files/
paper/2020/file/c8512d142a2d849725f31a9a7a361ab9-Paper.pdf. 3, 7

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Al-
berti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, and
Amr Ahmed. Big bird: Transformers for longer sequences. In Advances in Neu-
ral Information Processing Systems, volume 33, pp. 17283–17297. Curran Associates,
Inc., 2020b. URL https://proceedings.neurips.cc/paper/2020/hash/
c8512d142a2d849725f31a9a7a361ab9-Abstract.html. 2

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, Zhangyang Wang, and Beidi Chen. H2o: Heavy-
hitter oracle for efficient generative inference of large language models, 2023. 7, 44

Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue Sun, Jeff Huang, Cody Hao Yu, Shiyi Cao,
Christos Kozyrakis, Ion Stoica, Joseph E. Gonzalez, Clark Barrett, and Ying Sheng. Sglang:
Efficient execution of structured language model programs, 2024. URL https://arxiv.
org/abs/2312.07104. 2

14

http://arxiv.org/abs/2005.00743
http://arxiv.org/abs/2005.00743
https://arxiv.org/abs/2408.00118
https://arxiv.org/abs/2408.00118
https://api.semanticscholar.org/CorpusID:184488182
https://api.semanticscholar.org/CorpusID:184488182
https://tinygrad.org/##tinybox
http://arxiv.org/abs/2307.09288
https://openreview.net/forum?id=NG7sS51zVF
https://proceedings.neurips.cc/paper_files/paper/2020/file/c8512d142a2d849725f31a9a7a361ab9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/c8512d142a2d849725f31a9a7a361ab9-Paper.pdf
https://proceedings.neurips.cc/paper/2020/hash/c8512d142a2d849725f31a9a7a361ab9-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/c8512d142a2d849725f31a9a7a361ab9-Abstract.html
https://arxiv.org/abs/2312.07104
https://arxiv.org/abs/2312.07104

Published as a conference paper at ICLR 2025

Appendices

A Theoretical Analysis 16

A.1 Proof Sketch . 16

A.2 Detailed Proofs . 18

A.3 Revisiting Assumptions in Theoretical Analysis 23

B Detailed Methodology Descriptions 31

B.1 Hierarchical Sparse Attention Mask Estimation Algorithm 31

B.2 HiP Decoding Algorithm . 31

B.3 Detailed Flow-diagram of HiP . 32

B.4 Additional Optimization Techniques . 32

B.5 Training Downstream Tasks with HiP . 32

C Additional Experimental Results 33

C.1 Large Multimodal Model with HiP . 33

C.2 Massive Multitask Language Understanding (MMLU) 33

C.3 Comparison with Reformer and SEA . 33

C.4 Context Extention with Self-Extend . 34

C.5 Ensemble Hierarchical Top-k Approximation . 35

D Detailed Experimental Settings 37

E Additional Analysis 39

E.1 More Discussion on Related Works . 39

E.2 Analysis of Summarizing Result between StreamingLLM and HiP 40

E.3 Hierarchical Attention Mask Pruning Visualization 41

E.4 Ablation Study on Block Size . 41

E.5 Ablation Study on Dense Layer Choice . 43

E.6 Ablation Study on Representative Token Location 43

E.7 Discussion about KV Cache Eviction and Compression Strategy 44

E.8 Discussion about Speculative Decoding . 44

E.9 Remaining Challenges in HiP and Potential Solutions 44

E.10 Unique GPU Resource Demand Pattern of HiP Compared to Flash Attention 45

F Potential Negative Social Impact 46

15

Published as a conference paper at ICLR 2025

A THEORETICAL ANALYSIS

A.1 PROOF SKETCH

This section provides sketches of the proofs and derivations for the theorems and lemmas mentioned
in the main section of the paper. The full formal proofs are presented in the next subsection.

Using the insight obtained from our observations, we model the random variable δ∆ as follows.

Axiom 1. The attention score difference between two tokens distance ∆ apart is defined as a random
variable δ∆ with the following distribution.

δ∆ ∼ N (0, σ(∆)2), ∆ > 0.

Where the standard deviation σ(∆) is an increasing function of ∆, note that both δ∆ and σ(∆) are
defined only when ∆ > 0, and cases when ∆ = 0 will be dealt separately. We also need to define
the problem setting precisely in terms of math. Without losing generality, we model the tokens as a
list of indices of length 2n. For simplicity, we simplify the problem into the case of top-1 selection.
The indices of tokens range from 1 to 2n, where indices 1 to n belong to the first section, and indices
n+1 to 2n belong to the second section. The number k represents the location of the representative
token inside each section, and hence, indices k and n + k are the representative tokens of the first
and second sections, respectively. We visualize each token position in Figure 10.

Figure 10: Visualization of Problem Setting.

For the ensuing theorems, we define the following random variables and events: t is the random
variable regarding the index of the maximum token, and it is assumed to be a uniform random
variable. A and B are the events where the maximum token is located in the first and second section,
respectively. X is the event where the first representative token is selected, due to the attention score
at index k being larger than the score at index n+ k. The event Y is the exact opposite of X, where
the second representative token is selected.

What is the probability of a token whose distance from the maximum token is α, having a greater
attention score than a token distance β away from the maximum token? Using the random variable
δ∆ from earlier, since the tokens cannot have larger scores than the maximum token, the scores
can be calculated as smax − |δα| and smax − |δβ |, where smax denotes the maximum attention
score. Thus, this problem is equivalent to calculating the probability P(|δα| < |δβ |), which can be
calculated as follows.

Lemma 1.

P(|δα| < |δβ |) = 4

∫ ∞

0

Φ

(
σ(β)

σ(α)
x

)
· 1√

2π
e−

x2

2 dx− 1.

A detailed derivation of the above lemma can be found in Appendix A.2. For convenience, in
the proofs to follow, we will abbreviate P(|δα| < |δβ |) as ϕ(σ(α), σ(β)). Please note that
ϕ(σ(α), σ(β)) is a decreasing function of α, and an increasing function of β. Intuitively, this means
that the probability of the token with distance α being larger than one with distance β gets larger as
the first token gets closer and the second token gets further away from the maximum token. This
intuition agrees with the assumption of locality.

Using Lemma 1, we can calculate the probabilities for the following four cases — the case of the
first or second representative token is selected, either when the maximum token lies in the first or
section. The detailed derivation processes are provided in Appendix A.2.

Claim 1.

P(X ∩ A) =
1

2n

(
k−1∑
i=1

ψ(σ(k − i), σ(n+ k − i)) + 1 +

n∑
i=k+1

ψ(σ(i− k), σ(n+ k − i))

)
,

16

Published as a conference paper at ICLR 2025

Claim 2.

P(Y ∩ A) =
1

2n

(
k−1∑
i=1

ψ(σ(n+ k − i), σ(k − i)) + 0 +

n∑
i=k+1

ψ(σ(n+ k − i), σ(i− k))

)
,

Claim 3.

P(X ∩ B) =
1

2n

(
k−1∑
i=1

ψ(σ(n+ i− k), σ(k − i)) + 0 +

n∑
i=k+1

ψ(σ(n+ i− k), σ(i− k))

)
,

Claim 4.

P(Y ∩ B) =
1

2n

(
k−1∑
i=1

ψ(σ(k − i), σ(n+ i− k)) + 1 +

n∑
i=k+1

ψ(σ(i− k), σ(n+ i− k))

)
.

From these claims, we now appraise HiP’s ability to make the correct choice. In particular, if HiP
is indeed better than random token selection, then it should select the first representative token with
a higher probability if the maximum token is in the first section, and vice versa. The following
theorems specify the conditions in which HiP performs better than random selection. Similarly,
more detailed proof can be found in the appendix section.

Lemma 2. If k ≥ n/2, then P(X ∩ A) > P(Y ∩ A).

Proof (sketch). If k ≥ n/2, then the following three inequalities hold.

k−1∑
i=1

ψ(σ(k − i), σ(n+ k − i)) >

k−1∑
i=1

ψ(σ(n+ k − i), σ(k − i)), 1 > 0,

n∑
i=k+1

ψ(σ(i− k), σ(n+ k − i)) >

n∑
i=k+1

ψ(σ(n+ k − i), σ(i− k)).

Therefore, if k ≥ n/2, P(X ∩ A) > P(Y ∩ A).

Lemma 3. If k ≤ n/2 + 1, then P(Y ∩ B) > P(X ∩ B).

Proof (sketch). If k ≤ n/2 + 1, then the three inequalities hold.

k−1∑
i=1

ψ(σ(k − i), σ(n+ i− k)) >

k−1∑
i=1

ψ(σ(n+ i− k), σ(k − i)), 1 > 0,

n∑
i=k+1

ψ(σ(i− k), σ(n+ i− k)) >

n∑
i=k+1

ψ(σ(n+ i− k), σ(i− k)).

Therefore, if k ≤ n/2 + 1, P(Y ∩ B) > P(X ∩ B).

The final theorem follows directly from the above two lemmas.

Theorem 1. If k = n/2, then P(X ∩ A) > P(Y ∩ A) and P(Y ∩ B) > P(X ∩ B).

This theorem tell us that if k = n/2, then HiP consistently outperforms random token selection in
terms of making the correct choice. Thus, just by setting the representative token as the middle token,
the hierarchical structure of HiP consistently outperforms random token selection! We now have the
answers for the questions mentioned at the beginning of section Section 4. Through mathematical
analysis, we have shown that by using the middle token as the representative token, the hierarchical
approach of HiP consistently guarantees better performance than random token selection. Therefore,
throughout our paper, we always use the middle token as the representative token of a section.

17

Published as a conference paper at ICLR 2025

A.2 DETAILED PROOFS

This section provides more detailed proofs and derivations for the theorems and lemmas mentioned
in the main section of the paper.
Lemma 1.

P(|δα| < |δβ |) = 4

∫ ∞

0

Φ

(
σ(β)

σ(α)
x

)
· 1√

2π
e−

x2

2 dx− 1.

Proof.

P(|δα| < |δβ |) = P(−|δβ | < δα < |δβ |) =
∫ ∞

−∞

∫ |y|

−|y|
P(δα = x, δβ = y)dxdy

Assuming that δα and δβ are independent, we can expand the equation as follows.

P(δα = x, δβ = y) = P(δα = x)P(δβ = y)

∴ P(|δα| < |δβ |) =
∫ ∞

−∞

∫ |y|

−|y|
P(δα = x)P(δβ = y)dxdy

From Axiom 1, note that δα ∼ N (0, σ(α)2) and δβ ∼ N (0, σ(β)2).∫ ∞

−∞

∫ |y|

−|y|
P(δα = x)P(δβ = y)dxdy

=

∫ ∞

−∞

∫ |y|

−|y|

1√
2πσ(α)2

e
− x2

2σ(α)2
1√

2πσ(β)2
e
− y2

2σ(β)2 dxdy

=

∫ ∞

−∞

1√
2πσ(β)2

e
− y2

2σ(β)2

∫ |y|

−|y|

1√
2πσ(α)2

e
− x2

2σ(α)2 dxdy

=

∫ ∞

−∞

1√
2πσ(β)2

e
− y2

2σ(β)2

∫ |y|/σ(α)

−|y|/σ(α)

1√
2π
e−

x2

2 dxdy

=

∫ ∞

−∞

(
2Φ

(
|y|
σ(α)

)
− 1

)
1√

2πσ(β)2
e
− y2

2σ(β)2 dy

= 2

∫ ∞

−∞
Φ

(
|y|
σ(α)

)
1√

2πσ(β)2
e
− y2

2σ(β)2 dy − 1

Note that the symbol Φ represents the cumulative distribution function (CDF) of the standard normal
distribution.

2

∫ ∞

−∞
Φ

(
|y|
σ(α)

)
1√

2πσ(β)2
e
− y2

2σ(β)2 dy − 1

= 4

∫ ∞

0

Φ

(
y

σ(α)

)
1√

2πσ(β)2
e
− y2

2σ(β)2 dy − 1

= 4

∫ ∞

0

Φ

(
σ(β)

σ(α)
y

)
1√
2π
e−

y2

2 dy − 1

= 4

∫ ∞

0

Φ

(
σ(β)

σ(α)
x

)
1√
2π
e−

x2

2 dx− 1

As mentioned in the main section, for convenience, we will denote P(|δα| < |δβ |) asψ(σ(α), σ(β)).
Please remember thatψ(σ(α), σ(β)) is a decreasing function of α, the first argument, and an increas-
ing function of β, the second argument. Note that in our derivation, we assumed that δα and δβ are
independent. More discussion on this assumption will be provided in the ensuing subsections.

18

Published as a conference paper at ICLR 2025

Claim 1.

P(X ∩ A) =
1

2n

(
k−1∑
i=1

ψ(σ(k − i), σ(n+ k − i)) + 1 +

n∑
i=k+1

ψ(σ(i− k), σ(n+ k − i))

)

Proof. Recall that t is a uniform random variable denoting the index of the maximum token. Since
the number of tokens is 2n, event A is actually the union of events t = 1 . . . n. Therefore,

P(X ∩ A) =
n∑

i=1

P(X ∩ t = i) =

n∑
i=1

P(t = i)P(X|t = i) =
1

2n

n∑
i=1

P(X|t = i)

Using Lemma 1, P(X|t = i) can be calculated as follows.

P(X|t = i) =

ψ(σ(k − i), σ(n+ k − i)) if i < k

1 if i = k

ψ(σ(i− k), σ(n+ k − i)) if i > k

A detailed explanation for the above derivation is as follows. When the maximum token index is
smaller than the first representative token (i.e. i < k), the distances between the maximum token
and the two representative tokens are k − i and n + k − i. Thus, using Lemma 1, P(X|t = i) =
ψ(σ(k− i), σ(n+ k− i)). Similarly, P(X|t = i) = ψ(σ(i− k), σ(n+ k− i)) when the maximum
token index is larger than the first representative token (i.e. i > k). When the maximum token is the
first representative token (i.e. i = k), we cannot use Lemma 1 as σ(∆) is defined only when ∆ > 0.
However, if the maximum token is the first representative token, then it will always be larger than
the second representative token - hence, P(X|t = i) = 1.

Using the above derivation, we can rewrite the original summation as follows.

P(X ∩ A) =
1

2n

n∑
i=1

P(X|t = i)

=
1

2n

(
k−1∑
i=1

ψ(σ(k − i), σ(n+ k − i)) + 1 +

n∑
i=k+1

ψ(σ(i− k), σ(n+ k − i))

)

Claim 2.

P(Y ∩ A) =
1

2n

(
k−1∑
i=1

ψ(σ(n+ k − i), σ(k − i)) + 0 +
n∑

i=k+1

ψ(σ(n+ k − i), σ(i− k))

)

Proof. The derivation is almost the same as Claim 1, except that the second representative token
needs to have a larger attention score than the first one. Therefore, the arguments in the ψ function
are switched for cases i < k and i > k. When i = k, the maximum token is the first representative
token, so P(X|t = i) is zero. Therefore,

P(Y|t = i) =

ψ(σ(n+ k − i), σ(k − i)) if i < k

0 if i = k

ψ(σ(n+ k − i), σ(i− k)) if i > k

∴ P(Y ∩ A) =
1

2n

n∑
i=1

P(Y|t = i)

=
1

2n

(
k−1∑
i=1

ψ(σ(n+ k − i), σ(k − i)) + 0 +

n∑
i=k+1

ψ(σ(n+ k − i), σ(i− k))

)

19

Published as a conference paper at ICLR 2025

Claim 3.

P(X ∩ B) =
1

2n

(
k−1∑
i=1

ψ(σ(n+ i− k), σ(k − i)) + 0 +

n∑
i=k+1

ψ(σ(n+ i− k), σ(i− k))

)

Proof. Recall that t is a uniform random variable denoting the index of the maximum token. Since
the number of tokens is 2n, event B is actually the union of events t = n+ 1 . . . 2n. Therefore,

P(X ∩ B) =
2n∑

i=n+1

P(X ∩ t = i) =

2n∑
i=n+1

P(t = i)P(X|t = i) =
1

2n

2n∑
i=n+1

P(X|t = i)

Similarly to Claim 1, using Lemma 1, P(X|t = i) is derived as follows.

P(X|t = i) =

ψ(σ(i− k), σ(n+ k − i)) if i < n+ k

0 if i = n+ k

ψ(σ(i− k), σ(i− n− k)) if i > n+ k

∴ P(X ∩ B) =
1

2n

2n∑
i=n+1

P(X|t = i)

=
1

2n

(
n+k−1∑
i=n+1

ψ(σ(i− k), σ(n+ k − i)) + 0 +

2n∑
i=n+k+1

ψ(σ(i− k), σ(i− n− k))

)

=
1

2n

(
k−1∑
i=1

ψ(σ(n+ i− k), σ(k − i)) + 0 +

n∑
i=k+1

ψ(σ(n+ i− k), σ(i− k))

)

Claim 4.

P(Y ∩ B) =
1

2n

(
k−1∑
i=1

ψ(σ(k − i), σ(n+ i− k)) + 1 +

n∑
i=k+1

ψ(σ(i− k), σ(n+ i− k))

)

Proof. The derivation is similar to Claim 3, except that the second representative token needs to
have a larger attention score than the first one. Therefore, the parameters of the ψ function are
switched compared to Claim 3. Also, when i = n + k, then the second representative token is the
maximum token. Therefore, P(Y|t = i) is derived as follows.

P(X|t = i) =

ψ(σ(n+ k − i), σ(i− k)) if i < n+ k

1 if i = n+ k

ψ(σ(i− n− k), σ(i− k)) if i > n+ k

∴ P(Y ∩ B) =
1

2n

2n∑
i=n+1

P(Y|t = i)

=
1

2n

(
n+k−1∑
i=n+1

ψ(σ(n+ k − i), σ(i− k)) + 1 +

2n∑
i=n+k+1

ψ(σ(i− n− k), σ(i− k))

)

=
1

2n

(
k−1∑
i=1

ψ(σ(k − i), σ(n+ i− k)) + 1 +

n∑
i=k+1

ψ(σ(i− k), σ(n+ i− k))

)

Lemma 2. If k ≥ n/2, then P(X ∩ A) > P(Y ∩ A)

20

Published as a conference paper at ICLR 2025

Proof. From Claim 1 and Claim 2,

P(X ∩ A) =
1

2n

(
k−1∑
i=1

ψ(σ(k − i), σ(n+ k − i)) + 1 +

n∑
i=k+1

ψ(σ(i− k), σ(n+ k − i))

)

P(Y ∩ A) =
1

2n

(
k−1∑
i=1

ψ(σ(n+ k − i), σ(k − i)) + 0 +

n∑
i=k+1

ψ(σ(n+ k − i), σ(i− k))

)
The following inequalities trivially hold.

k−1∑
i=1

ψ(σ(k − i), σ(n+ k − i)) >

k−1∑
i=1

ψ(σ(n+ k − i), σ(k − i))

1 > 0

For the remaining two terms, the direction of the inequality depends on the relationship between
σ(i−k) and σ(n+k−i). In order for P(X∩A) > P(Y∩A), we need to have σ(i−k) ≤ σ(n+k−i),
i.e. i− k ≤ n+ k − i for all i = k + 1 · · ·n.

i− k ≤ n+ k − i ∀i = k + 1 · · ·n

∴ 2k ≥ 2i− n, ∀i = k + 1 · · ·n

∴ k ≥ i− n

2
∀i = k + 1 · · ·n

∴ k ≥ n

2

Therefore, if k ≥ n/2, then the inequality P(X ∩ A) > P(Y ∩ A) holds.

Lemma 3. If k ≤ n/2 + 1, then P(Y ∩ B) > P(X ∩ B)

Proof. From Claim 3 and Claim 4,

P(X ∩ B) =
1

2n

(
k−1∑
i=1

ψ(σ(n+ i− k), σ(k − i)) + 0 +

n∑
i=k+1

ψ(σ(n+ i− k), σ(i− k))

)

P(Y ∩ B) =
1

2n

(
k−1∑
i=1

ψ(σ(k − i), σ(n+ i− k)) + 1 +

n∑
i=k+1

ψ(σ(i− k), σ(n+ i− k))

)
The following inequalities trivially hold.

n∑
i=k+1

ψ(σ(i− k), σ(n+ i− k)) >

n∑
i=k+1

ψ(σ(n+ i− k), σ(i− k))

1 > 0

For the remaining two terms, the direction of the inequality depends on the relationship between
σ(n+i−k) and σ(k−i). In order for P(Y∩B) > P(X∩B), we need to have σ(k−i) ≤ σ(n+i−k),
i.e. k − i ≤ n+ i− k for all i = 1 · · · k − 1.

k − i ≤ n+ i− k ∀i = 1 · · · k − 1

∴ 2k ≤ 2i+ n, ∀i = 1 · · · k − 1

∴ k ≤ i+
n

2
∀i = 1 · · · k − 1

∴ k ≤ n

2
+ 1

Therefore, if k ≤ n/2 + 1, then the inequality P(Y ∩ B) > P(X ∩ B) holds.

Theorem 2. If σ′′(k)σ(k) < σ′(k)2, then P(X ∩ A) +P(Y ∩ B) is maximized when k = n/2.

21

Published as a conference paper at ICLR 2025

Proof. From Claim 1 and Claim 4,

P(X ∩ A) +P(Y ∩ B)

=
1

2n

(
k−1∑
i=1

ψ(σ(k − i), σ(n+ k − i)) + 1 +

n∑
i=k+1

ψ(σ(i− k), σ(n+ k − i))

)

+
1

2n

(
k−1∑
i=1

ψ(σ(k − i), σ(n+ i− k)) + 1 +

n∑
i=k+1

ψ(σ(i− k), σ(n+ i− k))

)

=
1

2n

(
k−1∑
i=1

ψ(σ(k − i), σ(n+ k − i)) + 1 +

n∑
i=k+1

ψ(σ(i− k), σ(n+ i− k))

)

+
1

2n

(
k−1∑
i=1

ψ(σ(k − i), σ(n+ i− k)) + 1 +

n∑
i=k+1

ψ(σ(i− k), σ(n+ k − i))

)
For simplicity, we refer to the first term as T1, and the second term as T2. We now investigate which
value of k maximizes T1 and T2.

For T2, suppose the value of k changes from k to k + 1.

T2k+1 − T2k = ψ(σ(k), σ(n− k))− ψ(σ(n− k), σ(k))

It can be easily seen that ψ(σ(k), σ(n − k)) is a decreasing function of k, and ψ(σ(n − k), σ(k))
is an increasing function of k. Therefore, T2k+1 − T2k is a decreasing function of k, and its value
goes from a positive value when k = 1, and a negative value when k = n − 1. Thus, T2 is
maximized when T2k+1 − T2k = ψ(σ(k), σ(n − k)) − ψ(σ(n − k), σ(k)) = 0. The value of k
where ψ(σ(k), σ(n− k))− ψ(σ(n− k), σ(k)) = 0 is computed as follows.

k = n− k, ∴ k =
n

2

Therefore, T2 is maximized when k = n
2 .

For T1, suppose the value of k changes from k to k + 1.

T1k+1 − T1k = ψ(σ(k), σ(n+ k))− ψ(σ(n− k), σ(2n− k))

Unlike T2, we cannot easily determine whether ψ(σ(k), σ(n+ k)) or ψ(σ(n− k), σ(2n− k)) is an
increasing or decreasing function of k. Therefore, we turn to the definition of ψ(σ(α), σ(β)). From
Lemma 1,

ψ(σ(α), σ(β)) = 4

∫ ∞

0

Φ

(
σ(β)

σ(α)
x

)
· 1√

2π
e−

x2

2 dx− 1

Thus, the positivity of T1k+1−T1k depends on the characteristics of the function σ(n+k)/σ(k). If
σ(n+k)/σ(k) is a decreasing function of k, then ψ(σ(k), σ(n+k)) becomes a decreasing function
of k, and inversely, ψ(σ(n − k), σ(2n − k)) becomes an increasing function of k. In this case,
similarly to T2, we can show that T1 is maximized when k = n/2. In order to find the condition
where σ(n+ k)/σ(k) becomes a decreasing function of k, we take its derivative in terms of k.

d

dk

σ(n+ k)

σ(k)
=
σ′(n+ k)σ(k)− σ(n+ k)σ′(k)

σ(k)2
< 0

∴ σ′(n+ k)σ(k) < σ(n+ k)σ′(k), ∴
σ′(n+ k)

σ(n+ k)
<
σ′(k)

σ(k)

Thus, we see that if σ′(k)/σ(k) is a decreasing function of k, then σ(n + k)/σ(k) also becomes a
decreasing function of k. This condition is equivalent to the condition σ′′(k)σ(k) < σ′(k)2. The
derivation is as follows.

d

dk

σ′(k)

σ(k)
< 0, ∴

σ′′(k)σ(k)− σ′(k)2

σ(k)2
< 0

22

Published as a conference paper at ICLR 2025

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Attention Head

1
3
5
7
9

11
13
15
17
19
21
23
25
27
29
31

La
ye

r

Wikitext2 Booksum Longbench Pg19

0.0

0.1

0.2

0.3

0.4

0.5

(a) Llama3.1 8B Model.

1 3 5 7 9 11 13 15 17 19 21 23 25 27

Attention Head

1
3
5
7
9

11
13
15
17
19
21
23
25
27

La
ye

r

Wikitext2 Booksum Longbench Pg19

0.0

0.1

0.2

0.3

0.4

0.5

(b) Qwen2 7B Model.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Attention Head

1
3
5
7
9

11
13
15
17
19
21
23
25
27
29
31

La
ye

r

Wikitext2 Booksum Longbench Pg19

0.0

0.1

0.2

0.3

0.4

0.5

(c) Exaone 3.0 7.8B Model.

Figure 11: NRMSE of Fitting σ(∆) as a Logarithmic Function. The above figures show the
NRMSE (Normalized Root Mean Squared Error) result of fitting the σ(∆) function as a logarithmic
function, as a continuation of Figure 12. For fitting the function, the general formula y = a log(x+
b)+cwas used. We demonstrate the experimental results on various datasets and LLM architectures.

∴ σ′′(k)σ(k) < σ′(k)2

To summarize, if σ′′(k)σ(k) < σ′(k)2, then ψ(σ(k), σ(n+k)) becomes a decreasing function of k,
and ψ(σ(n−k), σ(2n−k)) becomes an increasing function of k. Therefore, T1k+1−T1k becomes
a decreasing function of k, and its value goes from positive to negative as k goes from 1 to n − 1.
The crossover point is where k = n−k, and n+k = 2n−k. Coincidentally, this is when k = n/2.
Therefore, if σ′′(k)σ(k) < σ′(k)2 the value of k which maximizes T1 is k = n/2.

To summarize, if σ′′(k)σ(k) < σ′(k)2, then k = n/2 maximizes both T1 and T2. This concludes
the proof.

A.3 REVISITING ASSUMPTIONS IN THEORETICAL ANALYSIS

In Axiom 1 and Lemma 1, we make two important assumptions: that δ∆ follows a normal distribu-
tion N (0, σ(∆)2), and that δα and δβ are independent of each other. However, is this justifiable? In
this section, we provide analysis and explanation on this issue by providing several empirical results
collected across various datasets and LLM architectures, which justify our assumptions.

A.3.1 THE DISTRIBUTION OF δ∆

First, we justify the assumption δ∆ ∼ N (0, σ(∆)2) by validating three parts - that δ∆ does follow a
normal distribution, that σ(∆) is an increasing function of ∆, and that the mean can be approximated
as zero.

23

Published as a conference paper at ICLR 2025

0 200 400 600 800 1000
Index difference

1.75

2.00

2.25

2.50

2.75

3.00

St
an

da
rd

 d
ev

ia
tio

n
NRMSE: 0.038056

Head 4

0 200 400 600 800 1000
Index difference

2.5

3.0

3.5

4.0

4.5

5.0

St
an

da
rd

 d
ev

ia
tio

n

NRMSE: 0.071455

Head 8

0 200 400 600 800 1000
Index difference

2.00

2.25

2.50

2.75

3.00

3.25

3.50

St
an

da
rd

 d
ev

ia
tio

n

NRMSE: 0.026450

Head 12

0 200 400 600 800 1000
Index difference

2.0

2.2

2.4

2.6

2.8

St
an

da
rd

 d
ev

ia
tio

n

NRMSE: 0.044252

Head 16

0 200 400 600 800 1000
Index difference

1.6

1.8

2.0

2.2

2.4

St
an

da
rd

 d
ev

ia
tio

n

NRMSE: 0.040612

Head 20

0 200 400 600 800 1000
Index difference

2.2

2.4

2.6

2.8

3.0

3.2

St
an

da
rd

 d
ev

ia
tio

n

NRMSE: 0.034235

Head 24

0 200 400 600 800 1000
Index difference

3.00

3.25

3.50

3.75

4.00

4.25

St
an

da
rd

 d
ev

ia
tio

n

NRMSE: 0.053045

Head 28

0 200 400 600 800 1000
Index difference

1.5

2.0

2.5

3.0

3.5

4.0

4.5

St
an

da
rd

 d
ev

ia
tio

n

NRMSE: 0.076300

Head 32

(a) Llama3.1 8B, 16th layer.

0 200 400 600 800 1000
Index difference

2.0

2.5

3.0

3.5

4.0

St
an

da
rd

 d
ev

ia
tio

n

NRMSE: 0.113388

Head 4

0 200 400 600 800 1000
Index difference

1.8

2.0

2.2

2.4

2.6

2.8

3.0

St
an

da
rd

 d
ev

ia
tio

n

NRMSE: 0.033310

Head 8

0 200 400 600 800 1000
Index difference

2.00

2.25

2.50

2.75

3.00

3.25

St
an

da
rd

 d
ev

ia
tio

n
NRMSE: 0.069033

Head 12

0 200 400 600 800 1000
Index difference

1.8

2.0

2.2

2.4

2.6

2.8

3.0

St
an

da
rd

 d
ev

ia
tio

n

NRMSE: 0.055701

Head 16

0 200 400 600 800 1000
Index difference

1.8

2.0

2.2

2.4

2.6

2.8

St
an

da
rd

 d
ev

ia
tio

n

NRMSE: 0.044604

Head 20

0 200 400 600 800 1000
Index difference

2.0

2.5

3.0

3.5

4.0

St
an

da
rd

 d
ev

ia
tio

n

NRMSE: 0.048356

Head 24

0 200 400 600 800 1000
Index difference

2.00

2.25

2.50

2.75

3.00

3.25

St
an

da
rd

 d
ev

ia
tio

n

NRMSE: 0.039546

Head 28

(b) Qwen2 7B, 12th Layer.

0 200 400 600 800 1000
Index difference

2.0

2.5

3.0

St
an

da
rd

 d
ev

ia
tio

n

NRMSE: 0.036647

Head 4

0 200 400 600 800 1000
Index difference

1.50

1.75

2.00

2.25

2.50

2.75

St
an

da
rd

 d
ev

ia
tio

n

NRMSE: 0.064164

Head 8

0 200 400 600 800 1000
Index difference

1.6

1.8

2.0

2.2

2.4

2.6

2.8

St
an

da
rd

 d
ev

ia
tio

n

NRMSE: 0.036935

Head 12

0 200 400 600 800 1000
Index difference

2.2

2.4

2.6

2.8

St
an

da
rd

 d
ev

ia
tio

n

NRMSE: 0.037188

Head 16

0 200 400 600 800 1000
Index difference

1.5

2.0

2.5

3.0

3.5

4.0

St
an

da
rd

 d
ev

ia
tio

n

NRMSE: 0.050786

Head 20

0 200 400 600 800 1000
Index difference

2.0

2.2

2.4

2.6

2.8

St
an

da
rd

 d
ev

ia
tio

n

NRMSE: 0.044811

Head 24

0 200 400 600 800 1000
Index difference

2.2

2.4

2.6

2.8

3.0

St
an

da
rd

 d
ev

ia
tio

n

NRMSE: 0.050182

Head 28

0 200 400 600 800 1000
Index difference

1.5

2.0

2.5

3.0

St
an

da
rd

 d
ev

ia
tio

n

NRMSE: 0.053617

Head 32

(c) Exaone 3 7.8B, 16th layer.

Figure 12: Plots of σ(∆) and their Normalized Root Mean Squared Error. The above figures
show the plots of σ(∆), and the NRMSE errors for fitting as a logarithmic function across various
LLM models and layers. For the input, we used the Wikitext2 dataset.

Figure 15 shows some examples of the distribution of δ∆ of various models. As can be seen in
the figure, δ∆ clearly follows a normal distribution. In order to provide statistical evidence that δ∆
indeed follows a normal distribution, we compute the KL divergence between δ∆ and the normal
distribution fitted onto δ∆. We experiment on all layers for various LLM models and ∆ values, and
show some of the results in Figure 16. As can be seen in Figure 16, almost all of the KL divergence
values are extremely small and close to zero. In fact, with the small exception of the first layer

24

Published as a conference paper at ICLR 2025

0 200 400 600 800 1000
Index difference

0.04

0.02

0.00

0.02

0.04

0.06

M
ea

n

Head 1

0 200 400 600 800 1000
Index difference

0.5

0.4

0.3

0.2

0.1

0.0

M
ea

n

Head 5

0 200 400 600 800 1000
Index difference

0.00

0.05

0.10

0.15

M
ea

n

Head 9

0 200 400 600 800 1000
Index difference

1.0

0.8

0.6

0.4

0.2

0.0

M
ea

n

Head 13

0 200 400 600 800 1000
Index difference

0.4

0.3

0.2

0.1

0.0

M
ea

n

Head 17

0 200 400 600 800 1000
Index difference

0.00

0.05

0.10

0.15

0.20

M
ea

n

Head 21

0 200 400 600 800 1000
Index difference

0.00

0.05

0.10

0.15

M
ea

n

Head 25

0 200 400 600 800 1000
Index difference

0.6

0.4

0.2

0.0

M
ea

n

Head 29

(a) Llama3.1 8B Model, 17th Layer.

0 200 400 600 800 1000
Index difference

0.05

0.00

0.05

0.10

M
ea

n

Head 4

0 200 400 600 800 1000
Index difference

0.6

0.5

0.4

0.3

0.2

0.1

0.0

M
ea

n

Head 8

0 200 400 600 800 1000
Index difference

0.100

0.075

0.050

0.025

0.000

0.025

M
ea

n

Head 12

0 200 400 600 800 1000
Index difference

0.4

0.3

0.2

0.1

0.0

M
ea

n

Head 16

0 200 400 600 800 1000
Index difference

0.00

0.05

0.10

0.15

0.20

0.25

M
ea

n

Head 20

0 200 400 600 800 1000
Index difference

0.3

0.2

0.1

0.0

0.1

M
ea

n

Head 24

0 200 400 600 800 1000
Index difference

0.2

0.1

0.0

0.1

M
ea

n

Head 28

(b) Qwen2 7B Model, 14th Layer.

0 200 400 600 800 1000
Index difference

0.00

0.05

0.10

0.15

0.20

0.25

M
ea

n

Head 4

0 200 400 600 800 1000
Index difference

0.100

0.075

0.050

0.025

0.000

0.025

M
ea

n

Head 8

0 200 400 600 800 1000
Index difference

0.25

0.20

0.15

0.10

0.05

0.00

M
ea

n

Head 12

0 200 400 600 800 1000
Index difference

0.25

0.20

0.15

0.10

0.05

0.00

M
ea

n

Head 16

0 200 400 600 800 1000
Index difference

0.2

0.1

0.0

M
ea

n

Head 20

0 200 400 600 800 1000
Index difference

0.4

0.3

0.2

0.1

0.0

M
ea

n

Head 24

0 200 400 600 800 1000
Index difference

0.15

0.10

0.05

0.00

M
ea

n

Head 28

0 200 400 600 800 1000
Index difference

0.00

0.05

0.10

0.15

0.20

0.25

M
ea

n

Head 32

(c) Exaone 3.0 7.8B Model, 16th Layer.

Figure 13: Plots of the mean of δ∆. The above figures show the plots of the mean of δ∆, as a
function of ∆ for various LLM models and layers. For the input, we used the LongBench dataset.

of the Qwen2 model, all of the KL divergence values are smaller than 0.1, which validates that δ∆
follows the normal distribution.

Although the KL divergence values in Figure 16 are very small, it appears that few attention heads
stand out as extreme outliers in the first layer of the Qwen2 model. In Figure 14, we take a closer
look at the distribution of δ∆ in one of such attention heads. This figure shows that the distribution of
δ∆ in these outliers still largely resemble a Gaussian Distribution. However, the distribution appears

25

Published as a conference paper at ICLR 2025

20 10 0 10 20
Attention Score Difference

0.00

0.02

0.04

0.06

0.08

0.10

KL divergence: 1.4741

 = 200

20 10 0 10 20
Attention Score Difference

0.00

0.02

0.04

0.06

0.08

0.10

KL divergence: 1.1134

 = 400

20 10 0 10 20
Attention Score Difference

0.00

0.02

0.04

0.06

0.08

0.10

KL divergence: 1.2224

 = 600

20 10 0 10 20
Attention Score Difference

0.00

0.02

0.04

0.06

0.08

KL divergence: 1.0623

 = 800

Figure 14: Close Examination of δ∆ for the Qwen2 Model. The above figures plot the distributions
of δ∆ of the 3rd attention head of the first layer for the Qwen2 model, which was also shown in
Figure 16. Close examination on these figures suggest that although the KL divergence scores are
high, δ∆ still largely follows a Gaussian distribution.

5.0 2.5 0.0 2.5 5.0
Attention Score Difference

0.000

0.005

0.010

0.015

0.020

0.025

KL divergence: 0.0030

 = 200

5.0 2.5 0.0 2.5 5.0
Attention Score Difference

0.000

0.005

0.010

0.015

0.020

0.025

KL divergence: 0.0079

 = 400

5.0 2.5 0.0 2.5 5.0
Attention Score Difference

0.000

0.005

0.010

0.015

0.020

0.025

KL divergence: 0.0031

 = 600

5.0 2.5 0.0 2.5 5.0
Attention Score Difference

0.000

0.005

0.010

0.015

0.020

0.025

KL divergence: 0.0027

 = 800

(a) Llama3.1 8B, 9th attention head of the first layer.

10 5 0 5 10
Attention Score Difference

0.000

0.005

0.010

0.015

0.020

0.025

KL divergence: 0.0023

 = 200

10 5 0 5
Attention Score Difference

0.000

0.005

0.010

0.015

0.020

0.025

KL divergence: 0.0024

 = 400

10 5 0 5 10
Attention Score Difference

0.000

0.005

0.010

0.015

0.020

0.025

KL divergence: 0.0023

 = 600

10 5 0 5
Attention Score Difference

0.000

0.005

0.010

0.015

0.020

0.025

KL divergence: 0.0023

 = 800

(b) Qwen2 7B, 6th attention head of the 9th layer.

5 0 5
Attention Score Difference

0.000

0.005

0.010

0.015

0.020

0.025

KL divergence: 0.0035

 = 200

10 5 0 5 10
Attention Score Difference

0.000

0.005

0.010

0.015

0.020

0.025

KL divergence: 0.0029

 = 400

10 5 0 5 10
Attention Score Difference

0.000

0.005

0.010

0.015

0.020

0.025

KL divergence: 0.0019

 = 600

10 5 0 5 10
Attention Score Difference

0.000

0.005

0.010

0.015

0.020

0.025

KL divergence: 0.0019

 = 600

(c) Exaone 3.0 7.8B, 6th head of the 13th layer.

Figure 15: Distribution of δ∆. The above figures show the distributions of δ∆ across various models
for ∆ values 200, 400, 600, and 800, respectively. The Wikitext2 dataset was used as input.

to be severely discontinuous and quantized, which is the reason why the KL divergence values were
so high. We suspect that this is the result of some internal operations of the Qwen2 model, which we
are not aware of. Although these few occasions stand out as anomalies, we believe that it does not
compromise the integrity of our assumption for two reasons. First, it is an extremely rare occasion
that only occurs in the few early layers of the Qwen2 model. Secondly, even though the results are
discrete, the distribution of δ∆ still resembles a normal distribution. Therefore, our assumption of
modeling δ∆ as a normal distribution is valid.

Next, we show that σ(∆) is an increasing function of ∆. We observe an interesting phenomenon,
where the overall demeanor with which σ(∆) increases resembles a logarithmic function, as can be
seen in Figure 12. Although there may be some amount of minor deviations, the standard deviation

26

Published as a conference paper at ICLR 2025

Layer 1 Layer 5 Layer 9 Layer 13

50 15
0

25
0

35
0

45
0

55
0

65
0

75
0

85
0

95
0

Index Difference

1
3
5
7
9

11
13
15
17
19
21
23
25
27
29
31

He
ad

Layer 17 Layer 21 Layer 25 Layer 29

0.00

0.02

0.04

0.06

0.08

0.10

(a) Llama3.1 8B Model.

Layer 1 Layer 3 Layer 5 Layer 9

50 15
0

25
0

35
0

45
0

55
0

65
0

75
0

85
0

95
0

Index Difference

1
3
5
7
9

11
13
15
17
19
21
23
25
27

He
ad

Layer 13 Layer 17 Layer 21 Layer 25

0.00

0.02

0.04

0.06

0.08

0.10

(b) Qwen2 7B Model.

Layer 1 Layer 5 Layer 9 Layer 13

50 15
0

25
0

35
0

45
0

55
0

65
0

75
0

85
0

95
0

Index Difference

1
3
5
7
9

11
13
15
17
19
21
23
25
27
29
31

He
ad

Layer 17 Layer 21 Layer 25 Layer 29

0.00

0.02

0.04

0.06

0.08

0.10

(c) Exaone 3.0 7.8B Model.

Figure 16: KL Divergence. The above figures express the KL Divergence between δ∆ and its
fitted normal distributions of various layers. The y axis represents attention heads, and the x axis
represents ∆, ranging from 50 to 950. We use the Wikitext2 dataset as input for the model.

σ(∆) of δ∆ has consistently shown to resemble a logarithmic function for almost all layers and
attention heads. In order to prove this claim, we show the results for fitting σ(∆) as a logarithmic
function for each attention head and layer. As can be seen in Figure 11, except for a few outliers (es-
pecially in the early layers), the results converge within NRMSE (Normalized Root Mean Squared

27

Published as a conference paper at ICLR 2025

Error) of 0.1, which suggests a very good fit. This shows that σ(∆) resembles a logarithmic function
and, therefore, can be seen as an increasing function.

The above observation actually opens up the room for discussion about the optimality of HiP. In
Theorem 2, P(X ∩ A) +P(Y ∩ B) is the probability of HiP making the right choice, regardless of
the location of the maximum token. Therefore, Theorem 2 proves that if σ′′(∆)σ(∆) < σ′(∆)2,
then not only does HiP perform better than random token selection, but it is also in fact optimal.
If σ(∆) resembles a logarithmic function like our observation, then σ′′(∆) < 0, and therefore the
inequality σ′′(∆)σ(∆) < 0 <= σ′(∆)2 holds. Thus, on top of HiP guaranteeing better performance
than random token selection, there also is the possibility of HiP being, in fact, optimal.

However, we are very careful with making this claim because we do not yet have a logical explana-
tion about why σ(∆) displays a logarithmic increase. In the main paper, based on the assumption
of locality, we only claim that σ(∆) is an increasing function of ∆. However, the assumption of
locality does not cover the exact detailed behavior of σ(∆). There is always the possibility that
the logarithmic pattern we see in σ(∆) may be the result of some model-specific traits, the overall
training corpus, or some other reasons that we are not aware of. Therefore, although we find this
observation interesting, we only leave it as a discussion topic in the appendix section. We plan to
analyze the detailed characteristics of the σ(∆) function in future work.

Finally, we discuss approximating the mean to zero. Unlike our assumption, the mean of which
normal distribution δ∆ follows does not stay as zero. As can be seen in the following Figure 13, the
mean of δ∆ consistently begins from zero when ∆ = 0, but it moves away from zero as ∆ increases.
The manner in which the mean gets further away from zero is not consistent. In some cases, the
mean decreases negatively away from zero, and in some cases, it is the opposite. The exact behavior
differs between different layers, or attention heads or the input dataset, so it seems that we cannot
deterministically express the mean in terms of math.

However, this does not undermine the integrity of our mathematical analysis. Note that in our proof,
we use the absolute attention score difference |δ∆|. The main logic of our proof is that since attention
scores display locality, the representative token near the maximum token is likely to have a larger
score than the other representative token and, hence, is more likely to be chosen by HiP’s algorithm.
This does not change, even if the mean of δ∆ displays the aforementioned nonzero characteristic.
Since δ∆ moves away from zero as ∆ increases, |δ∆| is an increasing function of ∆. This makes it
even more likely that the representative token near the maximum token will have a larger score than
the other representative token compared to when the mean is zero. For this reason, ψ(σ(α), σ(β))
is still a decreasing function of α and an increasing function of β, even if the mean exhibits nonzero
characteristics. Thus, our mathematical analysis remains valid.

We approximate the mean as zero mainly for three reasons. First, even though the mean gradually
moves away from zero, regardless, it is still close to zero and much smaller than the standard de-
viation of δ∆. Secondly, the behavior of the mean is not consistent, which makes it very difficult
to express it in terms of math. Finally, the approximation does not compromise the integrity of the
mathematical analysis while making the overall derivation much simpler and easier to understand.
These are the reasons why we approximate the mean as zero in this paper.

A.3.2 THE INDEPENDENCE BETWEEN δα AND δβ

Now, we talk about the independence between δα and δβ . In Lemma 1, for simplicity, we have
assumed that δα and δβ is independent of each other. However, this is not necessarily true. As can be
seen in Figure 17, the correlation coefficient between δα and δβ is nonzero. From empirical analysis,
we observe that the correlation coefficient between δα and δβ is actually dependent on |α− β| - the
distance between the two tokens. As can be seen in Figure 18, the correlation coefficient decreases
from around 0.7 when the distance is short to around 0.4 when the distance is long.

This suggests that δα and δβ have a strong positive correlation when α and β are close to each
other, and a weak positive correlation when they are far away. In other words, nearby tokens have a
higher probability of having similar attention scores. This is exactly equivalent to the assumption of
attention locality that we discussed in the main section of this paper, and this empirical data is the
strongest evidence we have that supports this assumption. To summarize, due to attention locality,
δ∆ is not independent, and nearby tokens are less independent than faraway tokens.

28

Published as a conference paper at ICLR 2025

10 5 0 5

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Head 1

10 0 10

15

10

5

0

5

10

Head 5

5 0 5
8

6

4

2

0

2

4

6

8
Head 9

10 5 0 5 10

10

5

0

5

10

Head 13

5 0 5

10

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10
0

Head 17

5 0 5 10

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0
Head 21

5 0 5 10

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

Head 25

10 5 0 5 10
15

10

5

0

5

10

15

Correlation Coeff=0.3394 Correlation Coeff=0.4534 Correlation Coeff=0.4260 Correlation Coeff=0.4166

Correlation Coeff=0.3769 Correlation Coeff=0.4414 Correlation Coeff=0.4784 Correlation Coeff=0.4969

Head 29

Figure 17: Correlation Coefficient Between δ10 and δ100. The above figures show the scatter plots
of the joint distribution of δ10 and δ100. The nonzero correlation coefficient suggests that there exists
some amount of dependency between δ10 and δ100. The 16th layer of the Llama3.1 8B model was
used for sampling the values. We use Wikitext2 dataset for the input.

0 50 100 150 200

0.3

0.4

0.5

0.6

0.7

0.8
Head 1

0 50 100 150 200

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Head 5

0 50 100 150 200

0.35

0.40

0.45

0.50

0.55

0.60

0.65

Head 9

0 50 100 150 200

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Head 13

0 50 100 150 200

| |

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Co
rre

la
tio

n
Co

ef
fic

ie
nt

Head 17

0 50 100 150 200

0.45

0.50

0.55

0.60

0.65
Head 21

0 50 100 150 200

0.40

0.45

0.50

0.55

0.60

0.65

Head 25

0 50 100 150 200

0.45

0.50

0.55

0.60

0.65

Head 29

Figure 18: Correlation Coefficient. The above figures plot the relationship of the correlation coef-
ficient between δα and δβ , and the index difference |α − β| for different attention heads. In order
to obtain a more clearer plot, the value of α was fixed to 10. As can be seen in the figures, the
correlation coefficient consistently decreases from 0.7 to around 0.4, as the distance between α and
β increases. The values were sampled from layer 16 of the Llama3.1 8B model, using the Wikitext2
dataset as input.

If so, then does the dependency between δα and δβ disprove our analysis? In order to analyze this
issue, we compare P(δα = x, δβ = y) when δ∆ are independent and dependent. When they are
independent, then P(δα = x, δβ = y) is expressed as follows.

P(δα = x, δβ = y) = P(δα = x)P(δβ = y) =
1

2πσ(α)σ(β)
exp−

(
x2

2σ(α)2
+

y2

2σ(β)2

)
.

29

Published as a conference paper at ICLR 2025

When δα and δβ are dependent with the correlation coefficient being ρ, the probability can be ex-
pressed using the multivariate normal distribution as follows.

P(δα = x, δβ = y)

=
1

2πσ(α)σ(β)
√
1− ρ2

exp

(
− 1

2[1− ρ2]

[
x2

2σ(α)2
+

y2

2σ(β)2
− 2ρ

xy

σ(α)σ(β)

])
.

We argue that the critical difference between these two equations is the nonlinear term 1 − ρ2.
When the tokens are far apart, i.e., ρ ≃ 0.4, then the 1 − ρ2 = 0.85, which is relatively close
to 1. Therefore, we can largely approximate the dependent P(δα = x, δβ = y) equation with its
independent version without much error. However, when the tokens are near to each other, i.e.,
ρ ≃ 0.7, then 1− ρ2 = 0.51, which is significantly different from 1. In this case, we can no longer
justify the approximation of independence.

This means that if the representative tokens are too close to each other, then our mathematical
analysis, which proves that HiP performs better than random token selection, might no longer hold.
Interestingly, we have actually observed experimental results that support this notion. In the last few
iterations of HiP, we have noticed that HiP’s binary search algorithm does not perform well, unlike
previous iterations. The main reason behind this phenomenon is that in the last few iterations, the
sections become too short and too close to each other. Since they are all close to each other, due
to attention locality, there no longer exists a significant attention score difference between each
section. Hence, HiP fails to successfully identify the sections with the largest attention scores, and
deteriorates to almost random token selection level performance.

In order to resolve this issue, we tried to develop a simple patch that acts after the top-k selection
process. Recall that in order to foster the efficient usage of matrix multiplier units, HiP was de-
veloped with block granularity. Previously, after the hierarchical top-k selection process, only the
selected blocks are used for creating the sparse attention mask. Instead, we grabbed entire vicinity
of tokens around the selected blocks, and used those for the sparse attention mask. The key idea was
that due to attention locality, the tokens around the selected blocks would have the highest attention
scores in the entire sequence. If HiP cannot choose among those tokens, the easiest workaround
would be to use all of them. Therefore, by simply using the entire range around the selected blocks,
we thought that we would be able to save the most important tokens from being discarded. During
development, we used range sizes of 16 or 32.

The effects of this experimental revision definitely improved the overall performance. As can be
seen in table Table 7, the relative performance compared to FlashAttention2 was enhanced by 5%.
However, as this patch requires the algorithm to access much more key tokens than before, it is sig-
nificantly detrimental to the overall latency. Due to this reason, we did not include this experimental
patch in the final version of HiP. Yet, we believe that with further research, we may be able to find
a method that can exploit the strengths of this approach while minimizing the additional latency.
Thus, we reserve this topic as a future work.
Table 7: bk Patch Results. In order to resolve the dependency issue of δ∆, we test an experimental
patch where the bk values are modified for the last few iterations. Results show that the patch is
beneficial for overall performance yet comes at the cost of latency. The Relative Performance is
measured compared to FlashAttention2. The unit of the prefill latency is milliseconds (ms). Also,
note that we use 128k context length for experiments.

NQA Qasper HQA 2WM GR MN Rel. Perf
Prefill

Latency
T=128k

Flash Attention 29.53 44.27 54.61 39.49 34.99 27.39 100.0% 855.2

HiP k = 512 21.44 41.73 50.36 45.17 30.09 26.01 92.40% 105.7
Range Size 16 25.46 44.12 52.87 42.30 33.40 26.89 97.51% 181.4
Range Size 32 26.82 44.30 52.85 41.23 33.71 27.18 97.88% 227.2

To summarize, when the representative tokens are far apart, the dependency between δ∆ is weak, so
we can approximate them as independent. When the representative tokens are nearby, (i.e. last few
iterations of HiP), the dependency of δ∆ can no longer be ignored, and thus HiP’s binary search like
algorithm no longer suffices. We acknowledge this issue, and have tried to develop an experimental

30

Published as a conference paper at ICLR 2025

method that solves the problem. We find that while the method definitely helps performance, it
comes at a large cost of latency. We plan on tackling this problem in future work.

B DETAILED METHODOLOGY DESCRIPTIONS

B.1 HIERARCHICAL SPARSE ATTENTION MASK ESTIMATION ALGORITHM

Algorithm 1 Hierarchical Sparse Attention Mask Estimation

input Queries Q ∈ RT×d, Keys K ∈ RT×d, Sparsity constant k, Query block size bq , Key block
size bk, Top-r approximation constant r.

output Estimated attention mask M̂ ∈ {0, 1}T×T which is represented by an array of indices
I ∈ [1 : T]T/bq×k/bk .

1: Q,K = reshapeT/bq×bq×d[Q], reshapeT/bk×bk×d[K].
2: Number of iterations nit = ⌈log(T/bk)⌉.
3: for each query block index q = 1 .. T/bq do
4:

(
f
(1)
qj , l

(1)
qj

)
=
(⌊
(j − 1) · T

k

⌉
+ 1,

⌊
j · T

k

⌉)
for j = 1 .. k. ▷ Set k nodes’ initial start and

end indices
5: for each iteration i = 1 .. nit do
6: for each node index j = 1 .. k do
7: m

(i)
qj =

⌊
(f

(i)
qj + l

(i)
qj)/2

⌉
.

8:
(
B(i)
q,2j−1,B

(i)
q,2j

)
=
(
(f

(i)
qj : m

(i)
qj − 1), (m

(i)
qj : l

(i)
qj)
)

.
9: for each branch index h = 1 .. 2k do

10: Pick a center index r(i)qh from the range B(i)
qh .

11: Compute score s(i)qh = maxm,n

(
causal mask

(
Q⊤

q,m,:Kr
(i)
qh ,n,:

))
.

12: Pick top-k indices {t1, . . . , tk} of the sequence s(i)q,1, . . . , s
(i)
q,2k.

13: Update nodes (f (i+1)
qj : l

(i+1)
qj) := B(i)

tj for j = 1 .. k.

14: Set mask indices Iqj = f
(nit)
qj for j = 1 .. k.

In Algorithm 1, we describe the complete algorithm used for mask estimation. The peak amount
of memory used during the mask estimation process is in O(T), since at each iteration, only the
immediately previous iteration’s node indices are needed, and the rest can be discarded.

B.2 HIP DECODING ALGORITHM

Algorithm 2 HiP Decoding Algorithm

input The model M, the number of layers L, the mask estimation period rm, number of initial
dense layers ld.

output Generated sequence y.
1: Initialize y with an empty sequence.
2: while generation has not ended do
3: for each layer l = 1 .. N do
4: if l < ld then
5: Perform regular dense attention for the current layer.
6: else
7: if the current generated sequence length is divisible by rm then
8: For each head, estimate the attention mask with Algorithm 1. ▷ O(T logT) time
9: Cache the attention masks. ▷ O(T) space

10: Perform fused sparse attention using the cached attention masks. ▷ O(T) time & space
11: Sample the next token and append it to the sequence y.

In Algorithm 2, we show a rough sketch of the decoding process with HiP. In particular, note the
function of the mask estimation period rm and the number of initial dense layers ld, as well as the
time and space complexities of each component.

31

Published as a conference paper at ICLR 2025

Select Topk

Key Block Key Block Key Block Key Block Key Block Key BlockKey Block

P
ro

g
ra

m
 X

 .
..

P
ro

g
ra

m
 1

Q
u

e
ry

 B
lo

ck

Key Block Key Block Key Block Key Block Key Block

Iteration 1 Initial Chunk 1 Iteration 1 Initial Chunk 2 Iteration 1 Initial Chunk 3

Iteration 1 Chunk 1 Iteration 1 Chunk 2 Iteration 1 Chunk 3 Iteration 1 Chunk 4 Iteration 1 Chunk 5 Iteration 1 Chunk 6

Step 1. Divide Each Chunk by Half. If every chunk is not divisable, terminate

Step 0. Initialize Chunk by Uniformly Split Sequence by k / b_k

Step 2. Evaluate importance for each chunk

Iteration 1 Chunk 1 Iteration 1 Chunk 2 Iteration 1 Chunk 3 Iteration 1 Chunk 4 Iteration 1 Chunk 6

Iteration 2 Chunk 1 Iteration 2 Chunk 2

Step 4. Go back to step 1 with selected chunks.

Step 3. Select top k / b_k important chunk

Chunk X - Importance Measure

Q
u

e
ry

 B
lo

ck

Reduce

(Maximum)

TensorCore

(Matmul)

Key BlockKey Block

Im
p

o
rt

a
n

ce

S
co

re

Memory Hierarchy

HBM Vector

SRAM Vector

SRAM

Scalar

F
a

st
e

r

L
a

rg
e

r

Key BlockKey Block Key Block

Final. Returns approximatly selected k tokens

Iteration 1 Chunk 5

Figure 19: Detailed Flowchart of Hierarchically Pruned Attention. We illustrate the internal
steps of each program of hierarchical attention pruning. We instantiate a single program for each
attention row due to row-level synchronization on the top-k operation.

B.3 DETAILED FLOW-DIAGRAM OF HIP

In Figure 19, we illustrate hierarchical attention pruning step-by-step.

B.4 ADDITIONAL OPTIMIZATION TECHNIQUES

B.4.1 TOP-R APPROXIMATION

In order to reduce the cost of the mask estimator even further, we take inspiration from SparQ Atten-
tion (Ribar et al., 2013), where global memory (HBM or GDDR) transfer is reduced by selectively
fetching only the most relevant components of the key vectors. Specifically, when computing the
inequality condition in Equation (4), instead of fetching all d components of the key vectors, we
only fetch r ≪ d most prominent components estimated by the query vector q. Thus, we compute
the following as an approximation:

q⊤kt ≈
r∑

l=1

qpl
· kpl

(6)

where {p1, p2, . . . , pr} = argtop r(|q|). By using the top-r approximation, the total number of
global memory accesses in the mask estimation stage can be drastically reduced. However, we
disable this approximation by default.

B.4.2 BLOCK SPARSE FLASH ATTENTION

We utilize the Flash Attention (Dao et al., 2022) mechanism to reduce the latency of sparse attention
and use a small size sliding window to reduce performance degradation on the side of the sparse
attention kernel. Following the receipt of StreamingLLM (Xiao et al., 2024), local sliding window
and global sink attention are also added during block sparse flash attention operation.

B.5 TRAINING DOWNSTREAM TASKS WITH HIP

In this section, we describe the HiP attention training strategy for downstream tasks. We discovered
that direct fine-tuning after applying HiP could not achieve the performance of the fine-tuned vanilla

32

Published as a conference paper at ICLR 2025

attention. Empirically, HiP’s highly sparse attention matrices show excellent performance approx-
imation during test time but not in train gradients. Since our method heavily prunes the attention
matrix, the gradient cannot flow through dense attention probabilities. This incomplete and unsta-
ble gradient of the attention matrix leads to significant training performance degradation because
HiP forces the model to have attention patterns similar to those of the pretrained model rather than
adopting them for the downstream task.

However, we could achieve the same performance as vanilla by using the following two-step training
strategy: (1) fine-tuning with vanilla first and (2) further fintuning after applying HiP (healing). First,
we train the pretrained model with vanilla attention to the downstream task as usual. Then, we load
the finetuned weight, apply HiP, and further finetuning with the downstream task dataset with just
a few optimizer steps. We call this a healing process because we only finetune a few steps from
the finetuned weight. For training details about each experiment, we describe hyperparameter and
optimization setups in Appendix D.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 LARGE MULTIMODAL MODEL WITH HIP

Table 8: LMMs-Eval on LLaVA-1.6-13B. We apply the efficient attention mechanism in only LLM
backbone of LMM.

Method MME
cog

MME
percep MMMU DocVQA GQA TextVQA Avg.

Flash Attn 324 1575 36% 77% 65% 67% 100.0%
SLLM k=512 242 1094 31% 25% 52% 27% 63.7%
BigBird k=512 320 1526 36% 53% 64% 55% 90.7%
HiP k=256 303 1465 37% 68% 64% 63% 94.7%
HiP k=512 286 1500 36% 74% 64% 65% 95.9%

Since large multi-modal models (LMM) (Liu et al., 2023b; 2024) leverage pre-trained LLMs as a
backbone for their NLU ability, without changes, except for the tokenizer, we also evaluated our
HiP on top of LLaVA-1.6-13B (Liu et al., 2024), a large multi-modal model, using LMMs-eval (Li*
et al., 2024), which provides extensive benchmarks for large multimodal model suites. As we show
in Table 8, our method scores 95.9% relative scores, which is similar to the performance recovery
ratio of HiP on NLU tasks.

C.2 MASSIVE MULTITASK LANGUAGE UNDERSTANDING (MMLU)

Figure 20: MMLU scores on Llama3.1-8B.

Method Huma-
nities

STEM Social
Sciences

Other Avg.

FlashAttn 67.35 51.88 73.21 66.52 63.24
SLLM 66.65 52.22 73.98 65.68 63.16
BigBird 66.94 51.06 73.27 66.21 62.81
HiP (Ours) 67.64 51.50 73.19 66.32 63.13

Next, we evaluate HiP on the MMLU benchmark (Hendrycks et al., 2021) to show that our method
does not negatively affect the NLU ability of the pretrained model. The results show that our HiP
preserves the NLU performance of the original model. All tested methods are able to recover original
MMLU scores without significant loss here. This is probably due to the nature of the MMLU task:
the answer is only dependent on the most recent span of tokens rather than the entire prompt (which
contains few-shot examples in the beginning).

C.3 COMPARISON WITH REFORMER AND SEA

We compare the performance of HiP against Reformer (Kitaev et al., 2019) and SEA (Lee et al.,
2023) using the Llama2-7b model and show the results in Table 9. Even though HiP requires no

33

Published as a conference paper at ICLR 2025

Table 9: Comparison of WikiText2 perplexity against Reformer and SEA. For this comparison,
we use the Llama2-7b model. The experimental setting for HiP is the same as the main experiment.
For Reformer, we use 512 for the bucket size and replace the attention module in all layers except
the first three for a fair comparison with HiP. For SEA, we use 512 for the attention predictor length
and k (the top k sampling factor) as 64. We fine-tune both Reformer and SEA models using LoRA
with rank = 128, the same as HiP HEAL, until convergence.

Method Perplexity

Vanilla PyTorch 5.5933

Reformer FT (Kitaev et al., 2019) 45.5130 (+39.92)
SEA FT (Lee et al., 2023) 23.1964 (+17.60)
HiP (k=512) PP 5.7938 (+0.20)
HiP (k=512) HEAL 5.6872 (+0.09)

Table 10: Self-Extend Result with HiP. We apply Self-Extend with HiP k=256 on Gemma2-2B-it.
We extend the maximum context length of Gemma2 from 8k up to 128k tokens. We measure the
perplexity of Wiktiext2.

Method Self
Extend

Sliding
Window T=1k T=2k T=4k T=8k T=16k T=32k T=64k T=128k

FA2 ✗ ✓ 18.90 14.48 12.35 11.40 46.66 167.40 363.02 -
FA2 ✗ ✗ 18.90 14.48 12.35 30.17 198.84 638.65 1310.26 -
HiP ✓ (x4) ✗ 18.98 14.77 13.00 12.14 12.00 46.51 277.54 -
HiP ✓ (x8) ✗ 18.98 14.90 13.30 12.57 12.22 12.63 49.26 -
HiP ✓ (x4-8) ✗ 18.98 14.81 13.15 12.36 12.06 13.62 116.18 -
HiP ✓ (x8-16) ✗ 18.98 15.00 13.51 12.83 12.53 12.55 14.32 -
HiP ✓ (x8) ✓ 19.28 14.86 12.87 11.95 11.53 11.36 11.69 -
HiP ✓ (x16) ✓ 19.28 14.98 13.11 12.25 11.86 11.69 11.54 11.68

fine-tuning, unlike Reformer and SEA, which need fine-tuning, our HiP attention is far superior in
language modeling performance compared to these two baselines.

For a fair comparison, we fine-tune Reformer and SEA using LoRA (Low-rank adapters), which
have the same rank as the healed version of HiP. Due to this, the Reformer and SEA’s performance
converges to a much-degraded value compared to the values reported in their respective original
papers. We conclude that both methods need much modification to the original weights in order
to perform well, whereas since HiP performs well even without any modification to the weights
whatsoever, a small amount of LoRA training can even close this small gap.

C.4 CONTEXT EXTENTION WITH SELF-EXTEND

Since our method has a considerable advantage in long-context decoding, we need the pre-trained
long-context model. Unfortunately, however, not all pretrained transformer models support long
contexts. Therefore, many previous studies (Peng et al., 2023; Jin et al., 2024) try to extend max-
imum position embeddings of the trained model to extend the context size of LLM. We adopt the
SelfExtend (Jin et al., 2024) method into our method because it is also a training-free context ex-
tension method. We picked Gemma2 (Team, 2024) to target LLM and extend the context model
because the model is a hybrid of sliding windows and dense attention. Therefore, it will have the
advantage of a long context model with HiP by saving the KV cache of sliding window layers. The
Gemma2 repeats the attention layer by repeating the stack of different attention blocks: sliding win-
dow and dense attention. To evaluate the effectiveness of the combination of HiP and SelfExtend,
we apply them to attention layers.

We can observe Gemma2 explode after its pretrained context length, which is 8192 (First row of
the Table 10). We can see the model fails after the sliding window context length, which is 4096
for the sliding window layer (Second row of the Table 10). Therefore, we know that treating sliding
windows especially is quite essential for performance. In the third and fourth rows of the Table 10,
we apply the same Self-Extend group size for every attention layer, including the layer that was orig-
inally a sliding window, before replacing it with HiP. We could observe the settings are struggling to

34

Published as a conference paper at ICLR 2025

recover performance right after Self-Extend Group Size × Sliding Window Size, so we apply twice
the larger Self Extend group size for the HiP layers originally sliding window. The modified group
size application is in the fifth and sixth rows of the Table 10. We could observe that we can extend
the context window as expected, not bounded by sliding window size. However, the above replace-
ments are quite restarted setting because they are not even allowed to use sliding window attention,
which is usually very efficient in practical LLM frameworks. Therefore, we replace only dense at-
tention to HiP, and we could observe a significant performance boost from all layer replacements
while extending context length up to 128k, as shown in the last two rows of the Table 10.

C.5 ENSEMBLE HIERARCHICAL TOP-k APPROXIMATION

For the first attempt to address the challenges in HiP described in Appendix E.9, we perform an
ensemble of HiP masks by introducing slight randomness to the branching decisions within a given
iteration. Our empirical results on Wikitext2 indicate that the ensemble of HiP with no dense layers
(ld = 0) achieves comparable perplexity to HiP with dense layers (ld = 3) across context lengths
from 4k to 16k. This highlights how considering different branching strategies within a given itera-
tion can improve inference performance and suggests the potential for replacing the dense layers in
HiP with comparable performance.

Methodology. First, we generate ne HiP attention mask samples by adding randomness re to the
branch direction when the middle iteration branches out to the next iteration. As re slightly adjusts
the selected node in the iteration, each sample can take a slightly different path during tree branching,
leading to a diverse construction of attention masks.

Second, we count the number of agreements of the indices per query and retain the indices that
exceed or equal to the agreement threshold θvote. Therefore, θvote = 1 functions as a union operator
and θvote = ne as an intersection operator. By adjusting θvote from 1 to ne, we can perform an
operation that lies between union and intersection, prioritizing indices with a higher number of
votes. To prevent the union-like θvote increasing the number of active attention elements too much,
we truncate the number of the final selected indices by original k when τ ∈ {0, 1} is 1, prioritizing
the indices having more votes.

Lastly, we perform the introduced ensemble method for the first le layers, just like we do with ld.

Experiments. We first provide experimental evidence on how ensemble enables end-to-end sub-
quadratic complexity and then give details on our hyperparameter tuning process. The experiments
are conducted with the LLaMA2-7B model.

4 8 12 16

Seq. Length (k)

5.55

5.60

5.65

5.70

5.75

5.80

5.85

PP
L

ld=0

ld=3

PPL. over Seq. Lengths

vote=1 (= 0)

vote=1 (= 1)

vote=5 (= 0)

1.256 1.359 1.442 1.487

Rel. Retention Ratio

5.55

5.60

5.65

5.70

5.75

5.80

5.85

PP
L

T=4k T=12k T=16k T=8k

PPL. over Rel. Retention Ratios

w/ Ensemble
w/o Ensemble

Figure 21: Perplexity Evaluation on Long Context. (Left) Perplexity result in Wikitext2 with
different ensemble settings (θvote, τ) where re = 5.0, le = all. (Right) Perplexity comparison
between full HiP (ld = 0) and ensemble (θvote = 1, τ = 0, re = 5.0, le = all) using same relative
retention ratio in each sequence length.
Performance Comparison with Original HiP. To show that ensemble enables end-to-end sub-
quadratic complexity with comparable performance to our default HiP (ld = 3), we compare the full
HiP (ld = 0), the default HiP (ld = 3), and the ensemble with ld = 0. We fix re = 5.0, le = all that
gave the best performance in T = 4096, as shown in Figure 22. The result indicates that ensemble
with θvote = 1, τ = 0 outperforms both full HiP and default HiP, as shown in Figure 21 (Left), and
therefore this suggests that ensemble could not only improve the performance but also replace the
dense layers with comparable performance.

Moreover, we provide a comparison with full HiP (ld = 0) at the same level of sparsity as the
ensemble to demonstrate that the improvement is not solely due to the increased number of selected

35

Published as a conference paper at ICLR 2025

0.5 2.5 5.0 7.5 10.0

Randomness (re)

5.79

5.80

5.81

5.82

5.83

5.84

PP
L

ld=0

ld=3

Effect of vote and re in PPL.

vote=1 (= 0)

vote=1 (= 1)

vote=5 (= 0)

5 10 15 20 25 all

of Ensemble Enabled Layer (le)

5.79

5.80

5.81

5.82

5.83

5.84

5.85

PP
L

ld=0

ld=3

Where to Ensemble

= 0
= 1

Figure 22: Effect of Randomness in HiP sampling and Ensemble-Enabled Layers le. Perplexity
in Wikitext2 with T = 4k. (Left) We adjust randomness re with fixed le = all. (Right) We adjust
number of le with fixed θvote = 1, re = 5.0. The dashed horizontal line shows the performance of
HiP (ld = 0, ld = 3).

indices resulting from our ensemble method. As shown in Figure 21 (Right), our ensemble method
is Pareto frontier compared to HiP, with performance measured against the retention ratio.

Latency of Ensemble. Since we sample multiple HiP masks by ne and perform voting operations
across ne × k number of indices, the ensemble costs a few times more than the original HiP. How-
ever, since the cost of dense attention grows quadratically, the ensemble will become more efficient
compared to the dense attention as the context length increases. Therefore, we think that the use of
the ensemble method could be particularly advantageous in extremely long contexts.

4 8 12 16

Seq. Length (k)

1.0

1.1

1.2

1.3

1.4

1.5

Re
l.

Re
te

nt
io

n
Ra

tio

Rel. Retention Ratio After Ensemble

vote=1 (= 0)

vote=1 (= 1)

vote=5 (= 0)

0.5 2.5 5.0 7.5 10.0

Randomness (re)

1.00

1.05

1.10

1.15

1.20

1.25

Re
l.

Re
te

nt
io

n
Ra

tio

Rel. Retention Ratio Changes over re

vote=1 (= 0)

vote=1 (= 1)

vote=5 (= 0)

5 10 15 20 25 all

of Ensemble Enabled Layer (le)

1.00

1.05

1.10

1.15

1.20

1.25

Re
l.

Re
te

nt
io

n
Ra

tio

Rel. Retention Ratio Changes over le

= 0
= 1

Figure 23: Relative Retention Ratio and Ensemble Factors. Relative retention ratio after mask
ensemble. The ratio is computed by dividing the number of active indices after the ensemble by
before. (Left) We adjust the sequence length T with fixed re = 5.0, le = all. (Center) We adjust
the randomness re in T = 4k with fixed le = all. (Right) We adjust the number of ensemble
enabled layer le in T = 4k with fixed θvote = 1, re = 5.0. Ensemble disabled layers are computed
as 1.0.

Ablation Study of Ensemble Hyperparameter: θvote, τ , re, le. As shown in Figure 22 (Left),
θvote = 1 with τ = 0, and re >= 5.0 gives the highest score. This indicates that performing
the union operation with large randomness in sampling gives the highest performance. Also, in
Figure 22 (Right), with θvote = 1, we show that le = all works the best, therefore if we want to
replace the few layers of vanilla attention, then we would have to apply ensemble in every layer.

Correlation Between the Relative Retention Ratio and Ensemble Factors. In Figure 23, we
show that the relative retention ratio shows no correlation with sequence length, while randomness
shows a positive correlation. Moreover, when measuring the relative retention ratio changes over le
with θvote = 1, since we treat the ensemble disabled layer as having a 1.0 relative retention ratio,
more ensemble-enabled layers lead to a higher relative retention ratio.

Analysis with Visualization. In Figure 24, we provide a visual analysis to show how the ensemble
selects indices that HiP missed to fill up a complete attention pattern and how it enables dynamic
sparsity. We can see how the ensemble catches missed important indices such as diagonal, vertical,
and stride attention patterns in (a), (b), and (c) of Figure 24. Moreover, compared to HiP (left), the
union operation (center) enables dynamic sparsity per head. Especially in (c), we can see that the
ensemble is effective for filling missed indices in a long sequence while providing dynamic sparsity
for each row (red pixels are gradually frequent in the bottom). Lastly, in Figure 24 (center, right),
we show how τ = 1 selects indices that receive more votes compared to those selected by τ = 0.

36

Published as a conference paper at ICLR 2025

0 16,384Keys

0
1
6
,3
8
4

Q
u
e
ri
e
s

0 16,384Keys

1
6
,3
8
4

Q
u
e
ri
e
s

0 16,384Keys

0
1
6
,3
8
4

Q
u
e
ri
e
s

Full HiP () Ensemble () Ensemble ()

HiP Attention Mask Visualization in LLaMA2 7B (Layer 0, Head 23)

0 16,384Keys

0
1
6
,3
8
4

Q
u
e
ri
e
s

0 16,384Keys

0
Q
u
e
ri
e
s

0 16,384Keys

0
1
6
,3
8
4

Q
u
e
ri
e
s

Full HiP ()

HiP Attention Mask Visualization in LLaMA2 7B (Layer 31, Head 5)

0 16,384Keys

0
1
6
,3
8
4

Q
u
e
ri
e
s

0 16,384Keys

Q
u
e
ri
e
s

0 16,384Keys

0
1
6
,3
8
4

Q
u
e
ri
e
s

Full HiP ()

HiP Attention Mask Visualization in LLaMA2 7B (Layer 31, Head 9)

From HiP

By Ensemble

From HiP

By Ensemble

From HiP

By Ensemble

1
6
,3
8
4

0
1
6
,3
8
4

0

Ensemble () Ensemble ()

Ensemble () Ensemble ()

(a)

(b)

(c)

Figure 24: Attention Mask Ensemble Visualization. Visualization of attention mask in T = 16k
for (Left) HiP (ld = 0). (Center) ensemble (θvote = 1, τ = 0). (Right) ensemble (θvote = 1, τ = 1).
Red indicates indices added by our ensemble method, yellow indicates indices from HiP, and green
indicates where attention will not be computed.

D DETAILED EXPERIMENTAL SETTINGS

Computation Resources. We use two machines to run experiments and training. (1) 4090 Machine.
We use this local development machine. Most of the micro-benchmark and kernel optimization
is done with this machine. (2x RTX 4090 24GB, 128GB DDR5-3600, Ryzen 7950x), (2) A100
Machine. We use this AWS cloud node as the main computation horse. All training and most long
context benchmarks are measured with this machine. We use different GPU architectures for kernel
development because we could not get an H100 AWS node due to a lack of quota. Therefore, our
kernel’s CUDA hyper-parameters, such as the number of warps per program and block sizes, are not
optimal in the A100 machine. To overcome these mismatches between the development machine
and the computation horse, we used triton.autotune as much as possible. However, for the
above reasons, the optimization of the GPU kernel may not be optimal for every GPU architecture.

Experiment Settings. By default, for the HiP experiment, we use bq = 32, bk = 2, k = 512, ld =
3 if 7B else 4, rm = 8. For StreamingLLM, we use num sink = 4.

We show overall experiment settings, such as the number of GPUs and model IDs to which the
experiment is introduced (e.g., the caption of the figure and table). To reference, we leave the
huggingface model path in Table 11. We used an instruction model from the same provider for
instruction following ability-required tasks such as passkey, LongBench, and RULER.

Experiment Details. We measure every latency measures with a single NVIDIA RTX 4090, PCIe
4.0 x8, 128GB DDR5-5600, and Ryzen 7950x. The batch size is 32 for decoding and 1 for prefilling.
The official implementation of HyperAttention is not available for decoding; therefore, we did not
measure the decoding latency and decoding benchmark.

37

Published as a conference paper at ICLR 2025

Table 11: Model IDs on Huggingface. We use large language models trained on long context inputs
in order to demonstrate our method’s effectiveness at long context lengths.

Model Huggingface ID Maximum
context length

LLaMA2-7B togethercomputer/LLaMA-2-7B-32K 32K
LLaMA2-13B Yukang/Llama-2-13b-chat-longlora-32k-sft 32K
Qwen1.5-7B Qwen/Qwen1.5-7B-Chat 32K
Qwen1.5-14B Qwen/Qwen1.5-14B-Chat 32K
Luxia-21.4B saltlux/luxia-21.4b-alignment-v1.1 32K
Llama3.1-8B meta-llama/Meta-Llama-3.1-8B 128K
Llama3.1-8B-Instruct meta-llama/Meta-Llama-3.1-8B-Instruct 128K
Gemma2-2B-it google/gemma-2-2b-it 8K
Gemma2-9B-it google/gemma-2-9b-it 8K
Exaone3-7.8B LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct 4K

For FlashAttention, we use flash attn==2.6.3 for every baseline that requires a FlashAttention
backend, such as vLLM, SGlang, and HyperAttention.

We do not use HyperAttention in another experiment because it fails to recover the perplexity
of PG19, the most basic metric of language modeling. For HyperAttention (Han et al., 2024)
we used lsh num projs=7, block size=64, sample size=1024, min seq len=32. We select
min seq len to match the size of the MMU’s block size (32) rather than 4096, which is suggested
by the authors’ code repository. Since in sortLSH (Han et al., 2024) it processes shorter block size
of min seq len with vanilla attention. Therefore, we have to reduce its size to a smaller size than
4096.

Since StreamingLLM does not use block-wise computation just like HiP’s block approximation, it
cannot utilize TensorCore in GPU. This downside degrades the throughput significantly compared
to HW-aware algorithms such as ours and Flash Attention (Dao, 2023). However, since the method
requires a different RoPE index for every query-key dot product, we cannot easily adopt block
sparsity on their method. This will slow down attention computation more than twice because the
RoPE re-computation costs twice as much as attention score computation.

In the Figure 7, the latency is measured with our latency measure machine (RTX 4090).
StreamingLLM shows OOM over 32k context due to the overhead of the COO sparse matrix. Hy-
perAttention shows invalid kernel parameters over 32k context due to heavily nested tensors in a
long context. It uses high-dimensional striding to perform reformer-style token clustering, but the
backbone flash attention kernel does not support that high-dimensional striding with a larger tensor.

In the Figure 9, the latency is measured with our latency measure machine (RTX 4090). The ma-
chine has about 4GB of VRAM available for the KV cache, excluding model weight and temporary
buffers. We limit the size of the CPU offloaded KV cache to 32GB. The tested model is Llama3.1-
8B.

Training Details (Healing HiP in Arxiv). The HiP healing in Table 3 is done as follows. For the
Llama3.1-8B model, after applying HiP, we fine-tune the pretrained model on the Arxiv dataset for
500 steps with AdamW optimizer with learning rate 1e-5, and with batch size 32, LoRA rank 256,
and HiP’s hyperparameters set to bk = 2, bq = 64, bsq = 2, bsk = 1, k = 512, ld = 3. We use
the Arxiv dataset in Redpajama (Computer, 2023). The inputs are truncated to a maximum of 8192
tokens to speed up the process.

The purpose of this fine-tuning, which we call healing, is to make the model adapt to the slight
differences in the activations that appear when the original dense attention layers are replaced with
sparse HiP attention. As shown in Table 3, the healed model performs slightly better than the
plug-and-play (unhealed) model on LongBench. However, we emphasize that HiP is meant to be
training-free, and healing is just an additional option for extra performance, as our method already
works near-perfectly without training.

38

Published as a conference paper at ICLR 2025

Complexity Is Training-
free?

Is Dynamic
Attention?Time Space

HiP (Ours) Log-linear Linear ✓ ✓
SEA (Lee et al., 2023) Linear Linear ✗ ✓
FlashAttention (Dao, 2023) Quadratic Linear ✓ ✓
StreamingLLM (Xiao et al., 2024) Linear Linear ✓ ✗
HyperAttention (sortLSH) (Han et al., 2024) Near-linear Near-linear ✓ ✓
Reformer (LSH) (Kitaev et al., 2019) Log-linear Log-linear ✗ ✓
Performer (Choromanski et al., 2022) Linear Linear ✗ ✓
Cosformer (Qin et al., 2022) Linear Linear ✗ ✓
Longformer (Beltagy et al., 2020) Linear Linear ✗ ✗

Table 12: Comparison of time and space complexities of various efficient attention methods.

A

Prefill Decode

StreamingLLM

AVD

BigBird

H O

HiP
(Ours)

HiP + VD
(Ours)

Prefill

Random maskSink & Sliding Window V (Vertical) D (Diagonal)

"Heavy-Hitters" HiP's Top- Estimated Mask

Decode

Figure 25: Visualization of sparse attention baselines’ attention masks.

E ADDITIONAL ANALYSIS

E.1 MORE DISCUSSION ON RELATED WORKS

In Table 12, we compare efficient attention methods that we do not include in our main benchmarks.
For each method, we show the time and space complexities, whether it is training-free, and whether
it uses dynamic attention. Dynamic attention methods can attend to each other content dynamically
rather than using static attention patterns such as a sliding window. Besides HiP, HyperAttention
is the only method that satisfies all four criteria, but HyperAttention suffers from substantial per-
formance degradation (see Figure 7). In Figure 25, we conceptually visualize the various sparse
attention baselines’ attention patterns for extra clarity.

StreamingLLM (Xiao et al., 2024). StreamingLLM uses a sliding window attention with an at-
tention sink, which processes the input sequence in linear complexity without resetting the KV
cache; they call this process ‘streaming.’ StreamingLLM introduces the attention sink, which is
similar to the global attention token in Longformer (Beltagy et al., 2020), and streams the KV cache
using RoPE indexing. However, due to the sliding window, the method cannot perform long-context
knowledge retrieval. Therefore, this method cannot utilize the full context, and they do not extend
the context window of the model by any amount. Since the method loses the key-value memory
as time passes, it cannot take advantage of the Transformer’s strength: its powerful past knowl-
edge retrieval ability. Furthermore, since they use a different RoPE indexing for every query-key
dot-product, they cannot utilize a MMU, which is a critical speedup factor in modern accelerators.

39

Published as a conference paper at ICLR 2025

HyperAttention (Han et al., 2024). HyperAttention introduces sortLSH, improved version of
LSH (Kitaev et al., 2019), to work as plug-and-play. The method uses block sparsity to utilize MMU.
It is training-free, has sub-quadratic time complexity (near-linear), and has the ability to potentially
access to every past key token, much like our method. However, HyperAttention struggles to recover
vanilla performance when replacing most of the layers in the trained model in a training-free manner
(see Figure 7).

Sparse Linear Attention with Estimated Attention Mask (SEA) (Lee et al., 2023). Inspired
by SEA’s framework, which introduces linear complexity attention estimation and sparse matrix
interpolation, we aimed to improve its efficiency. SEA estimates each query’s attention probabilities
over the keys with a fixed-size vector, turns it into a sparse mask by selecting the top-k elements,
and resizes it; this process is done with linear complexity. However, the method is difficult to
implement efficiently due to its extra modules, mainly the estimator and sparse matrix interpolation.
Furthermore, the method does not support block sparsity; thus, it cannot utilize the MMU. We were
motivated to improve this work drastically by introducing a fused and train-free attention mask
estimator, HiP.

E.2 ANALYSIS OF SUMMARIZING RESULT BETWEEN STREAMINGLLM AND HIP

Multiyear procurement (MYP) and block buy contracting (BBC)
are special contracting mechanisms that Congress permits the
Department of Defense (DOD) to use for a limited number of
defense acquisition programs. Compared to the standard or
default approach of annual contracting, MYP and BBC have the
potential for reducing weapon procurement costs by a few or
several percent. Under annual contracting, DOD uses one or
more contracts for each year's worth of procurement of a given
kind of item. Under MYP, DOD instead uses a single contract for
two to �ve years' worth of procurement of a given kind of item
without having to exercise a contract option for each year after
the �rst year. DOD needs congressional approval for each use of
MYP. There is a permanent statute governing MYP contracting—
10 U.S.C. 2306b. Under this statute, a program must meet several
criteria to qualify for MYP. Compared with estimated costs under
annual contracting, estimated savings for programs being
proposed for MYP have ranged from less than 5% to more than
15%, depending on the particulars of the program in question,
with many estimates falling in the range of 5% to 10%. In
practice, actual savings from using MYP rather than annual
contracting can be di�cult to observe or verify because of cost
growth during the execution of the contract due to changes in
the program independent of the use of MYP rather than annual
contracting. BBC is similar to MYP in that it permits DOD to use a
single contract for more than one year's worth of procurement of
a given kind of item without having to exercise a contract option
for each year after the �rst year. BBC is also similar to MYP in that
DOD needs congressional approval for each use of BBC. BBC
di�ers from MYP in the following ways: There is no permanent
statute governing the use of BBC. There is no requirement that
BBC be approved in both a DOD appropriations act and an act
other than a DOD appropriations act. Programs being considered
for BBC do not need to meet any legal criteria to qualify for BBC,
because there is no permanent statute governing the use of BBC
that establishes such criteria. A BBC contract can cover more
than �ve years of planned procurements. Economic order
quantity (EOQ) authority—the authority to bring forward selected
key components of the items to be procured under the contract
and purchase the components in batch form during the �rst year
or two of the contract—does not come automatically as part of
BBC authority because there is no permanent statute governing
the use of BBC that includes EOQ authority as an automatic
feature. BBC contracts are less likely to include cancellation
penalties. Potential issues for Congress concerning MYP and BBC
include whether to use MYP and BBC in the future more
frequently, less frequently, or about as frequently as they are
currently used; whether to create a permanent statute to govern
the use of BBC, analogous to the permanent statute that governs
the use of MYP; and whether the Coast Guard should begin
making use of MYP and BBC.

The report analyzes the implementation of multiyear
procurements (MYP) in the Department of Defense (DOD) since
1990, focusing on the FY2011-FY2021 period. It highlights the
evolution of MYP policies, the role of the Under Secretary of
Defense for Acquisition, Logistics, and Technology, and the
impact of MYP on procurement processes. The report �nds that
MYP has grown signi�cantly, with a total value of $145 billion in
FY2021, representing 40% of DOD acquisitions. It identi�es key
factors contributing to MYP's success, such as improved
planning, reduced administrative burden, and enhanced
competition. However, challenges remain, including the need for
better data management, increased transparency, and the
potential for unintended consequences. The report also
examines the impact of MYP on speci�c programs, with a focus
on major systems, and provides a list of programs approved for
MYP in annual DOD appropriations acts since FY1990. Overall,
the study underscores the importance of MYP in streamlining
defense procurement while recognizing the need for ongoing
evaluation and improvement.

This report provides an overview of multiyear procurement
(MYP) and block buy contracting (BBC) mechanisms employed by
the Department of Defense (DOD) for defense acquisition
programs. MYP allows for procurement of items over multiple
years, typically two to �ve, reducing annual contract
requirements. BBC is a similar approach, but with less formal
statutory governance. The report highlights that MYP has been
used for a limited number of programs, with potential savings
ranging from 5% to 15% compared to annual contracting. The
use of MYP and BBC impacts defense funding, procurement
�exibility, and the industrial base. A permanent statute, 10 U.S.C.
2306b, governs MYP, while BBC operates on a case-by-case basis.
The report suggests that Congress may consider using these
mechanisms more or less frequently, or creating a similar statute
for BBC. The Coast Guard, though part of the Department of
Defense, has its own contracting regulations for block buy
contracting, with the authority to use BBC for certain major
acquisition programs. The report highlights the potential cost
savings for the Coast Guard if MYP or BBC were applied to its
major programs, such as the O�shore Patrol Cutter and polar
icebreaker programs. In summary, the report discusses the
bene�ts and potential risks of MYP and BBC, their current usage,
and the possibility of expanding their application or creating a
permanent statute for block buy contracting. The report also
underscores the need to balance cost savings with the �exibility
to adjust procurement programs in response to strategic or
budgetary changes.

StreamingLLM Human Ground Truth HiP (Ours)

Lack of Keywords:

Block Buy Contracting (BBC)

10 U.S.C. 2306b.

Keyword Occurrence Histogram (Stacked)

Retrieval Failed!

Some keywords are outside of the accessible key window of a single StreamingLLM layer.

Potential Accessible Key Window of Single HiP Layer Accessible Key Window of Single StreamingLLM Layer

Example of Generated Summary (StreamingLLM, Human, HiP)

ROUGE-1:

ROUGE-2:

ROUGE-L:

25.47 %

6.97 %

14.18 %

Compare to Human Ground Truth

ROUGE-1:

ROUGE-2:

ROUGE-L:

43.33 %

16.45 %

22.05 %

Compare to Human Ground Truth

Figure 26: Summarizing Example of GovReport Dataset from LongBench. We sample random
examples from GovReport summarization results with Qwen1.5-14B.
In Figure 26, we analyze one example generation result from GovReport in LongBench. We pick
four important keywords from the human ground truth summary: MYP, BBC, DOD, and 10 U.S.C

40

Published as a conference paper at ICLR 2025

2306b. We pick two keywords (MYP, DOD) that appear in every summary and two keywords (BBC,
10 U.S.C 2306b) that appear only in the ground truth and HiP result. The result clearly shows that
StreamingLLM is struggling to gather information beyond its single-layer window size, k = 1024.
StreamingLLM should be accessible to a much longer distance than k because information keeps ex-
changing across time dimensions in each layer, like Mistral. In contrast to StreamingLLM, our pro-
posed HiP attention shows successful knowledge retrieval in summary from long-range in-context
documents, with the same plug-and-play manner. Also, quantitatively, ROUGE-* scores show that
the summary generated by HiP is much better in coherence with ground truth than StreamingLLM.

E.3 HIERARCHICAL ATTENTION MASK PRUNING VISUALIZATION

Iteration 0

Iteration 1

Iteration 2

Iteration 3

Group Size = 8

Group Size = 4

Group Size = 2

Group Size = 1

Hierarchical Attention Mask Pruning

Figure 27: Visualization of Hierarchical Attention Mask Pruning. Yellow indicates a non-zero
entry of the attention matrix, and green indicates an empty entry of the attention matrix. We use
k = 512, bq = 32, bk = 2, T = 4k.
In Figure 27, we demonstrate real-world examples of hierarchical attention mask pruning. We sam-
ple the Q, K, and V tensors from the first layer of LLaMA2-7B with a random text sample from
Wikitext-2. Note that each attention mask in the masking iteration is not the final attention mask.
The final attention mask generated by this process is from iteration 3. In an earlier iteration, the
sparsity of the mask is low because the group size of blocks is very large (8), so the 8 ∗ 2 key values
are treated as single groups. The attention score of that group is represented by the attention score
between the query and the group’s first block (bk).

E.4 ABLATION STUDY ON BLOCK SIZE

Table 13: Ablation Study on Block Size: Perplexity on WikiText2. We use LLaMA-2-7B-32k
model, k = 512, dl = 3, T = 12k. Average shows the average perplexity of each row and column.
Red means a bad perplexity score, and green means a good perplexity score.

bq

PPL. 1 2 4 8 16 32 Avg.

bk

1 5.5210 5.5172 5.4996 5.4952 5.5064 5.5331 5.5121
2 5.6032 5.6060 5.5863 5.5599 5.5577 5.5901 5.5839
4 5.6316 5.6280 5.5971 5.5872 5.5838 5.5870 5.6024
8 5.5807 5.5928 5.5553 5.5238 5.5100 5.5212 5.5473

Avg. 5.5841 5.5860 5.5596 5.5415 5.5395 5.5578 5.5614

We perform an ablation study on block sizes (bq, bk) using our method. Block size bq determines how
many queries are grouped into the block during the masking iteration and sparse attention. And block
size bk determines how many keys are grouped. Block size is a really important factor in utilizing
MMU (e.g., NVIDIA TensorCore) in modern accelerators. MMU enables matrix multiplication
and tensor operations to be performed in single or fewer cycles rather than processing one by one

41

Published as a conference paper at ICLR 2025

Table 14: Ablation Study on Block Size: Attention latency on decoding phase with a single
query. We use same setting with Table 13. Batch size is 96 and rm = 1 and sequence length is
12k. Average shows the average latency of each row and column. Red means bad latency, and green
means good latency. The unit of latency is milliseconds. We use RTX-4090 to measure the latency
of attention operation. Pytorch shows 20.7215 ms and FlashAttention2 shows 20.2527 ms.

bq

Lat. 1 2 4 8 16 32 Avg.

bk

1 1.6416 1.6397 1.6397 1.6398 1.6397 1.6401 1.6401
2 1.3543 1.3542 1.3530 1.3533 1.3535 1.3534 1.3536
4 1.2312 1.2311 1.2296 1.2305 1.2322 1.2306 1.2309
8 1.2836 1.2842 1.2830 1.2827 1.2830 1.2835 1.2833

Avg. 1.3777 1.3773 1.3763 1.3766 1.3771 1.3769 1.3770

Table 15: Ablation Study on Block Size: Attention latency on decoding phase with multiple
queries (Speculative Decoding). We use same setting with Table 14. We use 32 query tokens
to mimic speculative decoding scenarios. PyTorch shows 31.0632 ms and FlashAttention2 shows
20.3378 ms.

bq

Lat. 1 2 4 8 16 32 Avg.

bk

1 152.4423 77.2624 39.2077 20.1341 10.4925 5.5461 50.8475
2 85.3140 43.8207 22.7708 12.1814 6.4987 3.5056 29.0152
4 54.2530 27.7025 14.3960 7.9660 4.5839 2.6156 18.5862
8 41.5079 21.3036 11.5369 7.4481 5.0634 3.0337 14.9823

Avg. 83.3793 42.5223 21.9779 11.9324 6.6596 3.6753 28.3578

using floating point multiplication and addition. This kind of accelerator trend leads to mismatching
of wall-clock latency and FLOPs in modern hardware. Therefore, we check the performance and
latency trade-off among grouping queries and keys by block size bq, bk.

In Table 13, we show that perplexity gets better as bq increases while it gets worse as bk increases. It
is not intuitive that increasing bq shows better perplexity than before because they lose the resolution
across the query dimension in attention mask estimation. However, the result shows that more block
size (more averaging) across the query (time) dimension shows better performance. In contrast to
this observation, bk works as expected, like that less resolution in key (past knowledge or memory)
dimension leads to worse performance.

This phenomenon makes our method speed up without any performance loss, even achieving bet-
ter performance. In Table 14, we measure the micro latency benchmark of our attention operation
during the decoding stage, which feeds a single query into the attention operator. With a single
query, we cannot utilize the MMU fully because, during sparse attention and attention score esti-
mation in masking iteration, we cannot matrix multiply between the Q group and K group. We
have a single query vector; therefore, we need a vector-matrix multiplier instead of matrix-matrix
multiplication, which is the main key feature of MMU. However, in Table 15, we measure the micro
latency benchmark of our attention operation during the decoding stage with a speculative decoding
strategy, which feeds multiple queries into the attention operator. We feed 32 query vectors within a
query dimension in the input tensor; therefore, now we can utilize a matrix-matrix multiplier in an
MMU. With these multiple queries and MMU utilization, our method could achieve a 10.23 times
speedup on 12k sequence length compared to PyTorch naive implementation (using bmm).

We use bq = 32, bk = 2 by default, according to the ablation study across the block sizes. We choose
bq = 32 because increasing bq leads to better latency and perplexity. However, we stopped increas-
ing bq by 32 because the current modern GPU, especially the NVIDIA Ampere series, usually does
not support matrix-matrix multiplication larger than 32. And maybe in the future, some variants
will support larger matrix multiplication, just like Google TPU. However, larger blocks need more
register allocation for block masking and address calculation. Therefore, considering implementa-
tion limitations, we think there is no benefit to increasing bq infinitely. Also, from a performance
perspective, we do not think this trend will keep over bq > 32. We choose bk = 2 because latency
speedup from bk = 1 to bk = 2 is huge respect to perplexity loss.

42

Published as a conference paper at ICLR 2025

Additionally, we measure the latency with rm = 1, which means without mask caching. Therefore,
this speedup will be amplified with rm in a practical setting.

E.5 ABLATION STUDY ON DENSE LAYER CHOICE

0 5 10 15 20 25 30

of Dense Layers

5.3

5.4

5.5

5.6

5.7

5.8

PP
L.

Perplexity on Wikitext2 / Number of Dense Layers (ld)

T=4k
T=8k
T=12k

ld = 0
Full HiP

ld = 3
Default

ld = 32
Full Dense

Figure 28: How Many Layers Should be Remained as Dense Layer ld? We use ld = 3 as
the default value. The Y-axis means how many first layers of the Transformer model are kept as
dense attention layers rather than replaced with HiP. We use Llama2 7B 32k for PPL evaluation on
Wikitext2

We do not replace the first few layers (ld) of the Transformer because the first few layers tend to
have dense attention probabilities rather than sparse attention probabilities. This phenomenon is
well described in previous results (Ribar et al., 2013). The first few layers exchange information
globally and uniformly across the tokens.

Therefore, in Figure 28, we perform an ablation study on how many first layers should remain as
dense attention. We observe that the first layers are kept as dense attention and then more perplexity.
In other words, if we replace the original transformer block with HiP attention, we could minimize
the performance degradation. However, for maximum practical speedup, we want to minimize the
number of dense layers for the experiment. Therefore, we run the ablations study on different
numbers of dense layers, and we choose 3. For 2 to 3, the performance (perplexity) improvement
is maximized. In conclusion, the practical effect of dense layers on latency is minimal because the
number of dense layers (e.g., 3, 4) is small compared to the number of HiP layers (e.g., 29, 36). We
show that we could achieve practical end-to-end speedup compared to baselines in Figure 8.

E.6 ABLATION STUDY ON REPRESENTATIVE TOKEN LOCATION

In the theoretical analysis section, we have mathematically proved that selecting the middle token
as the representative token of a section guarantees better performance than random selection. In this
subsection, we perform a brief ablation study on the location of the representative token to see if
this claim is true. In the following experiment, we measured the perplexity values of the Llama3.1
8B model for various representative token locations. We used the PG19 dataset as the input for the
model.
Table 16: Ablation Study of Representative Token Location. Perplexity is measured on the first
3.2M tokens in the PG19 dataset with a 128k context length. We use Llama3.1-8B for evaluation.

Position First 0.2 0.4 Middle 0.6 0.8 Last

PG19 Perplexity 8.851 8.752 8.691 8.685 8.818 8.934 8.812

Table 16 shows the experimental results. As can be seen in the table, the perplexity value is min-
imized when the middle token is selected as the representative token. This closely matches our
expectations, and it asserts that our theoretical analysis of the representative token location is valid.
Therefore, this ablation study justifies the selection of the middle token as the representative token.

43

Published as a conference paper at ICLR 2025

E.7 DISCUSSION ABOUT KV CACHE EVICTION AND COMPRESSION STRATEGY

We think the KV eviction and compression strategy is an orthogonal method to our proposed HiP
method, and we can cooperate with KV cache strategies. Users can use sparse linear attention
methods like ours with a KV eviction strategy. If the KV eviction strategy is careful enough, our
method should retain the same performance as vanilla attention.

Also, the typical retention ratio (512/32000 = 1.6%) of our method is much more extreme than
state-of-art eviction strategies (10 to 20% (Zhang et al., 2023)). Moreover, the KV eviction strategy
loses information permanently, which should be a problem. We think we can solve the memory
pressure from the KV cache should be solved with the memory hierarchy of the computer system.
NVMe storage should be large enough to store everything. We think KV eviction has limitations
because we cannot estimate which information will be important in the future. Therefore, we should
store every important piece of knowledge somewhere in our memory. During the storage of the KV
cache, we can utilize a partial KV cache eviction strategy.

We believe KV cache offloading is the future direction to tackle the memory limitation of the atten-
tion mechanism, as we proposed in the main section.

E.8 DISCUSSION ABOUT SPECULATIVE DECODING

We think that HiP can cooperate with many other speculative decoding strategies orthogo-
nal (Leviathan et al., 2023; Miao et al., 2024; Fu et al., 2024; Cai et al., 2024) because they are
working with the output of LLM, which is logits. Also, the speculative decoding method tries to
decode multiple queries simultaneously to verify the speculative generation candidates. This char-
acteristic of speculative decoding will take advantage of additional speedup with the large batches
in HiP.

E.9 REMAINING CHALLENGES IN HIP AND POTENTIAL SOLUTIONS

Although HiP successfully replaces the existing vanilla attention, there is room for improvement as
follows:

• While HiP outperforms the baselines and performs similarly with Flash Attention in long context
evaluation, HiP still underperforms Flash Attention with smaller k (lower compute budget).

• As shown in Appendix E.5, HiP uses a few layers (ld) of quadratic dense attention, which could
lead to a higher cost as the context length increases.

• Since HiP enforces every row in the attention matrix to have the same sparsity, this is not optimal
to handle dynamic sparsity of attention (Ribar et al., 2013; Lee et al., 2023).

As shown in Figure 2, because HiP discards the bottom chunks for unselected branches, it is impossi-
ble to select tokens from the actual top-k set if they happen to be within those discarded chunks. We
refer to this as ’branch early termination’ in HiP, and addressing this issue could help resolve above
improvement points. Therefore, we propose two possible research directions that tackle the branch
early termination problem while also enabling dynamic sparsity: (1) an ensemble hierarchical top-k
approximation and (2) an improved tree traverse strategy.

First, for the ensemble hierarchical top-k approximation, we generate multiple HiP masks by in-
jecting randomness into branching decisions during a specific iteration and create a final ensemble
mask by aggregating indices from these masks. The ensemble method demonstrates that applying
different branching in a given iteration can enhance inference accuracy and indicates the potential
to replace the dense layers ld in HiP with comparable performance, as shown in Appendix C.5.
Moreover, Figure 24 illustrates how the ensemble method enables dynamic sparsity across layers
and heads, addressing the limitation of uniform sparsity in HiP.

Second, we could explore more diverse traversal methods, rather than strictly relying on binary
branching and selecting the top-k tokens at each iteration. In Appendix C.5, we examine the ef-
fectiveness of applying ensemble techniques to HiP masks with slight randomness. However, this
approach incurs additional computational costs due to the oversampling of the mask, which can be
quite expensive. Therefore, to achieve a similar effect, we could diversify the tree branching beyond

44

Published as a conference paper at ICLR 2025

the binary structure, similar to an n-beam search. Another potential solution specifically tailored
to HiP is to apply multi-branching in a certain iteration and oversample the chunks in subsequent
iterations, maintaining multiple paths until the end. By doing so, the final iteration would include
more than k candidates, resolving the branch early termination issue and allowing us to decide how
many tokens to select for dynamic sparsity across the layers.

E.10 UNIQUE GPU RESOURCE DEMAND PATTERN OF HIP COMPARED TO FLASH
ATTENTION

Our novel HiP attention is quite different from any other attention implementations. We do not
heavily rely on ALUs (floating operations) like Flash Attention. Also, we do not heavily rely on
memory bandwidth like previous sparse attention methods like H2O (it has to store attention scores
in global memory). The HiP relies on thread resources because of the top-k operator in between HiP
iterations. Moreover, we have highly complex algorithms compared to traditional GPU applications
like graphics shaders. Due to this highly complex algorithm, we heavily rely on thread resources,
even if we are heavily optimized with MMU for attention score sampling.

Thanks to the reduced complexity of HiP, O(T log T), we are winning every configuration with
long context prefill and decoding. Since the decoding phase is highly memory-dependent for Flash
Attention, we also always win in most practical context lengths. However, we sometimes lose if
Flash Attention is way too much faster because of the trillions of floating operation specifications
of high-end server-grade GPUs. Moreover, Flash Attention 2 and 3 utilize special floating point
valuation resources in GPU, especially on H100; FA3 is way too much faster in another setting.
Therefore, we are starting to lose in short context (T=32k) to FA2 and FA3 because of the speedup
of Flash Attention on H100.

This phenomenon is disappointing to us. Therefore, we try to investigate why HiP in H100 is so
slower than others, even compared to consumer-grade GPUs such as RTX 4090. We think the high
demand for CUDA thread resources is due to our internal sorting algorithm. Since we must remain
top-k blocks in every iteration, we must perform O(k log k) cost sorting operation O(log T) times.
Therefore, as k grows, we are staving to allocate worker thread for score comparison.

Table 17: Prefill Latency Speedup of HiP by Removing Sorting on RTX 4090 and H100 with
different k and T . The time unit is milliseconds.

Device 4090 H100
Context Length 32k 128k 32k 128k
Prefill Latency w/o Sort w/ Sort Speedup w/o Sort w/ Sort Speedup w/o Sort w/ Sort Speedup w/o Sort w/ Sort Speedup

Flash Attention 56.0 855.2 24.05 430.79

HiP k=512 16.48 19.33 1.173 85.62 103.13 1.204 16.55 19.80 1.196 86.65 108.38 1.251
HiP k=1024 26.96 33.70 1.250 150.90 190.98 1.266 27.56 36.30 1.317 153.41 210.78 1.374
HiP k=2048 44.12 62.27 1.411 263.60 386.97 1.468 43.74 69.54 1.590 260.22 434.30 1.669

Table 18: Technical Specifications of 4090 and H100. We put a comparison of prefill latency
compared to RTX 4090.

Rel. CUDA Core Rel. TFLOPs Rel. Mem. Bandwidth Rel. Clock Speed Rel. HiP Speedup Rel. FA2 Speedup

RTX 4090 1.00 1.00 1.00 1.00 1.00 1.00
H100 1.00 3.66 3.32 0.71 0.89 1.99

We want to show that the elimination of the sorting operation will speed up our top-k estimation.
To do so, we replace sorting with an identity function. So, in this version, we always select the
first half blocks to pass the next HiP iteration. As shown in Table 17, eliminating sorting speed up
our HiP significantly. In 4090, we could observe 46.8% speedup, and in H100, we could observe
66.9%. We can see the high relation between (CUDA cores + relative clock speed) and HiP speed
as shown in Table 18. So, we will try to investigate removing the sorting and replacing it with some
approximations for more practicality of HiP.

This characteristic is quite good for cost-effectiveness. Nvidia does not usually reduce CUDA cores
on consumer-grade GPUs; therefore, we could achieve the same speed as H100 while reducing
GPU costs more than ten times. Even in server-grade GPUs, there are some great cost-effective
alternatives. For example, L40s has more ALU than 4090 and the same amount of CUDA core.
Therefore, L40s will offer A100-level linear layer computation while offering H100-level attention,

45

Published as a conference paper at ICLR 2025

which is way more after than flash attention on L40s. In the L40s, flash attention will be extremely
slow, like in A100 and 4090, because they have similar FLOPs due to the price tag. We wanted to
test L40s during submission, but unfortunately, we could not find any possible option to get L40s.

The lower-grade GPUs often struggle with the small size of VRAM. However, the tiny memory of
lower-grade GPU is not a problem with our method due to the powerful KV cache offloading feature
without decoding throughput degradation. We have already shown that we can serve 64K context
length with a single RTX 4090 card, and if you put 8 of them together, then we can serve around
512K context length with high decoding throughput. For example, the tinygrad company offers 8x
4090 workstations with only 40,000$ (tinygrad, 2024) (we are not them, just for clarification). The
price is almost similar to a single H100 card, but you can serve 512K context length with more than
twice TFLOPs! This means that if you have two nodes of that machine, you can actually run Google
Gemini class (Google, 2024) long context LLM in the home. And if the tensor parallelism is linearly
scaled with two nodes, you can decode 1,527 tokens with 64k context length. Since our method is
almost a logarithm scale with context length during decoding, we can expect to decode around 1K
tokens per second with a one million context length. So, we are really excited to introduce our KV
cache offloading feature with HiP in many practical aspects.

F POTENTIAL NEGATIVE SOCIAL IMPACT

In this paper, we do not perform a careful investigation on LLM alignment performance with HiP.
There is the potential that HiP might break the LLM safety guard. However, as far as we observed
during the experiment, the HiP could preserve most of the behavior of trained LLM. Furthermore,
we could always adopt the third-party LLM safety guard model such as LLaMA Guard (Inan et al.,
2023).

46

	Introduction
	Related Works
	Methodology
	Hierarchical Score-Locality-Aware Top-k Estimation
	Block Approximation of Top-k Estimation
	KV Cache Offloading

	Theoretical Analysis
	Experiments
	Experiment Settings
	Language Modeling Performance Evaluation
	Long Context Performance
	Latency Breakdown and End-to-end Decoding Speedup
	KV Cache Offloading Benchmark

	Conclusion
	Theoretical Analysis
	Proof Sketch
	Detailed Proofs
	Revisiting Assumptions in Theoretical Analysis

	Detailed Methodology Descriptions
	Hierarchical Sparse Attention Mask Estimation Algorithm
	HiP Decoding Algorithm
	Detailed Flow-diagram of HiP
	Additional Optimization Techniques
	Training Downstream Tasks with HiP

	Additional Experimental Results
	Large Multimodal Model with HiP
	Massive Multitask Language Understanding (MMLU)
	Comparison with Reformer and SEA
	Context Extention with Self-Extend
	Ensemble Hierarchical Top-k Approximation

	Detailed Experimental Settings
	Additional Analysis
	More Discussion on Related Works
	Analysis of Summarizing Result between StreamingLLM and HiP
	Hierarchical Attention Mask Pruning Visualization
	Ablation Study on Block Size
	Ablation Study on Dense Layer Choice
	Ablation Study on Representative Token Location
	Discussion about KV Cache Eviction and Compression Strategy
	Discussion about Speculative Decoding
	Remaining Challenges in HiP and Potential Solutions
	Unique GPU Resource Demand Pattern of HiP Compared to Flash Attention

	Potential Negative Social Impact

