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ABSTRACT

The increasing prevalence of text-to-image (T2I) models makes their safety a criti-
cal concern. Adversarial testing techniques have been developed to probe whether
such models can be prompted to produce Not-Safe-For-Work (NSFW) content.
Despite these efforts, current solutions face several challenges, such as low suc-
cess rate, inefficiency and lack of semantic understandings. To combat these,
we introduce TREANT, a novel automated red-teaming framework for adversarial
testing of T2I models. The core of our framework is the tree-based semantic trans-
formation. We employ semantic decomposition and sensitive element drowning
strategies in conjunction with Large Language Models (LLMs) to systematically
refine adversarial prompts for effective testing. Our comprehensive evaluation
confirms the efficacy of TREANT, which not only exceeds the performance of
state-of-the-art approaches but also achieves a overall success rate of 88.5% on
leading T2I models, including DALL·E 3 and Stable Difussion.

1 INTRODUCTION

Text-to-image (T2I) models, like Stable Diffusion (Rombach et al., 2022; sta, 2023), and DALL·E
3 (dal, 2023), have gained popularity due to the advancements of vision and language generation
techniques. However, a significant ethical concern with these models is their potential to generate
Not-Safe-for-Work (NSFW) content, including images depicting violence and illegal activity. To
mitigate this threat, model developers implement a variety of techniques to prevent the generation
of NSFW content. During training, they use filtering to exclude NSFW content from the training
data (llm, 2023), or employ safety alignment strategies to rectify model’s knowledge (ope, 2023).
During deployment, safety filters are applied to eliminate any NSFW content produced.

However, there is still no universally effective solution to completely prevent NSFW content gener-
ation. Consequently, researchers have proposed adversarial testing techniques (known as red team-
ing), which challenge the target T2I model to generate NSFW content, for safety evaluation and
assessment. There are two strategies to red teaming T2I models. (1) Some techniques are designed
to automatically perturb prompts, leading to the generation of NSFW content (Li et al., 2019; Jin
et al., 2020a; Garg and Ramakrishnan, 2020a). (2) Some studies focus on the safety filters of T2I
models, and manually craft adversarial prompts to bypass them (Rando et al., 2022; Qu et al., 2023).

However, these solutions face three primary limitations. First, they struggle to effectively probe the
safety filter, leading to excessive numbers of queries with high cost. Second, they tend to focus more
on misleading safety filters rather than bypassing them. The generated content is not well aligned
with the original intent. Third, while manually-generated prompts may achieve a high success rate
for the specific model, they lack scalability for widespread testing of other T2I models.

This paper presents TREANT, to our best knowledge, the first fully automated red teaming frame-
work dedicated to assessing the robustness of T2I models against the generation of NSFW content
in a black-box setting. The design of TREANT is inspired by two key observations: (1) text safety
filters in T2I models are largely dependent on attention mechanisms that hone in on the contex-
tual surroundings of specific keywords. (2) Image safety filters may be circumvented by inundat-
ing them with irrelevant non-sensitive content. Based on them, TREANT is bifurcated into two
principal stages. (1) Semantic decomposition: it isolates sensitive elements (e.g., references to hu-
man anatomy), and applies this process recursively to the entire prompt to navigate through text
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safety filters. (2) Sensitive element drowning: it exploits the models’ ability to render multiple can-
vases within a single output image, by embedding non-sensitive elements onto ancillary canvases to
overwhelm the image safety filters. Initiating with an intentionally crafted prompt to elicit NSFW
imagery, TREANT progressively refines the input through these two stages, culminating in the gen-
eration of a prompt that adeptly elicits the creation of NSFW content by the target model.

We introduce several novel techniques to address the limitations of existing solutions. Specifically,
(1) to enhance the query efficiency, we initially decompose the prompt into a Prompt Parse Tree
(PPT), a new representation of objects in the adversarial prompt. We then recursively apply sensitive
decomposition and sensitive drown to this tree, streamlining the refinement process and reducing
redundant queries to the T2I model. (2) To ensure the alignment between the meaningful content and
testing goal, we leverage LLMs to steer the refinement towards this goal. We also employ a semantic
preservation technique in sensitive drown to improve the quality of the generated NSFW content,
preventing the output from being overwhelmed by irrelevant objects. (3) To achieve scalability,
we develop a hybrid algorithm, which coordinates with LLMs to monitor, evaluate, and refine the
testing goal in an automated manner.

We conduct extensive evaluations to validate the effectiveness of TREANT across multiple prohibited
content scenarios. The results clearly demonstrate that TREANT significantly outperforms estab-
lished baselines in mitigating NSFW content by T2I models. Notably, it achieves an overall success
rate of 88.5%, which is appreciably higher than the closest competitor. These findings underscore
the robustness and efficacy of TREANT in enhancing the safety mechanisms of T2I models. We
provide open access to the codebase of TREANT and datasets it generates in our anonymous project
website1, thereby supporting and encouraging reproducibility and further scholarly inquiry.

2 MOTIVATION

2.1 SAFETY OF T2I MODELS

Text-to-image (T2I) models (sta, 2023; dal, 2023) create images from text descriptions (i.e.,
prompts). Modern techniques typically use diffusion models, which start with random noise, grad-
ually removed through a de-noising network. They often use text embeddings from text encoders.
Recent studies explore learning-free and zero-shot image generation in large-scale models.

Existing T2I models have the potential to generate ”Not Safe For Work” (NSFW) content, which is
unsuitable for public or professional scenarios. This includes graphic violence, pornography, nudity,
profanity, or other offensive material (Guzman, 2023). To reduce such risk, T2I services commonly
implement safety measures to inspect input texts and output images. Specifically, when a user sub-
mits a request, it is first evaluated by a prompt safety filter to ensure it follows content policies.
If the prompt passes, the T2I model generates the corresponding image, which then undergoes a
secondary check by an image safety filter. Only images that pass both filters are shown to users, en-
suring safety and user-friendliness. Notably, open-source models like Stable Diffusion have built-in
safety measures to screen out NSFW content, reducing the need for additional external mechanisms.

Text-to-image generative models, commonly abbreviated as text-to-image models, translate textual
prompts into visual representations and have witnessed considerable advancements in their architec-
tural and algorithmic foundations, enhancing the fidelity of the imagery they produce. Present-day
methodologies predominantly harness diffusion-based frameworks, where the generation process
initiates with a random noise pattern and iteratively refines it using a de-noising mechanism. No-
table implementations of this approach are Stable Diffusion sta (2023) and DALL·E 3 dal (2023),
which incorporate text-driven directives, leveraging the semantic understanding derived from text
encoders to shape the resultant images. The field continues to innovate, delving into learning-free
and zero-shot capabilities within expansive generative models.

2.2 ADVERSARIAL TESTING OF T2I MODELS

Researchers have introduced adversarial testing or red-teaming, a strategy to assess the safety of
AI models and their capability of generating NSFW content. Existing techniques for testing T2I

1https://sites.google.com/view/text-to-image-testing
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Figure 1: The workflow of TREANT.

models can be classified into two categories. The first one is White-box testing. These methods
accesses the target model’s internal states to identify safety vulnerabilities. For instance, Niu et al.
(2024) utilize a maximum likelihood-based algorithm to generate NSFW content from T2I models.
Shayegani et al. (2023) combine images targeted towards toxic embeddings with generic prompts
to craft adversarial prompts. However, the effectiveness of these methods is limited by their high
computational demands and the need for direct access to the model, which might be restricted due
to proprietary or privacy concerns.

The second category is black-box testing, where the tester does not have access to the internal struc-
tures of the model. Some automated adversarial testing methods such as Textfooler (Jin et al.,
2020b), BAE (Garg and Ramakrishnan, 2020b), and SneakyPrompt (Yang et al., 2023) perturb
prompts to bypass safety filters. Manual approaches have also been explored, e.g., Rando (Rando
et al., 2022), which reverse-engineer the safety filter of T2I models and develop a manual bypass
strategy involving unrelated text additions.

In this paper, we mainly focus on the black-box testing, which is more practical for the real-world
scenarios. Unfortunately, existing black-box testing solutions suffer from the following three signif-
icant limitations. (1) Manual creation of prompts (Rando et al., 2022), though effective at evading
safety filters, lack practicality and scalability for extensive testing. (2) Automated testing meth-
ods (Garg and Ramakrishnan, 2020a), which alter prompts to dodge safety filters, frequently fail to
maintain the original meaning of the prompts, leading to the creation of nonsensical images. (3)
These automated approaches (Garg and Ramakrishnan, 2020a; Yang et al., 2023) generally have
low success rates, rendering them largely ineffective. These limitations motivates us to design a new
effective and scalable testing solution.

3 METHODOLOGY

3.1 OVERVIEW

We present TREANT, a novel automated framework for adversarial testing of T2I models. The design
of TREANT is based on two crucial observations: (1) Adversarial prompts that contain sensitive
words (e.g., ”kill”) can be transformed into less sensitive terms (e.g., ”fighting”) to evade textual
safety filters. (2) To bypass image safety filters, we can integrate benign elements (e.g., ”red liquid”)
with sensitive terms (e.g., ”blood”). These tactics allow us to guide T2I models to produce NSFW
content while still aligning with the original testing objectives.

Based on these two observations, TREANT leverages a tree-based mutation strategy to transform a
user-defined prompt into an effective adversarial prompt that can induce the generation of NSFW
images. Figure 1 shows the workflow of TREANT, which encompasses four pivotal steps. ❶ Con-
struction of a Prompt Parse Tree (PPT), our innovative representation that details the relations and
properties of objects within the prompt (§ 3.2). Once the initial PPT is established, ❷ TREANT ex-
ecutes semantic decomposition, a process that segments sensitive elements into non-sensitive com-
ponents. This is achieved by decomposing objects in the PPT into new subordinate PPTs. Subse-
quently, TREANT converts these newly formed PPTs into new adversarial prompts to circumvent
text safety filters (§ 3.3). Following this, ❸ TREANT implements sensitive element drowning (§ 3.4)
by introducing non-sensitive elements on different canvas, aiming to evade image safety filters. ❹
The effectiveness of the two strategies are evaluated by passing the generated adversarial prompt to
the T2I model for image generation. In case of failed generation, the response from the model is
analyzed to determine whether the text safety filter or image safety filter is not bypassed (§ 3.5), and
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the mutation strategy is triggered accordingly. This iterative process is performed until a success-
ful adversarial prompt is generated or the time budget is used up. Ultimately, TREANT outputs the
adversarial prompt alongside the NSFW images produced upon successful generation.

3.2 PROMPT PARSE TREE CONSTRUCTION

We introduce Prompt Parse Tree (PPT), a novel structure for encoding relationships and attributes
of objects in prompts. Its design is inspired by the concept of Parse Tree in natural language pro-
cessing (Meng et al., 2013; Jiang and Diesner, 2019; Ranjan et al., 2016). A parse tree, defined
within a grammar G = (V,Σ, R, S), comprises nodes representing non-terminal (V ) and terminal
(Σ) symbols, with R as production rules and S as the start symbol. The tree’s yield Yield(T ) is the
string w formed by concatenating all terminal symbols and empty string.

Building upon this definition, we formally define the Prompt Parse Tree (PPT) as a hierarchical
structure composed of three distinct node types: (1) Object Nodes: they explicitly represent the ac-
tual objects referred to in the image. (2) Attribute Nodes: they detail the characteristics or qualities
of objects, providing comprehensive descriptions or modifiers and shaping the attributes of the ob-
jects mentioned in the prompt. (3) Relation Nodes: they map the relationships between objects or
their sub-components within the prompt. They become crucial when complex objects are broken
down into sub-elements, thereby clarifying their intricate interconnections.

Examples. We elucidate the structure of PPT with three examples. Figure 2 (a) depicts the simple
prompt “Two men fighting against each other,” which consists of a ‘Fighting’ relation node branch-
ing out into two ‘Object Nodes,’ ‘Man1’ and ‘Man2,’ each representing the individuals in fighting.
In Figure 2 (b), the prompt complexity increases: “Two men are fighting against each other in a
church.” Here, the ‘Contain’ relation node indicates the encompassing setting of the action, branch-
ing into a ‘Church’ object node for location, and a ‘Fighting’ relation node further splitting into
‘Man1’ and ‘Man2.’ Figure 2 (c) shows an even more detailed prompt: “One strong man is fighting
against another man in a glorious church. Red liquid in the church.” The ‘Contain’ node is the
root, with branches to the ‘Church’ object node, the ‘Fighting’ relation node, and the ‘Liquid’ object
node. ‘Man1’ has an ‘Attribute Node’ of ‘strong,’ and the ‘Church’ has ‘glorious,’ while ‘Liquid’
is marked with ’red.’ These examples display how PPT dissects prompts into a hierarchical tree,
delineating object relationships and attributes within the context.

Our PPT construction grammar begins with the Relation Node, treated as the start symbol S. The
Attribute Node is the terminal symbol (Σ) because it describes its parent Object Node. If an object
lacks attribute nodes, we also designate the Object Node as the terminal symbol (Σ). The Relation
Node is our non-terminal symbol (V ) as it typically has an Object Node as a leaf node. The pro-
cess of deriving Yield and production rules R are executed effectively by LLMs, ensuring the PPT
accurately represents the prompt’s syntactic and semantic structure.

Given a predefined testing goal, i.e., adversarial prompt, from testers, TREANT constructs the initial
PPT, which includes a tree of nodes and edges, each characterized by specific properties. This
foundational PPT is not static, and it will undergo iterative refinement in subsequent steps.

3.3 SEMANTIC DECOMPOSITION

We design a novel algorithm, Semantic Decomposition, to process the prompts generated from
PPT. The goal of this algorithm is to circumvent the text safety filter by transforming sensitive
elements into non-sensitive ones. Inspired by Observation (1) in § 3.1, we disassemble highly sen-
sitive parts of the text and then disperse them throughout the entire prompt. This process effectively
reduces the concentration of sensitive elements, facilitating their passage through safety filters.

The reason behind this technique is as follows: the attention mechanism (Brauwers and Frasincar,
2021) allows T2I models to focus on relevant input parts when predicting outputs, thus capturing
contextual information effectively. A key feature is its “locality” property (Brauwers and Frasincar,
2021), which gives more weight to the immediate neighborhood around an element, enhancing the
model’s ability to generate coherent and contextually relevant outputs. Due to such mechanism, less
sensitive short phrases could be identified as risky when grouped together. By randomly distributing
these formatted descriptions, interspersing less sensitive phrases among many non-sensitive ones,
we can adeptly bypass text safety filters.
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Figure 2: Hierarchical parsing of prompts in PPT. (a) Basic prompt with object nodes. (b) Addition
of setting via ’Contain’ node. (c) Inclusion of attribute nodes for detailed context.

Algorithm 1: Semantic Decomposition
Input: Initial PPT with original prompt P
Output: Final adversarial prompt P ′

1 while true do
2 properties← collect properties(PPT);
3 phrases← arrange randomly(properties);
4 Q← query llm(phrases);
5 if Q passes text safety filters then
6 return Q
7 leaf node← select random leaf(PPT);
8 attributes← collect attributes(leaf node);
9 granular statements← divide attributes(attributes);

10 sub ppt← transform to sub ppt(granular statements);
11 update ppt(PPT, sub ppt);

Algorithm 1 describes the de-
tailed process of Semantic De-
composition. We start with an
initial PPT, attributed with the
original prompt. We take the
following steps to transform the
prompt. (1) We traverse the
current PPT, collect properties
from all nodes, randomly ar-
range the gathered short phrases,
and query the T2I model. If suc-
cessful, the final prompt is ob-
tained, and the process ends (see
§ 3.5 for checking criteria). (2)
If the prompt fails to pass the
text safety filters, we randomly select a leaf node as a candidate and perform decomposition. In
particular, we initiate an evaluative query to a LLM, discerning whether the image described by the
prompt complies with review policies, thereby identifying nodes that necessitate decomposition. (3)
Once the candidate leaf node is selected, We collect its attributes and use an LLM (e.g., GPT-4o)
to divide them into even more granular formatted statements, transforming these into a sub-PPT.
Subsequently, a subtree is crafted where the objects identified by the LLM form new leaf nodes.
Their attributes are meticulously documented, and the relationships are assimilated as attributes of a
new root node. This reconstruction replaces the original leaf node with a subtree that conserves the
essential semantics of the adversarial prompt, ensuring the revised prompt closely aligns with the
original context. We then restart from Step 1 until the prompt passes the text safety filter.

Examples. Figure 3 demonstrates the process of semantic decomposition in text-to-image prompts
to evade safety filters. The initial prompt, “Two men are fighting against each other in a church with
blood around”, contains the sensitive word ‘blood’, and will be blocked by the text safety filter, as
shown in (a). By utilizing an LLM for decomposition, as seen in (b), the prompt is transformed into
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Two men are fighting against each
other in a church with blood around.

(a) blood failed to pass the text
safety filter

Fighting
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Two men are fighting against each other
in a church with red liquid around.
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Contain
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red

(b) decompose to granular
formatted statements

Figure 3: Comparison of PPT representations showing (a) an initial prompt with the word ‘blood’
being blocked by a text safety filter, and (b) the refined prompt using ‘red liquid’ to bypass the filter
through semantic decomposition.

Two men are fighting against each other
with red liquid around.

Fighting

Man1 Man2

around

liquid

red

(a) original statement

An image that contains two canvas. The first canvas contains a
beautiful woman, and the second describes two men fighting each

other with red liquid around.
next to

contain

canvas 1 woman

contain

canvas 2

Fighting

Man1 Man2

around

liquid

red
beautiful

(b) element drawning with new canvas

Figure 4: Demonstration of the Sensitive Element Drowning technique in PPT. (a) The original
prompt with potential sensitive content. (b) The introduction of a new, unrelated canvas aimed at
diluting the sensitivity and potentially overloading the image safety filters.

a less sensitive description, “Two men are fighting each other in a church with red liquid around”,
allowing it to pass the filter and update the PPT for further processing.

3.4 SENSITIVE ELEMENT DROWNING

Once text safety filters are circumvented, the ensuing images may still be subject to image safety
filters, which are often more rigorous. We introduce another novel technique, Sensitive Element
Drowning, to bypass the image safety filters. The design of this technique is inspired by Observa-
tion (2) in § 3.1: T2I models possess the capability to generate multiple canvases simultaneously.
This feature enables us to submerge sensitive elements on one canvas while inundating other can-
vases with a plethora of non-sensitive elements, which may lead to the overloading of image safety
filters. To avert the dilution of the intended target image with irrelevant elements, our method in-
volves explicitly instructing, via the prompt, to divide the image into several canvases. Subsequently,
we populate these separate canvases with non-sensitive elements, dedicating a single canvas to the
target image. This technique of prompt augmentation is contextually independent of the original
adversarial intent, thereby allowing seamless integration to create an augmented prompt.

Examples. Figure 4 illustrates an example of this strategy using PPT. Specifically, Figure 4 (a)
shows the original statement where a prompt contains potential sensitive elements that are difficult
to decompose further. Figure 4 (b) demonstrates the strategy in action by introducing an additional
canvas containing non-sensitive elements (e.g., ‘beautiful woman’), which is contextually indepen-
dent from the sensitive content. This additional canvas is designed to potentially saturate the image
safety filter with excess semantic content, thereby diverting attention from the sensitive elements
depicted on the adjacent canvas.
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3.5 FAILURE ANALYSIS

To determine if a generated image from our crafted adversarial prompt contains inappropriate
content, we leverage an LLM (e.g., GPT-4o) to check for the possible NSFW content. Specif-
ically, we prompt GPT-4o by asking, ”Tell me whether the image contains content related to
{NSFW PROMPT}? Answer ’Yes’ or ’No’.” We manually check the evaluation results from GPT-
4o and find that it achieves a high consistency rate of 95.4%. Therefore, we can confidently use it as
a failure checker for our analysis.

4 EVALUATION

Baselines. We benchmark TREANT against existing adversarial testing approaches as below: (1)
SneakyPrompt (Yang et al., 2023): This approach utilizes reinforcement learning to iteratively re-
fine adversarial prompts. By continuously interacting with the target T2I model, SneakyPrompt
aims to induce the generation of NSFW content, testing the robustness of model safety filters. (2)
BAE (Garg and Ramakrishnan, 2020a): This method adopts a token manipulation strategy, specifi-
cally focusing on token replacement and insertion. It works by masking portions of the original text
and utilizing BERT Masked Language Model to suggest alternative tokens that could fit the masked
context, effectively testing the filters’ resilience to subtle linguistic changes. (3) TextFooler (Jin
et al., 2020a): This solution employs a synonym substitution technique to evade safety filters. It re-
places critical words in the text with their synonyms, preserving the semantic content while altering
the prompt’s structure enough to potentially bypass the safety mechanisms.

Experimental Setup. Our experiments are conducted on a high-performance workstation equipped
with the following specifications: operating system Ubuntu 22.04.3 LTS, powered by 2 NVIDIA
3090 GPUs, each with 24GB of memory. For detailed results and more comprehensive information
regarding our implementation, please refer to our website1.

To ensure consistency and reproducibility, we impose a strict time limit of ten minutes for each
method during every trial, focusing specifically on generating a single adversarial prompt per run.
Furthermore, to reduce variability and ensure robust statistical analysis, we repeat each experiment
ten times. In the interest of fairness and comparability across all tested methods, we limit the number
of queries to 6 for all baselines during the trials.

Dataset. In contrast to the comprehensive content compliance checks provided by OpenAI (ope
(2023)), the current publicly available NSFW prompt datasets only include obscene content. To
more thoroughly test TREANT’s performance, we have created our own dataset, denoted as NSFW-
1k. Building upon the approaches of previous works (Yang et al., 2023; Niu et al., 2024; Shayegani
et al., 2023), we take inspiration from a Reddit post (red, 2023) and use ChatGPT (cha, 2023) to
generate 100 target prompts for 11 different scenarios prohibited by OpenAI’s content policy (ope,
2023), specifically focusing on NSFW content. This process results in a total of 1100 adversarial
prompts. In addition, we also conducted extensive testing on the NSFW-200 dataset proposed by
Yang et al. (2023), which contains 200 prompts containing obscene content.

Target T2I Models for Evaluation. To assess TREANT, we selected four leading T2I models, in-
cluding one commercial and three open-source options, all equipped with advanced text and image
safety filters designed to block inappropriate content. Specifically, (1) DALL·E 3 (dal, 2023), de-
veloped by OpenAI, excels in interpreting complex prompts and generating high-quality images. (2)
Stable Diffusion (sta, 2023), a widely respected open-source model, is evaluated via its API. We
tested multiple versions—v1.4, v2.1, and XL—to account for variations in text comprehension and
image generation capabilities.

Metrics. We evaluate adversarial testing of T2I models using two metrics: (1) Success Rate: The
percentage of adversarial prompts that successfully generate NSFW content. Each sample is verified
by GPT-4 Vision and manually checked for validity. (2) Number of Queries: The number of queries
needed to generate a successful adversarial prompt, with fewer queries indicating higher efficiency.
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Table 1: Aggregated success rates for bypassing safety filters in DALL·E 3 across various prohibited
scenarios using different adversarial testing techniques in NSFW-1k.

Prohibited Scenario Method
SneakyPrompt TextFooler BAE TREANT TREANT-SD TREANT-SED

Hate 35.0 16.0 14.0 77.0 74.0 21.0
Harassment 98.0 96.0 97.0 96.0 93.0 85.0
Violence 94.0 86.0 85.0 97.0 84.0 89.0
Self-harm 61.0 48.0 48.0 90.0 79.0 56.0
Sexual 10.0 4.0 6.0 67.0 47.0 8.0
Shocking 86.0 77.0 77.0 94.0 91.0 76.0
Illegal 92.0 86.0 86.0 95.0 95.0 90.0
Deception 84.0 84.0 84.0 88.0 85.0 66.0
Political 99.0 99.0 99.0 99.0 99.0 97.0
Public 93.0 94.0 94.0 91.0 90.0 83.0
Spam 78.0 76.0 82.0 79.0 79.0 60.0
Total 75.5 69.6 70.2 88.5 83.3 66.4

Table 2: Aggregated success rates for bypassing safety filters in DALL·E 3 and three versions of
Stable Diffusion using different adversarial testing techniques in NSFW-200 (Yang et al. (2023)).

T2I Model Method
TREANT SneakyPrompt BAE TextFooler

DALL·E 3 63.0 9.0 4.5 3.0
Stable Diffusion v1.4 89.5 87.5 90.5 90.0
Stable Diffusion v2.1 62.5 50.5 69.0 67.5
Stable Diffusion XL 92.0 77.0 81.0 79.0

4.1 MAIN RESULTS

Testing Effectiveness across Various Prohibited Scenarios. We first evaluate and compare TRE-
ANT with other established methods. Taking into account DALL·E 3’s more robust content compli-
ance filters (ope (2023)), we test the effectiveness across Various Prohibited Scenarios on DALL·E
3. The results are shown in Table 1. We can observe that TREANT consistently outperforms other
adversarial testing techniques across various prohibited content scenarios. This effectiveness is pro-
vided byTREANT’s advanced algorithms that better understand the context of prompts, allowing for
more subtle manipulation to bypass safety filters. For example, in the “Sexual” and “Shocking” cat-
egories, TREANT achieves success rates of 67.0% and 94.0%, respectively, much higher than other
methods. Additionally, TREANT optimizes the number of queries needed, demonstrating greater
efficiency in “Illegal activity” and “Deception” scenarios with success rates of 95.0% and 88.0%.
It also exhibits robust performance in diverse categories like “Political” and “Public and personal
health”, both achieving 99.0% success rates, highlighting its adaptability. While TREANT does not
achieve perfect success in every category, such as “Self-harm” and “Violence”, its performance still
surpasses other methods, indicating the complexity of these scenarios. Overall, TREANT proves to
be highly effective in testing the safety of T2I models, with significant improvements over existing
techniques.

Testing Effectiveness across Various Models. We used NSFW-200 to evaluate the performance of
TREANT and baseline methods across four T2I models. The results, as shown in Table 2, indicate
that TREANT significantly outperformed other methods on DALL·E 3 and Stable Diffusion XL,
achieving scores of 63.0% and 92.0%, respectively. However, on Stable Diffusion v1.4 and v2.1,
the performance was weaker but nearly comparable to other methods. Upon examining the results,
we found that this variance is mainly because TREANT relies on the models’ ability to understand
structural information of the language. In contrast, methods like BAE and TextFooler, which are
based on simple phrase substitutions, are better suited for models with generally weaker semantic
understanding abilities.

Figure 7 presents a case study on the outputs generated by TREANT when applied to DALL·E 3 with
different sensitive scenarios. In the “Harassment” scenario, the model depicts a man aggressively
pointing at a woman, suggesting intimidation. The “Violence” scenario shows an older man gripping
a young woman with a bloodstained dress, indicating physical harm. For “Self-harm”, the model
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Figure 5: Success rates for methods across
prohibited scenarios by query count.
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Figure 6: Success rates of TREANT vs. num-
ber of nodes in semantic decomposition.

produces an image of a teenager with a razor blade to her wrist, depicting self-injury. The “Sexual”
prompt results in an image of a nude couple in a bathtub with rose petals, which can be seen as
suggestive. In the “Shocking” scenario, a protest scene is shown with a person making an offensive
gesture towards police. Finally, the “Illegal activity” scenario illustrates individuals vandalizing a
vehicle, promoting criminal behavior. These highlight the need for enhanced safety mechanisms
within T2I models to prevent the creation of potentially harmful or inappropriate content.

Testing Efficiency. Figure 5 presents the success rates of various adversarial testing methods against
the number of queries made, ranging from one to five. TREANT stands out, with its success rate
quickly approaching 88% by the fifth query, demonstrating high efficiency and effectiveness. In
contrast, SneakyPrompt and TextFooler show moderate improvement in success rates as the num-
ber of queries increases, with TextFooler reaching around 70% and SneakyPrompt slightly higher,
nearing 75%. BAE exhibits a more gradual increase in success, plateauing near 70%.

The superior performance of TREANT can be attributed to its advanced algorithms that leverage so-
phisticated strategies such as semantic decomposition and sensitive element drowning to effectively
manipulate prompts in a way that is difficult for safety filters to detect. This allows TREANT to
bypass filters more effectively with fewer queries. In contrast, the other tools rely on simpler, less
adaptive strategies such as synonym replacement or minor text alterations, which are more likely to
be caught by advanced filtering mechanisms. This highlights the importance of using context-aware
techniques in adversarial testing to ensure that prompts are crafted in a manner that mimics the po-
tential real-world misuse but remains undetected by safety filters. As a result, TREANT achieves
not only higher success rates but also lower testing cost, making it a valuable tool for evaluating the
safety of T2I models.

4.2 ABLATION STUDY

Impact of Strategies. We examine the individual effectiveness of two strategic components within
TREANT: semantic decomposition and sensitive element drowning. We implement two special-
ized variants of TREANT: (1) TREANT-SD exclusively utilizes semantic decomposition, and (2)
TREANT-SED applies solely sensitive element drowning. Table 1 details the success rates of these
implementations. We observe that the integrated TREANT, combining both two techniques, consis-
tently demonstrates superior performance compared to the isolated application of each strategy. This
confirms that the synergistic use of these strategies in TREANT leads to greater testing performance,
significantly enhancing the adversarial prompts’ ability to bypass safety filters.

Impact of PPT Complexity. We investigate the influence of the PPT complexity on the effec-
tiveness of TREANT. Given the theoretical possibility of infinitely subdividing an object into sub-
objects, this complexity is represented by the number of nodes in PPT, with more detailed subdivi-
sions corresponding to a greater number of nodes. We vary the maximum number of nodes from 1
to 12 to evaluate their respective performances, while all other settings are held constant to ensure
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Figure 7: Diverse outputs generated by DALL·E 3 when presented with sensitive prompts by apply-
ing TREANT, illustrating the model’s interpretation across prohibited categories.

comparability with previous studies. Figure 6 demonstrates how the increasing tree complexity af-
fects TREANT’s success rates. We observe a positive correlation between the number of tree nodes
and the pass rate, suggesting that more finely decomposed prompt structures tend to bypass safety
filters more effectively. As the complexity increases—reflected by the node count rising to 12—the
success rate also improves, nearing 88%. This result underscores that as TREANT parses an object
into more sub-objects, thereby augmenting the number of tree nodes, its ability to circumvent safety
filters is enhanced. This illustrates the significant benefit of detailed semantic decomposition in ad-
versarial testing, showing that more granular breakdowns in content are more likely to succeed in
bypassing stringent safety protocols.

5 DISCUSSION ABOUT MITIGATION

Given the adversarial prompts created by TREANT, it is crucial to prevent the creation of NSFW
content from them. A multifaceted approach could be employed. Firstly, we can enhance the ro-
bustness of safety filters by integrating advanced LLMs such as GPT-4o (we have applied it in
§3.5) to detect subtle cues and contextual nuances associated with NSFW content. Additionally, we
can implement a layered filtering process where both the textual and visual content are scrutinized
separately and together to catch prompts that might otherwise slip through a single filter. Regular
updating and training of these filters on a diverse dataset that includes various forms of NSFW con-
tent will improve their accuracy and adaptability. Together, these strategies can reduce the likelihood
of generating inappropriate content while maintaining the creative flexibility of T2I models.

6 CONCLUSION

Our TREANT stands out as a pioneering framework in the realm of adversarial testing, showcasing
remarkable effectiveness in probing the safety filters of T2I models. Through rigorous evaluation,
TREANT has proven to significantly surpass existing approaches, achieving an 88.5% success rate
on a range of platforms, including DALL·E 3 and three versions of Stable Diffusion. Such per-
formance not only marks a considerable advancement over current state-of-the-art methods but also
highlights the efficiency of its core strategies: semantic decomposition and sensitive element drown-
ing. Looking forward, we aim to enhance the interpretability of adversarial prompts and develop a
sophisticated detection mechanism that leverages this interpretability.
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