
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FORECASTING NEEDLES IN A TIME SERIES HAYSTACK

Anonymous authors
Paper under double-blind review

ABSTRACT

Shocks and sudden spikes are common characteristics of real-world time series
data. For example, demand surges or electricity outages often occur in time
series data, manifesting as spikes (“Needles”) added to the regular time series
(“Haystack”). Despite their importance, it is surprising to find their absence
in the benchmarking protocol at the frontier of time series research—Time Se-
ries Foundation Models (TSFM). To address this gap, we present the Needle-in-
a-Time-Series-Haystack (NITH) Benchmark, which includes both synthetic and
real-world spiky time series data from diverse domains like traffic, energy, and
biomedical systems. For synthetic data, we develop a flexible framework using
Poisson-based modeling to generate spiky time series, allowing us to evaluate
forecast models under various conditions. To accurately assess model perfor-
mance, we introduce a new metric based on Dynamic Time Warping, specifically
designed for spiky data. We evaluate the zero-shot forecasting capabilities of six
popular TSFMs over 64 million observations, identifying their limitations related
to architecture, tokenization, and loss functions. Furthermore, we demonstrate
that the incorporation of the proposed NITH dataset, due to its diversity compared
to the common pre-training corpus of TSFMs, results in improved performance.

1 INTRODUCTION

Time series forecasting, where future events are predicted given the past, is a critical task with appli-
cations in many industries, such as climate science, traffic engineering, and advertising. Forecasting
spiky time series is particularly important, because rare events, such as solar flares, traffic accidents
and holiday sales, are numerically represented as narrow spikes occurring sparsely across a long
time series. Due to their rarity and short duration, we refer to these spikes as ’needles’ and the
base time series without spikes as the ’haystack’. The ability to accurately forecast needles in a
times-series haystack gives practitioners the foresight to plan around rare and significant events.

Recently, foundation models for time series forecasting (TSFMS) (Woo et al., 2024; Goswami et al.,
2024; Das et al., 2023; Ansari et al., 2024; Liu et al., 2024b) have garnered significant attention. Un-
like traditional time series forecasting models (Rangapuram et al., 2018; Wang et al., 2019; Salinas
et al., 2020; Rasul et al., 2023; Lim et al., 2021), foundation models do not require training on
downstream datasets to perform effective inference. Instead, they first pretrain on a large corpus of
general time series, then perform zero-shot forecasting on any downstream univariate time series.
The development of foundation models has democratized time series forecasting from only individ-
uals with large training datasets to the general public. Given the success of TSFMS on standard
benchmarks and the significance of spiky time series forecasting, our work studies the zero-shot
effectiveness of TSFMS on spiky time series specifically.

Although forecasting spikes is known to be challenging (Ansari et al., 2024), existing zero-shot
forecasting model only measure model performance in aggregate and not specific classes of time
series. Hence, it is unclear whether such models can reliably forecast spikes and when it cannot.
In contrast, our study systematically identifies some problem areas current TSFMS struggle with,
offering suggestions for developing the next generation of TSFMS. To the best of our knowledge,
we are the first to study TSFMS’ performance on spiky time series data.

Our work introduces two times series benchmarks, a Real-world Needle in a Time-series Haystack
dataset (NITH-REAL), and a Synthetic Needle in a Time-series Haystack dataset (NITH-SYNTH).
For the real-world datasets, we collect multiple spiky time series datasets, across various do-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

mains (Dau et al., 2018; Liu et al., 2024b; Lavin & Ahmad, 2015) to evaluate whether existing
foundation models can immediately be used in practice for spiky time series forecasting. For the
synthetic datasets, we control the underlying generating process behind spiky time series to study
TSFM sensitivity to specific needle properties. Generally, spikes either occur following some un-
derlying pattern, such as periodicity (Martin & Mailhes, 2010), or are ad-hoc, occurring due to
random noise (Wu & Keogh, 2021). Because it is difficult to distinguish between complex pat-
terns and noise, our synthetic dataset explicitly models the 2 factors independently to measure what
properties of spiky time series TSFM struggle most with, outside of noise.

Because spikes occur over short durations and are often acompanied by small amounts of random
lag, we propose a lag-aware metric, based on dynamic time warping (Müller, 2007), to accurately
benchmark TSFM performance on spiky datasets. After benchmarking existing TSFM on NITH-
REAL and NITH-SYNTH, our work additionally provides a synthetic training dataset that slightly
improves zero-shot performance on real-world datasets. Finally, our work benchmarks different
model and dataset design choices, finding that pretraining dataset plays the largest role in spiky time
series forecasting. In summary, our contributions are:

• We create a real-world (NITH-REAL) and a synthetic (NITH-SYNTH) benchmark, which
measures the ability to forecast spiky time series of different TSFMS. Our curated real
world and synthetic data has 22M and 42M observations respectively, amassing 64M. Be-
sides, our synthetic can be used for benchmark and continual pretraining.

• To generate a controlled synthetic benchmark, we propose a novel and flexible mathemat-
ical framework. Continual pretraining with our proposed synthetic datasets can signifi-
cantly improve real-world performance, demonstrating that our NITH-SYNTH resembles
real-world data.

• We systematically benchmark six popular TSFMS on our NITH dataset and examine when
TSFMS fail to forecast spiky time series, finding all tested foundation models fail at fore-
casting narrow needles.

• To further dissect this problem, we evaluate different dataset, model, and loss function
choices finding that dataset design plays the largest role in spiky time series forecasting
performance. We also conclude context length is not the current bottleneck for spiky time
series forecasting.

2 RELATED WORK

2.1 TIME SERIES FOUNDATION MODELS

Recently, TSFMS have been proposed for zero-shot forecasting on numerical time series, outper-
forming traditional time series forecasting models such as ETS, ARIMA (Hyndman et al., 2008),
and Theta (Assimakopoulos & Nikolopoulos, 2000) under univariate settings. Early TSFMS used
prompting to query language models for forecasting tasks (Jin et al., 2023; Gruver et al., 2024;
Chang et al., 2023). Instead of prompting, PatchTST (Nie et al., 2022) uses patching (Alexey,
2020) to directly tokenize and finetune on the time series. Later works experiment with different
tokenization schemes, such as LagLlama’s (Rasul et al., 2023) lag-based covariate tokenizer and
Chronos’ (Ansari et al., 2024) quantile-based sample tokenizer. By pretraining on larger datasets,
these models exhibit effective zero-shot abilities. Other works utilize updated model architectures,
such as TimeFM’s (Das et al., 2023) decoder-only architecture and Moment’s (Goswami et al.,
2024) encoder-decoder architecture. Certain works, like Moment (Goswami et al., 2024), require
finetuning to adapt masked token reconstruction pretraining to the forecasting task. Moirai (Woo
et al., 2024) open-sourced a large real-world pretraining dataset, LOTSA, which were then used
by later works such as Timer (Liu et al., 2024b) to perform tasks beyond univariate forecast-
ing. TinyTMS (Ekambaram et al., 2024) allows efficient forecasting though smaller transformers.
TimeGPT (Garza & Mergenthaler-Canseco, 2023) provides commercial API access to a closed-
source model for zero-shot forecasting. In this work, we test 6 recent open-source time series fore-
casting models (Rasul et al., 2023; Ansari et al., 2024; Das et al., 2023; Woo et al., 2024; Liu et al.,
2024b; Ekambaram et al., 2024). While newer TSFMS tackle tasks beyond univariate forecasting
or improve inference efficiency, our work questions whether TSFM can really perform effective
zero-shot forecasting on a particularly important class of univariate time series, spiky time series.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2.2 TIME SERIES BENCHMARKS AND DATA

Many TSFMS originate their data from the Monash repository (Godahewa et al., 2021), the M3 M4
benchmarks (Godahewa et al., 2021), and ETT (Zhou et al., 2021). Moirai (Woo et al., 2024) and
Timer (Liu et al., 2024b) collected and cleaned these datasets into the LOTSA and UTSD pretraining
datasets respectively. Although M3 and M4 were originally time series benchmarks themselves, they
now belong in the pretraining data of many TSFM (Woo et al., 2024). Chronos (Ansari et al., 2024)
uses synthetic data in its training, and TimesFM (Das et al., 2023) uses close-source datasets. Under
the zero-shot setting, Timer offers several benchmarks that do not overlap with LOTSA and UTSD,
including a larger set of time series from the UCR anomaly benchmark (Wu & Keogh, 2021). In
addition to UCR, Numenta also offers several time series in its anomaly detection benchmark (Lavin
& Ahmad, 2015). Beyond zero-shot univariate time series forecasting, several recent works study
non-general time series forecasting performance (Bauer et al., 2021; Godahewa et al., 2021; Wang
et al., 2024c; Qiu et al., 2024), and TSFMS’ zero-shot multimodal (Liu et al., 2024a) and infill-
ing (Liu et al., 2024b) capabilities. This work is the first to study TSFM’s zero-shot forecasting
capabilites on spiky time series.

3 NEEDLE-IN-A-TIME-SERIES-HAYSTACK BENCHMARK

3.1 TIME SERIES FORECASTING

We study the forecasting problem on univariate spiky time series. Specifically, given a time series
with a context of C steps, ux = [u0, u1, ..., uC−1], our goal is to forecast the next F steps, uy =
[uC , uC+1, ..., uC+F−1]. We benchmark time series forecasting models,M, which predict the next
F steps by tokenizing the context, passing it through a transformer, then detokenizing the time series.
We denote inference by ũy =M(ux), where ũy is the predicted forecast.

3.1.1 SPIKY TIME SERIES

Spiky time series are time series with repeated spikes. When these spikes follow some underlying
pattern, it is possible for forecasting models to forecast them1. Compared to standard time series,
forecasting spiky time series induces 3 new challenges: (1) spikes occur infrequently within the
context, thus the model has limited information, (2) spikes occur only for a short duration, thus the
model must memorize past occurrences, and (3) the average duration between spikes is subject to
some noise, thus the model must be robust. We call these challenges the “difficulty dimensions.”

Specifically, given Nspikes spikes that occur at indices, J = [τ̂0, τ̂1, ..., τ̂Nspikes
], we quantify

each difficulty dimension by (1) the average duration between spikes, µT =
∑Nspikes

i=0
τ̂i

Nspikes
,

(2) the width of spikes, ω2, and (3) standard deviation in duration between spikes, σT =√∑Nspikes

i=0
(τ̂i−µT)2

Nspikes
, respectively.

Because forecasting spiky time series requires the model to learn from the past spikes, which both
occur infrequently and over short durations, our proposed benchmark tests the memory ability of
forecasting model. Thus, we call our problem “needle in a haystack”, where “needles” are spikes
and the “haystack” is the base time series without the spikes. We note that the terms “needle” and
spike are interchangeable in the rest of this work. We call our benchmarks “Needle-In-a-Time-
series-Haystack” (NITH), consisting of real, NITH-REAL, and synthetic, NITH-SYNTH, time series.

3.2 NITH: REAL-WORLD SPIKY TIME SERIES

We construct a real-world spiky time series benchmark, NITH-REAL, by filtering existing bench-
marks, which contain both spiky and non-spiky time series. Because peaks are spike-shaped patterns

1We highlight our work is separate from outlier detection, where outlier occurrences do not follow an
underlying pattern, instead being treated as noise, which cannot be forecast.

2Because adding a spike to a base time series is non-injective, it is impossible to recover the width of the
spike, ω, from an already spiky time series. Thus, we provide separate definitions for width when dealing
with an already spiky time series, ω′, in Section 3.2 and the generative process of a spiky time series, ω, in
Section 3.3.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 1: NITH Benchmark. On the left, we show statistics about NITH-REAL with some time
series visualizations. Full dataset statistics are in Appendix J. On the right, we show how to generate
NITH-SYNTH with some time series visualizations.

that occur throughout the time series, we identify needle indices, I , by running a peak detection al-
gorithm, and define the width, ω′, as the peak detection width (Virtanen et al., 2020; Sci, 2018).
Because any forecasting model predicts future time steps based on an appropriate context, we filter
only datasets where peaks occur at least 8 times on average across a context window of C = 512
over each time series. In addition, we ensure that at least one spike occurs in both the forecast
window of F = 128. We apply our filtering algorithm on the NAB benchmark (Lavin & Ahmad,
2015), UCR Anomaly benchmark (Wu & Keogh, 2021), and Timer’s test set (Liu et al., 2024b). In
total, NITH-REAL consists of 38 datasets, > 7K time series, and > 22M observations from a wide
variety of domains and cover a wide range of the difficulty dimensions (Figure 1). We provide the
full benchmark statistics in Appendix J.

3.3 NITH: SYNTHETIC SPIKY TIME SERIES

We motivate our synthetic dataset, NITH-SYNTH, by the limited size and scope of real-world
datasets and by observing that real-world spikes may either be the product of some underlying pat-
tern or noise. To train and evaluate on more NITH-style data, we provide a mathematical framework
for generating diverse spiky time series. To disentangle the contribution of noise from underlying
patterns, our framework follows the most simple pattern, periodicity, where a spike occurs every µT

time steps “in-expectation” with standard deviation of σT . Note, although this pattern is seemingly
simple, no TSFMS could accurately forecast needles across all settings.

Specifically, we define spiky time series in NITH-SYNTH benchmark by enforcing the following
properties: (1) “outlier constraint”: the needle must have larger amplitude than the haystack, (2)
“rarity constraint”: the needle must be near-nonzero only for a small fraction of the time series, and
(3) “periodic-in-expectation”: a spike occurs every µT time steps “in-expectation” with standard
deviation of σT . The summarized generation algorithm can be found at Alg 1.

We mathematically model a “periodic-in-expectation” spiky signal as a Markov chain transition-
ing between a haystack signal, h(t) : R → R, and a needle signal, n(t) : R → R. In this
work, we consider additive needles, n(t) = h(t) + n̂(t), where both the residual, n̂(t) : R → R,
and haystack, h(t), are independently sampled from Gaussian processes, GPNd(µ(t), k(t, t

′)) and
GPHS(µ(t), k(t, t

′)) respectively. Specifically, one sample from the needle is observed every τi ∼
DT time steps of the haystack. Under this formulation, the needle indices are J = [τ̂i]

Nsamples

i=0 =

[
∑i

j=0 τj]
Nsamples

i=0 , and the resulting signal would be: h(t) +
∑Nsamples−1

i=0 n̂(t)δ(t − τ̂i), where
δ(t− τ̂i) is a Dirac-Delta function at time τ̂i.

Because needles do not occur instantaneously, we model transients by convolving the needle ob-
servations with a with a Kernel function, K(t), and define the width, ω, as the bounds contain-
ing 95% of the area:

∫ ω
2

−ω
2
K(t)dt ≥ 0.95

∫∞
−∞K(t)dt. In practice, we use the Gaussian kernel,

KσK(t) = 1√
2πσ2

K
exp

(
− x2

2σ2
K

)
. In summary, we (1) sample a haystack signal from a Gaussian

Process, (2) sample a schedule on where to add needles, (3) sample a needle signal from a separate
Gaussian Process, (4) convolve the needle signal with a kernel according to the schedule, and (5)
add the needle and haystack signals, as formalized in Equation 1:

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

u(t) = h(t) + Σ
Nsamples−1
i=0 K(t) ∗ n̂(t)δ(t− Σi

j=0τj) (1)

Outlier Constraint. We quantify the outlier constraint by considering needles with larger RMS

amplitude than the haystack: RMSn ≫ RMSh, where RMSx =
√

1
L

∫ L

0
x2(t) dt and [0, L) is

the duration of interest. We enforce the outlier constraint by scaling by α ∼ U(3, 5), DC offset
by β ∼ U(1, 5)α, and flipped by θ ∼ {−1,+1}, the resulting signals sampled from the nee-
dle Gaussian process GPNd(µ(t), k(t, t

′)) to obtain n̂(t). We directly sample the haystack signal:
h(t) ∼ GPHS(µ(t), k(t, t

′)).

Rarity Constraint. We quantify the outlier constraint by considering narrow needles: µT ≫ ω.
We enforce the rarity constraint by setting the width to be smaller than the period ω ≤ 0.25µT .
This can be accomplished by tuning the standard deviation of the kernel using the Gaussian inverse
Q-function (Karagiannidis & Lioumpas, 2007): ω = 2Q−1(1−0.95

2)σK.

Algorithm 1 Code to Generate NITH Datasets

Input: GPNd, GPHS , µT = Nocc, ω, σT , α, β, θ,∆, C, F
Output: [uk]

C+F−1
k=0

h(t) ∼ GPHS

n̂raw(t) ∼ GPNd

n̂(t)← θ(αn̂raw(t) + β)
σK ← ω

2Q−1(1−0.95
2)

T0, T1, ..., TNsamples−1 ∼ N (µT , 0.1µT)

[T̂k′]
Nsamples

k′=0 ← [∆ · ⌊Tk′/∆⌋]Nsamples

k′=0

u(t)← h(t) + Σ
Nsamples−1
k=0 σKKσK(t) ∗ n̂(t)δ(t−Σk

k′=0T̂k′)

[uk]
C+F−1
k=0 ← [u(k∆)]C+F−1

k=0

On Randomness: Periodic-
in-Expectation. The Poisson
distribution, Pois(λ) naturally
models periodic signals in ex-
pectation with period, µT = λ.
However, the said distribution’s
standard deviation is a strictly a
function of its mean,

√
λ . We

can flexibly set the standard de-
viation by sampling the distri-
bution at different sampling pe-
riods, ∆, where Ki = K(i∆).
Specifically, the standard devia-
tion is dispersed, σT , when the
sampling rate is ∆ = µT

σ2
T

and
distribution parameter is set to
λ = ∆µT . We provide the proof in Appendix B.

By choosing an appropriate sampling rate, ∆, we disentangle the expected duration, µT , from the
randomness, σT . We call this the scaled-Poisson distribution, SPois(µT , σT). Purely periodic
spikes are generated when σT = 0, and purely random spikes are generated when σT =∞. We set
the “haystack” distribution, DT as a the scaled Poisson distribution DT = SPois(µT , σT).

3.3.1 CONSIDERED SETTINGS

To cover a diverse range of spiky time series, we generate 100 time series of length 5000 for each
combination of periods of µT = [8, 16, 32, 64], widths of ω = [µT

4 , µT

8 , µT

16 ,
µT

32 ,
µT

64], and noise of
σT = [0, 1, 2, 4, 8, 16]. Skipping duplicate settings, NITH-SYNTH consists of 840 datasets, with
84K time series, and 42M observations.

3.4 EVALUATION METRICS

3.4.1 PROBLEMS WITH EXISTING METRICS

Evaluation metrics are an important component for benchmarking time-series data. Typically,
time series forecasting models are evaluated on aggregated errors such as Mean Absolute Er-
ror (MAE) or Mean Squared Error (MSE). Because MAE and MSE treat each sample indepen-
dently and the haystack accounts for a greater proportion of samples than the needle, aggregated
errors both overemphasizes the haystack and cannot measure signal lag. Another common met-
ric is Dynamic Time Warping (DTW) (Müller, 2007), which computes the optimal alignment be-
tween 2 time series, DTW (ũ, u) = dDTW (ũNneedle

, uNneedle
) where dDTW (ũi, uj) = C[i, j] +

min(dDTW (ui−1, sj), dDTW (ui, sj−1)), according to some cost function C[i, j] = ||ũi − uj ||22.
Because DTW is lag-invariant and the haystack accounts for a greater proportion of samples than
the needle, DTW both overemphasizes the haystack and cannot effectively measure lag between true

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

(a) Case Study Signals. “true” signal is black
and “pred” signals are colored.

(b) Evaluation metrics. Bar color represents
error between “true” and corresponding “pred”

signal.

Figure 2: Evaluation Metric Case Study: We measure the error between “true” and “pred” sig-
nals. Visually, “pred0” most closely matches “true”, followed by “pred1” and “pred2”, followed by
“pred3.” SDTW is the only metric that captures this ordering.

and predicted needles. In terms of classification, precision and recall (Tatbul, 2018; Hwang et al.,
2019) adequately measures lag and and classification performance. However, this metric cannot
quantify the regression differences in spike magnitudes, which our benchmark aims to study.

3.4.2 SCALED DYNAMIC TIME WARP

To effectively evaluate spiky time series, we propose a scaled Dynamic Time Warping (SDTW)
metric, which combines the recall and false positive rate with dynamic time warping.

Scaling DTW for Needle (Recall): To compute DTW over the true needles, we first define the
probability that each sample, ui, in the time domain corresponds with a needle, pneedle(i|J), where
J = [τ̂0, τ̂1, ..., τ̂Nspikes

] represents ground truth needle locations. To focus on “just needles”, we
accumulate cost only across the true needle by multiplying the cost matrix by the probability of
the predicted signal belongs to a needle: C(needle)

SDTW [i, j] = pneedle(j|J)C(needle)
DTW [i, j]. We quantify

the probability that each sample, ui, in the time domain corresponds with a needle through a mix-
ture of Gaussians distribution: pneedle(i|J) = pmix(k)p

(needle)
comp (i|k,J). Specifically, we define

whether an index corresponds with the n-th needle as pcomp(i|k,J) ∝ NPDF (Jk, σSDTW)(i),
where NPDF (·, ·) defines the probabilistic distribution function of the Gaussian distribution, scaled
such that the needle indices are guaranteed to be the needle pneedle(Jk|J) = 1. We define the
mixture distribution as uniform, pmix(k) = 1

Nneedle
, and scale the standard deviation to the mean

period σSDTW = µT

16 .

Scaling DTW for Haystack (False Positive Rate): To compute DTW over the true haystack,
we consider the inverse probability as the needle phaystack(i|J) = 1 − pneedle(i|J). To fo-
cus on “just haystack”, we accumulate cost across the predicted haystack by multiplying the
cost matrix by the probability of the predicted signal belongs to a needle: C

(haystack)
SDTW [i, j] =

phaystack(i|J)C(needle)
DTW [i, j]. We multiply over the predicted signal instead of the true signal here,

such that any needles predicted in what should be the haystack will accumulate cost.

SDTW: In summary, we compute the SDTW between predicted time series, ũ, and true time
series, u, as follows: SDTW (ũ, u) = d

(needle)
SDTW (ũNT

, uNT
) + d

(haystack)
SDTW (ũNT

, uNT
), where

d
(setting)
SDTW (ũi, uj) = C

(setting)
SDTW [i, j] + min(dSDTW (ui−1, sj), dSDTW (ui, sj−1)). In practice, we

perform z-score normalization using the context’s statistics prior to computing SDTW and empiri-
cally observe models fail to forecast needles when SDTW is greater than 2.0.

We provide a case-study showing the benefits of SDTW over MAE, MSE, and DTW. As shown
in Figure 2, “pred0” should perform better than the other 3 models. “pred2” ignores the needles
entirely, but fits the haystack perfectly. “pred2” predicts the needle with long lag-times before
the true needle, but fits the haystack slightly better than “pred0”. “pred3” predicts extra needles.
Because MAE and MSE treats each sample evenly, it pays more attention to the haystack, artificially
ranking “pred2” higher. Because DTW is invariant to lag, artificially ranking “pred2” higher. SDTW
correctly identifies “pred0” as the most similar signal to “true,” by both allowing some lag in the
signal and weighing the needle and haystack equally. We provide a more detailed case study
around SDTW’s inner workings in Appendix D.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

4 RESULTS

In this section, we study the performance of existing time series foundation models on spiky time
series, then ablate both model and dataset design choices to determine performance bottlenecks. We
benchmark 6 open-source time series transformer foundation models: TIMER (Liu et al., 2024b),
MOIRAI (Woo et al., 2024), TINYTS (Ekambaram et al., 2024), CHRONOS (Ansari et al., 2024),
LAGLLAMA (Rasul et al., 2023), and TIMESFM (Rasul et al., 2023). We chose these foundation
models as they cover a wide variety of design choices 3, which we list in Appendix C. Our study
focuses on zero-shot performance, as the primary objective of pretraining large foundation models
is to enable inference without additional training.

4.1 MAIN RESULTS

Figure 3: TSFM zero-shot performance
on NITH-REAL benchmark. Mod-
els with the “-NITH” suffix were
continuously pretrained on our syn-
thetic dataset. Among vanilla TSFM,
TIMESFM achieve the best perfor-
mance out-of-the-box. For readability
reasons, we show TINYTS, which per-
forms poorly, in Appendix E.

Our results on NITH-REAL (Figure 3) shows all TSFM
fail on the majority of datasets. Because no TSFM can
predict the needle with an with standard error bounds be-
low 2.0, all models fail on the majority of datasets. Large
models that have been pretrained on more data tend to
perform better, with TIMESFM, which was trained on
> 50B samples, achieving the best performance among
unmodified TSFM. Intuitively, a larger pretraining cor-
pus cover more diverse signals, such as spiky time se-
ries. Unlike TSFM, large language models are trained on
datasets at the trillion scale. Our results indicate a greater
need for high-quality open-source time series training
data.

Given that pretraining data seems to be a bottleneck for
TSFM performance on NITH, we perform continuous
pretraining on the 2 most effective TSFM from Sec-
tion 4.2: CHRONOS and TIMESFM. Specifically, we use
our synthetic dataset generation process, outlined in Al-
gorithm 1 to generate additional pretraining data for these
TSFM under a different random seed and σT = 0.0. We
then perform continual training on this dataset, to enhance
CHRONOS and TIMESFM. We call the resulting models CHRONOS-NITH and TIMESFM-NITH.
We use the same training scripts as provided by the official CHRONOS (Ansari et al., 2024) and
TIMESFM (Das et al., 2023) codebases.

We quantify the effect of noise on the pretraining process by both pretraining CHRONOS on a syn-
thetic corpus generated using σT = 0.0 and one generated using σT ∼ 2U(0,log2(µT)), which covers
the range of values used in Synthetic NITH. Compared to the latter, the former is less noisy but
has a distribution mismatch with the synthetic NITH dataset. Pretraining on noisy datasets (Fig-
ure 8) greatly deteriorates model performance, even when there is no distribution mismatch. As
stated in Section 3.4, aggregated loss functions such as MSE and Cross Entropy treats each sample
independently, hence any lag induced by noise is not properly modeled by the loss. This is particu-
larly concerning as real-world data is particularly noisy (Figure 1). Thus, more effort on pretraining
dataset selection is required to effectively train time series foundation models to forecast needles.

Continual pretrained TSFM on synthetically-generated NITH data outperforms the best TSFM on
real-world NITH data, under the zero-shot setting (Figure 3). These results suggest that in lieu of
curated real-world pretraining data, synthetically-generated NITH data can boost performance of
existing foundation models. We note that parameters for synthetic NITH can be flexibly tuned for
specific applications, but leave such study to future work.

3Although some modeling decisions have been ablated on generic time series, there lacks a systematic study
over these model choices, specifically with relation to forecasting spiky time series.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

4.2 ON NEEDLE PROPERTIES

To further dissect this problem, we investigate what type of data existing TSFM struffle with us.
Evaluating TSFM on synthetic NITH-SYNTH with across different difficulty dimensions (Figure 4),
we reveal the width of the needle has a larger effect than the period between needle occurances. it
is evident by the fact that we observe a significant improvement across columns with different ω
but the same µT . As expected, needles that occur more randomly, with larger σT , are also harder
to forecast. However, certain TSFM are more resilient to such noise. Specifically, CHRONOS’
performance decays slightly less than TIMESFM and MOIRAI in presence of noise. In contrast,
TIMESFM performance decays slightly less than CHRONOS and MOIRAI at forecasting narrow
needles. The exact reason for these phenomenon are hard to determine, as each TSFM differs
across multiple design decisions.

Figure 4: TSFM’s zero-shot performances on NITH-SYNTH. The x-axis denotes the period between
spikes, µT , and the width of spikes, ω. The y-axis denotes the noise, σT . Numbers represent average
SDTW value across a particular setting. TIMESFM and CHRONOS perform the best. We show
results on the largest CHRONOS (710M) model, which performs similarly to CHRONOS (200M), in
Appendix F.

To quantify the current capabilities of TSFM, we observe all models fail when the standard deviation
in noise is more than half the period, σT > µT

2 , or the needle occurs over less than an eigth of
the period, ω < µT

8 . This results shows that spiky datasets is a failure case for existing TSFM,
justifying the need for NITH benchmark. We visualize these failure cases (Figure 6), observing
TSFM completely ignores narrow needles. We hope our findings spur further research in TSFM to
overcome such barriers.

4.3 ON CONTEXT LENGTH

Some TSFM’s are trained with longer context lengths to better forecast long time series. In theory,
TSFM’s with longer context could observe more needles, improving performance. To test the effect
of this phenomenon, we increase the inference-time context lengths of TSFM pretrained with longer
context from 512: MOIRAI, TIMER, and LAGLLAMA. Specifically, we try the longest context-
lengths each model was pretrained on and the smallest context length LAGLLAMA was trained on,
following each its recommended settings (Rasul et al., 2023).

Evaluating TSFM’s pretrained on larger context length with different inference-time context lengths
(Figure 5) shows long context has little effect on NITH performance. As explained in Section 4.1,
TSFM’s cannot remember narrow needles at all. Hence, context length is not a current bottleneck for
TSFM performance on spike time series. Instead, different choices in tokenizer hyperparameters,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 5: TSFM with different context length’s aggregated performances on NITH-SYNTH, under
different settings of µT , σT , and ω. We provide a line chart in the Appendix. Context lengths have
minimal affect of performance.

(a) Chronos Prediction (b) TimesFM Prediction (c) Moirai Prediction

Figure 6: Performance of different foundation models on narrow needle setting. All foundation
models fail to recover the needle signal.

model architecture, loss function, and pretraining dataset between the 3 tested TSFM has a much
larger impact, which we further discuss in Appendix H.

4.4 ON MODEL DESIGN

Finally, we provide further insight into tokenizer design decision for TSFM, by evaluating
CHRONOS pretrained from scratch on synthetic NITH with σT = 0, as motivated in Section 4.1,
with different tokenizer settings. Specifically, we benchmark TSFM performance with different
patch-lengths and model architectures. As a reference, TIMESFM uses a patch length of 32. Given
the positive performance of CHRONOS, we ablate smaller patch lengths of 8, 16, and 32. In this
study, we consider when stride is equal to the patch length. We leave further analysis to future work.
We consider encoder, encoder-decoder, and decoder only models with fixed number of layers and
dimension size. Our results hold with fixed number of layers and larger dimension size as well.

Architecture. We begin our investigation by testing the architecture across the most popular to-
kenizer setup, patch-based tokenizers. By evaluating SDTW performance on the synthetic NITH
benchmark (Figure 7), we find that encoder-decoder outperform both encoder-only and decoder-only
architectures. We hypothesize this is because encoder-decoder models combine bidirectional atten-
tion, extracting more information from the context, with autoregressive generation, which generate
tokens conditioned on past predictions. Patch length has a smaller overall impact than architecture
on SDTW performance. Hence, it is worthwhile to first ablate architecture-level decisions when
training new TSFM.

Patch Length. As shown in Figure 7, shorter patch lengths outperform longer patch lengths when
forecasting needles. Because patch-based tokenizers are convolutional layers, they low-pass filter
the data with a kernel-size equal to the patch-length. Because, the larger patch-length correlates
with more aggressive filtering, smaller patch lengths learn narrower needles better. We believe auto-
matically choosing the correct kernel-size for downstream problems could greatly improve efficacy
of TSFM. Some existing TSFM, such as MOIRAI, accomplish this by pretraining with multiple
patch-based tokenizers.

Tokenizer. We ablate the best patch-based tokenizer with the top-performing sample-based tok-
enizer, CHRONOS’s tokenizer. Our work shows that sample-based tokenizers performed better (Fig-
ure 8), as sample-based tokenizers do not implicitly perform any low-pass filtering on the down-

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 7: Testing different patch tokenizer and architectures across the σT = 0.1µT setting of NITH-
SYNTH. Small patch lengths perform the best at forecasting spiky time series. Because train and
test datasets use the same generative process (except train set uses σT = 0.0) with different random
seed, there is no distribution shift.

Figure 8: Testing different loss function and dataset choices across the σT = 0.1µT setting of NITH-
SYNTH. Noiseless training data is critical for forecasting spiky time series. Because train and test
datasets use the same generative process with different random seed, there is no distribution shift.

stream dataset. However, the top performing sample-based tokenizer uses quantile-binning which
cannot represent needle values if they occur too infrequently across the signal (Ansari et al., 2024).
Overcoming this bottleneck could scale sample-based tokenizers to narrower needles with smaller
ω. We believe tokenization is a major bottleneck that can unlock effective TSFM for NITH-style
time series.

Loss Function To test whether alignment-based loss functions can improve upon aggregation-based
loss, we try training the best patch-based tokenizer with DILATE, a differentiable version of DTW
loss. We notice that DTW tends to produce unnatural alignments on the haystack portion of the
signal leading to poor convergence, shown in Appendix D. For this reason, we also try DILATE
with a Sakoe-Chiba window constraint of window size 32, which we dub DILATE-SC. Although
DILATE and DILATE-SC still does not outperform MSE loss (Figure 7), we believe alignment-
based losses are a promising direction for spiky time series forecasting.

5 CONCLUSION

In conclusion, while existing time series foundation models made remarkable progress in zero-
shot univariate time series forecasting on most workloads, our analysis has identified substantial
challenges these models face when forecasting spiky time series. Specifically, we have identified
three core issues that existing foundation models encounter: 1) the average duration between spikes,
2) the width of the spikes, and 3) the randomness in duration between spikes. To systematically study
each weakness and real-world uses, we proposed NITH-SYNTH and NITH-REAL benchmarks.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

6 ETHICS STATEMENT

Our work does not involve human subjects. Our work does not introduce harmful data, as our bench-
marks are either curated collections of existing open-source data or synthetically generated time se-
ries. Our benchmark does not release any harmful insights, methodologies, applications, conflicts
of interest and sponsorship, discrimination/bias/fairness concerns, privacy and security issues, legal
compliance, and research integrity issues.

7 REPRODUCIBILITY

We cite tested foundation models in Section 4 and provide aby additional hyperparameter settings in
Appendix I. provide NITH-REAL’s dataset source and statistics in Appendix J. We provide NITH-
SYNTH’s settings in Section 3.3.1 and psuedocode for synthetic dataset generation in Algorithm 1 .
We will open source our benchmark code once the paper is accepted.

REFERENCES

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.peakwidths.html.2018.

Dosovitskiy Alexey. An image is worth 16x16 words: Transformers for image recognition at scale.
arXiv preprint arXiv: 2010.11929, 2020.

Abdul Fatir Ansari, Lorenzo Stella, Caner Turkmen, Xiyuan Zhang, Pedro Mercado, Huibin Shen,
Oleksandr Shchur, Syama Sundar Rangapuram, Sebastian Pineda Arango, Shubham Kapoor, et al.
Chronos: Learning the language of time series. arXiv preprint arXiv:2403.07815, 2024.

Vassilis Assimakopoulos and Konstantinos Nikolopoulos. The theta model: a decomposition approach
to forecasting. International journal of forecasting, 16(4):521–530, 2000.

André Bauer, Marwin Züfle, Simon Eismann, Johannes Grohmann, Nikolas Herbst, and Samuel
Kounev. Libra: A benchmark for time series forecasting methods. In Proceedings of the ACM/SPEC
International Conference on Performance Engineering, pp. 189–200, 2021.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer. arXiv
preprint arXiv:2004.05150, 2020.

Ching Chang, Wen-Chih Peng, and Tien-Fu Chen. Llm4ts: Two-stage fine-tuning for time-series
forecasting with pre-trained llms. arXiv preprint arXiv:2308.08469, 2023.

Sucheta Chauhan and Lovekesh Vig. Anomaly detection in ecg time signals via deep long short-term
memory networks. In 2015 IEEE international conference on data science and advanced analytics
(DSAA), pp. 1–7. IEEE, 2015.

Abhimanyu Das, Weihao Kong, Rajat Sen, and Yichen Zhou. A decoder-only foundation model for
time-series forecasting. arXiv preprint arXiv:2310.10688, 2023.

Hoang Anh Dau, Eamonn Keogh, Kaveh Kamgar, Chin-Chia Michael Yeh, Yan Zhu, Shaghayegh
Gharghabi, Chotirat Ann Ratanamahatana, Yanping, Bing Hu, Nurjahan Begum, Anthony Bagnall,
Abdullah Mueen, Gustavo Batista, and Hexagon-ML. The ucr time series classification archive,
October 2018. https://www.cs.ucr.edu/˜eamonn/time_series_data_2018/.

Vijay Ekambaram, Arindam Jati, Nam H Nguyen, Pankaj Dayama, Chandra Reddy, Wesley M Gifford,
and Jayant Kalagnanam. Ttms: Fast multi-level tiny time mixers for improved zero-shot and few-
shot forecasting of multivariate time series. arXiv preprint arXiv:2401.03955, 2024.

Azul Garza and Max Mergenthaler-Canseco. Timegpt-1. arXiv preprint arXiv:2310.03589, 2023.

Rakshitha Godahewa, Christoph Bergmeir, Geoffrey I Webb, Rob J Hyndman, and Pablo Montero-
Manso. Monash time series forecasting archive. arXiv preprint arXiv:2105.06643, 2021.

Mononito Goswami, Konrad Szafer, Arjun Choudhry, Yifu Cai, Shuo Li, and Artur Dubrawski. Mo-
ment: A family of open time-series foundation models. arXiv preprint arXiv:2402.03885, 2024.

11

https://www.cs.ucr.edu/~eamonn/time_series_data_2018/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Nate Gruver, Marc Finzi, Shikai Qiu, and Andrew G Wilson. Large language models are zero-shot
time series forecasters. Advances in Neural Information Processing Systems, 36, 2024.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured state
spaces. arXiv preprint arXiv:2111.00396, 2021.

Albert Gu, Karan Goel, Ankit Gupta, and Christopher Ré. On the parameterization and initialization of
diagonal state space models. Advances in Neural Information Processing Systems, 35:35971–35983,
2022.

Amey Hengle, Prasoon Bajpai, Soham Dan, and Tanmoy Chakraborty. Multilingual needle in a
haystack: Investigating long-context behavior of multilingual large language models. arXiv preprint
arXiv:2408.10151, 2024.

Won-Seok Hwang, Jeong-Han Yun, Jonguk Kim, and Hyoung Chun Kim. Time-series aware precision
and recall for anomaly detection: considering variety of detection result and addressing ambiguous
labeling. In Proceedings of the 28th ACM International Conference on Information and Knowledge
Management, pp. 2241–2244, 2019.

Rob Hyndman, Anne B Koehler, J Keith Ord, and Ralph D Snyder. Forecasting with exponential
smoothing: the state space approach. Springer Science & Business Media, 2008.

Ming Jin, Shiyu Wang, Lintao Ma, Zhixuan Chu, James Y Zhang, Xiaoming Shi, Pin-Yu Chen, Yuxuan
Liang, Yuan-Fang Li, Shirui Pan, et al. Time-llm: Time series forecasting by reprogramming large
language models. arXiv preprint arXiv:2310.01728, 2023.

George K Karagiannidis and Athanasios S Lioumpas. An improved approximation for the gaussian
q-function. IEEE Communications Letters, 11(8):644–646, 2007.

Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. arXiv
preprint arXiv:2001.04451, 2020.

Yuri Kuratov, Aydar Bulatov, Petr Anokhin, Dmitry Sorokin, Artyom Sorokin, and Mikhail Burtsev.
In search of needles in a 10m haystack: Recurrent memory finds what llms miss. arXiv preprint
arXiv:2402.10790, 2024.

Alexander Lavin and Subutai Ahmad. Evaluating real-time anomaly detection algorithms–the nu-
menta anomaly benchmark. In 2015 IEEE 14th international conference on machine learning and
applications (ICMLA), pp. 38–44. IEEE, 2015.

Bryan Lim, Sercan Ö Arık, Nicolas Loeff, and Tomas Pfister. Temporal fusion transformers for in-
terpretable multi-horizon time series forecasting. International Journal of Forecasting, 37(4):1748–
1764, 2021.

Haoxin Liu, Shangqing Xu, Zhiyuan Zhao, Lingkai Kong, Harshavardhan Kamarthi, Aditya B Sasanur,
Megha Sharma, Jiaming Cui, Qingsong Wen, Chao Zhang, et al. Time-mmd: A new multi-domain
multimodal dataset for time series analysis. arXiv preprint arXiv:2406.08627, 2024a.

Yong Liu, Haoran Zhang, Chenyu Li, Xiangdong Huang, Jianmin Wang, and Mingsheng Long. Timer:
Transformers for time series analysis at scale. arXiv preprint arXiv:2402.02368, 2024b.

Nadine Martin and Corinne Mailhes. About periodicity and signal to noise ratio-the strength of the
autocorrelation function. In CM 2010-MFPT 2010-7th International Conference on Condition Mon-
itoring and Machinery Failure Prevention Technologies, pp. nc, 2010.

Meinard Müller. Dynamic time warping. Information retrieval for music and motion, pp. 69–84, 2007.

Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64
words: Long-term forecasting with transformers. arXiv preprint arXiv:2211.14730, 2022.

Guansong Pang, Chunhua Shen, Longbing Cao, and Anton Van Den Hengel. Deep learning for
anomaly detection: A review. ACM computing surveys (CSUR), 54(2):1–38, 2021.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Xiangfei Qiu, Jilin Hu, Lekui Zhou, Xingjian Wu, Junyang Du, Buang Zhang, Chenjuan Guo, Aoying
Zhou, Christian S Jensen, Zhenli Sheng, et al. Tfb: Towards comprehensive and fair benchmarking
of time series forecasting methods. arXiv preprint arXiv:2403.20150, 2024.

Syama Sundar Rangapuram, Matthias W Seeger, Jan Gasthaus, Lorenzo Stella, Yuyang Wang, and Tim
Januschowski. Deep state space models for time series forecasting. Advances in neural information
processing systems, 31, 2018.

Kashif Rasul, Arjun Ashok, Andrew Robert Williams, Arian Khorasani, George Adamopoulos,
Rishika Bhagwatkar, Marin Biloš, Hena Ghonia, Nadhir Vincent Hassen, Anderson Schnei-
der, et al. Lag-llama: Towards foundation models for time series forecasting. arXiv preprint
arXiv:2310.08278, 2023.

David Salinas, Valentin Flunkert, Jan Gasthaus, and Tim Januschowski. Deepar: Probabilistic forecast-
ing with autoregressive recurrent networks. International journal of forecasting, 36(3):1181–1191,
2020.

N Tatbul. Precision and recall for time series. arXiv preprint arXiv:1803.03639, 2018.

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao, Liu
Yang, Sebastian Ruder, and Donald Metzler. Long range arena: A benchmark for efficient trans-
formers. arXiv preprint arXiv:2011.04006, 2020.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Courna-
peau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt,
Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric
Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas,
Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris,
Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Con-
tributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods,
17:261–272, 2020. doi: 10.1038/s41592-019-0686-2.

Hengyi Wang, Haizhou Shi, Shiwei Tan, Weiyi Qin, Wenyuan Wang, Tunyu Zhang, Akshay Nambi,
Tanuja Ganu, and Hao Wang. Multimodal needle in a haystack: Benchmarking long-context capa-
bility of multimodal large language models. arXiv preprint arXiv:2406.11230, 2024a.

Weiyun Wang, Shuibo Zhang, Yiming Ren, Yuchen Duan, Tiantong Li, Shuo Liu, Mengkang Hu,
Zhe Chen, Kaipeng Zhang, Lewei Lu, et al. Needle in a multimodal haystack. arXiv preprint
arXiv:2406.07230, 2024b.

Yuxuan Wang, Haixu Wu, Jiaxiang Dong, Yong Liu, Mingsheng Long, and Jianmin Wang. Deep time
series models: A comprehensive survey and benchmark. arXiv preprint arXiv:2407.13278, 2024c.

Yuyang Wang, Alex Smola, Danielle Maddix, Jan Gasthaus, Dean Foster, and Tim Januschowski. Deep
factors for forecasting. In International conference on machine learning, pp. 6607–6617. PMLR,
2019.

Gerald Woo, Chenghao Liu, Akshat Kumar, Caiming Xiong, Silvio Savarese, and Doyen Sahoo. Uni-
fied training of universal time series forecasting transformers. arXiv preprint arXiv:2402.02592,
2024.

Renjie Wu and Eamonn J Keogh. Current time series anomaly detection benchmarks are flawed and
are creating the illusion of progress. IEEE transactions on knowledge and data engineering, 35(3):
2421–2429, 2021.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago
Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird: Transformers for
longer sequences. Advances in neural information processing systems, 33:17283–17297, 2020.

Zijia Zhao, Haoyu Lu, Yuqi Huo, Yifan Du, Tongtian Yue, Longteng Guo, Bingning Wang, Weipeng
Chen, and Jing Liu. Needle in a video haystack: A scalable synthetic framework for benchmarking
video mllms. arXiv preprint arXiv:2406.09367, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Pretrain Data Context Size Tokenizer Architecture Model Size
TIMESFM 100B ≤ 512 Patch Dec 200M
MOIRAI 27.65B ≤ 5000 Patch Enc 311M
TIMER 28B ≤ 1440 Patch Dec 67M

CHRONOS 84B ≤ 512 Sample Enc-Dec 710M
LAGLLAMA 0.36B ≤ 1024 Sample Dec 200M

TINYTS 1B ≤ 1536 Patch Enc-Dec 5M

Table 1: Statistics of different time series foundation models.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings of
the AAAI conference on artificial intelligence, volume 35, pp. 11106–11115, 2021.

A LIMITATIONS

Our work benchmarks open-source time series foundation models (TSFM) on forecasting both a
real-world and synthetic spiky time series. We leave benchmarking closed-source TSFM, particu-
larly TimeGPT (Garza & Mergenthaler-Canseco, 2023) to future work. Our synthetic datasets model
the simplest underlying pattern: periodic in expectation. Because current TSFM cannot solve even
the simple case, we leave benchmarking more complex forms of periodicity (Martin & Mailhes,
2010), to future work. Our work provides general insights and suggestions on model, dataset, and
loss design. We leave extensive hyperparameter tuning to verify our general recommendations to
future work. This work collects time series data from related works rather than providing our own
new dataset. Hence, we depend on generous open-source real-world data to conduct our study.

B SCALED POISSON DISTRIBUTION PROOF.

We show that by sampling the Poisson distribution with sampling period ∆, we can arbitrarily scale
the mean, µT , and standard deviation, σT . Specifically, we consider both the sampled Poisson, p̂(n),
and the original Poisson distribution, p(t), below:

p(t) = λte−λ

t!

p̂(n) = λn∆e−λ

(n∆)!

We find the mean is scaled by the sampling period:

µT = Ep̂[n] = Ep[
t
∆]

µT = λ
∆

Next, we find the sampling rate scales the variance as a function of the mean duration.

σT =
√
V arp̂[n]

σT =
√
V arp[

t
∆]

σT = 1
∆

√
V arp[t]

σT = 1
∆

√
λ

σT =
√

µT

∆

Hence, we can specify any µT and σT by setting λ and ∆. In summary, we define the scaled Poisson
distribution, SPois(µT , σT), by its probability density function, p̂(n), where λ =

µ2
T

σ2
T

and ∆ = µT

σ2
T

.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

(a) Example SDTW time domain matching and
cost matrices between “pred0” and “true.”

(b) Example SDTW time domain matching and
cost matrices between “pred2” and “true.”

Figure 9: SDTW interpretability: We plot the time domain matchings and cost matrix associated
with the needle, C(needle)

SDTW , (top), and haystack, C(haystack)
SDTW , (bottom). As expected, extra needles

are heavily punished. Some lag between predicted and true needles is tolerated.

C TSFM DIFFERENCES

In Table 1, We list the differences between time series foundation models (TSFM). Note, no 2
models change only 1 design parameter between them, hence it is difficult to ascertain the exact
reasons one TSFM performs better than another.

D SDTW CASE STUDY

To further analyze the SDTW metric, we visualize the DTW paths in Figure 9, which corresponds to
the time series in Figure 2. The horizontal lines correspond with the predicted needles and verticle
lines correspond with true needles. In the top 2 plots, predicted needles (horizontal lines) are masked
out over the haystack. Hence, the aggregated SDTW metric measures whether predicted needle
occurs when the true needle does (recall). In the bottom 2 plots, predicted needles (horizontal) lines
are masked out over the needle indices. Hence, the aggreagted SDTW metric measures whether the
predicted needle occurs over the haystack (false positive rate).

E NITH-REAL FULL RESULTS

We show TSFM performance, including TINYTS, on each dataset of NITH-REAL in Figure 10.
Note, TINYTS performs very poor skewing the plot. We believe this is due to TINYTS being much
smaller than baselines.

F NITH-SYNTH FULL RESULTS

For fair comparison, we showed models of roughly equal size in the main text. In Figure 11, we
show the largest CHRONOS (710M) model achieves similar performance as the base CHRONOS
(200M) model suggesting that performace improvements from model size may not be a bottleneck.
We believe higher quality pretraining data is needed to further improve the TSFM with increasing
model size.

G TSFM PREDICTION VISUALIZATIONS

We visualize the TSFM predictions in Figures 14 to 35.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Figure 10: TSFM zero-shot performance on NITH-REAL benchmark. Models with the “-NITH”
suffix were continuously pretrained on our synthetic dataset. Among vanilla TSFM, TIMESFM
achieves the best performance out-of-the-box. We show TINYTS in this version. Error bars denote
standard error.

Figure 11: CHRONOS’ zero-shot performances on NITH-SYNTH with different model sizes. The
x-axis denotes the period between spikes, µT , and the width of spikes, ω. The y-axis denotes the
noise, σT . Numbers represent average SDTW value across a particular setting.

H FULL CONTEXT LENGTH RESULTS

We provide the full context length results in Figure 12. We also aggregate into a line plot repre-
sentation in Figure 13. From these plots, we observe model performance more related to model
architecture than context length.

Figure 12: TSFM’s zero-shot performances on NITH-SYNTH with different context lengths. The
x-axis denotes the period between spikes, µT , and the width of spikes, ω. The y-axis denotes the
noise, σT . Numbers represent average SDTW value across a particular setting.

I HYPERPARAMETER SETTINGS

We follow the default hyperparameter settings for TSFM models, except with a forecast size of 128
and a trajectory count of 20 for models supporting probabilistic forecasting. We found minimal em-

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 13: TSFM with different context length’s aggregated performances on NITH-SYNTH, under
different settings of µT , σT , and ω. Line chart version. Context lengths have minimal affect of
performance.

pirical difference between using 20 trajectories compared to using 1 trajectory. For training -NITH
models, we adopt the default pretraining setup as CHRONOS and finetuning setup as TIMESFM. We
provide dataset statistics and generation configurations for µT , ω, and σT in the main text.

J DATASET STATISTICS

We provide the dataset statistics for the real-world dataset in Tables 2 and 3. We determined the
domain qualitiatively by manually evaluating the source of each dataset. We provide aggregated
statistics in the main text.

K ADDITIONAL RELATED WORKS

K.1 NEEDLE-IN-A-HAYSTACK

Needle-in-a-haystack search can be approached using various techniques, broadly categorized into
classical methods and machine learning-based approaches. Classical methods include heuristic
search techniques, such as brute-force search, which examines every element in the dataset, and
index-based methods, which improve efficiency by pre-processing the dataset to quickly locate
potential matches (Chauhan & Vig, 2015). However, these methods often struggle with high-
dimensional data and complex patterns (Pang et al., 2021).

Specifically, machine learning models such as convolutional neural networks (CNNs) and recurrent
neural networks (RNNs) have been applied to rare object detection in images, and RNNs have been
used for anomaly detection in sequential data. Additionally, transformer-based models, which excel
at handling long-range dependencies in data, have been applied to this problem, offering improved
performance in tasks such as DNA sequence analysis (Beltagy et al., 2020; Zaheer et al., 2020;
Kitaev et al., 2020; Gu & Dao, 2023). To characterize the language recalling ability of large language
models (Tay et al., 2020; Gu et al., 2021; 2022), many needle-in-a-haystack benchmarks have been
proposed (Hengle et al., 2024; Wang et al., 2024a;b; Kuratov et al., 2024; Zhao et al., 2024; Gu &
Dao, 2023). In general, recalling information that occurs infrequently in the dataset is a tough but
reliable challenge to measure the strengths of different foundation models. Here we propose a new
needle-in-a-haystack dataset in the time series domain. In addition to that, our work investigates
how to forecast needles instead of detecting needles in a retrieving manner.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 14: CHRONOS (200M) predictions on NITH-SYNTH.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure 15: CHRONOS (710M) predictions on NITH-SYNTH.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Figure 16: LAGLLAMA (200M) predictions on NITH-SYNTH.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Figure 17: LAGLLAMA (200M) [Context=32] predictions on NITH-SYNTH.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure 18: LAGLLAMA (200M) [Context=1024] predictions on NITH-SYNTH.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Figure 19: MOIRAI (311M) predictions on NITH-SYNTH.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Figure 20: MOIRAI (311M) [Context=5000] predictions on NITH-SYNTH.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Figure 21: TIMER (67M) predictions on NITH-SYNTH.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Figure 22: TIMER (67M) [Context=1440] predictions on NITH-SYNTH.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Figure 23: TIMESFM (200M) predictions on NITH-SYNTH.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Figure 24: TINYTS (5M) predictions on NITH-SYNTH.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Figure 25: CHRONOS-NITH predictions on NITH-SYNTH.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Figure 26: TIMESFM-NITH predictions on NITH-SYNTH.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Figure 27: CHRONOS (200M) predictions on NITH-REAL.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Figure 28: CHRONOS (710M) predictions on NITH-REAL.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Figure 29: LAGLLAMA (200M) predictions on NITH-REAL.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Figure 30: MOIRAI (311M) predictions on NITH-REAL.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

Figure 31: TIMER (67M) predictions on NITH-REAL.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

Figure 32: TIMESFM (200M) predictions on NITH-REAL.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

Figure 33: TINYTS (5M) predictions on NITH-REAL.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

Figure 34: CHRONOS-NITH predictions on NITH-REAL.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

Figure 35: TIMESFM-NITH predictions on NITH-REAL.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

Datasets Domain Ntest Norig Length
NAB-realAWSCloudwatch Machine 6 17 4148.333

NAB-realAdExchange Machine 6 6 1601.667
NAB-realKnownCause Machine 4 7 4624.000

NAB-realTraffic Traffic 5 7 2200.400
NAB-realTweets Social 8 10 15864.250
Timer-Electricity Energy 252 321 26304.000
Timer-PEMS03 Traffic 1000 26208 358.000
Timer-PEMS04 Traffic 1000 16992 307.000
Timer-PEMS07 Traffic 1000 28224 883.000
Timer-Traffic Traffic 614 862 17544.000
UCR-ACSF1 Energy 87 100 1460.000

UCR-Computers Energy 20 250 720.000
UCR-CricketX Motion 21 390 300.000
UCR-CricketY Motion 11 390 300.000
UCR-CricketZ Motion 18 390 300.000

UCR-DodgerLoopDay Traffic 5 80 288.000
UCR-DodgerLoopGame Traffic 8 138 288.000

UCR-DodgerLoopWeekend Traffic 8 138 288.000
UCR-Earthquakes Geophysical 139 139 512.000

UCR-FordA Machine 1000 1320 500.000
UCR-FordB Machine 764 810 500.000
UCR-Ham Biomedical 55 105 431.000

UCR-HouseTwenty Energy 9 119 2000.000
UCR-InsectEPGRegularTrain Biomedical 1 249 601.000
UCR-InsectEPGSmallTrain Biomedical 1 249 601.000
UCR-InsectWingbeatSound Biomedical 9 1980 256.000

UCR-LargeKitchenAppliances Energy 28 375 720.000
UCR-Lightning2 Geophysical 5 61 637.000
UCR-Lightning7 Geophysical 1 73 319.000
UCR-Phoneme Audio 518 1896 1024.000

UCR-PigAirwayPressure Biomedical 8 208 2000.000
UCR-RefrigerationDevices Energy 264 375 720.000

UCR-ScreenType Energy 16 375 720.000
UCR-SemgHandGenderCh2 Biomedical 361 600 1500.000

UCR-SemgHandMovementCh2 Biomedical 270 450 1500.000
UCR-SemgHandSubjectCh2 Biomedical 262 450 1500.000

UCR-SmallKitchenAppliances Energy 85 375 720.000
UCR-UWaveGestureLibraryX Motion 3 3582 315.000

Table 2: Statistics of different time series dataset in filtered benchmark (part 1).

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

Datasets µT ω σT

NAB-realAWSCloudwatch 21.983 1.868 50.375
NAB-realAdExchange 36.045 5.296 50.614
NAB-realKnownCause 40.820 2.118 262.003

NAB-realTraffic 22.059 3.270 30.191
NAB-realTweets 51.019 2.052 99.671
Timer-Electricity 31.126 11.147 54.411
Timer-PEMS03 11.487 2.622 7.876
Timer-PEMS04 11.143 2.488 7.544
Timer-PEMS07 9.634 2.457 5.867
Timer-Traffic 30.773 7.760 37.098
UCR-ACSF1 4.210 1.221 7.361

UCR-Computers 5.015 1.596 22.224
UCR-CricketX 36.354 7.219 23.434
UCR-CricketY 42.944 8.415 29.562
UCR-CricketZ 39.412 8.295 23.042

UCR-DodgerLoopDay 30.609 6.918 21.857
UCR-DodgerLoopGame 33.257 6.703 24.421

UCR-DodgerLoopWeekend 33.257 6.703 24.421
UCR-Earthquakes 8.090 1.322 7.626

UCR-FordA 34.920 10.619 23.311
UCR-FordB 34.605 10.731 25.759
UCR-Ham 50.239 8.805 20.840

UCR-HouseTwenty 33.228 3.148 151.309
UCR-InsectEPGRegularTrain 71.000 9.211 80.819
UCR-InsectEPGSmallTrain 71.000 9.211 80.819
UCR-InsectWingbeatSound 38.065 9.396 13.028

UCR-LargeKitchenAppliances 31.391 4.326 79.401
UCR-Lightning2 57.524 3.274 72.528
UCR-Lightning7 42.000 2.806 46.669
UCR-Phoneme 19.243 4.262 37.905

UCR-PigAirwayPressure 9.248 3.005 6.582
UCR-RefrigerationDevices 13.836 6.077 16.513

UCR-ScreenType 10.260 3.806 25.248
UCR-SemgHandGenderCh2 13.916 2.158 19.442

UCR-SemgHandMovementCh2 14.032 2.153 19.708
UCR-SemgHandSubjectCh2 13.996 2.157 19.138

UCR-SmallKitchenAppliances 37.456 1.603 49.468
UCR-UWaveGestureLibraryX 46.364 12.233 20.486

Table 3: Statistics of different time series dataset in filtered benchmark (part 2).

41

	Introduction
	Related Work
	Time Series Foundation Models
	Time Series Benchmarks and Data

	Needle-In-a-Time-series-Haystack Benchmark
	Time Series Forecasting
	Spiky Time Series

	Nith: Real-World Spiky Time Series
	Nith: Synthetic Spiky Time Series
	Considered Settings

	Evaluation Metrics
	Problems with Existing Metrics
	Scaled Dynamic Time Warp

	Results
	Main Results
	On Needle Properties
	On Context Length
	On Model Design

	Conclusion
	Ethics Statement
	Reproducibility
	Limitations
	Scaled Poisson Distribution Proof.
	TSFM Differences
	SDTW Case Study
	Nith-Real Full Results
	Nith-Synth Full Results
	TSFM Prediction Visualizations
	Full Context Length Results
	Hyperparameter Settings
	Dataset Statistics
	Additional Related Works
	Needle-in-a-Haystack

