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Abstract

Effective deployment of Federated Learning (FL) often faces
the dual challenge of ensuring high model performance on
heterogeneous (non-1ID) data and providing strong privacy
guarantees. To improve performance on non-IID data, ad-
vanced FL optimization methods have emerged that share
auxiliary insights, such as client gradient behaviors. While
these gradient-guided optimization FL. methods, such as Fed-
erated Loss Exploration (FedLEx), improve the model accu-
racy, their reliance on sharing additional gradient information
creates an unaddressed privacy vulnerability. In this work, we
empirically quantify this privacy-sensitive data leakage and
address it through an end-to-end Secure Multi-Party Compu-
tation (MPC)-based solution that secures FedLEx. Specif-
ically, we conduct a privacy leakage experiment and show
that a malicious server can indeed infer clients’ label sets
from shared guidance matrices in a pathological non-1ID set-
ting. PPFLex replaces the single server in FedLEx setting
with three MPC servers to securely compute the global guid-
ance matrix and perform federated averaging under semi-
honest and malicious adversary assumptions across SemiZ2k,
Replicated2k, SPDZ2k, and PSReplicated2k protocols using
the MP-SPDZ framework. Finally, we quantify the practi-
cal trade-offs of using MPC and analyze FedLEx' s robust-
ness to noise. Our experiments over MNIST data show that
PPFLex successfully preserves the model accuracy achieved
by the unsecured FedLEx pipeline while providing stronger
privacy guarantees.

Introduction

Machine Learning (ML) has become widely used in vari-
ous application domains, such as healthcare (Qayyum et al.
2020), finance (Ahmed et al. 2022), autonomous driv-
ing (Kiran et al. 2020), and blockchain (Liu et al. 2020).
However, data privacy concerns remain a major barrier to
widespread adoption. Google introduced Federated Learn-
ing (FL) in 2016, enabling collaborative model training
without directly sharing raw data. By performing model
training locally, FL addresses the risk of model parame-
ter exposure and supports compliance with data protection
regulations such as the General Data Protection Regulation
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(GDPR) (Truong et al. 2020), the California Consumer Pri-
vacy Act (CCPA) (Bukaty 2019) and the Personal Data Pro-
tection Act (PDPA) (Chik 2013).

Despite its promise, the practical deployment of FL
presents several challenges. One is the challenge of statisti-
cal heterogeneity, where client data are non-independent and
identically distributed (non-IID) on the local devices, oc-
curring when training data attributes are imbalanced across
clients due to perturbations (Zhu et al. 2021). To tackle the
limitations of standard averaging in these non-IID settings,
researchers have increasingly adopted knowledge trans-
fer techniques (Shao et al. 2023) to harmonize learning
across diverse client distributions. Federated Loss Explo-
ration (FedLEx) (Interno et al. 2024a) is one such method
that integrates guided transfer learning into the FL frame-
work by analyzing gradient behavior to guide the learning
process. Unlike conventional FL approaches, FedLEx does
not rely on weight-sharing alone. Instead, it focuses on ag-
gregating the gradient information from the different loss
surfaces of each client. This approach is designed to address
the challenges of non-IID data, where class distribution dif-
ferences between clients can create biases that hinder learn-
ing performance.

A further concern is privacy: although FL provides a layer
of protection, it remains vulnerable to inference attacks,
where adversaries reconstruct private training data from in-
termediate model updates (Chai et al. 2023; Lyu et al. 2020;
Mothukuri et al. 2021). Such attacks, including gradient and
model inversion, can expose sensitive client information,
undermining FL’s privacy guarantees (Zhu, Liu, and Han
2019). To address these concerns, several privacy-preserving
technologies have been proposed. Homomorphic Encryption
(HE) (Doan et al. 2023) allows computations on encrypted
data, however introduces high computational overhead. Dif-
ferential Privacy (DP) (Ji, Lipton, and Elkan 2014) adds
noise to protect privacy, however, it may degrade model per-
formance. Secure Multi-Party Computation (MPC) (Lindell
2020) allows a group of untrusted parties to process their
data jointly without revealing individual information and is
emerging as a promising solution for multi-party settings.

This creates a gap: on one hand, existing MPC-based se-
cure aggregation protocols are mainly focused on traditional
FL averaging and do not focus on providing privacy for shar-
ing additional gradient knowledge that can be used to opti-



mize performance in non-IID settings. On the other hand,
while FedLEx enhances traditional FL training by leverag-
ing gradient analysis, it lacks privacy guarantees as gradient
deviations can still reveal sensitive information, an adver-
sary with access to model updates may reconstruct private
training data, similar to traditional FL vulnerabilities.

This paper aims to close this research gap by study-
ing FedLEx (Internd et al. 2024a) as a representative
knowledge-transfer optimizer that improves global model
performance under non-IID settings and by proposing
PPFLex, a privacy-preserving FL framework that combines
the strengths of FedLEx and MPC-based secure aggrega-
tion. Having established the need for privacy, we first pro-
vide empirical evidence that the core optimization process
of FedLEx introduces an additional source of privacy leak-
age. In particular, we demonstrate that the additional gradi-
ent information from clients can be exploited by a malicious
server to infer properties of their local data distributions.

To address this identified vulnerability, we introduce
and analyze PPFLex, a privacy-preserving framework
that leverages MPC to enable the private computation of
FedLEx' s guidance information. The main contribution of
our work is an investigation of the resulting trade-offs, offer-
ing insights into the real-world costs and benefits of secur-
ing non-IID data in advanced FL systems. We use the well-
known MNIST benchmark dataset to model the heteroge-
neous scenario, providing a reproducible base for analyzing
the performance and privacy trade-offs of applying MPC.
Finally, we analyze the robustness of the core FedLEx al-
gorithm to noisy gradients, which allows us to estimate its
noise tolerance in practical FL deployments.

Our contribution. The main contributions of our work
are:

* We empirically demonstrate that the additional gradient
information shared in FedLEx introduces a privacy vul-
nerability that can leak sensitive client data and quantify
its severity in a realistic setting.

* We develop PPFLex, an end-to-end privacy-preserving
implementation of FedLEx via MPC. Unlike existing
methods that separately address either non-1ID optimiza-
tion or generic secure aggregation, PPFLex combines
both, preserving model accuracy under non-1ID data in a
privacy-preserving way.

* We provide a benchmark that quantifies the trade-offs
between model accuracy, privacy, and communication/-
computational overhead across different MPC protocols
and adapts to different security assumptions including
semi-honest and malicious servers.

* We analyze the FedLEx’ s tolerance to noisy gradients,
a common concern when server-side inspection is re-
stricted, and propose a more resilient normalization ap-
proach RobFedLEx.

The remainder of this paper is organized as follows. First,
we review related work on secure FL and optimized FL
frameworks. Then, we provide background on the underly-
ing FedLEx framework. Afterwards, we introduce our pro-
posed PPFLex framework, describe the implementation de-

tails, and present evaluation results, analyzing PPFLex’s per-
formance and its computational overhead. Finally, we con-
clude the paper and suggest directions for future work.

Related Work

In this section, we review recent advancements in secure ag-
gregation techniques for FL and optimized FL frameworks.

Secure Aggregation in FL

Various MPC-based secure aggregation protocols enable
FL clients to share their locally trained models with a
group of servers in a privacy-preserving manner. For ex-
ample, SAFELearn (Fereidooni et al. 2021) is a generic
privacy-preserving FL framework that employs fully ho-
momorphic encryption and MPC for global model pri-
vacy. SafeFL (Gehlhar et al. 2023) is another MPC-based
framework designed to evaluate the performance of FL
techniques against privacy inference and poisoning attacks.
ELSA (Rathee et al. 2023) is a secure aggregation protocol
for FL that assumes malicious security against clients in a
two-server setting. WW-FL (Marx et al. 2023) introduces a
unified MPC-based framework for large-scale FL, enabling
global model privacy and robustness against poisoning at-
tacks. SPEFL (Shen et al. 2024) is a privacy-preserving,
MPC-based FL framework specifically designed for the In-
ternet of Things (IoT) to provide device privacy and robust-
ness against poisoning attacks on resource-limited devices.
ScionFL (Ben-Itzhak et al. 2022) presents an MPC-based
secure quantized aggregation framework for FL to reduce
server-client communication in FL while providing robust-
ness against malicious clients. Although these works ensure
secure aggregation in FL, they do not focus on addressing
optimization challenges caused by non-IID data distribu-
tions, which our work specifically targets.

Optimizing FL on Non-IID Data

Recent FL optimization studies address non-IID challenges
through transfer learning and knowledge distillation. In this
context, transferring information from a global server or
peer clients often using large pre-trained models to local
environments can enhance client performance on unseen
data (Li, Zhang, and Kumar 2025; Wang, Sun, and Zhao
2025; Lin, Chen, and Li 2021). Currently, adaptations of
meta-learning algorithms, such as an updated variant of the
Reptile method, and multitask formulations like MOCHA
shows improved personalization and client adaptation. To
further tackle heterogeneity, researchers apply hierarchical
clustering techniques to categorize clients based on weight
update dynamics, facilitating more effective grouping and
tailored optimization (Sattler et al. 2019; Lee, Park, and
Kim 2025). Parallel efforts aim to identify data distribu-
tions that more accurately reflect client diversity (Chen, Pa-
tel, and Nguyen 2025; Chen, Zhou, and Wang 2025). Fi-
nally, relevant to FedLEx (Interno et al. 2024a), advances in
adaptive gradient methods reshape federated optimization.
Modern optimizers such as AdamW (Loshchilov and Hut-
ter 2019) and second-order methods are gradually replacing
traditional stochastic gradient descent in FL. Techniques like



group normalization further accelerate convergence (Wu and
He 2018; Ruiz, Garcia, and Silva 2025). Note that no exist-
ing work has yet leveraged the transfer knowledge of loss
function topology to guide client gradients integrated with
MPC, a gap that our research aims to fill.

Background: Federated Loss Exploration

In a traditional Federated Learning (FL) setting, clients train
models on their local device decoupling training from di-
rect access to raw training data. Each client i (1 < ¢ < K)
holds data distributed according to p;(x,y) with D; =

{(z; Doy, @y )Y, where o € RY, represent-
ing a d-dimensional feature vector and y € {1,..., M} cor-
responding to a class label from M categories. The global
objective function represents the optimization goal by mea-
suring overall model performance. It is defined to minimize

the aggregate loss across all clients as follows:

‘C( global K Z (xi,y4) NpL (ngobal; Ty, yl)L

where £(Wogiobal, i, ;) denotes the global loss function for
a data point (x;,y;) with E(,, ..y, denoting the expected
loss over each client’s local data distribution p;(z,y). A
well-known FL aggregation scheme Federated-Averaging
(FedAvg) (McMahan et al. 2016) optimizes this objective
through iterative training rounds. First, the server distributes
the initial global model parameters Wiiopar to clients. Then,
clients perform local training on their data and send their
updated model parameters back to the server. The server av-
erages the updates to compute the global model.

FedLEx extends this process by introducing a knowledge
transfer approach (Interno et al. 2024a) to handle the chal-
lenge of non-IID data in FL. In such settings, client data
distributions differ, causing to suboptimal or slow global
model convergence. To overcome this, FedLEx introduces a
“loss exploration phase” that identifies which model param-
eters are most sensitive to the statistical differences in each
client’s data, thereby providing a consistent global model.
We now briefly describe the main phases in FedLEx; for a
detailed explanation, we refer the reader to the original pa-
per (Interno et al. 2024a).

Federated Loss Exploration. In this phase, each client
acts as an explorer of its loss landscape, identifying critical
parameter directions via gradient deviations (Interno et al.
2024b; Nikoli¢, Andrié¢, and Nikoli¢ 2023). At its core, ex-
plorer clients train the initial global model on their local data
and measure the magnitude of change for each model pa-
rameter, which provides insights into each parameter’s sen-
sitivity to the client’s data distribution. This exploration first
applies Stochastic Gradient Descent (SGD) (Bottou 2010) to
iteratively adjust model parameters and minimize loss. The
update rule for the m-th model parameter W ,,, for client ¢
at exploration step e is:

W(f’""l) W{(f’)

7, 7,

nVL; ( l(‘:r)L,D>

where 7 is the learning rate and V.C;(-) is the gradient of
the local loss function £; for client ¢, computed on its lo-
cal dataset D,. The cumulative update over a set number of
exploration steps, Fexp, 1s:

pr
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where WM and W[ are the parameter values at the
beglnnmg and end of the exploration phase, respectively,
and t indexes the training steps within this phase. Subse-
quently, to identify the gradient variability of the loss land-
scape for each parameter m, the squared deviation is com-
puted as: 67, = (Wil — ng‘fl)z . Finally, each client 4
compiles these squared deviations into a local guidance ma-
trix, Giocal, » Where the m-th element is defined as Gocal, ,,, =
07 -
Global Guidance Matrix Construction. After the explo-
ration phase, the server aggregates the local guidance matri-
ces (Gloca) from all clients. It then normalizes them to con-
struct the global guidance matrix, Goba- Each entry in this
matrix indicates the average gradient deviation for a specific
model parameter across the clients.

To construct Ggiopa,,, We first compute G, =

Final Initial __
Wi — Wi =

% Zfil Glocal; .., » the average of local matrices across all
arameters. More exactly, each entry Ggopa  indicates the
p y Ty Grglobal,,

average normalized deviation of the gradient for the m" pa-
rameter across clients.

Then we apply min-max normalization to compute the
global guidance per parameter m across all clients:

G — min(ém)
max(@m) — min(ém) '

(D

Gglobal,, =

Finally, the guidance matrix Ggjoba is sent back to the
clients in order to guide their model updates in each round
of FL.

Federated Learning. Subsequently, the local training
process begins with selected clients computing their gradi-
ent updates. Let AW, ,,, represent the gradient update for the
m-th parameter of client ’s model. Instead of sending this
update directly, FedLEx incorporates the global guidance
matrix to modulate it:

AVVmodulatedi,m = AWi,m X Gglobalma

where AWnodulaed; ,,, i the modulated update for the m-th
parameter. Finally, clients send these modulated updates to
the server, which then applies federated averaging to update
the global model.

Overall, FedLEx (Interno et al. 2024a) improves model
convergence in non-IID settings through the additional gra-
dient exploration and exchange of local matrices. In the next
section, we describe how this FL procedure can be imple-
mented more securely, to prevent a malicious server from
inferring sensitive data from gradient and model updates.
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Figure 1: PPFLex: MPC-based privacy-preserving federated learning.

Proposed PPFLex Framework

To address privacy concerns in FedLEx, our PPFLex
framework leverages Secure Multi-Party Computation
(MPC). To mitigate privacy vulnerabilities associated with
single server aggregation in FL, we replace the central-
ized server in FedLEx with three MPC servers to se-
curely compute Ggiopar,, and perform federated averaging
in a privacy-preserving manner. Generally, the architecture
allows us to implement a setup with two or more servers.
The three-server default setting is selected to evaluate var-
ious underlying protocols in MP-SPDZ, including honest-
majority protocols designed for three parties (Replicated2k,
PSReplicated2k), while also supporting dishonest-majority
protocols (SPDZ2k, Semi2k). Our approach ensures that
the model updates and additional gradient information are
shared with MPC servers without revealing privacy-sensitive
client data. The proposed enhancements to FedLEx are il-
lustrated in Figure 1.

In our work, we employ secret sharing—based MPC pro-
tocols. Their core underlying primitive is secret sharing,
which enables splitting a secret s among n parties such that
any subset of size ¢t + 1 can reconstruct the secret, while
any subset of size at most ¢ learns no information. Linear
operations, such as addition and scalar multiplication, can
be performed locally on the shares, whereas multiplications
of shares rely on preprocessing and interaction among the
servers. In our setting, each client decomposes its input into
three additive shares, sending one share to each server. The
servers jointly compute the aggregated result Gigjopal and
perform federated averaging on secret-shared values, with-

out reconstructing any raw client inputs.

Specifically, PPFLex involves two main MPC opera-
tions:

1) Global guidance matrix. At the beginning of the fed-
erated learning round, selected participating clients send
their gradient deviations (computed locally in the explo-
ration phase) to the three MPC servers. These deviations
are secret-shared, and the element-wise minimum and max-
imum are computed across all local gradient deviation sets,
Glocal; - As the first MPC computation in PPFLex frame-
work, the MPC servers aggregate them to compute Ggiobal
for involved clients using Eq. (1) (see @ in Figure 1).

2) Federated Learning. After a local training phase, ran-
domly selected clients send their model updates to the three
MPC servers in a secret-shared format. As the second MPC
computation in PPF Lex framework, the servers perform se-
cure aggregation of updated model parameters of contribut-
ing clients to construct a global model (see @ in Figure 1).

Security Assumptions. For both MPC operations, we
consider two different security settings. In the semi-honest
setting, the servers follow the protocol correctly but attempt
to infer sensitive information about the clients’ data from
their model updates W;. In the malicious setting, servers can
arbitrarily deviate from the protocol by extracting sensitive
information about the training dataset from the weights or
parameters of the trained model. We evaluate PPFLex un-
der both semi-honest and malicious security assumptions in
the Evaluation section.

Our implementation includes four protocols that operate
over the arithmetic ring domain of integers modulo a power



Parameter PPFLex

Dataset, Model MNIST, 2NN
Layers, hidden layers 2,200

Num. of epochs in Exploration 150

Batch size, Learning rate 350, 0.0003
Optimizer Adam,

Loss function CrossEntropyLoss
Num. clients, total 10

Num. clients, participating 2

Num. numerical params (2NN): 157610

Num. of MPC servers 3

MPC protocols Semi2k, Replicated

SPDZ2k, PsReplicated
64 bits (mod 25%)

24 fractional bits
edaBits

Ring size (all protocols)
Fixed-point precision
Mixed-domain conversions

Table 1: Experiment Hyperparameters.

of two (Mod 2%), where k denotes the bit length of the
integers. In a dishonest majority setting, where security is
guaranteed even if a majority of the parties are corrupted,
SPDZ2k provides malicious security, while Semi2k offers
a more efficient variant under semi-honest assumption. In
contrast, an honest-majority setting assumes that a major-
ity of parties behave honestly. Under this setting, Repli-
cated2k provides security against semi-honest adversaries,
and PSReplicated2k extends it to achieve malicious secu-
rity(Keller 2020).

Note that while PPFLex prevents server-side leakage
through secure MPC computation, it does not defend against
malicious clients. Integrating aggregation algorithms robust
to malicious clients can be addressed in future work.

Communication Optimization. An alternative approach
involves clients sending local model updates Gjoca only
once, rather than transmitting them in each round. These up-
dates can be securely stored on the servers in secret-shared
format. This allows the servers to reconstruct these local ma-
trices and perform the first MPC computation without re-
peatedly collecting new inputs from the selected clients.

Implementation

We implement the MPC-based outsourced secure FL aggre-
gation pipeline, PPFLex, under MP-SPDZ (Keller 2020).
This MPC framework executes MPC programs written in
Python-like code under different MPC protocols, supporting
more than 40 protocol variants. It allows us to test the so-
lution under different security assumptions and settings. To
enable outsourced computation on secret-shared client in-
puts, we use the External IO (MP-SPDZ 2025) interface
of MP-SPDZ.

To address the privacy leakages that we identified in
FedLEx, we implement secure federated computations in
MP-SPDZ for both the federated averaging and the guid-
ance matrix computation. Our implementation incorporates
two optimizations. First, to minimize MPC communication

overhead, the final normalization step for the guidance ma-
trix is performed locally by each client rather than imple-
menting costly non-linear min/max operations under MPC.
Second, we use a unified secure aggregation program that
handles both the gradient updates and Gj,.,; matrices and
store the results in the filesystem. The source code is pub-
licly available at https://github.com/nergiz-ue/PPFlex.

To connect our FedLEx programs to MP-SPDZ, we
make targeted adjustments to the FedLEx source by convert-
ing the gradient updates and local matrices into fixed-point
integers for MPC. Then, we dump necessary MPC inputs
to files, and replace plaintext executions with external calls
to run MPC clients and computing parties. This generic ap-
proach allows us to seamlessly replace plain-text functional-
ity with MPC in the existing FedLEx pipeline, and evaluate
the impact on the FL performance.

Evaluation

In this section, we evaluate the PPFLex framework. First,
we provide evidence of information leakage within guidance
information shared by the clients. Second, we measure the
impact of the selected MPC functionality on model conver-
gence. Third, we measure the MPC overhead in terms of
computation time and traffic. Finally, to assess whether the
underlying FedLEx optimizer remains suitable for secure
deployment in a real-world setting, we conduct a robustness
analysis, independent of the MPC integration, under noisy
gradient conditions.

For all experiments, we ran the default FedLEx pipeline
(as described in the (Interno et al. 2024a) repository) and
performed FL on the MNIST dataset in a pathological non-
IID setting, with 10 instantiated clients, where all clients par-
ticipate in the loss exploration phase, and 2 clients are ran-
domly selected in each communication round. The model
used is a two-layer network 2NN (McMahan et al. 2016),
consisting of 157610 numerical parameters, using Fep, =
150, batch size of 350, and a learning rate of 0.0003. The
original FedLEx experiments indicate that increasing the
number of clients and epochs in the exploration phase can
further increase the performance, though there is a saturation
point at higher values where additional exploration yields no
further gain. Table 1 provides an overview of the different
parameters used in the evaluation.

For measuring MPC performance and overhead, we ran
computing servers on three e2-highmem-2 virtual machines
(each containing 2 vCPUs with 16GB RAM) on the Google
Cloud infrastructure, in a 10GB LAN setting.

An Analysis of Privacy Leakage in FedLEx

The squared deviation values in Gy, reflect how strongly
each model parameter adapts to a client’s local data distri-
bution in the exploration phase. Since different digit classes
activate different neural weights, these deviations form a
distinguishable pattern. To empirically demonstrate the pri-
vacy vulnerabilities in FedLEx’s guidance matrix compu-
tation, we conduct a privacy leakage experiment to evaluate
whether a malicious server can infer sensitive information
about clients’ local data distributions from their transmitted
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Figure 2: Analysis of Privacy Leakage: MNIST Class De-
tection Success Rate.

guidance matrices. We simulate 225 synthetic clients in a
pathological non-1ID setting, where each client holds data
from two out of ten possible MNIST digit classes, cover-
ing all 45 class combinations with five clients per combi-
nation. Each client trains on 200 samples (100 per class)
and generates its Goea as a flattened raw deviation vec-
tor of 19,850 dimensions, which captures the squared dif-
ferences between the baseline and scout model parameters.
Each deviation vector is paired with the client’s correspond-
ing multi-hot encoded class label. To evaluate whether these
deviations reveal private information, we use an 80/20 train—
test split with a fixed random seed and train a multi-output
RandomForest classifier to predict which digit classes
each client possesses based on its Giocyl-

The experiment results demonstrate measurable privacy
exposure. The malicious model correctly infers the data
classes of test clients with a 75.6% exact-set-match accu-
racy. Per-class analysis is shown in Figure 2, with an average
93.5% F1-score, and indicates strong class distinguishabil-
ity. These findings confirm malicious server’s ability to infer
the MNIST data classes of the clients in a pathological non-
IID setting, and the necessity to apply MPC-based secure ag-
gregation to protect information leakage from the additional
gradient information shared by the clients. We believe that
even stronger inference attacks based on combining guid-
ance information with model updates can be investigated in
future work.

MPC Impact on Model Accuracy

To verify that MPC extensions do not affect the FL perfor-
mance (as MPC is done on quantized integer values), we
run both the original (unsecured) and MPC-enhanced FL
pipeline and compare the global model convergence after
100 training rounds. The results are averaged across 5 runs
in both settings and presented in Figure 3. FedLEx is mod-
ular and can be combined with different server-side aggre-
gation strategies, including server momentum-based vari-
ants (Hsu, Qi, and Brown 2019), as detailed in the FedLEx
work. In our comparison (Figure 3), the FedLEx baseline
uses the momentum-based aggregation (FedLExAvgM),
whereas PPFLex implements plain averaging under MPC

FedLEx vs. PPFlex Performance

MNIST Accuracy (%)
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Figure 3: Performance of PPFLex, in comparison to the
plain-text FedLEx pipeline.

without server momentum. Consequently, the MPC imple-
mentation achieves slightly lower accuracy and higher per-
round variance. Still, we confirm that MPC additions do not
affect the overall FL performance and implement the desired
functionality correctly.

MPC Overhead

Table 2 shows the overhead of our MPC solution for per-
forming secure federated computations. We use the 2NN
model on MNIST to establish a clear performance base-
line. We combine the analysis for both FL averaging and
guidance matrix computation as their core secure opera-
tion is identical: a federated average across client param-
eters. The final normalization step required for the guid-
ance matrix is handled locally by each client to minimize
MPC overhead. In addition, we measure separately the over-
head of the online phase only (not including the preprocess-
ing of generating cryptographic randomness such as Beaver
triples). We also compare the overhead for four protocols,
SPDZ2k, Semi2k, Replicated2k, and PsReplicated2k with
semi-honest and malicious settings.

The choice of underlying MPC protocol significantly im-
pacts performance overhead. Across the evaluated proto-
cols, the total execution time for secure computations ranges
from 31.1s for the most efficient protocol (Replicated2k)
to 2947.6s for the most heavyweight (SPDZ2k) even for
this relatively simple model. A similar trend is observed in
communication overhead, varying between 27.6 MB (Repli-
cated2k) and 339655.0 MB (SPDZ2k).

This performance gap highlights the trade-off between ef-
ficiency and the security guarantees provided by each MPC
protocol. SPDZ2k incurs the highest overhead among the
protocols due to malicious security under a dishonest major-
ity. Semi2k reduces cost by assuming semi-honest behavior.
PsReplicated2k provides malicious security under an hon-
est majority with moderate overhead. Replicated2k is the
most efficient due to its semi-honest security model with
an honest majority. This experiment highlights the neces-
sity of carefully designed protocols for implementing non-



Table 2: Runtime and communication results for FL. Averaging and Guidance Matrix computation across different MPC proto-
cols. The table reports online (0) and total (t) runtime in seconds and communication overhead in MB. All protocols perform

computations over an Arithmetic Ring (Z,x ) domain, where

k represents the bit length of the integers. Protocols are grouped by

security model: Dishonest Majority (DM) or Honest Majority (HM), supporting either Semi-Honest (SH) or Malicious (Mal)

adversaries.
. . . Secure Federated Computations

MPC Protocol # Parties Domain Security (Averaging and Guidance Matrix) via MPC

| Time (o) Time (t) | Comm (o) Comm (t)
SPDZ2k 3 Lo DM/Mal 3.6 2947.6 10.1 339655.0
Semi2k 3 iy, DM/SH 15.1 124.8 6.7 16957.6
PSReplicated2k 3 Lok HM/Mal 18.5 365.6 5.0 360.6
Replicated2k 3 Lok HM/SH 16.0 31.1 2.5 27.6

linear operations under MPC, and shows that optimization
is required to support the computational demands of more
complex datasets and deeper network architectures.

Robustness Analysis of FedLEx Convergence
Under Noisy Gradients

The robustness analysis presented here is conceptually in-
dependent of the MPC implementation. While PPFLex en-
sures private execution on server-side, it does not prevent
clients from behaving maliciously, and under MPC, the
servers cannot directly observe updates from potentially ma-
licious clients. Therefore, in this experiment, we make a first
step to see how FedLEx behaves in the presence of noisy
data.

To evaluate the robustness to noisy gradients, we intro-
duce RobFedLEx, a variant utilizing robust normaliza-
tion based on the Interquartile Range (IQR). Specifically,
RobFedLEx replaces the original min-max normalization
(Equation (1)) with:

_ Gm - Ql (G'rn)

Q3(Gm) — Q1(Gn)’

where ()1 and (Y3 denote the first and third quartiles, re-
spectively. Experiments were conducted by adding Gaussian
noise to client gradients: §; = g; + a¢;, € ~ N(0,0?%).

The results are shown in Figure 4. On MNIST,
RobFedLEx achieves an accuracy of approximately 88%,
80%, and 67% for noise intensities o« = 2,4, 6, outper-
forming FedLEx (82%, 75%, 62%) and FedAvg (80%, 70%,
60%) consistently by 5-10%. CIFAR10 results follow a sim-
ilar trend, with RobFedLEx improving accuracy by 5-10%
over FedAvg across all noise levels. Overall, all methods suf-
fer performance degradation in the presence of noise, but
RobFedLEx shows higher accuracy and smoother conver-
gence.

Gglobalm

Conclusion

In this paper, we propose PPFLex, an MPC-based frame-
work designed to enable secure aggregation specifically in
federated loss exploration phase of FedLEx framework,
supporting m clients and n servers in non-IID settings. The

framework provides strong privacy guarantees for gradi-
ent information-based optimization, allowing insights to be
shared without revealing sensitive client data. Our evalua-
tion results show the trade-offs between efficiency, privacy,
and communication overhead across different MPC proto-
cols. These findings emphasize the need for optimized pro-
tocols and tailored MPC implementations to improve effi-
ciency without compromising privacy. Additionally, our ro-
bustness analysis shows that although FedLEx is sensitive
to noisy or perturbed client inputs, its robustness can be im-
proved through RobFedLEx, indicating a promising direc-
tion for integrating robust approaches within secure aggre-
gation in future work. Moreover, we will focus on optimiz-
ing computational efficiency, extending scalability to larger
models and more clients, and deploying PPFLex to a real-
world scenario as part of our future research direction.
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