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ABSTRACT

Shocks and sudden spikes are common characteristics of real-world time series
data. For example, demand surges or electricity outages often occur in time
series data, manifesting as spikes (“Needles”) added to the regular time series
(“Haystack”). Despite their importance, it is surprising to find their absence
in the benchmarking protocol at the frontier of time series research—Time Se-
ries Foundation Models (TSFM). To address this gap, we present the Needle-in-
a-Time-Series-Haystack (NITH) Benchmark, which includes both synthetic and
real-world spiky time series data from diverse domains like traffic, energy, and
biomedical systems. For synthetic data, we develop a flexible framework using
Poisson-based modeling to generate spiky time series, allowing us to evaluate
forecast models under various conditions. To accurately assess model perfor-
mance, we introduce a new metric based on Dynamic Time Warping, specifically
designed for spiky data. We evaluate the zero-shot forecasting capabilities of six
popular TSFMs over 64 million observations, identifying their limitations related
to architecture, tokenization, and loss functions. Furthermore, we demonstrate
that the incorporation of the proposed NITH dataset, due to its diversity compared
to the common pre-training corpus of TSFMs, results in improved performance.

1 INTRODUCTION

Time series forecasting, where future events are predicted given the past, is a critical task with appli-
cations in many industries, such as climate science, traffic engineering, and advertising. Forecasting
spiky time series is particularly important, because rare events, such as solar flares, traffic accidents
and holiday sales, are numerically represented as narrow spikes occurring sparsely across a long
time series. Due to their rarity and short duration, we refer to these spikes as ’needles’ and the
base time series without spikes as the ’haystack’. The ability to accurately forecast needles in a
times-series haystack gives practitioners the foresight to plan around rare and significant events.

Recently, foundation models for time series forecasting (TSFMS) (Woo et al., 2024; Goswami et al.,
2024; Das et al., 2023; Ansari et al., 2024; Liu et al., 2024b) have garnered significant attention. Un-
like traditional time series forecasting models (Rangapuram et al., 2018; Wang et al., 2019; Salinas
et al., 2020; Rasul et al., 2023; Lim et al., 2021), foundation models do not require training on
downstream datasets to perform effective inference. Instead, they first pretrain on a large corpus of
general time series, then perform zero-shot forecasting on any downstream univariate time series.
The development of foundation models has democratized time series forecasting from only individ-
uals with large training datasets to the general public. Given the success of TSFMS on standard
benchmarks and the significance of spiky time series forecasting, our work studies the zero-shot
effectiveness of TSFMS on spiky time series specifically.

Although forecasting spikes is known to be challenging (Ansari et al., 2024), existing zero-shot
forecasting model only measure model performance in aggregate and not specific classes of time
series. Hence, it is unclear whether such models can reliably forecast spikes and when it cannot.
In contrast, our study systematically identifies some problem areas current TSFMS struggle with,
offering suggestions for developing the next generation of TSFMS. To the best of our knowledge,
we are the first to study TSFMS’ performance on spiky time series data.

Our work introduces two times series benchmarks, a Real-world Needle in a Time-series Haystack
dataset (NITH-REAL), and a Synthetic Needle in a Time-series Haystack dataset (NITH-SYNTH).
For the real-world datasets, we collect multiple spiky time series datasets, across various do-
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mains (Dau et al., 2018; Liu et al., 2024b; Lavin & Ahmad, 2015) to evaluate whether existing
foundation models can immediately be used in practice for spiky time series forecasting. For the
synthetic datasets, we control the underlying generating process behind spiky time series to study
TSFM sensitivity to specific needle properties. Generally, spikes either occur following some un-
derlying pattern, such as periodicity (Martin & Mailhes, 2010), or are ad-hoc, occurring due to
random noise (Wu & Keogh, 2021). Because it is difficult to distinguish between complex pat-
terns and noise, our synthetic dataset explicitly models the 2 factors independently to measure what
properties of spiky time series TSFM struggle most with, outside of noise.

Because spikes occur over short durations and are often acompanied by small amounts of random
lag, we propose a lag-aware metric, based on dynamic time warping (Müller, 2007), to accurately
benchmark TSFM performance on spiky datasets. After benchmarking existing TSFM on NITH-
REAL and NITH-SYNTH, our work additionally provides a synthetic training dataset that slightly
improves zero-shot performance on real-world datasets. Finally, our work benchmarks different
model and dataset design choices, finding that pretraining dataset plays the largest role in spiky time
series forecasting. In summary, our contributions are:

• We create a real-world (NITH-REAL) and a synthetic (NITH-SYNTH) benchmark, which
measures the ability to forecast spiky time series of different TSFMS. Our curated real
world and synthetic data has 22M and 42M observations respectively, amassing 64M. Be-
sides, our synthetic can be used for benchmark and continual pretraining.

• To generate a controlled synthetic benchmark, we propose a novel and flexible mathemat-
ical framework. Continual pretraining with our proposed synthetic datasets can signifi-
cantly improve real-world performance, demonstrating that our NITH-SYNTH resembles
real-world data.

• We systematically benchmark six popular TSFMS on our NITH dataset and examine when
TSFMS fail to forecast spiky time series, finding all tested foundation models fail at fore-
casting narrow needles.

• To further dissect this problem, we evaluate different dataset, model, and loss function
choices finding that dataset design plays the largest role in spiky time series forecasting
performance. We also conclude context length is not the current bottleneck for spiky time
series forecasting.

2 RELATED WORK

2.1 TIME SERIES FOUNDATION MODELS

Recently, TSFMS have been proposed for zero-shot forecasting on numerical time series, outper-
forming traditional time series forecasting models such as ETS, ARIMA (Hyndman et al., 2008),
and Theta (Assimakopoulos & Nikolopoulos, 2000) under univariate settings. Early TSFMS used
prompting to query language models for forecasting tasks (Jin et al., 2023; Gruver et al., 2024;
Chang et al., 2023). Instead of prompting, PatchTST (Nie et al., 2022) uses patching (Alexey,
2020) to directly tokenize and finetune on the time series. Later works experiment with different
tokenization schemes, such as LagLlama’s (Rasul et al., 2023) lag-based covariate tokenizer and
Chronos’ (Ansari et al., 2024) quantile-based sample tokenizer. By pretraining on larger datasets,
these models exhibit effective zero-shot abilities. Other works utilize updated model architectures,
such as TimeFM’s (Das et al., 2023) decoder-only architecture and Moment’s (Goswami et al.,
2024) encoder-decoder architecture. Certain works, like Moment (Goswami et al., 2024), require
finetuning to adapt masked token reconstruction pretraining to the forecasting task. Moirai (Woo
et al., 2024) open-sourced a large real-world pretraining dataset, LOTSA, which were then used
by later works such as Timer (Liu et al., 2024b) to perform tasks beyond univariate forecast-
ing. TinyTMS (Ekambaram et al., 2024) allows efficient forecasting though smaller transformers.
TimeGPT (Garza & Mergenthaler-Canseco, 2023) provides commercial API access to a closed-
source model for zero-shot forecasting. In this work, we test 6 recent open-source time series fore-
casting models (Rasul et al., 2023; Ansari et al., 2024; Das et al., 2023; Woo et al., 2024; Liu et al.,
2024b; Ekambaram et al., 2024). While newer TSFMS tackle tasks beyond univariate forecasting
or improve inference efficiency, our work questions whether TSFM can really perform effective
zero-shot forecasting on a particularly important class of univariate time series, spiky time series.
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2.2 TIME SERIES BENCHMARKS AND DATA

Many TSFMS originate their data from the Monash repository (Godahewa et al., 2021), the M3 M4
benchmarks (Godahewa et al., 2021), and ETT (Zhou et al., 2021). Moirai (Woo et al., 2024) and
Timer (Liu et al., 2024b) collected and cleaned these datasets into the LOTSA and UTSD pretraining
datasets respectively. Although M3 and M4 were originally time series benchmarks themselves, they
now belong in the pretraining data of many TSFM (Woo et al., 2024). Chronos (Ansari et al., 2024)
uses synthetic data in its training, and TimesFM (Das et al., 2023) uses close-source datasets. Under
the zero-shot setting, Timer offers several benchmarks that do not overlap with LOTSA and UTSD,
including a larger set of time series from the UCR anomaly benchmark (Wu & Keogh, 2021). In
addition to UCR, Numenta also offers several time series in its anomaly detection benchmark (Lavin
& Ahmad, 2015). Beyond zero-shot univariate time series forecasting, several recent works study
non-general time series forecasting performance (Bauer et al., 2021; Godahewa et al., 2021; Wang
et al., 2024c; Qiu et al., 2024), and TSFMS’ zero-shot multimodal (Liu et al., 2024a) and infill-
ing (Liu et al., 2024b) capabilities. This work is the first to study TSFM’s zero-shot forecasting
capabilites on spiky time series.

3 NEEDLE-IN-A-TIME-SERIES-HAYSTACK BENCHMARK

3.1 TIME SERIES FORECASTING

We study the forecasting problem on univariate spiky time series. Specifically, given a time series
with a context of C steps, ux = [u0, u1, ..., uC−1], our goal is to forecast the next F steps, uy =
[uC , uC+1, ..., uC+F−1]. We benchmark time series forecasting models,M, which predict the next
F steps by tokenizing the context, passing it through a transformer, then detokenizing the time series.
We denote inference by ũy =M(ux), where ũy is the predicted forecast.

3.1.1 SPIKY TIME SERIES

Spiky time series are time series with repeated spikes. When these spikes follow some underlying
pattern, it is possible for forecasting models to forecast them1. Compared to standard time series,
forecasting spiky time series induces 3 new challenges: (1) spikes occur infrequently within the
context, thus the model has limited information, (2) spikes occur only for a short duration, thus the
model must memorize past occurrences, and (3) the average duration between spikes is subject to
some noise, thus the model must be robust. We call these challenges the “difficulty dimensions.”

Specifically, given Nspikes spikes that occur at indices, J = [τ̂0, τ̂1, ..., τ̂Nspikes
], we quantify

each difficulty dimension by (1) the average duration between spikes, µT =
∑Nspikes

i=0
τ̂i

Nspikes
,

(2) the width of spikes, ω2, and (3) standard deviation in duration between spikes, σT =√∑Nspikes

i=0
(τ̂i−µT )2

Nspikes
, respectively.

Because forecasting spiky time series requires the model to learn from the past spikes, which both
occur infrequently and over short durations, our proposed benchmark tests the memory ability of
forecasting model. Thus, we call our problem “needle in a haystack”, where “needles” are spikes
and the “haystack” is the base time series without the spikes. We note that the terms “needle” and
spike are interchangeable in the rest of this work. We call our benchmarks “Needle-In-a-Time-
series-Haystack” (NITH), consisting of real, NITH-REAL, and synthetic, NITH-SYNTH, time series.

3.2 NITH: REAL-WORLD SPIKY TIME SERIES

We construct a real-world spiky time series benchmark, NITH-REAL, by filtering existing bench-
marks, which contain both spiky and non-spiky time series. Because peaks are spike-shaped patterns

1We highlight our work is separate from outlier detection, where outlier occurrences do not follow an
underlying pattern, instead being treated as noise, which cannot be forecast.

2Because adding a spike to a base time series is non-injective, it is impossible to recover the width of the
spike, ω, from an already spiky time series. Thus, we provide separate definitions for width when dealing
with an already spiky time series, ω′, in Section 3.2 and the generative process of a spiky time series, ω, in
Section 3.3.
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Figure 1: NITH Benchmark. On the left, we show statistics about NITH-REAL with some time
series visualizations. Full dataset statistics are in Appendix J. On the right, we show how to generate
NITH-SYNTH with some time series visualizations.

that occur throughout the time series, we identify needle indices, I , by running a peak detection al-
gorithm, and define the width, ω′, as the peak detection width (Virtanen et al., 2020; Sci, 2018).
Because any forecasting model predicts future time steps based on an appropriate context, we filter
only datasets where peaks occur at least 8 times on average across a context window of C = 512
over each time series. In addition, we ensure that at least one spike occurs in both the forecast
window of F = 128. We apply our filtering algorithm on the NAB benchmark (Lavin & Ahmad,
2015), UCR Anomaly benchmark (Wu & Keogh, 2021), and Timer’s test set (Liu et al., 2024b). In
total, NITH-REAL consists of 38 datasets, > 7K time series, and > 22M observations from a wide
variety of domains and cover a wide range of the difficulty dimensions (Figure 1). We provide the
full benchmark statistics in Appendix J.

3.3 NITH: SYNTHETIC SPIKY TIME SERIES

We motivate our synthetic dataset, NITH-SYNTH, by the limited size and scope of real-world
datasets and by observing that real-world spikes may either be the product of some underlying pat-
tern or noise. To train and evaluate on more NITH-style data, we provide a mathematical framework
for generating diverse spiky time series. To disentangle the contribution of noise from underlying
patterns, our framework follows the most simple pattern, periodicity, where a spike occurs every µT

time steps “in-expectation” with standard deviation of σT . Note, although this pattern is seemingly
simple, no TSFMS could accurately forecast needles across all settings.

Specifically, we define spiky time series in NITH-SYNTH benchmark by enforcing the following
properties: (1) “outlier constraint”: the needle must have larger amplitude than the haystack, (2)
“rarity constraint”: the needle must be near-nonzero only for a small fraction of the time series, and
(3) “periodic-in-expectation”: a spike occurs every µT time steps “in-expectation” with standard
deviation of σT . The summarized generation algorithm can be found at Alg 1.

We mathematically model a “periodic-in-expectation” spiky signal as a Markov chain transition-
ing between a haystack signal, h(t) : R → R, and a needle signal, n(t) : R → R. In this
work, we consider additive needles, n(t) = h(t) + n̂(t), where both the residual, n̂(t) : R → R,
and haystack, h(t), are independently sampled from Gaussian processes, GPNd(µ(t), k(t, t

′)) and
GPHS(µ(t), k(t, t

′)) respectively. Specifically, one sample from the needle is observed every τi ∼
DT time steps of the haystack. Under this formulation, the needle indices are J = [τ̂i]

Nsamples

i=0 =

[
∑i

j=0 τj ]
Nsamples

i=0 , and the resulting signal would be: h(t) +
∑Nsamples−1

i=0 n̂(t)δ(t − τ̂i), where
δ(t− τ̂i) is a Dirac-Delta function at time τ̂i.

Because needles do not occur instantaneously, we model transients by convolving the needle ob-
servations with a with a Kernel function, K(t), and define the width, ω, as the bounds contain-
ing 95% of the area:

∫ ω
2

−ω
2
K(t)dt ≥ 0.95

∫∞
−∞K(t)dt. In practice, we use the Gaussian kernel,

KσK(t) = 1√
2πσ2

K
exp

(
− x2

2σ2
K

)
. In summary, we (1) sample a haystack signal from a Gaussian

Process, (2) sample a schedule on where to add needles, (3) sample a needle signal from a separate
Gaussian Process, (4) convolve the needle signal with a kernel according to the schedule, and (5)
add the needle and haystack signals, as formalized in Equation 1:
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u(t) = h(t) + Σ
Nsamples−1
i=0 K(t) ∗ n̂(t)δ(t− Σi

j=0τj) (1)

Outlier Constraint. We quantify the outlier constraint by considering needles with larger RMS

amplitude than the haystack: RMSn ≫ RMSh, where RMSx =
√

1
L

∫ L

0
x2(t) dt and [0, L) is

the duration of interest. We enforce the outlier constraint by scaling by α ∼ U(3, 5), DC offset
by β ∼ U(1, 5)α, and flipped by θ ∼ {−1,+1}, the resulting signals sampled from the nee-
dle Gaussian process GPNd(µ(t), k(t, t

′)) to obtain n̂(t). We directly sample the haystack signal:
h(t) ∼ GPHS(µ(t), k(t, t

′)).

Rarity Constraint. We quantify the outlier constraint by considering narrow needles: µT ≫ ω.
We enforce the rarity constraint by setting the width to be smaller than the period ω ≤ 0.25µT .
This can be accomplished by tuning the standard deviation of the kernel using the Gaussian inverse
Q-function (Karagiannidis & Lioumpas, 2007): ω = 2Q−1( 1−0.95

2 )σK.

Algorithm 1 Code to Generate NITH Datasets

Input: GPNd, GPHS , µT = Nocc, ω, σT , α, β, θ,∆, C, F
Output: [uk]

C+F−1
k=0

h(t) ∼ GPHS

n̂raw(t) ∼ GPNd

n̂(t)← θ(αn̂raw(t) + β)
σK ← ω

2Q−1( 1−0.95
2 )

T0, T1, ..., TNsamples−1 ∼ N (µT , 0.1µT )

[T̂k′ ]
Nsamples

k′=0 ← [∆ · ⌊Tk′/∆⌋]Nsamples

k′=0

u(t)← h(t) + Σ
Nsamples−1
k=0 σKKσK(t) ∗ n̂(t)δ(t−Σk

k′=0T̂k′)

[uk]
C+F−1
k=0 ← [u(k∆)]C+F−1

k=0

On Randomness: Periodic-
in-Expectation. The Poisson
distribution, Pois(λ) naturally
models periodic signals in ex-
pectation with period, µT = λ.
However, the said distribution’s
standard deviation is a strictly a
function of its mean,

√
λ . We

can flexibly set the standard de-
viation by sampling the distri-
bution at different sampling pe-
riods, ∆, where Ki = K(i∆).
Specifically, the standard devia-
tion is dispersed, σT , when the
sampling rate is ∆ = µT

σ2
T

and
distribution parameter is set to
λ = ∆µT . We provide the proof in Appendix B.

By choosing an appropriate sampling rate, ∆, we disentangle the expected duration, µT , from the
randomness, σT . We call this the scaled-Poisson distribution, SPois(µT , σT ). Purely periodic
spikes are generated when σT = 0, and purely random spikes are generated when σT =∞. We set
the “haystack” distribution, DT as a the scaled Poisson distribution DT = SPois(µT , σT ).

3.3.1 CONSIDERED SETTINGS

To cover a diverse range of spiky time series, we generate 100 time series of length 5000 for each
combination of periods of µT = [8, 16, 32, 64], widths of ω = [µT

4 , µT

8 , µT

16 ,
µT

32 ,
µT

64 ], and noise of
σT = [0, 1, 2, 4, 8, 16]. Skipping duplicate settings, NITH-SYNTH consists of 840 datasets, with
84K time series, and 42M observations.

3.4 EVALUATION METRICS

3.4.1 PROBLEMS WITH EXISTING METRICS

Evaluation metrics are an important component for benchmarking time-series data. Typically,
time series forecasting models are evaluated on aggregated errors such as Mean Absolute Er-
ror (MAE) or Mean Squared Error (MSE). Because MAE and MSE treat each sample indepen-
dently and the haystack accounts for a greater proportion of samples than the needle, aggregated
errors both overemphasizes the haystack and cannot measure signal lag. Another common met-
ric is Dynamic Time Warping (DTW) (Müller, 2007), which computes the optimal alignment be-
tween 2 time series, DTW (ũ, u) = dDTW (ũNneedle

, uNneedle
) where dDTW (ũi, uj) = C[i, j] +

min(dDTW (ui−1, sj), dDTW (ui, sj−1)), according to some cost function C[i, j] = ||ũi − uj ||22.
Because DTW is lag-invariant and the haystack accounts for a greater proportion of samples than
the needle, DTW both overemphasizes the haystack and cannot effectively measure lag between true
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(a) Case Study Signals. “true” signal is black
and “pred” signals are colored.

(b) Evaluation metrics. Bar color represents
error between “true” and corresponding “pred”

signal.

Figure 2: Evaluation Metric Case Study: We measure the error between “true” and “pred” sig-
nals. Visually, “pred0” most closely matches “true”, followed by “pred1” and “pred2”, followed by
“pred3.” SDTW is the only metric that captures this ordering.

and predicted needles. In terms of classification, precision and recall (Tatbul, 2018; Hwang et al.,
2019) adequately measures lag and and classification performance. However, this metric cannot
quantify the regression differences in spike magnitudes, which our benchmark aims to study.

3.4.2 SCALED DYNAMIC TIME WARP

To effectively evaluate spiky time series, we propose a scaled Dynamic Time Warping (SDTW)
metric, which combines the recall and false positive rate with dynamic time warping.

Scaling DTW for Needle (Recall): To compute DTW over the true needles, we first define the
probability that each sample, ui, in the time domain corresponds with a needle, pneedle(i|J ), where
J = [τ̂0, τ̂1, ..., τ̂Nspikes

] represents ground truth needle locations. To focus on “just needles”, we
accumulate cost only across the true needle by multiplying the cost matrix by the probability of
the predicted signal belongs to a needle: C(needle)

SDTW [i, j] = pneedle(j|J )C(needle)
DTW [i, j]. We quantify

the probability that each sample, ui, in the time domain corresponds with a needle through a mix-
ture of Gaussians distribution: pneedle(i|J ) = pmix(k)p

(needle)
comp (i|k,J ). Specifically, we define

whether an index corresponds with the n-th needle as pcomp(i|k,J ) ∝ NPDF (Jk, σSDTW )(i),
where NPDF (·, ·) defines the probabilistic distribution function of the Gaussian distribution, scaled
such that the needle indices are guaranteed to be the needle pneedle(Jk|J ) = 1. We define the
mixture distribution as uniform, pmix(k) = 1

Nneedle
, and scale the standard deviation to the mean

period σSDTW = µT

16 .

Scaling DTW for Haystack (False Positive Rate): To compute DTW over the true haystack,
we consider the inverse probability as the needle phaystack(i|J ) = 1 − pneedle(i|J ). To fo-
cus on “just haystack”, we accumulate cost across the predicted haystack by multiplying the
cost matrix by the probability of the predicted signal belongs to a needle: C

(haystack)
SDTW [i, j] =

phaystack(i|J )C(needle)
DTW [i, j]. We multiply over the predicted signal instead of the true signal here,

such that any needles predicted in what should be the haystack will accumulate cost.

SDTW: In summary, we compute the SDTW between predicted time series, ũ, and true time
series, u, as follows: SDTW (ũ, u) = d

(needle)
SDTW (ũNT

, uNT
) + d

(haystack)
SDTW (ũNT

, uNT
), where

d
(setting)
SDTW (ũi, uj) = C

(setting)
SDTW [i, j] + min(dSDTW (ui−1, sj), dSDTW (ui, sj−1)). In practice, we

perform z-score normalization using the context’s statistics prior to computing SDTW and empiri-
cally observe models fail to forecast needles when SDTW is greater than 2.0.

We provide a case-study showing the benefits of SDTW over MAE, MSE, and DTW. As shown
in Figure 2, “pred0” should perform better than the other 3 models. “pred2” ignores the needles
entirely, but fits the haystack perfectly. “pred2” predicts the needle with long lag-times before
the true needle, but fits the haystack slightly better than “pred0”. “pred3” predicts extra needles.
Because MAE and MSE treats each sample evenly, it pays more attention to the haystack, artificially
ranking “pred2” higher. Because DTW is invariant to lag, artificially ranking “pred2” higher. SDTW
correctly identifies “pred0” as the most similar signal to “true,” by both allowing some lag in the
signal and weighing the needle and haystack equally. We provide a more detailed case study
around SDTW’s inner workings in Appendix D.
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4 RESULTS

In this section, we study the performance of existing time series foundation models on spiky time
series, then ablate both model and dataset design choices to determine performance bottlenecks. We
benchmark 6 open-source time series transformer foundation models: TIMER (Liu et al., 2024b),
MOIRAI (Woo et al., 2024), TINYTS (Ekambaram et al., 2024), CHRONOS (Ansari et al., 2024),
LAGLLAMA (Rasul et al., 2023), and TIMESFM (Rasul et al., 2023). We chose these foundation
models as they cover a wide variety of design choices 3, which we list in Appendix C. Our study
focuses on zero-shot performance, as the primary objective of pretraining large foundation models
is to enable inference without additional training.

4.1 MAIN RESULTS

Figure 3: TSFM zero-shot performance
on NITH-REAL benchmark. Mod-
els with the “-NITH” suffix were
continuously pretrained on our syn-
thetic dataset. Among vanilla TSFM,
TIMESFM achieve the best perfor-
mance out-of-the-box. For readability
reasons, we show TINYTS, which per-
forms poorly, in Appendix E.

Our results on NITH-REAL (Figure 3) shows all TSFM
fail on the majority of datasets. Because no TSFM can
predict the needle with an with standard error bounds be-
low 2.0, all models fail on the majority of datasets. Large
models that have been pretrained on more data tend to
perform better, with TIMESFM, which was trained on
> 50B samples, achieving the best performance among
unmodified TSFM. Intuitively, a larger pretraining cor-
pus cover more diverse signals, such as spiky time se-
ries. Unlike TSFM, large language models are trained on
datasets at the trillion scale. Our results indicate a greater
need for high-quality open-source time series training
data.

Given that pretraining data seems to be a bottleneck for
TSFM performance on NITH, we perform continuous
pretraining on the 2 most effective TSFM from Sec-
tion 4.2: CHRONOS and TIMESFM. Specifically, we use
our synthetic dataset generation process, outlined in Al-
gorithm 1 to generate additional pretraining data for these
TSFM under a different random seed and σT = 0.0. We
then perform continual training on this dataset, to enhance
CHRONOS and TIMESFM. We call the resulting models CHRONOS-NITH and TIMESFM-NITH.
We use the same training scripts as provided by the official CHRONOS (Ansari et al., 2024) and
TIMESFM (Das et al., 2023) codebases.

We quantify the effect of noise on the pretraining process by both pretraining CHRONOS on a syn-
thetic corpus generated using σT = 0.0 and one generated using σT ∼ 2U(0,log2(µT )), which covers
the range of values used in Synthetic NITH. Compared to the latter, the former is less noisy but
has a distribution mismatch with the synthetic NITH dataset. Pretraining on noisy datasets (Fig-
ure 8) greatly deteriorates model performance, even when there is no distribution mismatch. As
stated in Section 3.4, aggregated loss functions such as MSE and Cross Entropy treats each sample
independently, hence any lag induced by noise is not properly modeled by the loss. This is particu-
larly concerning as real-world data is particularly noisy (Figure 1). Thus, more effort on pretraining
dataset selection is required to effectively train time series foundation models to forecast needles.

Continual pretrained TSFM on synthetically-generated NITH data outperforms the best TSFM on
real-world NITH data, under the zero-shot setting (Figure 3). These results suggest that in lieu of
curated real-world pretraining data, synthetically-generated NITH data can boost performance of
existing foundation models. We note that parameters for synthetic NITH can be flexibly tuned for
specific applications, but leave such study to future work.

3Although some modeling decisions have been ablated on generic time series, there lacks a systematic study
over these model choices, specifically with relation to forecasting spiky time series.
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4.2 ON NEEDLE PROPERTIES

To further dissect this problem, we investigate what type of data existing TSFM struffle with us.
Evaluating TSFM on synthetic NITH-SYNTH with across different difficulty dimensions (Figure 4),
we reveal the width of the needle has a larger effect than the period between needle occurances. it
is evident by the fact that we observe a significant improvement across columns with different ω
but the same µT . As expected, needles that occur more randomly, with larger σT , are also harder
to forecast. However, certain TSFM are more resilient to such noise. Specifically, CHRONOS’
performance decays slightly less than TIMESFM and MOIRAI in presence of noise. In contrast,
TIMESFM performance decays slightly less than CHRONOS and MOIRAI at forecasting narrow
needles. The exact reason for these phenomenon are hard to determine, as each TSFM differs
across multiple design decisions.

Figure 4: TSFM’s zero-shot performances on NITH-SYNTH. The x-axis denotes the period between
spikes, µT , and the width of spikes, ω. The y-axis denotes the noise, σT . Numbers represent average
SDTW value across a particular setting. TIMESFM and CHRONOS perform the best. We show
results on the largest CHRONOS (710M) model, which performs similarly to CHRONOS (200M), in
Appendix F.

To quantify the current capabilities of TSFM, we observe all models fail when the standard deviation
in noise is more than half the period, σT > µT

2 , or the needle occurs over less than an eigth of
the period, ω < µT

8 . This results shows that spiky datasets is a failure case for existing TSFM,
justifying the need for NITH benchmark. We visualize these failure cases (Figure 6), observing
TSFM completely ignores narrow needles. We hope our findings spur further research in TSFM to
overcome such barriers.

4.3 ON CONTEXT LENGTH

Some TSFM’s are trained with longer context lengths to better forecast long time series. In theory,
TSFM’s with longer context could observe more needles, improving performance. To test the effect
of this phenomenon, we increase the inference-time context lengths of TSFM pretrained with longer
context from 512: MOIRAI, TIMER, and LAGLLAMA. Specifically, we try the longest context-
lengths each model was pretrained on and the smallest context length LAGLLAMA was trained on,
following each its recommended settings (Rasul et al., 2023).

Evaluating TSFM’s pretrained on larger context length with different inference-time context lengths
(Figure 5) shows long context has little effect on NITH performance. As explained in Section 4.1,
TSFM’s cannot remember narrow needles at all. Hence, context length is not a current bottleneck for
TSFM performance on spike time series. Instead, different choices in tokenizer hyperparameters,

8
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Figure 5: TSFM with different context length’s aggregated performances on NITH-SYNTH, under
different settings of µT , σT , and ω. We provide a line chart in the Appendix. Context lengths have
minimal affect of performance.

(a) Chronos Prediction (b) TimesFM Prediction (c) Moirai Prediction

Figure 6: Performance of different foundation models on narrow needle setting. All foundation
models fail to recover the needle signal.

model architecture, loss function, and pretraining dataset between the 3 tested TSFM has a much
larger impact, which we further discuss in Appendix H.

4.4 ON MODEL DESIGN

Finally, we provide further insight into tokenizer design decision for TSFM, by evaluating
CHRONOS pretrained from scratch on synthetic NITH with σT = 0, as motivated in Section 4.1,
with different tokenizer settings. Specifically, we benchmark TSFM performance with different
patch-lengths and model architectures. As a reference, TIMESFM uses a patch length of 32. Given
the positive performance of CHRONOS, we ablate smaller patch lengths of 8, 16, and 32. In this
study, we consider when stride is equal to the patch length. We leave further analysis to future work.
We consider encoder, encoder-decoder, and decoder only models with fixed number of layers and
dimension size. Our results hold with fixed number of layers and larger dimension size as well.

Architecture. We begin our investigation by testing the architecture across the most popular to-
kenizer setup, patch-based tokenizers. By evaluating SDTW performance on the synthetic NITH
benchmark (Figure 7), we find that encoder-decoder outperform both encoder-only and decoder-only
architectures. We hypothesize this is because encoder-decoder models combine bidirectional atten-
tion, extracting more information from the context, with autoregressive generation, which generate
tokens conditioned on past predictions. Patch length has a smaller overall impact than architecture
on SDTW performance. Hence, it is worthwhile to first ablate architecture-level decisions when
training new TSFM.

Patch Length. As shown in Figure 7, shorter patch lengths outperform longer patch lengths when
forecasting needles. Because patch-based tokenizers are convolutional layers, they low-pass filter
the data with a kernel-size equal to the patch-length. Because, the larger patch-length correlates
with more aggressive filtering, smaller patch lengths learn narrower needles better. We believe auto-
matically choosing the correct kernel-size for downstream problems could greatly improve efficacy
of TSFM. Some existing TSFM, such as MOIRAI, accomplish this by pretraining with multiple
patch-based tokenizers.

Tokenizer. We ablate the best patch-based tokenizer with the top-performing sample-based tok-
enizer, CHRONOS’s tokenizer. Our work shows that sample-based tokenizers performed better (Fig-
ure 8), as sample-based tokenizers do not implicitly perform any low-pass filtering on the down-

9
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Figure 7: Testing different patch tokenizer and architectures across the σT = 0.1µT setting of NITH-
SYNTH. Small patch lengths perform the best at forecasting spiky time series. Because train and
test datasets use the same generative process (except train set uses σT = 0.0) with different random
seed, there is no distribution shift.

Figure 8: Testing different loss function and dataset choices across the σT = 0.1µT setting of NITH-
SYNTH. Noiseless training data is critical for forecasting spiky time series. Because train and test
datasets use the same generative process with different random seed, there is no distribution shift.

stream dataset. However, the top performing sample-based tokenizer uses quantile-binning which
cannot represent needle values if they occur too infrequently across the signal (Ansari et al., 2024).
Overcoming this bottleneck could scale sample-based tokenizers to narrower needles with smaller
ω. We believe tokenization is a major bottleneck that can unlock effective TSFM for NITH-style
time series.

Loss Function To test whether alignment-based loss functions can improve upon aggregation-based
loss, we try training the best patch-based tokenizer with DILATE, a differentiable version of DTW
loss. We notice that DTW tends to produce unnatural alignments on the haystack portion of the
signal leading to poor convergence, shown in Appendix D. For this reason, we also try DILATE
with a Sakoe-Chiba window constraint of window size 32, which we dub DILATE-SC. Although
DILATE and DILATE-SC still does not outperform MSE loss (Figure 7), we believe alignment-
based losses are a promising direction for spiky time series forecasting.

5 CONCLUSION

In conclusion, while existing time series foundation models made remarkable progress in zero-
shot univariate time series forecasting on most workloads, our analysis has identified substantial
challenges these models face when forecasting spiky time series. Specifically, we have identified
three core issues that existing foundation models encounter: 1) the average duration between spikes,
2) the width of the spikes, and 3) the randomness in duration between spikes. To systematically study
each weakness and real-world uses, we proposed NITH-SYNTH and NITH-REAL benchmarks.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

6 ETHICS STATEMENT

Our work does not involve human subjects. Our work does not introduce harmful data, as our bench-
marks are either curated collections of existing open-source data or synthetically generated time se-
ries. Our benchmark does not release any harmful insights, methodologies, applications, conflicts
of interest and sponsorship, discrimination/bias/fairness concerns, privacy and security issues, legal
compliance, and research integrity issues.

7 REPRODUCIBILITY

We cite tested foundation models in Section 4 and provide aby additional hyperparameter settings in
Appendix I. provide NITH-REAL’s dataset source and statistics in Appendix J. We provide NITH-
SYNTH’s settings in Section 3.3.1 and psuedocode for synthetic dataset generation in Algorithm 1 .
We will open source our benchmark code once the paper is accepted.
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Pretrain Data Context Size Tokenizer Architecture Model Size
TIMESFM 100B ≤ 512 Patch Dec 200M
MOIRAI 27.65B ≤ 5000 Patch Enc 311M
TIMER 28B ≤ 1440 Patch Dec 67M

CHRONOS 84B ≤ 512 Sample Enc-Dec 710M
LAGLLAMA 0.36B ≤ 1024 Sample Dec 200M

TINYTS 1B ≤ 1536 Patch Enc-Dec 5M

Table 1: Statistics of different time series foundation models.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings of
the AAAI conference on artificial intelligence, volume 35, pp. 11106–11115, 2021.

A LIMITATIONS

Our work benchmarks open-source time series foundation models (TSFM) on forecasting both a
real-world and synthetic spiky time series. We leave benchmarking closed-source TSFM, particu-
larly TimeGPT (Garza & Mergenthaler-Canseco, 2023) to future work. Our synthetic datasets model
the simplest underlying pattern: periodic in expectation. Because current TSFM cannot solve even
the simple case, we leave benchmarking more complex forms of periodicity (Martin & Mailhes,
2010), to future work. Our work provides general insights and suggestions on model, dataset, and
loss design. We leave extensive hyperparameter tuning to verify our general recommendations to
future work. This work collects time series data from related works rather than providing our own
new dataset. Hence, we depend on generous open-source real-world data to conduct our study.

B SCALED POISSON DISTRIBUTION PROOF.

We show that by sampling the Poisson distribution with sampling period ∆, we can arbitrarily scale
the mean, µT , and standard deviation, σT . Specifically, we consider both the sampled Poisson, p̂(n),
and the original Poisson distribution, p(t), below:

p(t) = λte−λ

t!

p̂(n) = λn∆e−λ

(n∆)!

We find the mean is scaled by the sampling period:

µT = Ep̂[n] = Ep[
t
∆ ]

µT = λ
∆

Next, we find the sampling rate scales the variance as a function of the mean duration.

σT =
√
V arp̂[n]

σT =
√
V arp[

t
∆ ]

σT = 1
∆

√
V arp[t]

σT = 1
∆

√
λ

σT =
√

µT

∆

Hence, we can specify any µT and σT by setting λ and ∆. In summary, we define the scaled Poisson
distribution, SPois(µT , σT ), by its probability density function, p̂(n), where λ =

µ2
T

σ2
T

and ∆ = µT

σ2
T

.
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(a) Example SDTW time domain matching and
cost matrices between “pred0” and “true.”

(b) Example SDTW time domain matching and
cost matrices between “pred2” and “true.”

Figure 9: SDTW interpretability: We plot the time domain matchings and cost matrix associated
with the needle, C(needle)

SDTW , (top), and haystack, C(haystack)
SDTW , (bottom). As expected, extra needles

are heavily punished. Some lag between predicted and true needles is tolerated.

C TSFM DIFFERENCES

In Table 1, We list the differences between time series foundation models (TSFM). Note, no 2
models change only 1 design parameter between them, hence it is difficult to ascertain the exact
reasons one TSFM performs better than another.

D SDTW CASE STUDY

To further analyze the SDTW metric, we visualize the DTW paths in Figure 9, which corresponds to
the time series in Figure 2. The horizontal lines correspond with the predicted needles and verticle
lines correspond with true needles. In the top 2 plots, predicted needles (horizontal lines) are masked
out over the haystack. Hence, the aggregated SDTW metric measures whether predicted needle
occurs when the true needle does (recall). In the bottom 2 plots, predicted needles (horizontal) lines
are masked out over the needle indices. Hence, the aggreagted SDTW metric measures whether the
predicted needle occurs over the haystack (false positive rate).

E NITH-REAL FULL RESULTS

We show TSFM performance, including TINYTS, on each dataset of NITH-REAL in Figure 10.
Note, TINYTS performs very poor skewing the plot. We believe this is due to TINYTS being much
smaller than baselines.

F NITH-SYNTH FULL RESULTS

For fair comparison, we showed models of roughly equal size in the main text. In Figure 11, we
show the largest CHRONOS (710M) model achieves similar performance as the base CHRONOS
(200M) model suggesting that performace improvements from model size may not be a bottleneck.
We believe higher quality pretraining data is needed to further improve the TSFM with increasing
model size.

G TSFM PREDICTION VISUALIZATIONS

We visualize the TSFM predictions in Figures 14 to 35.
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Figure 10: TSFM zero-shot performance on NITH-REAL benchmark. Models with the “-NITH”
suffix were continuously pretrained on our synthetic dataset. Among vanilla TSFM, TIMESFM
achieves the best performance out-of-the-box. We show TINYTS in this version. Error bars denote
standard error.

Figure 11: CHRONOS’ zero-shot performances on NITH-SYNTH with different model sizes. The
x-axis denotes the period between spikes, µT , and the width of spikes, ω. The y-axis denotes the
noise, σT . Numbers represent average SDTW value across a particular setting.

H FULL CONTEXT LENGTH RESULTS

We provide the full context length results in Figure 12. We also aggregate into a line plot repre-
sentation in Figure 13. From these plots, we observe model performance more related to model
architecture than context length.

Figure 12: TSFM’s zero-shot performances on NITH-SYNTH with different context lengths. The
x-axis denotes the period between spikes, µT , and the width of spikes, ω. The y-axis denotes the
noise, σT . Numbers represent average SDTW value across a particular setting.

I HYPERPARAMETER SETTINGS

We follow the default hyperparameter settings for TSFM models, except with a forecast size of 128
and a trajectory count of 20 for models supporting probabilistic forecasting. We found minimal em-
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Figure 13: TSFM with different context length’s aggregated performances on NITH-SYNTH, under
different settings of µT , σT , and ω. Line chart version. Context lengths have minimal affect of
performance.

pirical difference between using 20 trajectories compared to using 1 trajectory. For training -NITH
models, we adopt the default pretraining setup as CHRONOS and finetuning setup as TIMESFM. We
provide dataset statistics and generation configurations for µT , ω, and σT in the main text.

J DATASET STATISTICS

We provide the dataset statistics for the real-world dataset in Tables 2 and 3. We determined the
domain qualitiatively by manually evaluating the source of each dataset. We provide aggregated
statistics in the main text.

K ADDITIONAL RELATED WORKS

K.1 NEEDLE-IN-A-HAYSTACK

Needle-in-a-haystack search can be approached using various techniques, broadly categorized into
classical methods and machine learning-based approaches. Classical methods include heuristic
search techniques, such as brute-force search, which examines every element in the dataset, and
index-based methods, which improve efficiency by pre-processing the dataset to quickly locate
potential matches (Chauhan & Vig, 2015). However, these methods often struggle with high-
dimensional data and complex patterns (Pang et al., 2021).

Specifically, machine learning models such as convolutional neural networks (CNNs) and recurrent
neural networks (RNNs) have been applied to rare object detection in images, and RNNs have been
used for anomaly detection in sequential data. Additionally, transformer-based models, which excel
at handling long-range dependencies in data, have been applied to this problem, offering improved
performance in tasks such as DNA sequence analysis (Beltagy et al., 2020; Zaheer et al., 2020;
Kitaev et al., 2020; Gu & Dao, 2023). To characterize the language recalling ability of large language
models (Tay et al., 2020; Gu et al., 2021; 2022), many needle-in-a-haystack benchmarks have been
proposed (Hengle et al., 2024; Wang et al., 2024a;b; Kuratov et al., 2024; Zhao et al., 2024; Gu &
Dao, 2023). In general, recalling information that occurs infrequently in the dataset is a tough but
reliable challenge to measure the strengths of different foundation models. Here we propose a new
needle-in-a-haystack dataset in the time series domain. In addition to that, our work investigates
how to forecast needles instead of detecting needles in a retrieving manner.
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Figure 14: CHRONOS (200M) predictions on NITH-SYNTH.
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Figure 15: CHRONOS (710M) predictions on NITH-SYNTH.
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Figure 16: LAGLLAMA (200M) predictions on NITH-SYNTH.
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Figure 17: LAGLLAMA (200M) [Context=32] predictions on NITH-SYNTH.
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Figure 18: LAGLLAMA (200M) [Context=1024] predictions on NITH-SYNTH.
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Figure 19: MOIRAI (311M) predictions on NITH-SYNTH.
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Figure 20: MOIRAI (311M) [Context=5000] predictions on NITH-SYNTH.
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Figure 21: TIMER (67M) predictions on NITH-SYNTH.
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Figure 22: TIMER (67M) [Context=1440] predictions on NITH-SYNTH.
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Figure 23: TIMESFM (200M) predictions on NITH-SYNTH.
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Figure 24: TINYTS (5M) predictions on NITH-SYNTH.
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Figure 25: CHRONOS-NITH predictions on NITH-SYNTH.
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Figure 26: TIMESFM-NITH predictions on NITH-SYNTH.
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Figure 27: CHRONOS (200M) predictions on NITH-REAL.
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Figure 28: CHRONOS (710M) predictions on NITH-REAL.
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Figure 29: LAGLLAMA (200M) predictions on NITH-REAL.
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Figure 30: MOIRAI (311M) predictions on NITH-REAL.
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Figure 31: TIMER (67M) predictions on NITH-REAL.
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Figure 32: TIMESFM (200M) predictions on NITH-REAL.
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Figure 33: TINYTS (5M) predictions on NITH-REAL.
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Figure 34: CHRONOS-NITH predictions on NITH-REAL.
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Figure 35: TIMESFM-NITH predictions on NITH-REAL.
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Datasets Domain Ntest Norig Length
NAB-realAWSCloudwatch Machine 6 17 4148.333

NAB-realAdExchange Machine 6 6 1601.667
NAB-realKnownCause Machine 4 7 4624.000

NAB-realTraffic Traffic 5 7 2200.400
NAB-realTweets Social 8 10 15864.250
Timer-Electricity Energy 252 321 26304.000
Timer-PEMS03 Traffic 1000 26208 358.000
Timer-PEMS04 Traffic 1000 16992 307.000
Timer-PEMS07 Traffic 1000 28224 883.000
Timer-Traffic Traffic 614 862 17544.000
UCR-ACSF1 Energy 87 100 1460.000

UCR-Computers Energy 20 250 720.000
UCR-CricketX Motion 21 390 300.000
UCR-CricketY Motion 11 390 300.000
UCR-CricketZ Motion 18 390 300.000

UCR-DodgerLoopDay Traffic 5 80 288.000
UCR-DodgerLoopGame Traffic 8 138 288.000

UCR-DodgerLoopWeekend Traffic 8 138 288.000
UCR-Earthquakes Geophysical 139 139 512.000

UCR-FordA Machine 1000 1320 500.000
UCR-FordB Machine 764 810 500.000
UCR-Ham Biomedical 55 105 431.000

UCR-HouseTwenty Energy 9 119 2000.000
UCR-InsectEPGRegularTrain Biomedical 1 249 601.000
UCR-InsectEPGSmallTrain Biomedical 1 249 601.000
UCR-InsectWingbeatSound Biomedical 9 1980 256.000

UCR-LargeKitchenAppliances Energy 28 375 720.000
UCR-Lightning2 Geophysical 5 61 637.000
UCR-Lightning7 Geophysical 1 73 319.000
UCR-Phoneme Audio 518 1896 1024.000

UCR-PigAirwayPressure Biomedical 8 208 2000.000
UCR-RefrigerationDevices Energy 264 375 720.000

UCR-ScreenType Energy 16 375 720.000
UCR-SemgHandGenderCh2 Biomedical 361 600 1500.000

UCR-SemgHandMovementCh2 Biomedical 270 450 1500.000
UCR-SemgHandSubjectCh2 Biomedical 262 450 1500.000

UCR-SmallKitchenAppliances Energy 85 375 720.000
UCR-UWaveGestureLibraryX Motion 3 3582 315.000

Table 2: Statistics of different time series dataset in filtered benchmark (part 1).
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Datasets µT ω σT

NAB-realAWSCloudwatch 21.983 1.868 50.375
NAB-realAdExchange 36.045 5.296 50.614
NAB-realKnownCause 40.820 2.118 262.003

NAB-realTraffic 22.059 3.270 30.191
NAB-realTweets 51.019 2.052 99.671
Timer-Electricity 31.126 11.147 54.411
Timer-PEMS03 11.487 2.622 7.876
Timer-PEMS04 11.143 2.488 7.544
Timer-PEMS07 9.634 2.457 5.867
Timer-Traffic 30.773 7.760 37.098
UCR-ACSF1 4.210 1.221 7.361

UCR-Computers 5.015 1.596 22.224
UCR-CricketX 36.354 7.219 23.434
UCR-CricketY 42.944 8.415 29.562
UCR-CricketZ 39.412 8.295 23.042

UCR-DodgerLoopDay 30.609 6.918 21.857
UCR-DodgerLoopGame 33.257 6.703 24.421

UCR-DodgerLoopWeekend 33.257 6.703 24.421
UCR-Earthquakes 8.090 1.322 7.626

UCR-FordA 34.920 10.619 23.311
UCR-FordB 34.605 10.731 25.759
UCR-Ham 50.239 8.805 20.840

UCR-HouseTwenty 33.228 3.148 151.309
UCR-InsectEPGRegularTrain 71.000 9.211 80.819
UCR-InsectEPGSmallTrain 71.000 9.211 80.819
UCR-InsectWingbeatSound 38.065 9.396 13.028

UCR-LargeKitchenAppliances 31.391 4.326 79.401
UCR-Lightning2 57.524 3.274 72.528
UCR-Lightning7 42.000 2.806 46.669
UCR-Phoneme 19.243 4.262 37.905

UCR-PigAirwayPressure 9.248 3.005 6.582
UCR-RefrigerationDevices 13.836 6.077 16.513

UCR-ScreenType 10.260 3.806 25.248
UCR-SemgHandGenderCh2 13.916 2.158 19.442

UCR-SemgHandMovementCh2 14.032 2.153 19.708
UCR-SemgHandSubjectCh2 13.996 2.157 19.138

UCR-SmallKitchenAppliances 37.456 1.603 49.468
UCR-UWaveGestureLibraryX 46.364 12.233 20.486

Table 3: Statistics of different time series dataset in filtered benchmark (part 2).
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