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Abstract

Estimating mutual information accurately is pivotal across diverse applications,
from machine learning to communications and biology, enabling us to gain insights
into the inner mechanisms of complex systems. Yet, dealing with high-dimensional
data presents a formidable challenge, due to its size and the presence of intricate
relationships. Recently proposed neural methods employing variational lower
bounds on the mutual information have gained prominence. However, these ap-
proaches suffer from either high bias or high variance, as the sample size and the
structure of the loss function directly influence the training process. In this paper,
we propose a novel class of discriminative mutual information estimators based
on the variational representation of the f -divergence. We investigate the impact of
the permutation function used to obtain the marginal training samples and present
a novel architectural solution based on derangements. The proposed estimator
is flexible since it exhibits an excellent bias/variance trade-off. The comparison
with state-of-the-art neural estimators, through extensive experimentation within
established reference scenarios, shows that our approach offers higher accuracy
and lower complexity.

1 Introduction

The mutual information (MI) between two multivariate random variables, X and Y , is a fundamental
quantity in statistics, representation learning, information theory, communication engineering and
biology [1, 2, 3, 4, 5]. It quantifies the statistical dependence between X and Y by measuring the
amount of information obtained about X via the observation of Y , and it is defined as

I(X;Y ) = E(x,y)∼pXY (x,y)

[
log

pXY (x,y)

pX(x)pY (y)

]
. (1)

Unfortunately, computing I(X;Y ) is challenging since the joint probability density function
pXY (x,y) and the marginals pX(x), pY (y) are usually unknown, especially when dealing with
high-dimensional data. Some recent techniques [6, 7] have demonstrated that neural networks can be
leveraged as probability density function estimators and, more in general, are capable of modeling
the data dependence. Discriminative approaches [8, 9] compare samples from both the joint and
marginal distributions to directly compute the density ratio (or the log-density ratio)

R(x,y) =
pXY (x,y)

pX(x)pY (y)
. (2)

We focus on discriminative MI estimation since it can in principle enjoy some of the properties
of implicit generative models, which are able of directly generating data that belongs to the same
distribution of the input data without any explicit density estimate. In this direction, the most
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successful technique is represented by generative adversarial networks (GANs) [10]. The adversarial
training pushes the discriminator D(x) towards the optimum value

D̂(x) =
pdata(x)

pdata(x) + pgen(x)
=

1

1 +
pgen(x)
pdata(x)

. (3)

Therefore, the output of the optimum discriminator is itself a function of the density ratio pgen/pdata,
where pgen and pdata are the distributions of the generated and the collected data, respectively.

We generalize the observation of (3) and we propose a family of MI estimators based on the variational
lower bound (VLB) of the f -divergence [11, 12]. In particular, we argue that the maximization of
any f -divergence VLB can lead to a MI estimator with excellent bias/variance trade-off.

Since we typically have access only to joint data points (x,y) ∼ pXY (x,y), another relevant
practical aspect is the sampling strategy to obtain data from the product of marginals pX(x)pY (y),
for instance via a shuffling mechanism along N realizations of Y . We analyze the impact that the
permutation has on the learning and training process and we propose a derangement training strategy
that achieves high performance requiring Ω(N) operations. Simulation results demonstrate that the
proposed approach exhibits improved estimations in a multitude of scenarios.

In brief, we can summarize our contributions over the state-of-the-art as follows:

• For any f -divergence, we derive a training value function whose maximization leads to a
given MI estimator.

• We compare different f -divergences and comment on the resulting estimator properties and
performance.

• We study the impact of data derangement for the learning model and propose a novel
derangement training strategy that overcomes the upper bound on the MI estimation [13],
contrarily to what happens when using a random permutation strategy.

• We unify the main discriminative estimators into a publicly available code which can be
used to reproduce all the results of this paper.

2 Related Work

Traditional approaches for the MI estimation rely on binning, density and kernel estimation [14, 15],
k-nearest neighbors [16], and ensemble-based models [17]. Nevertheless, they do not scale to
problems involving high-dimensional data as it is the case in modern machine learning applications.
Hence, deep neural networks have recently been leveraged to maximize VLBs on the MI [11, 18, 19].
The expressive power of neural networks has shown promising results in this direction although less
is known about the effectiveness of such estimators [20], especially since they suffer from either high
bias or high variance.

Discriminative approaches usually exploit an energy-based variational family of functions to provide
a lower bound on the Kullback-Leibler (KL) divergence. As an example, the Donsker-Varadhan
dual representation of the KL divergence [11, 21] produces an estimate of the MI using the bound
optimized by the mutual information neural estimator (MINE) [19]. Another VLB based on the KL
divergence dual representation introduced in [18] leads to the NWJ estimator (also referred to as
f -MINE in [19]). Both MINE and NWJ suffer from high-variance estimates and to combat such a
limitation, the SMILE estimator was introduced in [20], where the authors proved that the estimate
of the partition function is the cause for high-variance in VLB estimators. SMILE is equivalent to
MINE in the limit τ → +∞. The MI estimator based on contrastive predictive coding (CPC) [22]
provides low variance estimates but it is upper bounded by logN , resulting in a biased estimator.
Such upper bound, typical of contrastive learning objectives, has been recently analyzed in the context
of skew-divergence estimators [23].

Another estimator based on a classification task is the neural joint entropy estimator (NJEE) proposed
in [24], which estimates the MI as entropies subtraction.

Inspired by the f -GAN training objective [25], in the following, we present a class of discriminative
MI estimators based on the f -divergence measure. Conversely to what has been proposed so far in
the literature, where f is always constrained to be the generator of the KL divergence, we allow for
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any choice of f . Different f functions will have different impact on the training and optimization
sides, while on the estimation side, the partition function does not need to be computed, leading to
low variance estimators.

3 f -Divergence Mutual Information Estimation

The calculation of the MI via a discriminative approach requires the density ratio (2). From (3), we
observe that I(X;Y ) can be estimated using the optimum GAN discriminator D̂ when pdata ≡ pXpY
and pgen ≡ pXY . More in general, the authors in [25] extended the variational divergence estimation
framework presented in [18] and showed that any f -divergence can be used to train GANs. Inspired
by such idea, we now argue that also discriminative MI estimators enjoy similar properties if the
variational representation of f -divergence functionals Df (P ||Q) is adopted.

In detail, let P and Q be absolutely continuous measures w.r.t. dx and assume they possess densities
p and q, then the f -divergence is defined as follows

Df (P ||Q) =

∫
X
q(x)f

(
p(x)

q(x)

)
dx, (4)

where X is a compact domain and the function f : R+ → R is convex, lower semicontinuous and
satisfies f(1) = 0.

In the following, we introduce f -DIME, a class of discriminative mutual information estimators
(DIME) based on the variational representation of the f -divergence.

Theorem 3.1. Let (X,Y ) ∼ pXY (x,y) be a pair of multivariate random variables. Let σ(·) be
a permutation function such that pσ(Y )(σ(y)|x) = pY (y) and T : dom(X)× dom(Y ) → R. Let
f∗ be the Fenchel conjugate of f : R+ → R, a convex lower semicontinuous function that satisfies
f(1) = 0 with derivative f ′. If Jf (T ) is a value function defined as

Jf (T ) = E(x,y)∼pXY (x,y)

[
T
(
x,y

)
− f∗

(
T
(
x, σ(y)

))]
, (5)

then

T̂ (x,y) = argmax
T

Jf (T ) = f ′
(

pXY (x,y)

pX(x)pY (y)

)
, (6)

and

I(X;Y ) = IfDIME(X;Y ) = E(x,y)∼pXY (x,y)

[
log

((
f∗)′(T̂ (x,y)))]. (7)

Theorem 3.1 shows that any value function Jf of the form in (5), seen as the dual representation of a
given f -divergence Df , can be maximized to estimate the MI via (7). It is interesting to notice that
the proposed class of estimators does not need any evaluation of the partition term.

We propose to parametrize T (x,y) with a deep neural network Tθ of parameters θ and solve
with gradient ascent and back-propagation to obtain θ̂ = argmaxθ Jf (Tθ). By doing so, it is
possible to guarantee that, at every training iteration n, the convergence of the f -DIME estimator
În,fDIME(X;Y ) is controlled by the convergence of T towards the tight bound T̂ while maximizing
Jf (T ), as stated in the following lemma.

Lemma 3.2. Let the discriminator T (·) be with enough capacity, i.e., in the non parametric limit.
Consider the problem

T̂ = argmax
T

Jf (T ) (8)

where Jf (T ) is defined as in (5), and the update rule based on the gradient descent method

T (n+1) = T (n) + µ∇Jf (T
(n)). (9)

If the gradient descent method converges to the global optimum T̂ , the mutual information estimator
defined in (7) converges to the real value of the mutual information I(X;Y ).
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The proof of Lemma 3.2, which is described in the Appendix, provides some theoretical grounding
for the behaviour of MI estimators when the training does not converge to the optimal density ratio.
Moreover, it also offers insights about the impact of different functions f on the numerical bias.

It is important to remark the difference between the classical VLB estimators that follow a discrimi-
native approach and the DIME-like estimators. They both achieve the goal through a discriminator
network that outputs a function of the density ratio. However, the former models exploit the vari-
ational representation of the MI (or the KL) and, at the equilibrium, use the discriminator output
directly in one of the value functions reported in Appendix B. The latter, instead, use the variational
representation of any f -divergence to extract the density ratio estimate directly from the discriminator
output.

In the upcoming sections, we analyze the variance of f -DIME and we propose a training strategy
for the implementation of Theorem 3.1. In our experiments, we consider the cases when f is the
generator of: a) the KL divergence; b) the GAN divergence; c) the Hellinger distance squared. Due
to space constraints, we report in Sec. A of the Appendix the value functions used for training and
the mathematical expressions of the resulting DIME estimators.

4 Variance Analysis

In this section, we assume that the ground truth density ratio R̂(x,y) exists and corresponds to the
density ratio in (2). We also assume that the optimum discriminator T̂ (x,y) is known and already
obtained (e.g. via a neural network parametrization).

We define pMXY (x,y) and pNX(x)pNY (y) as the empirical distributions corresponding to M i.i.d.
samples from the true joint distribution pXY and to N i.i.d. samples from the product of marginals
pXpY , respectively. The randomness of the sampling procedure and the batch sizes M,N influence
the variance of variational MI estimators. In the following, we prove that under the previous
assumptions, f -DIME exhibits better performance in terms of variance w.r.t. some variational
estimators with a discriminative approach, e.g., MINE and NWJ.

The partition function estimation EpN
XpN

Y
[R̂] represents the major issue when dealing with variational

MI estimators. Indeed, they comprise the evaluation of two terms (using the given density ratio), and
the partition function is the one responsible for the variance growth. The authors in [20] characterized
the variance of both MINE and NWJ estimators, in particular, they proved that the variance scales
exponentially with the ground truth MI ∀M ∈ N

VarpXY ,pXpY

[
IM,N
NWJ

]
≥eI(X;Y ) − 1

N

lim
N→∞

NVarpXY ,pXpY

[
IM,N
MINE

]
≥eI(X;Y ) − 1, (10)

where

IM,N
NWJ := EpM

XY
[log R̂+ 1]− EpN

XpN
Y
[R̂]

IM,N
MINE := EpM

XY
[log R̂]− logEpN

XpN
Y
[R̂]. (11)

To reduce the impact of the partition function on the variance, the authors of [20] also proposed to
clip the density ratio between e−τ and eτ leading to an estimator (SMILE) with bounded partition
variance. However, also the variance of the log-density ratio EpM

XY
[log R̂] influences the variance of

the variational estimators, since it is clear that

VarpXY ,pXpY

[
IM,N
V LB

]
≥ VarpXY

[
EpM

XY
[log R̂]

]
, (12)

a result that holds for any type of MI estimator based on a VLB.

The great advantage of f -DIME is to avoid the partition function estimation step, significantly
reducing the variance of the estimator. Under the same initial assumptions, from (12) we can
immediately conclude that

VarpXY

[
IMfDIME

]
≤ VarpXY ,pXpY

[
IM,N
V LB

]
, (13)
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where
IMfDIME := EpM

XY
[log R̂] (14)

is the Monte Carlo implementation of f -DIME. Hence, the f -DIME class of models has lower
variance than any VLB based estimator (MINE, NWJ, SMILE, etc.).

Furthermore, we provide in Appendix C two supplementary results. Lemma 4.1 introduces an upper
bound on the variance of the f -DIME estimator, a result holding for any type of value function Jf .
Lemma 4.2, instead, characterizes the variance of the estimator in (14) when X and Y are correlated
Gaussian random variables. We found out that the variance is finite and we use this result to verify in
the experiments that the variance of f -DIME does not diverge for high values of MI.

5 Derangement Strategy

The discriminative approach essentially compares expectations over both joint (x,y) ∼ pXY and
marginal (x,y) ∼ pXpY data points. Practically, we have access only to N realizations of the joint
distribution pXY and to obtain N marginal samples of pXpY from pXY a shuffling mechanism for
the realizations of Y is typically deployed. A general result in [13] shows that failing to sample from
the correct marginal distribution would lead to an upper bounded MI estimator.

We study the structure that the permutation law σ(·) in Theorem 3.1 needs to have when numerically
implemented. In particular, we now prove that a naive permutation over the realizations of Y results
in an incorrect VLB of the f -divergence, causing the MI estimator to be bounded by log(N), where
N is the batch size. To solve this issue, we propose a derangement strategy.

Let the data points (x,y) ∼ pXY be N pairs (xi,yi), ∀i ∈ {1, . . . , N}. The naive permutation of
y, denoted as π(y), leads to N new random pairs (xi,yj), ∀i and j ∈ {1, · · · , N}. The idea is that
a random naive permutation may lead to at least one pair (xk,yk), with k ∈ {1, . . . , N}, which is
actually a sample from the joint distribution. Viceversa, the derangement of y, denoted as σ(y), leads
to N new random pairs (xi,yj) such that i ̸= j,∀i and j ∈ {1, · · · , N}. Such pairs (xi,yj), i ̸= j
can effectively be considered samples from pX(x)pY (y). An example using these definitions is
provided in Appendix D.1.3.

The following lemma analyzes the relationship between the Monte Carlo approximations of the VLBs
of the f -divergence Jf in Theorem 3.1 using π(·) and σ(·) as permutation laws.
Lemma 5.1. Let (xi,yi), ∀i ∈ {1, . . . , N}, be N data points. Let Jf (T ) be the value function in
(5). Let J π

f (T ) and J σ
f (T ) be numerical implementations of Jf (T ) using a random permutation

and a random derangement of y, respectively. Denote with K the number of points yk, with
k ∈ {1, . . . , N}, in the same position after the permutation (i.e., the fixed points). Then

J π
f (T ) ≤ N −K

N
J σ
f (T ). (15)

Lemma 5.1 practically asserts that the value function J π
f (T ) evaluated via a naive permutation of

the data is not a valid VLB of the f -divergence, and thus, there is no guarantee on the optimality of
the discriminator’s output. An interesting mathematical connection can be obtained when studying
J π
f (T ) as a sort of variational skew-divergence estimator [23], but this goes beyond the scope of this

paper.

The following theorem states that in the case of the KL divergence, the maximum of J π
f (D) is

attained for a value of the discriminator that is not exactly the density ratio (as it should be from (21),
see Appendix A).
Theorem 5.2. Let the discriminator D(·) be with enough capacity. Let N be the batch size and f be
the generator of the KL divergence. Let J π

KL(D) be defined as

J π
KL(D) = E(x,y)∼pXY (x,y)

[
log

(
D
(
x,y

))
− f∗

(
log

(
D
(
x, π(y)

)))]
. (16)

Denote with K the number of indices in the same position after the permutation (i.e., the fixed points),
and with R(x,y) the density ratio in (2). Then,

D̂(x,y) = argmax
D

J π
KL(D) =

NR(x,y)

KR(x,y) +N −K
. (17)
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(a) Derangement strategy. (b) Permutation strategy.

Figure 1: MI estimate obtained with derangement and permutation training procedures, for data
dimension d = 20 and batch size N = 128.

Although Theorem 5.2 is stated for the KL divergence, it can be easily extended to any f -divergence
using Theorem 3.1. Notice that if the number of indices in the same position K is equal to 0, we fall
back into the derangement strategy and we retrieve the density ratio as output.

When we parametrize D with a neural network, we perform multiple training iterations and so we
have multiple batches of dimension N . This turns into an average analysis on K. We report in the
Appendix (see Lemma 5.4) the proof that, on average, K is equal to 1.

From the previous results, it follows immediately that the estimator obtained using a naive permutation
strategy is biased and upper bounded by a function of the batch size N .
Corollary 5.3 (Permutation bound). Let KL-DIME be the estimator obtained via iterative optimiza-
tion of J π

KL(D), using a batch of size N every training step. Then,

IπKL−DIME := E(x,y)∼pXY (x,y)

[
log

(
D̂(x,y)

)]
< log(N). (18)

We report in Fig. 1 an example of the difference between the derangement and permutation strategies.
The estimate attained by using the permutation mechanism, showed in Fig. 1b, demonstrates Theorem
5.2 and Corollary 5.3, as the upper bound corresponding to log(N) (with N = 128) is clearly visible.

6 Experimental Results

In this section, we firstly describe the architectures of the proposed estimators. Then, we outline the
data used to estimate the MI, comment on the performance of the discussed estimators in different
scenarios, also analyzing their computational complexity. Finally, we present the outcomes of the
self-consistency tests [20] over image datasets.

6.1 Architectures

To demonstrate the behavior of the state-of-the-art MI estimators, we consider multiple neural network
architectures. The word architecture needs to be intended in a wide-sense, meaning that it represents
the neural network architecture and its training strategy. In particular, additionally to the architectures
joint [19] and separable [26], we propose the architecture deranged.
The joint architecture concatenates the samples x and y as input of a single neural network. Each
training step requires N realizations (xi,yi) drawn from pXY (x,y), for i ∈ {1, . . . , N} and
N(N − 1) samples (xi,yj),∀i, j ∈ {1, . . . , N}, with i ̸= j.
The separable architecture comprises two neural networks, the former fed in with N realizations of
X , the latter with N realizations of Y . The inner product between the outputs of the two networks is
exploited to obtain the MI estimate.
The proposed deranged architecture feeds a neural network with the concatenation of the samples
x and y, similarly to the joint architecture. However, the deranged one obtains the samples of
pX(x)pY (y) by performing a derangement of the realizations y in the batch sampled from pXY (x,y).
Such diverse training strategy solves the main problem of the joint architecture: the difficult scalability
to large batch sizes. For large values of N , the complexity of the joint architecture is Ω(N2), while
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the complexity of the deranged one is Ω(N). NJEE utilizes a specific architecture, in the following
referred to as ad hoc, comprising 2d− 1 neural networks, where d is the dimension of X . INJEE

training procedure is supervised: the input of each neural network does not include the y samples.
All the implementation details1 are reported in Appendix D.

6.2 Complex Gaussian and non-Gaussian distributions

We benchmark the proposed class of MI estimators on two settings utilized in previous papers
[11, 20]. In the first setting (called Gaussian), a multidimensional Gaussian distribution is sampled
to obtain x and n samples, independently. Then, y is obtained as linear combination of x and n:
y = ρx +

√
1− ρ2 n, where ρ is the correlation coefficient. In the second setting (referred to

as cubic), the nonlinear transformation y 7→ y3 is applied to the Gaussian samples. The true MI
follows a staircase shape, where each step is a multiple of 2 nats. Each neural network is trained
for 4k iterations for each stair step, with a batch size of 64 samples (N = 64). The tested estimators
are: INJEE , ISMILE (τ = 1), IGAN−DIME , IHD−DIME , IKL−DIME , and ICPC , as illustrated
in Fig. 2. The performance of IMINE , INWJ , and ISMILE(τ = ∞) is reported in Sec. D of the
Appendix, since they exhibit lower performance compared to both SMILE and f -DIME. In fact, all
the f -DIME estimators have lower variance compared to IMINE , INWJ , and ISMILE(τ = ∞),
which are characterized by an exponentially increasing variance (see (10), Tab. 2, Fig. 9, and
Fig. 6 in the Appendix). In particular, all the estimators analyzed belonging to the f -DIME class
achieve significantly low bias and variance when the true MI is small. Interestingly, for high target
MI, different f -divergences lead to dissimilar estimation properties. For large MI, IKL−DIME is
characterized by a low variance, at the expense of a high bias and a slow rise time. Contrarily,
IHD−DIME attains a lower bias at the cost of slightly higher variance w.r.t. IKL−DIME . Diversely,
IGAN−DIME achieves the lowest bias, and a variance comparable to IHD−DIME . Additional results
confirming the estimators’ behavior when d and N vary, including experiments with high data
dimensionality, are reported and described in Appendix D.

INJEE obtains an estimate which is highly biased, and variance comparable to f -DIME. ICPC is
upper-bounded by log(N). The MI estimates obtained with ISMILE and IGAN−DIME appear to
possess similar behavior, although the value functions of SMILE and GAN-DIME are structurally
different. The reason why ISMILE is almost equivalent to IGAN−DIME resides in their training
strategy, since they both minimize the same f -divergence. Looking at the implementation of SMILE
2, in fact, the network’s training is guided by the gradient computed using the Jensen-Shannon (JS)
divergence (a linear transformation of the GAN divergence). Given the trained network, the clipped
objective function proposed in [20] is only used to compute the MI estimate, since when (29) is
used to train the network, the MI estimate diverges (see Fig. 7 in Appendix D). However, with the
proposed class of f -DIME estimators we show that during the estimation phase the partition function
(clipped in [20]) is not necessary to obtain the MI estimate.

We test our estimators over additional complex Gaussian data transformations (half-cube, asinh, and
swiss roll mappings, Fig. 3) and non-Gaussian distributions (uniform and student distributions, Fig. 4)
as suggested in [27]. The half-cube mapping is used to lengthen the tails of the Gaussian distributions.
The inverse hyperbolic sine (asinh) mapping shortens the tails of the Gaussian distributions. These
two transformations are applied to the same scenario of the Gaussian and cubic already present in
our paper. The swiss roll mapping increases the dimensionality of the data distribution (from two to
three dimensions) and it is usually used to test dimensionality reduction techniques. It considers two
Gaussian random variables that are transformed into uniform random variables via the probability
integral transform, the same pre-processing approach utilized in [28] to estimate the MI. The swiss
roll mapping is applied to the X uniform random variable. The stairs plots are obtained by varying
the correlation between the initial Gaussian distributions. The uniform case estimates the MI of the
summation of two uniform random variables U(0, 1) and U(−ϵ, ϵ), where we vary the parameter ϵ,
modifying the true MI. The student scenario analyzes the case of a multivariate student distribution
with dispersion matrix chosen to be the identity matrix and degrees of freedom df . In this scenario,
we vary df , implying a variation of the target MI. For the transformed Gaussian scenarios showed
in Fig. 3 GAN-DIME attains the best performance in terms of low bias and variance. Among the

1Our implementation can be found at https://github.com/tonellolab/fDIME
2https://github.com/ermongroup/smile-mi-estimator
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non-Gaussian settings depicted in Fig. 4, KL-DIME and GAN-DIME outperform the other methods,
exhibiting low bias and exceptionally low variance.

Figure 2: Staircase MI estimation comparison for d = 5 and N = 64. The Gaussian case is reported
in the top row, while the cubic case is shown in the bottom row.

Figure 3: Staircase MI estimation comparison for d = 5 and N = 64. Top: Half-cube scenario.
Middle: Asinh scenario. Bottom: Swiss roll scenario.

Figure 4: Staircase MI estimation comparison for d = 1 and N = 64. Top row: Uniform scenario.
Bottom row: Student scenario

A schematic comparison between all the MI estimators is reported in Tab. 6 in Sec. D of the
Appendix, where IGAN−DIME is proposed as the best estimator, because of its low bias, variance
and robustness to the change of d and N . When N and d vary, in fact, the class of f -DIME estimators
proves its robustness (i.e., maintains low bias and variance), as represented in Figs. 2, and 10, and 11
in the Appendix. For instance, IGAN−DIME attains low bias in all the three scenarios, and limited
variance which decreases as N increases (see also Fig. 15 in Appendix D.1). Differently, the behavior
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N dN

Joint
Ad Hoc

Figure 5: Time requirements comparison to complete the 5-step staircase MI. From the left, the first
and second behaviors vary over the batch size. The last one varies over the probability distribution
dimension.

of ICPC strongly depends on N , significantly impacting its bias. Therefore, unless the batch size is
considerably large, ICPC estimate is not reliable. INJEE attains higher bias when N increases and,
even more severely, when d decreases (see Fig. 2).

Computational Time Analysis

A fundamental characteristic of each algorithm is the computational time. The computational time
analysis is developed on a server with CPU ”AMD Ryzen Threadripper 3960X 24-Core Processor”
and GPU ”MSI GeForce RTX 3090 Gaming X Trio 24G, 24GB GDDR6X”.
Before analyzing the time requirements to complete the 5-step MI staircases, we specify two different
ways to implement the derangement of the y realizations in each batch.
Random-based. The trivial way to achieve the derangement is to randomly shuffle the y elements
of the batch until there are no fixed points (i.e., all the y realizations in the batch are assigned to a
different position w.r.t. the starting location).
Shift-based. Given N realizations (xi,yi) drawn from pXY (x,y), for i ∈ {1, . . . , N}, we obtain
the deranged samples as (xi,y(i+1)%N ), where ”%” is the modulo operator.
Although the MI estimates obtained by the two derangement methods are almost indistinguishable,
all the results showed in the paper are achieved by using the random-based method. Additionally, we
demonstrate the time efficiency of the shift-based approach.
The time requirements to complete the 5-step staircase MI when varying the batch size N are reported
in the left and center graphics of Fig. 5. The influence of the MI estimator objective functions in the
algorithm’s time requirements is marginal, while the architecture type is the impactful component.
As discussed in Sec. 6.1, the deranged strategy is remarkably faster than the joint one as N increases.
More in general, the architectures deranged and separable are significantly faster w.r.t. the joint
and NJEE ones, for a given batch size N and input distribution size d. The need of the separable
architecture to use two neural networks implies that when N is significantly large, the deranged
implementation is much faster than the separable one. The central graph in Fig. 5 illustrates a detailed
representation of the time requirements of these two architectures to complete the 5-step stairs. As
N increases, the gap between the time needed by the architectures deranged and separable grows,
demonstrating that the former is the fastest. For example, when d = 20 and N = 30k, IGAN−DIME

needs about 55 minutes when using the architecture separable, but only 15 minutes when using the
deranged one and less than 9 minutes for the shift-based deranged architecture.
INJEE is evaluated with its own architecture, which is the most computationally demanding, because
it trains a number of neural networks equal to 2d − 1. Thus, INJEE can be utilized only in cases
where the time availability is orders of magnitude higher than the other approaches considered.
The time requirements to complete the 5-step staircase MI when varying the multivariate Gaussian
distribution dimension d are reported in the right-side part of Fig. 5. When d is large, the training of
INJEE fails due to memory requirement problems. For example, our hardware platform does not
allow the usage of d > 30.

6.3 Self-Consistency Tests

To demonstrate the utility of f -DIME in non-Gaussian scenarios, we investigated the three self-
consistency tests developed by [20] over images datasets using all the estimators previously described,
except INJEE (for dimension constraints). The f -DIME estimators satisfy two out of the three tests,
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as discriminative approaches tend to be less precise when the MI is high, in accordance with [20].
We report the description of tests and results in Appendix D.

7 Conclusions

In this paper, we presented f -DIME, a class of discriminative mutual information estimators based
on the variational representation of the f -divergence. We proved that any valid choice of the function
f leads to a low-variance MI estimator which can be parametrized by a neural network. We also
proposed a derangement training strategy that efficiently samples from the product of marginal
distributions. The performance of f -DIME is evaluated using three functions f , and it is compared
with state-of-the-art estimators. Results demonstrate excellent bias/variance trade-off for different
data dimensions and different training parameters.
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A Appendix: DIME Estimators

In this section, we provide a concrete list of DIME estimators obtained using three different f -
divergences. In particular, we maximize the value function defined in (5)

Jf (T ) = E(x,y)∼pXY (x,y)

[
T
(
x,y

)
− f∗

(
T
(
x, σ(y)

))]
,

over T or its transformation. By doing that, and using (7),

I(X;Y ) = IfDIME(X;Y ) = E(x,y)∼pXY (x,y)

[
log

((
f∗)′(T̂ (x,y)))],

we obtain a list of three different MI estimators. The list is used for both commenting on the impact
of the f function, referred to as the generator function, and for comparing the estimators discussed in
Sec. 2.

We consider the cases when f is the generator of:

a) the KL divergence;

b) the GAN divergence;

c) the Hellinger distance squared.

We report below the derived value functions and the mathematical expressions of the proposed
estimators.

A.1 KL divergence

The variational representation of the KL divergence [18] leads to the NWJ estimator in (28) when
f(u) = u log(u). However, since we are interested in extracting the density ratio, we apply the
transformation T (x) = log(D(x)). In this way, the lower bound introduced in (5) reads as follows

JKL(D) = E(x,y)∼pXY (x,y)

[
log
(
D
(
x,y

))]
− E(x,y)∼pX(x)pY (y)

[
D
(
x,y

)]
+ 1, (19)

which has to be maximized over positive discriminators D(·). As remarked before, we do not use
JKL during the estimation, rather we define the KL-DIME estimator as

IKL−DIME(X;Y ) := E(x,y)∼pXY (x,y)

[
log

(
D̂(x,y)

)]
, (20)

due to the fact that

D̂(x,y) = argmax
D

JKL(D) =
pXY (x,y)

pX(x)pY (y)
. (21)

A.2 GAN divergence

Following a similar approach, it is possible to define f(u) = u log u− (u+ 1) log(u+ 1) + log 4
and T (x) = log(1−D(x)). We derive from Theorem 3.1 the GAN-DIME estimator obtained via
maximization of

JGAN (D) = E(x,y)∼pXY (x,y)

[
log
(
1−D

(
x,y

))]
+E(x,y)∼pX(x)pY (y)

[
log
(
D
(
x,y

))]
+log(4).

(22)
In fact, at the equilibrium we recover (3), hence

IGAN−DIME(X;Y ) := E(x,y)∼pXY (x,y)

[
log

(
1− D̂(x,y)

D̂(x,y)

)]
. (23)
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A.3 Hellinger distance

The last example we consider is the generator of the Hellinger distance squared f(u) = (
√
u− 1)2

with the change of variable T (x) = 1−D(x). After simple manipulations, we obtain the associated
value function as

JHD(D) = 2− E(x,y)∼pXY (x,y)

[
D
(
x,y

)]
− E(x,y)∼pX(x)pY (y)

[
1

D(x,y)

]
, (24)

which is maximized for

D̂(x,y) = argmax
D

JHD(D) =

√
pX(x)pY (y)

pXY (x,y)
, (25)

leading to the HD-DIME estimator

IHD−DIME(X;Y ) := E(x,y)∼pXY (x,y)

[
log

(
1

D̂2(x,y)

)]
. (26)

Given that these estimators comprise only one expectation over the joint samples, their variance has
different properties compared to the variational ones requiring the partition term such as MINE and
NWJ.

B Appendix: Related Work Mutual Information Estimators

In this section, we provide a detailed description of the formulas of the MI estimators we summarized
in Sec. 2.

B.1 MINE

The Donsker-Varadhan dual representation of the KL divergence [11, 21] produces an estimate of the
MI using the bound optimized by the mutual information neural estimator (MINE) [19]

IMINE(X;Y ) = sup
θ∈Θ

E(x,y)∼pXY (x,y)[Tθ(x,y)]− log(E(x,y)∼pX(x)pY (y)[e
Tθ(x,y)]), (27)

where θ ∈ Θ parameterizes a family of functions Tθ : X × Y → R through the use of a deep neural
network. However, the logarithm before the expectation in the second term renders MINE a biased
estimator. To avoid biased gradients, the authors in [19] suggested to replace the partition function
EpXpY

[eTθ ] with an exponential moving average over mini-data-batches.

B.2 NWJ

Another VLB is based on the KL divergence dual representation introduced in [18] (also referred to
as f -MINE in [19])

INWJ(X;Y ) = sup
θ∈Θ

E(x,y)∼pXY (x,y)[Tθ(x,y)]− E(x,y)∼pX(x)pY (y)[e
Tθ(x,y)−1]. (28)

Although for a fixed T MINE provides a tighter bound IMINE ≥ INWJ , the NWJ estimator is
unbiased.

B.3 SMILE

Both MINE and NWJ suffer from high-variance estimations and to combat such a limitation, the
SMILE estimator was introduced in [20]. It is defined as

ISMILE(X;Y ) = sup
θ∈Θ

E(x,y)∼pXY (x,y)[Tθ(x,y)]−log(E(x,y)∼pX(x)pY (y)[clip(eTθ(x,y), e−τ , eτ )]),

(29)
where clip(v, l, u) = max(min(v, u), l) and it helps to obtain smoother partition functions estimates.
SMILE is equivalent to MINE in the limit τ → +∞.
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B.4 CPC

The MI estimator based on contrastive predictive coding (CPC) [22] is defined as

ICPC(X;Y ) = E(x,y)∼pXY,N (x,y)

[
1

N

N∑
i=1

log

(
eTθ(xi,yi)

1
N

∑N
j=1 e

Tθ(xi,yj)

)]
, (30)

where N is the batch size and pXY,N denotes the joint distribution of N i.i.d. random variables
sampled from pXY . CPC provides low variance estimates but it is upper bounded by logN , resulting
in a biased estimator.

B.5 NJEE

The neural joint entropy estimator (NJEE) proposed in [24] is based on a classification task. Let Xm

be the m-th component of X , with m ≤ d and N the batch size. Xk is the vector containing the first
k components of X . Let ĤN (X1) be the estimated marginal entropy of the first components in X
and let Gθm(Xm|Xm−1) be a neural network classifier, where the input is Xm−1 and the label used
is Xm. If CE(·) is the cross-entropy function, then the MI estimator based on NJEE is defined as

INJEE(X;Y ) = ĤN (X1) +

d∑
m=2

CE(Gθm(Xm|Xm−1))−
d∑

m=1

CE(Gθm(Xm|Y,Xm−1)), (31)

where the first two terms of the RHS constitutes the NJEE entropy estimator.

C Appendix: Proofs of Lemmas and Theorems

C.1 Proof of Theorem 3.1

Theorem 3.1. Let (X,Y ) ∼ pXY (x,y) be a pair of multivariate random variables. Let σ(·) be
a permutation function such that pσ(Y )(σ(y)|x) = pY (y) and T : dom(X)× dom(Y ) → R. Let
f∗ be the Fenchel conjugate of f : R+ → R, a convex lower semicontinuous function that satisfies
f(1) = 0 with derivative f ′. If Jf (T ) is a value function defined as

Jf (T ) = E(x,y)∼pXY (x,y)

[
T
(
x,y

)
− f∗

(
T
(
x, σ(y)

))]
, (32)

then

T̂ (x,y) = argmax
T

Jf (T ) = f ′
(

pXY (x,y)

pX(x)pY (y)

)
, (33)

and

I(X;Y ) = IfDIME(X;Y ) = E(x,y)∼pXY (x,y)

[
log

((
f∗)′(T̂ (x,y)))]. (34)

Proof. From the hypothesis, the value function can be rewritten as

Jf (T ) = E(x,y)∼pXY (x,y)

[
T
(
x,y

)]
− E(x,y)∼pX(x)pY (y)

[
f∗
(
T
(
x,y

))]
. (35)

The thesis follows immediately from Lemma 1 of [18]. Indeed, the f -divergence Df can be expressed
in terms of its lower bound via Fenchel convex duality

Df (P ||Q) ≥ sup
T∈R

{
Ex∼p(x)

[
T (x)

]
− Ex∼q(x)

[
f∗(T (x))]}, (36)

where T : X → R and f∗ is the Fenchel conjugate of f defined as

f∗(t) := sup
u∈R

{ut− f(u)}. (37)

Therein, it was shown that the bound in (36) is tight for optimal values of T (x) and it takes the
following form

T̂ (x) = f ′
(
p(x)

q(x)

)
, (38)
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where f ′ is the derivative of f .

The MI I(X;Y ) admits the KL divergence representation

I(X;Y ) = DKL(pXY ||pXpY ), (39)

and since the inverse of the derivative of f is the derivative of the conjugate f∗, the density ratio can
be rewritten in terms of the optimum discriminator T̂(

f ′)−1(
T̂ (x,y)

)
=
(
f∗)′(T̂ (x,y)) = pXY (x,y)

pX(x)pY (y)
. (40)

f -DIME finally reads as follows

IfDIME(X;Y ) = E(x,y)∼pXY (x,y)

[
log

((
f∗)′(T̂ (x,y)))]. (41)

C.2 Proof of Lemma 3.2

Lemma 3.2. Let the discriminator T (·) be with enough capacity, i.e., in the non parametric limit.
Consider the problem

T̂ = argmax
T

Jf (T ) (42)

where

Jf (T ) = E(x,y)∼pXY (x,y)

[
T
(
x,y

)]
− E(x,y)∼pX(x)pY (y)

[
f∗
(
T
(
x,y

))]
, (43)

and the update rule based on the gradient descent method

T (n+1) = T (n) + µ∇Jf (T
(n)). (44)

If the gradient descent method converges to the global optimum T̂ , the mutual information estimator

I(X;Y ) = IfDIME(X;Y ) = E(x,y)∼pXY (x,y)

[
log

((
f∗)′(T̂ (x,y)))]. (45)

converges to the real value of the mutual information I(X;Y ).

Proof. For convenience of notation, let the instantaneous MI be the random variable defined as

i(X;Y ) := log

(
pXY (x,y)

pX(x)pY (y)

)
. (46)

It is straightforward to notice that the MI corresponds to the expected value of i(X;Y ) over the joint
distribution pXY . The solution to (42) is given by (6) of Theorem 3.1. Let δ(n) = T̂ − T (n) be the
displacement between the optimum discriminator T̂ and the obtained one T (n) at the iteration n, then

în,fDIME(X;Y ) = log

((
f∗)′(T (n)(x,y)

))
= log

(
R(n)(x,y)

)
, (47)

where R(n)(x,y) represents the estimated density ratio at the n-th iteration and it is related with the
optimum ratio R̂(x,y) as follows

R̂−R(n) =
(
f∗)′(T̂ )− (f∗)′(T (n)

)
=
(
f∗)′(T̂ )− (f∗)′(T̂ − δ(n)

)
≃ δ(n) ·

[(
f∗)′′(T̂ − δ(n)

)]
, (48)
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where the last step follows from a first order Taylor expansion in T̂ − δ(n). Therefore,

în,fDIME(X;Y ) = log
(
R(n)

)
= log

((
R̂
)(

1− δ(n) ·
(
f∗)′′(T̂ − δ(n)

)(
f∗
)′(

T̂
) ))

= i(X;Y ) + log

(
1− δ(n) ·

(
f∗)′′(T̂ − δ(n)

)(
f∗
)′(

T̂
) )

. (49)

If the gradient descent method converges towards the optimum solution T̂ , δ(n) → 0 and

în,fDIME(X;Y ) ≃ i(X;Y )− δ(n) ·

[(
f∗)′′(T̂ − δ(n)

)(
f∗
)′(

T̂
) ]

≃ i(X;Y )− δ(n) ·

[(
f∗)′′(T̂ )(
f∗
)′(

T̂
) ]

= i(X;Y )− δ(n) ·

[
d

dT
log
((
f∗)′(T ))∣∣∣∣

T=T̂

]
, (50)

where the RHS is itself a first order Taylor expansion of the instantaneous MI in T̂ . In the asymptotic
limit (n → +∞), it holds also for the expected values that

|I(X;Y )− În,fDIME(X;Y )| → 0. (51)

C.3 Proof of Lemma 4.1

Lemma 4.1. Let R̂ = pXY (x,y)/(pX(x)pY (y)) and assume VarpXY
[log R̂] exists. Let pMXY be the

empirical distribution of M i.i.d. samples from pXY and let EpM
XY

denote the sample average over
pMXY . Then, under the randomness of the sampling procedure, it holds that

VarpXY

[
EpM

XY
[log R̂]

]
≤

4H2(pXY , pXpY )
∣∣∣∣R̂∣∣∣∣∞ − I2(X;Y )

M
(52)

where H2 is the Hellinger distance squared defined as

H2(p, q) =

∫
x

(√
p(x)−

√
q(x)

)2

dx, (53)

and the infinity norm is defined as ||f(x)||∞ := supx∈R |f(x)|.

Proof. Consider the variance of R̂(x,y) when (x,y) ∼ pXY (x,y), then

VarpXY
[log R̂] = EpXY

[(
log

pXY

pXpY

)2]
−
(
EpXY

[
log

pXY

pXpY

])2

. (54)

The power of the log-density ratio is upper bounded as follows (see the approach of Lemma 8.3 in
[29])

EpXY

[(
log

pXY

pXpY

)2]
≤ 4H2(pXY , pXpY )

∣∣∣∣∣∣∣∣ pXY

pXpY

∣∣∣∣∣∣∣∣
∞
, (55)

while the mean squared is the ground-truth MI squared, thus

VarpXY
[log R̂] ≤ 4H2(pXY , pXpY )

∣∣∣∣∣∣∣∣ pXY

pXpY

∣∣∣∣∣∣∣∣
∞

− I2(X;Y ). (56)

Finally, the variance of the mean of M i.i.d. random variables yields the thesis

VarpXY

[
EpM

XY
[log R̂]

]
=

VarpXY
[log R̂]

M
≤

4H2(pXY , pXpY )

∣∣∣∣∣∣∣∣ pXY

pXpY

∣∣∣∣∣∣∣∣
∞

− I2(X;Y )

M
. (57)
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C.4 Proof of Lemma 4.2

Lemma 4.2. Let R̂ be the optimal density ratio and let X ∼ N (0, σ2
X) and N ∼ N (0, σ2

N ) be
uncorrelated scalar Gaussian random variables such that Y = X + N . Assume VarpXY

[log R̂]
exists. Let pMXY be the empirical distribution of M i.i.d. samples from pXY and let EpM

XY
denote the

sample average over pMXY . Then, under the randomness of the sampling procedure, it holds that

VarpXY

[
EpM

XY
[log R̂]

]
=

1− e−2I(X;Y )

M
. (58)

Proof. From the hypothesis, the density ratio can be rewritten as R̂ = pN (y − x)/pY (y) and the
output variance is clearly equal to σ2

Y = σ2
X + σ2

N . Notice that this is equivalent of having correlated
random variables X and Y with correlation coefficient ρ, since it is enough to study the case σX = ρ

and σN =
√
1− ρ2.

It is easy to verify via simple calculations that

I(X;Y ) = EpXY
[log R̂]

= log
σY

σN
+ EpXY

[
y2

2σ2
Y

− (y − x)2

2σ2
N

]
= · · · = log

σY

σN
=

1

2
log

(
1 +

σ2
X

σ2
N

)
= −1

2
log
(
1− ρ2

)
. (59)

Similarly,

VarpXY

[
log R̂

]
= EpXY

[(
log

(
σY

σN

)
+

y2

2σ2
Y

− (y − x)2

2σ2
N

)2]
− I2(X;Y )

=
1

4
EpXY

[(
y − x

σN

)4

+

(
y

σY

)4

− 2

(
y

σY

)2(
y − x

σN

)2]
= · · · = Kurt[Z]

(
1

2
− σ2

N

2σ2
Y

)
− σ2

X

2σ2
Y

=
σ2
X

σ2
Y

= 1− σ2
N

σ2
Y

= 1− e−2I(X;Y ) = ρ2, (60)

where the last steps use the fact that the Kurtosis of a normal distribution is 3 and that the MI can be
expressed as in (59). Finally, the variance of the mean of M i.i.d. random variables yields the thesis

VarpXY

[
EpM

XY
[log R̂]

]
=

VarpXY
[log R̂]

M
. (61)

If X and N are multivariate Gaussians with diagonal covariance matrices ρ2Id×d and (1− ρ2)Id×d,
the results for both the MI and variance in the scalar case are simply multiplied by d.

C.5 Proof of Lemma 5.1

Lemma 5.1. Let (xi,yi), ∀i ∈ {1, . . . , N}, be N data points. Let Jf (T ) be the value function in
(5). Let J π

f (T ) and J σ
f (T ) be numerical implementations of Jf (T ) using a random permutation

and a random derangement of y, respectively. Denote with K the number of points yk, with
k ∈ {1, . . . , N}, in the same position after the permutation (i.e., the fixed points). Then

J π
f (T ) ≤ N −K

N
J σ
f (T ). (62)

Proof. Define J π
f (T ) as the Monte Carlo implementation of Jf (T ) when using the permutation

function π(·)

J π
f (T ) =

1

N

N∑
i=1

T (xi,yi)−
1

N

N∑
i=1

f∗(T (xi,yj)
)
, (63)
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where the pair (xi,yj) is obtained via a random permutation of the elements of y as j = π(i),
∀i ∈ {1, . . . , N}. Since K is a non-negative integer representing the number of fixed points i = π(i),
the value function can be rewritten as

J π
f (T ) =

1

N

N∑
i=1

T (xi,yi)−
1

N

K∑
i=1

f∗(T (xi,yi)
)
− 1

N

N−K∑
i=1

f∗(T (xi,yj ̸=i)
)
, (64)

which can also be expressed as

J π
f (T ) =

1

N

K∑
i=1

T (xi,yi)+
1

N

N−K∑
i=1

T (xi,yi)−
1

N

K∑
i=1

f∗(T (xi,yi)
)
− 1

N

N−K∑
i=1

f∗(T (xi,yj ̸=i)
)
.

(65)
In (65) it is possible to recognize that the second and last term of the RHS constitutes the numerical
implementation of Jf (T ) using a derangement strategy on N −K elements, so that

J π
f (T ) =

1

N

K∑
i=1

T (xi,yi)−
1

N

K∑
i=1

f∗(T (xi,yi)
)
+

N −K

N
Jσ
f (T ). (66)

However, by definition of Fenchel conjugate

1

N

K∑
i=1

T (xi,yi)− f∗(T (xi,yi)
)
≤ 0, (67)

since for t = 1
u− f∗(u) ≤ u− (ut− f(t)) = f(1) = 0. (68)

Hence, we can conclude that

J π
f (T ) ≤ N −K

N
Jσ
f (T ). (69)

C.6 Proof of Theorem 5.2

Theorem 5.2. Let the discriminator D(·) be with enough capacity. Let N be the batch size and f be
the generator of the KL divergence. Let J π

KL(D) be defined as

J π
KL(D) = E(x,y)∼pXY (x,y)

[
log

(
D
(
x,y

))
− f∗

(
log

(
D
(
x, π(y)

)))]
. (70)

Denote with K the number of indices in the same position after the permutation (i.e., the fixed points),
and with R(x,y) the density ratio in (2). Then,

D̂(x,y) = argmax
D

J π
KL(D) =

NR(x,y)

KR(x,y) +N −K
. (71)

Proof. The idea of the proof is to express J π
KL(D) via Monte Carlo approximation, in order to

rearrange fixed points, and then go back to Lebesgue integration. The value function JKL(D) can be
written as

JKL(D) = E(x,y)∼pXY (x,y)

[
log
(
D(x,y)

)]
− E(x,y)∼pX(x)pY (y)

[
D
(
x,y

)]
+ 1. (72)

Similarly to (64), we can express J π
KL(D) as

J π
KL(D) =

1

N

N∑
i=1

log
(
D(xi,yi)

)
− 1

N

K∑
i=1

D(xi,yi)−
1

N

N−K∑
i=1

D(xi,yj ̸=i) + 1, (73)

where K is the number of fixed points of the permutation j = π(i),∀i ∈ {1, . . . , N}. However,
when N → ∞, we can use Lebesgue integration and rewrite (73) as

J π
KL(D) =

∫
x

∫
y

(
pXY (x,y) log

(
D(x,y)

)
− K

N
pXY (x,y)D(x,y)

)
dx dy

−
∫
x

∫
y

N −K

N
pX(x)pY (y)D(x,y) dx dy + 1. (74)
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To maximize J π
KL(D), it is enough to take the derivative of the integrand with respect to D and

equate it to 0, yielding the following equation in D

pXY (x,y)

D(x,y)
− K

N
pXY (x,y)−

N −K

N
pX(x)pY (y) = 0. (75)

Solving for D leads to the thesis

D̂(x,y) =
NR(x,y)

KR(x,y) +N −K
, (76)

since J π
KL(D̂) is a maximum being the second derivative w.r.t. D a non-positive function.

C.7 Proof of Corollary 5.3

Corollary 5.3 (Permutation bound). Let KL-DIME be the estimator obtained via iterative optimiza-
tion of J π

KL(D), using a batch of size N every training step. Then,

IπKL−DIME := E(x,y)∼pXY (x,y)

[
log

(
D̂(x,y)

)]
< log(N). (77)

Proof. Theorem 5.2 implies that, when the batch size is much larger than the density ratio (N >> R),
then the discriminator’s output converges to the density ratio. Indeed,

lim
N→∞

D̂(x,y) = lim
N→∞

NR(x,y)

KR(x,y) +N −K
= R(x,y). (78)

Instead, when the density ratio is much larger than the batch size (R >> N ), then the discriminator’s
output converges to a constant, in particular

lim
R→∞

D̂(x,y) = lim
R→∞

NR(x,y)

KR(x,y) +N −K
=

N

K
. (79)

However, from Lemma 5.4, it is true that K = 1 on average. Therefore, an iterative optimization
algorithm leads to an upper-bounded discriminator, since

D̂(x,y) < N, (80)

which implies the thesis.

C.8 Proof of Lemma 5.4

Lemma 5.4 (see [30]). The average number of fixed points in a random permutation π(·) is equal to
1.

Proof. Let π(·) be a random permutation on {1, . . . , N}. Let the random variable X represent the
number of fixed points (i.e., the number of cycles of length 1) of π(·). We define X = X1 +X2 +
· · · + XN , where Xi = 1 when π(i) = i, and 0 otherwise. E[X] is computed by exploiting the
linearity property of expectation. Trivially,

E[Xi] = P[π(i) = i] =
1

N
, (81)

which implies

E[X] =

N∑
i=1

1

N
= 1. (82)
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Table 1: Neural architectures comparison.

Joint Separable Deranged
Input N pairs (x, y) ∼ pXY N pairs (x, y) ∼ pXY N pairs (x, y) ∼ pXY

N(N − 1) pairs (x, ỹ) ∼ pXpY N pairs (x, ỹ) ∼ pXpY N pairs (x, ỹ) ∼ pXpY

Nr. NNs 1 2 1

Complexity Ω(N2) Ω(N) Ω(N)

D Appendix: Experimental Details

D.1 Multivariate Linear and Nonlinear Gaussians Experiments

In this section, we show supplementary results for the linear and cubic Gaussian experiments. The
implemented neural network architectures are: joint, separable, deranged, and the architecture of
NJEE, referred to as ad hoc. See Tab. 1 for a schematic about the architectures.

Joint architecture. The joint architecture is a feed-forward fully connected neural network with an
input size equal to twice the dimension of the samples distribution (2d), one output neuron, and two
hidden layers of 256 neurons each. The activation function utilized in each layer (except from the last
one) is ReLU. The number of realizations (x,y) fed as input of the neural network for each training
iteration is N2, obtained as all the combinations of the samples x and y drawn from pXY (x,y).

Separable architecture. The separable architecture comprises two feed-forward neural networks,
each one with an input size equal to d, output layer containing 32 neurons and 2 hidden layers with
256 neurons each. The ReLU activation function is used in each layer (except from the last one). The
first network is fed in with N realizations of X , while the second one with N realizations of Y .

Deranged architecture. The deranged architecture is a feed-forward fully connected neural network
with an input size equal to twice the dimension of the samples distribution (2d), one output neuron,
and two hidden layers of 256 neurons each. The activation function utilized in each layer (except
from the last one) is ReLU. The number of realizations (x,y) the neural network is fed with is 2N
for each training iteration: N realizations drawn from pXY (x,y) and N realizations drawn from
pX(x)pY (y) using the derangement procedure described in Sec. 5.
The architecture deranged is not used for ICPC because in (30) the summation at the denominator of
the argument of the logarithm would require neural network predictions corresponding to the inputs
(xi,yj), ∀i, j ∈ {1, . . . , N} with i ̸= j.

Ad hoc architecture. The NJEE MI estimator comprises 2d − 1 feed-forward neural networks.
Each neural network is composed by an input layer with size between 1 and 2d− 1, an output layer
containing N − k neurons, with k ∈ N small, and 2 hidden layers with 256 neurons each. The ReLU
activation function is used in each layer (except from the last one). We implemented a Pytorch [31]
version of the code produced by the authors of [24] 3, to unify NJEE with all the other MI estimators.

Each neural estimator is trained using Adam optimizer [32], with learning rate 5× 10−4, β1 = 0.9,
β2 = 0.999. The batch size is initially set to N = 64.
For the Gaussian setting, we sample a 20-dimensional Gaussian distribution to obtain x and n samples,
independently. Then, we compute y as linear combination of x and n: y = ρx+

√
1− ρ2 n, where

ρ is the correlation coefficient. For the cubic setting, the nonlinear transformation y 7→ y3 is applied
to the Gaussian samples. During the training procedure, every 4k iterations, the target value of the
MI is increased by 2 nats, for 5 times, obtaining a target staircase with 5 steps. The change in target
MI is obtained by increasing ρ, that affects the true MI according to

I(X;Y ) = −d

2
log(1− ρ2). (83)

3https://github.com/YuvalShalev/NJEE
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Figure 6: NWJ, SMILE (τ = ∞), and MINE MI estimation comparison with d = 20 and N = 64.
The Gaussian setting is represented in the top row, while the cubic setting is shown in the bottom row.

D.1.1 Supplementary Analysis of the MI Estimators Performance

Additional plots reporting the MI estimates obtained from MINE, NWJ, and SMILE with τ = ∞,
are outlined in Fig. 6. The variance attained by these algorithms exponentially increases as the true
MI grows, as stated in (10).

We report in Fig. 7 the behavior we obtained for ISMILE when the training of the neural network is
performed by using the cost function in (29). The training diverges during the first steps when τ = 1
and τ = 5. Differently, when τ = ∞, ISMILE corresponds to IMINE (without the moving average
improvement), therefore the MI estimate does not diverge. Interestingly, by comparing ISMILE

(τ = ∞) trained with the JS divergence and with the MINE cost function (in Fig. 6 and Fig. 7,
respectively), the variance of the latter case is significantly higher. Hence, the JS maximization trick
seems to have an impact in lowering the estimator variance.

D.1.2 Analysis for Different Values of d and N

The class of f -DIME estimators is robust to changes in d and N , as the estimators’ variance decreases
(see (58) and Fig. 15) when N increases and their achieved bias is not significantly influenced by
the choice of d. Differently, INJEE and ICPC are highly affected by variations of those parameters,
as described in Fig. 2 and Fig. 10. More precisely, ICPC is not strongly influenced by a change
of d, but the bias significantly increases as the batch size diminishes, since the upper bound lowers.
INJEE achieves a higher bias both when d decreases and when N increases w.r.t. the default values
d = 20, N = 64. In addition, when d is large, the training of INJEE is not feasible, as it requires
a lot of time (see Fig. 5) and memory (as a consequence of the large number of neural networks
utilized) requirements. In addition, Fig. 8 illustrates that the time complexity of the joint architecture
is Ω(N2), while the complexity of the deranged architecture is Ω(N).

We show the achieved bias, variance, and mean squared error (MSE) corresponding to the three
settings reported in Fig. 2, 10, and 11 in Fig. 12, 13, and 14, respectively. The achieved variance
is bounded when the estimator used is IKL−DIME or ICPC . In particular, Figs. 12, 13, 14, and 15
demonstrate that IKL−DIME satisfies Lemma 4.2.
Additionally, we report the achieved bias, variance and MSE when d = 20 and N varies according to
Tab. 3. We use the notation N = [512, 1024] to indicate that each cell of the table reports the values
corresponding to N = 512 and N = 1024, with this specific order, inside the brackets. Similarly, we
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(a) τ = 1 (b) τ = 5 (c) τ = ∞

Figure 7: ISMILE behavior for different values of τ , when the JS divergence is not used to train the
neural network. The Gaussian case is reported in the top row, while the cubic case is reported in the
bottom row.

Figure 8: Time requirements comparison to complete the 5-step staircase MI over the batch size.
Linear scale.

23



Table 2: Variance comparison between the VLB MI estimators and f -DIME, using the joint architec-
ture, when d = 5 and N = 64, for the Gaussian setting.

MI 2 4 6 8 10
NWJ 0.05 0.13 0.69 5.34 9.48

MINE 0.05 0.11 0.39 1.73 17.10
SMILE (τ = ∞) 0.05 0.11 0.32 1.40 8.89

GAN-DIME 0.05 0.08 0.13 0.24 0.69
HD-DIME 0.05 0.08 0.12 0.20 0.57
KL-DIME 0.04 0.06 0.06 0.06 0.06

Figure 9: Variance bar plots between the VLB MI estimators and f -DIME, using the joint architecture,
when d = 5 and N = 64, for the Gaussian setting.

show the attained bias, variance, and MSE for d = [5, 10] and N = 64 in Tab. 5. The achieved bias,
variance and MSE shown in Tab. 3 and Tab. 5 motivate that the class of f -DIME estimators attains
the best values for bias and MSE. Similarly, IKL−DIME obtains the lowest variance, when excluding
ICPC from the estimators comparison (ICPC should not be desirable as it is upper bounded). The
illustrated results are obtained with the joint architecture (except for NJEE) because, when the
batch size is small, such an architecture achieves slightly better results than the deranged one, as it
approximates the expectation over the product of marginals with more samples.

The variance of the f -DIME estimators achieved in the Gaussian setting when N ranges from 64
to 1024 is reported in Fig. 15. The behavior shown in such a figure demonstrates what is stated in
Lemma 4.1, i.e., the variance of the f -DIME estimators varies as 1

N .

Figure 10: Staircase MI estimation comparison for d = 20 and N = 1024. The Gaussian case is
reported in the top row, while the cubic case is shown in the bottom row.
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Figure 11: Staircase MI estimation comparison for d = 20 and N = 64. The Gaussian case is
reported in the top row, while the cubic case is shown in the bottom row.

Figure 12: Bias, variance, and MSE comparison between estimators, using the joint architecture for
the Gaussian case with d = 20 and N = 64.

Figure 13: Bias, variance, and MSE comparison between estimators, using the joint architecture for
the Gaussian case with d = 5 and N = 64.

Figure 14: Bias, variance, and MSE comparison between estimators, using the joint architecture for
the Gaussian case with d = 20 and N = 1024.
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Figure 15: Variance of the f -DIME estimators corresponding to different values of batch size.

Table 3: Bias (B), variance (V), and MSE (M) of the MI estimators using the joint architecture, when
d = 20 and N = [512, 1024], for the Gaussian setting. Each f -DIME estimator is abbreviated to
f -D.

Gaussian
MI 2 4 6 8 10

NJEE [0.42, 0.44] [0.40, 0.42] [0.37, 0.41] [0.34, 0.40] [0.32, 0.38]
SMILE [0.25, 0.27] [0.48, 0.51] [0.64, 0.67] [0.74, 0.73] [0.86, 0.83]

B GAN-D [0.11, 0.09] [0.15, 0.13] [0.16, 0.12] [0.14, 0.04] [0.01, 0.16]
HD-D [0.08, 0.07] [0.15, 0.12] [0.24, 0.20] [0.37, 0.30] [0.47, 0.43]
KL-D [0.07, 0.06] [0.12, 0.10] [0.21, 0.17] [0.38, 0.31] [0.69, 0.56]
CPC [0.08, 0.05] [0.34, 0.23] [1.07, 0.80] [2.32, 1.87] [3.96, 3.37]
NJEE [0.01, 0.00] [0.01, 0.01] [0.02, 0.01] [0.02, 0.01] [0.02, 0.01]

SMILE [0.01, 0.01] [0.03, 0.02] [0.06, 0.03] [0.11, 0.07] [0.17, 0.11]
V GAN-D [0.01, 0.01] [0.03, 0.02] [0.06, 0.04] [0.11, 0.07] [0.17, 0.12]

HD-D [0.01, 0.01] [0.03, 0.02] [0.05, 0.04] [0.07, 0.06] [0.09, 0.08]
KL-D [0.01, 0.01] [0.01, 0.01] [0.02, 0.01] [0.02, 0.01] [0.02, 0.01]
CPC [0.01, 0.00] [0.01, 0.00] [0.01, 0.00] [0.00, 0.00] [0.00, 0.00]
NJEE [0.18, 0.20] [0.18, 0.18] [0.16, 0.18] [0.14, 0.17] [0.12, 0.16]

SMILE [0.08, 0.08] [0.26, 0.28] [0.47, 0.48] [0.66, 0.61] [0.90, 0.80]
M GAN-D [0.03, 0.02] [0.05, 0.04] [0.09, 0.05] [0.13, 0.08] [0.18, 0.15]

HD-D [0.02, 0.01] [0.05, 0.04] [0.11, 0.08] [0.21, 0.15] [0.31, 0.26]
KL-D [0.01, 0.01] [0.03, 0.02] [0.06, 0.04] [0.17, 0.11] [0.49, 0.33]
CPC [0.01, 0.01] [0.13, 0.06] [1.16, 0.64] [5.38, 3.48] [15.67, 11.38]
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Table 4: Bias (B), variance (V), and MSE (M) of the MI estimators using the joint architecture, when
d = [5, 10] and N = 64, for the Gaussian setting. Each f -DIME estimator is abbreviated to f -D.

Gaussian
MI 2 4 6 8 10

NJEE [0.30, 0.29] [0.03, 0.13] [0.46, 0.06] [1.23, 0.38] [2.35, 0.80]
SMILE [0.29, 0.24] [0.61, 0.52] [0.76, 0.68] [0.85, 0.71] [0.96, 0.68]

B GAN-D [0.06, 0.12] [0.09, 0.17] [0.14, 0.17] [0.06, 0.20] [0.30, 0.18]
HD-D [0.04, 0.09] [0.09, 0.14] [0.15, 0.22] [0.28, 0.39] [0.53, 0.40]
KL-D [0.04, 0.07] [0.09, 0.13] [0.19, 0.30] [0.40, 0.58] [0.93, 1.05]
CPC [0.17, 0.20] [0.80, 0.89] [2.10, 2.20] [3.89, 3.93] [5.85, 5.86]
NJEE [0.04, 0.05] [0.06, 0.08] [0.09, 0.10] [0.15, 0.13] [0.27, 0.13]

SMILE [0.06, 0.06] [0.09, 0.13] [0.12, 0.20] [0.23, 0.32] [0.46, 0.46]
V GAN-D [0.05, 0.06] [0.08, 0.12] [0.13, 0.19] [0.24, 0.30] [0.69, 0.52]

HD-D [0.05, 0.06] [0.08, 0.11] [0.12, 0.16] [0.20, 0.24] [0.57, 0.49]
KL-D [0.04, 0.05] [0.06, 0.08] [0.06, 0.10] [0.06, 0.10] [0.06, 0.10]
CPC [0.03, 0.04] [0.02, 0.03] [0.01, 0.01] [0.00, 0.00] [0.00, 0.00]
NJEE [0.13, 0.13] [0.06, 0.09] [0.30, 0.10] [1.66, 0.28] [5.78, 0.76]

SMILE [0.14, 0.11] [0.46, 0.40] [0.70, 0.66] [0.95, 0.83] [1.37, 0.93]
M GAN-D [0.06, 0.08] [0.09, 0.15] [0.15, 0.22] [0.24, 0.34] [0.78, 0.55]

HD-D [0.05, 0.07] [0.09, 0.13] [0.15, 0.21] [0.28, 0.40] [0.86, 0.65]
KL-D [0.04, 0.06] [0.07, 0.10] [0.10, 0.19] [0.22, 0.44] [0.92, 1.20]
CPC [0.06, 0.08] [0.67, 0.83] [4.42, 4.84] [15.14, 15.45] [34.22, 34.32]

Table 5: Bias (B), variance (V), and MSE (M) of the MI estimators using the joint architecture, when
d = 20 and N = 64, for the Gaussian setting. Each f -DIME estimator is abbreviated to f -D.

Gaussian
MI 2 4 6 8 10

NJEE 0.29 0.18 0.01 0.17 0.37
SMILE 0.18 0.37 0.44 0.50 0.52

B GAN-D 0.17 0.27 0.35 0.34 0.26
HD-D 0.16 0.28 0.43 0.61 0.73
KL-D 0.13 0.25 0.48 0.87 1.44
CPC 0.25 0.98 2.29 3.99 5.88
NJEE 0.06 0.10 0.13 0.17 0.16

SMILE 0.05 0.11 0.18 0.30 0.51
V GAN-D 0.06 0.11 0.19 0.32 0.55

HD-D 0.06 0.11 0.20 0.29 0.43
KL-D 0.05 0.09 0.11 0.12 0.11
CPC 0.04 0.03 0.01 0.00 0.00
NJEE 0.14 0.14 0.13 0.20 0.30

SMILE 0.09 0.25 0.38 0.55 0.79
M GAN-D 0.09 0.19 0.31 0.43 0.62

HD-D 0.09 0.19 0.39 0.66 0.96
KL-D 0.07 0.15 0.34 0.87 2.19
CPC 0.10 0.99 5.25 15.89 34.57
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Figure 16: MI estimates when d = 20 and N = 128, top row: derangement strategy; bottom row:
permutation strategy.

Figure 17: MI estimates when d = 100 and N = 64. The Gaussian setting is represented in the top
row, while the cubic setting is shown in the bottom row.

The class f -DIME is able to estimate the MI for high-dimensional distributions, as shown in Fig. 17,
where d = 100. In that figure, the estimates behavior is obtained by using the simple architectures
described in Sec. D.1 of the Appendix. Thus, the input size of these neural networks (200) is
comparable with the number of neurons in the hidden layers (256). Therefore, the estimates could be
improved by increasing the number of hidden layers and neurons per layer. The graphs in Fig. 17
illustrate the advantage of the architecture deranged over the separable one.

D.1.3 Considerations on Derangements

To facilitate the understanding of the role of derangements during training, we provide a practical
example in the following.

Suppose for simplicity that N = 3. Then, a random permutation of y = [y1, y2, y3] can be [y2, y3, y1],
where the number of fixed points is K = 0 as no elements remain in the same position after the
permutation. However, another permutation of y is [y1, y3, y2]. In this case, it is evident that y1
remains in the same initial position, and the number of fixed points is K = 1. A random derangement
of y = [y1, y2, y3], instead, ensures by definition that no element of y ends up in the same initial
position, contrarily from a naive random permutation. This idea is essential to avoid having shuffled
marginal samples that actually are realizations of the joint distribution. In fact, we proved that a
random permutation strategy would lead to a biased estimator (see the permutation bound in Corollary
5.3).

It is extremely important to remark that the derangement sampling strategy it is not only applicable to
f -divergence based estimators, rather, any discriminative variational estimator should use it to avoid
upper bound MI estimates, as it can be observed from Fig. 16
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D.1.4 Summary of the Estimators

We give an insight on how to choose the best estimator in Tab. 6, depending on the desired specifics.
We assign qualitative grades to each estimator over different performance indicators. All the indicators
names are self-explanatory, except from scalability, which describes the capability of the estimator to
obtain precise estimates when d and N vary. The grades ranking is, from highest to lowest: ✓✓, ✓,
∼, ✗. When more than one architecture is available for a specific estimator, the grade is assigned by
considering the best architecture within that particular case.
Even though the estimator choice could depend on the specific problem, we consider IGAN−DIME to
be the best one. The rationale behind this decision is that IGAN−DIME achieves the best performance
for almost all the indicators and lacks weaknesses. Differently, ICPC estimate is upper bounded,
ISMILE achieves slightly higher bias, and INJEE is strongly d and N dependent. However, if the
considered problem requires the estimation of a low-valued MI, IKL−DIME is slightly more accurate
than IGAN−DIME .

One limitation of this paper is that the set of f -divergences analyzed is restricted to three elements.
Thus, probably there exists a more effective f -divergence which is not analyzed in this paper. Another
limitation is that f -DIME does not result in neither a lower nor an upper bound on the true MI.
Nonetheless, in the following subsection, we show that it is actually possible to obtain a VLB version
of the estimator.

D.1.5 Lower Bound Adaptation

As discussed above, the f -DIME estimator does not constitute a lower bound on the true MI. This is
due to two main reasons that make f -DIME different from the others VLB MI estimators:

1. The general value function Jf in (5) is the dual representation of the more general f -
divergence and the KL-divergence is only one special case. Notice that the value Jf is a
lower bound on the f -divergence;

2. We exploit the maximizer of Jf , i.e. T̂ , to build the MI estimator at inference time. This is
a key component that allows us to get rid of the partition function for MI estimation, and it
comes at the expense of not having a lower bound estimator.

However, and perhaps quite remarkably, f -DIME can be adjusted to be a lower bound on the MI by
adding the partition term (in the SMILE, MINE or NWJ fashion) during inference time. One way to
do such adaptation is to use the extracted density ratio inside the expressions of NWJ or MINE, as in
the following:

IfDIMENWJ
(X;Y ) = E(x,y)∼pXY (x,y)

[
log

((
f∗)′(T̂ (x,y)))] (84)

− E(x,y)∼pX(x)pY (y)

[((
f∗)′(T̂ (x,y)))]+ 1,

where IfDIMENWJ
(X;Y ) is the f -DIME estimator obtained using any f -divergence dual represen-

tation of (5) but with the partition term of the NWJ estimator.

D.2 Self-Consistency Tests

The benchmark considered for the self-consistency tests is similar to the one applied in prior work
[20]. We use the images collected in MNIST [33] and FashionMNIST [34] data sets. Here, we test
three properties of MI estimators over images distributions, where the MI is not known, but the
estimators consistency can be tested:

1. Baseline. X is an image, Y is the same image masked in such a way to show only the top t

rows. The value of Î(X;Y ) should be non-decreasing in t, and for t = 0 the estimate should
be equal to 0, since X and Y would be independent. Thus, the ratio Î(X;Y )/Î(X;X)
should be monotonically increasing, starting from 0 and converging to 1.

2. Data-processing. X̄ is a pair of identical images, Ȳ is a pair containing the same images
masked with two different values of t. We set h(Y ) to be an additional masking of Y of 3
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Table 6: Summary of the MI estimators.

Estimator Low MI High MI Scalability
Bias Variance Bias Variance

IKL−DIME ✓✓ ✓✓ ∼ ✓✓ ✓✓
IHD−DIME ✓✓ ✓✓ ✓ ✓ ✓✓
IGAN−DIME ✓✓ ✓✓ ✓✓ ✓ ✓✓

ISMILE(τ = 1) ✓ ✓✓ ✓ ✓ ✓✓
INJEE ✓ ✓✓ ✓ ✓✓ ✗
ICPC ∼ ✓✓ ✗ ✓✓ ✗

ISMILE(τ = ∞) ✓ ∼ ✓ ✗ ✓✓
IMINE ✓ ✗ ✗ ✗ ✓✓
INWJ ✓ ✗ ✗ ✗ ✓✓

(a) Baseline property, MNIST digits data set. (b) Baseline property, FashionMNIST data set.

Figure 18: Comparison between different estimators for the baseline property, using MNIST data set
on the left and FashionMNIST on the right.

rows. The estimated MI should satisfy Î([X,X]; [Y, h(Y )])/Î(X;Y ) ≈ 1, since including
further processing should not add information.

3. Additivity. X̄ is a pair of two independent images, Ȳ is a pair containing the masked
versions (with equal t values) of those images. The estimated MI should satisfy
Î([X1, X2]; [Y1, Y2])/Î(X;Y ) ≈ 2, since the realizations of the X and Y random vari-
ables are drawn independently.

These tests are developed for IfDIME , ICPC , and ISMILE . Differently, INJEE training is not
feasible, since by construction 2d− 1 models should be created, with d = 784 (the gray-scale image
shape is 28× 28 pixels). The neural network architecture used for these tests is referred to as conv.

Conv. It is composed by two convolutional layers and one fully connected. The first convolutional
layer has 64 output channels and convolves the input images with (5× 5) kernels, stride 2 px and
padding 2 px. The second convolutional layer has 128 output channels, kernels of shape (5 × 5),
stride 2 px and padding 2 px. The fully connected layer contains 1024 neurons. ReLU activation
functions are used in each layer (except from the last one). The input data are concatenated along the
channel dimension. We set the batch size equal to 256.

The comparison between the MI estimators for varying values of t is reported in Fig. 18, 19, and 20.
The behavior of all the estimators is evaluated for various random seeds. These results highlight that
almost all the analyzed estimators satisfy the first two tests (IHD−DIME is slightly unstable), while
none of them is capable of fulfilling the additivity criterion. Nevertheless, this does not exclude the
existence of an f -divergence capable to satisfy all the tests.
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(a) Data processing property, MNIST digits data set. (b) Data processing property, FashionMNIST data set.

Figure 19: Comparison between different estimators for the data processing property, using MNIST
data set on the left and FashionMNIST on the right.

(a) Additivity property, MNIST digits data set. (b) Additivity property, FashionMNIST data set.

Figure 20: Comparison between different estimators for the additivity property, using MNIST data
set on the left and FashionMNIST on the right.
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