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Abstract

Text-guided 3D human generation has advanced with the
development of efficient 3D representations and 2D-lifting
methods like Score Distillation Sampling (SDS). However,
current methods suffer from prolonged training times and
often produce results that lack fine facial and garment de-
tails. In this paper, we propose GaussianlP, an effective
two-stage framework for generating identity-preserving re-
alistic 3D humans from text and image prompts. Our core
insight is to leverage human-centric knowledge to facili-
tate the generation process. In stage 1, we propose a novel
Adaptive Human Distillation Sampling (AHDS) method to
rapidly generate a 3D human that maintains high identity
consistency with the image prompt and achieves a real-
istic appearance. Compared to traditional SDS methods,
AHDS better aligns with the human-centric generation pro-
cess, enhancing visual quality with notably fewer training
steps. To further improve the visual quality of the face and
clothes regions, we design a View-Consistent Refinement
(VCR) strategy in stage 2. Specifically, it produces detail-
enhanced results of the multi-view images from stage 1 iter-
atively, ensuring the 3D texture consistency across views via
mutual attention and distance-guided attention fusion. Then
a polished version of the 3D human can be achieved by di-
rectly perform reconstruction with the refined images. Ex-
tensive experiments demonstrate that GaussianlP outper-
forms existing methods in both visual quality and training
efficiency, particularly in generating identity-preserving re-
sults. Our code is available at: https://github.com/silence-
tang/GaussianlP.

1. Introduction

Creating high-quality 3D human avatars based on user in-
puts is essential for a variety of applications, including

*Corresponding author.

Virtual Try-On [10, 11, 26, 71] and immersive telepres-
ence [27, 28, 50]. It also plays an pivotal role in emerging
technologies like AR and VR. Text-guided 3D human gen-
eration is a task which involves synthesizing a character’s
geometry and appearance from text prompts. Score Distilla-
tion Sampling (SDS) proposed in DreamFusion [46] paves
the way for generating 3D objects by distilling from 2D dif-
fusion priors [13, 49], simplifying the process of creating
3D objects. It also inspires researchers to design various
pipelines tailored for creating 3D humans.

A common paradigm is to learn a SDS-guided con-
ditional Neural Radiance Field (NeRF) [43] by integrat-
ing parametric human body models like SMPL [36] or
imGHUM [1] into the framework to model body-related ge-
ometry and appearance [2, 17, 24, 69]. However, NeRF-
based methods suffer from slow rendering speed and fall
short in delivering high-resolution results.

Recently, as 3D Gaussian Splatting (3DGS) [22] unlocks
new possibilities for high-fidelity 3D reconstruction with
real-time rendering, a few works [34, 68] introduce 3DGS
to achieve efficient creation of 3D avatars. Despite achiev-
ing promising results, all the NeRF-based or 3DGS-based
methods rely solely on text prompts, limiting their diversity
in generation and real-world applicability, such as creating
identity-preserving 3D avatars from user portraits.

In contrast to these 3D-based methods, recent 2D gener-
ative diffusion models [13, 49] have exhibited pronounced
superiority in terms of visual fidelity. Built upon these
powerful generative base models, several works concen-
trate on human-centric generation tasks, e.g. Virtual Try-On
(VTON) [23, 55, 73] and identity-driven photo personaliza-
tion [29, 60, 65]. Although [3, 58, 62] attempt to edit 3D
human bodies with the aid of 2D human-centric diffusion
models, the potential of leveraging these models to generate
detailed identity-preserving 3D humans from multi-modal
user inputs, remains largely untapped.

In this work, we propose a novel two-stage frame-
work GaussianIP, which is capable of generating realistic
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identity-preserving 3D human avatars from both text and
image prompts. Our key intuition is twofold: (a) We can
develop an effective method to distill human-centric dif-
fusion priors, enabling the generation of 3D avatars with
high facial identity consistency to the input image and rich
clothing details; (b) The powerful generative capability of
diffusion models can be leveraged to further refine the re-
sults of the distillation process. In stage 1, we train the
3D human Gaussians with our proposed Adaptive Human
Distillation Sampling (AHDS) guidance, consisting of Hu-
man Distillation Sampling (HDS) and an adaptive timestep
scheduling strategy. The HDS is designed by decomposing
the original score difference and incorporating identity con-
ditions to ensure identity-preserving distillation. In timestep
scheduling, we treat the entire HDS process as three con-
secutive phases, from coarse geometry to fine facial details,
and assign different diffusion timestep sampling strategies
to each phase to accelerate the generation process. Since
the distilled results may exhibit subtle texture smoothing,
we design an elaborative refinement mechanism in stage 2
to further improve the intricate details of the clothed hu-
man body. Instead of diffusing and denoising the multi-
view images directly, which may jeopardizing 3D consis-
tency, we propose a View-Consistent Refinement (VCR)
mechanism. Specifically, four main views are denoised first
and their intermediate attention features are stored to guide
the denoising process of the k key views through mutual
attention. For other ordinary views, we apply relative dis-
tance guided attention fusion to ensure texture consistency
with their neighboring key views. Afterwards, the refined
images can be utilized to optimize the 3D human Gaussians
directly in a reconstruction way, which is highly efficient.
Our key contributions include:

* We propose a novel identity-preserving 3D human gener-
ation task, where the human avatar should align with the
given text and image prompts while maintaining highly-
realistic face and clothes appearance. We design Gaussia-
nlP, a two-stage framework based on 3D Gaussian Splat-
ting and 2D human-centric prior to achieve this goal.

* We propose an Adaptive Human Distillation Sampling
(AHDS) strategy to efficiently generate high-quality 3D
human models in stage 1. Compared to the traditional
SDS strategy, our AHDS better supports the human-
specific generation process, yielding results with en-
hanced visual quality while reducing training steps by ap-
proximately 30%.

e We introduce a View-Consistent Refinement (VCR)
mechanism to enhance the visual details of multi-view
images from stage 1. Leveraging the refined images, the
3D human model can be further improved in a short time.

» Extensive experiments show that GaussianIP outperforms
existing methods in both visual quality and training ef-
ficiency, particularly excelling at generating identity-
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preserving facial details and rich garment textures.

2. Related Work

2D Human-centric Diffusion Models. 2D generative dif-
fusion models [13, 38, 49] have demonstrated remarkable
performance in the realm of conditional image genera-
tion [7, 12, 54, 70], though they are typically designed for
general object generation. Recently, researchers fine-tune
these models on human-related datasets [63, 72], creating
models that perform exceptionally well in generating con-
tent such as clothed human body. A prominent line of work
is identity-preserving image customization [29, 30, 60, 65].
These methods achieve single-ID personalization by lever-
aging global [47] or local [6] facial features to condition
the generation process on the identity of a single individ-
ual. Another noteworthy direction explores Virtual Try-On
(VTON) [55, 73], aiming to generate an outfitted human
wearing the given garment. These methods typically in-
volve the integration of garment warping modules to gen-
erate deformed garments [9] or designing specialized UNet
or injection blocks [23] to align the garment features with
the human body. However, lifting these 2D methods to 3D
scenes, thereby expanding their applications in AR/VR, re-
mains largely unexplored.

Text-guided 3D General Object Generation. Tradi-
tional methods [18, 44, 51] rely on CLIP [47] to opti-
mize the 3D representations while decent results cannot be
achieved due to the low expressivity of CLIP. Score Distilla-
tion Sampling (SDS) proposed in DreamFusion [46] opens
the door for high-quality 3D object generation by distilling
from text-to-image diffusion models and motivates various
concurrent works [4, 33, 48, 57]. To improve the original
SDS loss, several novel distillation techniques [5, 16, 21,
37, 67] have been introduced, such as Variational Score Dis-
tillation (VSD) [61], Internal Score Matching (ISM) [31],
Asynchronous Score Distillation (ASD) [40], etc., by reex-
amining the SDS process or analyzing the behavior of 2D
diffusion models. Considering the time-consuming NeRF
training process, several works [41, 56, 66] adopt 3D Gaus-
sian Splatting (3DGS) [22] as their 3D representation to
achieve efficient training and rendering.

Text-guided 3D Human Generation. AvatarCLIP [14]
first realizes zero-shot text-driven 3D avatar generation
by leveraging CLIP and NeuS [59]. Inspired by SDS,
DreamWaltz [17], AvatarVerse [69] and other concurrent
works [2, 24] utilize the parametric SMPL model [36] and
auxiliary networks like densepose ControlNet [70] to guide
the learning process, improving the visual fidelity and 3D
consistency of the generated 3D avatars. Apart from these
NeRF-based methods, some works integrate other 3D repre-
sentations into their frameworks to attain more fine-grained
control of geometric shapes or textures. AvatarCraft [19],
TADA [32] and X-Oscar [39] employ optimized SMPL-
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Figure 1. Overview of the GaussianIP framework. We combine 3D Gaussian Splatting (3DGS) with a human-centric diffusion prior
to realize high-fidelity 3D human avatar generation. (a) We initialize 3D human Gaussians by densely sample from a SMPL-X mesh.
Afterward, (b) a human-centric diffusion model is combined with a pose-guide ControlNet to produce AHDS guidance. The AHDS
guidance consists of an HDS guidance, which is proposed to achieve better identity-preserving generation, and an Adaptive Human-
specific Timestep Scheduling strategy, which accelerates the HDS training. Furthermore, we propose (c) a View-Consistent Refinement
Mechanism to further enhance the delicate texture of faces and garments. We guide the denoising of key views x{ with attention features
from main views 23} through Mutual Attention. Next, we align the denoising of an intermediate view a:{, with that of its neighbor key
views via distance-guided attention fusion. Finally, the refined multi-view images are leveraged to optimize the current 3DGS.

X mesh to represent 3D human bodies. AvatarStudio [42]
and HumanNorm [15] achieve enhanced geometric details
by utilizing DMTet [53] for 3D representation, combined
with multi-stage or decoupled optimization strategies. More
recently, HumanGaussian [34], GAvatar [68] and other
works [8, 35] introduce 3DGS to create high-resolution re-
alistic 3D avatars and real-time rendering. However, these
methods fail to handle image prompts such as user portraits,
which limits their real-world applicability.

3. Method

Problem statement. Given a text prompt describing the
clothing and an user portrait providing facial identity, the
model should swiftly generate a identity-preserving 3D hu-
man avatar with refined facial features and intricate cloth-
ing details. In the following sections, preliminaries will be
present first. Next, we will introduce our Adaptive Human
Distillation Sampling (AHDS) process. Following that, a
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simple yet effective View-Consistent Refinement mecha-
nism (VCR) will be detailed.

3.1. Preliminaries

3D Gaussian Splatting [22] is an effective point-based
representation consisting of a set of anisotropic Gaussians.
Each 3D Gaussian is parameterized by its center position
p € R3, covariance matrix 3 € R7, opacity o € R and
color ¢ € R3. By splatting 3D Gaussians onto 2D image
planes, we can perform point-based rendering:

1 B
G(P, i, Bi) = exp(—5(p — 1) TS (p — ),

i—1 €))
C(p) = Z CiOég H(l - O(;), 042 = aiG(pa i, Ez)
1EN j=1

Here, p is the coordinate of the queried point. p;, ¥;, c;,
«;, and a; denote the center, covariance, color, opacity, and
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density of the ¢-th Gaussian, respectively. G(p, w,, X;) rep-
resents the value of the i-th Gaussian at position p. N is a
sorted list of Gaussians in this tile.

Score Distillation Sampling [46] leverages a powerful 2D
text-to-image diffusion model, €4, to guide the training of
3D scenes. By distilling gradients from the 2D diffusion
model, SDS ensures the 3D scene’s rendered images align
with the input text prompt. Given a 3D representation pa-
rameterized by 6, an image @ = ¢(#) can be rendered with a
differentiable renderer g. SDS calculates the gradients with
respect to the 3D representation 6 by:

0
VoLsps(9:@) = v |w(t) (col@iiyt) =€) 57| @)

where y is the text prompt, ¢ is the sampling timestep in
a 2D diffusion model, € ~ A(0,1I) is the sampled noise
and ; is the noised image. w(t) is a weighting function
depending on the timestep .

3.2. Adaptive Human Distillation Sampling

3D human generation task has distinct characteristics com-
pared to 3D object generation tasks, which typically involve
initializing 3D Gaussians [22] with Shape-e [20] and op-
timizing the 3D object representation through distillation
from 2D general-purpose diffusion models [13, 49]. For
instance, the human parametric model [45] provides a re-
liable prior for human body geometry, which can facili-
tate the training process by starting with smaller diffusion
timestep. By leveraging 2D human-centric diffusion mod-
els [60, 64, 65], we can enhance the visual quality of gener-
ated 3D avatars and ensure identity-preserving generation
through effective distillation techniques. In addition, in-
spired by the coarse to fine nature of 2D human generation
process, we can design a more effective timestep sampling
strategy tailored for human-specific generation tasks.
Gaussian Initialization. A proper initialization method
which can provide a rough geometry is crucial for the suc-
cess of training. Traditional methods [22, 66] rely on tools
like Structure-from-Motion (SfM) [52] and Shape-e [20],
which may result in overly sparse points or inconsistent
body structures. [34] first proposes to initialize 3D Gaus-
sians on a neutral SMPL-X [45] mesh. We adopt a similar
way to prepare for the subsequent training stages.
Distillation Sampling with Human-centric Prior. Since
we focus on 3D human generation, distilling from a general
diffusion prior like [34, 35, 68] may not be the most optimal
approach. Instead, we combine a face-focused version of
[65] D;,, with a pose-conditioned ControlNet [70] Cosc to
form a human-specific diffusion prior Dfp. For each train-
ing step, we apply a view-dependent pose skeleton trim-
ming strategy to ensure a pose condition map p which accu-
rately represents the visibility of facial features (eyes, ears,
etc.) from different views. For example, when the azimuth
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exceeds 60°, the left ear keypoint will be masked. Then the
left and right eye will be sequentially masked as the azimuth
increases. For the back view, only the ears remain visible.
The trimmed p contains pose clue across views, which is
essential for mitigating the “Janus” problem.

To fully leverage the given text and image condition when
training with SDS loss, we propose a novel human distil-
lation sampling (HDS) guidance by decomposing and re-
designing the original score difference. Inspired by [21],
we can rewrite the common score difference [46] as:

3)

where 5rect+5noise = €¢ (mt; Yo, t) and 5cond = €<b(mt; Y, t) -
€s(®4;Yp,t) denote the unconditional and conditional
terms, respectively, with « as the classifier-free guidance
(CFG) [12] coefficient and y4 the null text. Here, drect
acts as a rectifier, guiding the rendered image x = g(6)
towards a denser region within the manifold of real im-
ages, while d,0;5 Serves as a denoiser, pushing a towards
a cleaner image. However, [61] indicates that the resid-
ual Spoise — € is noisy and may cause blurry textures, so
we define the identity-preserving score difference d6;, =
€ip(®e;y, Lip,t) — € in our HDS as:

dip = Orger T Veond )

= (Slgz:l + V(Eip(wt; Y, Iipa t) - Gip(ﬂft; y¢77 Iuv t))7

where ¢;, is the e-prediction UNet used in the diffusion
prior D;7*° and I, can be a face irrelevant to I;;. As re-
gards the rectifying direction i, it can be estimated as
€s(x4; Yo, t) when the timestep ¢ is rather small, given the
low noise level at these timesteps making the denoising di-

rection negligible. We then use a repelling score to model
drect at other diffusion timesteps, so we get:

51’,[) o Eip(mt;yqﬁaI,uat)
rect —

GZ(wt; Y, t) — € = Orect + Onoise + ’Yécond — €,

t<T )
eip(wt; Yo, I,LL? t) - eip(mt; Y-, Id)v t) t> T,

where y_ represents the negative prompt, I4 denotes an
all-zero image, and 7 is the timestep threshold. With our
redesigned score difference, the generated avatar is more
realistic without the issue of over-saturation and exhibits a
strong alignment with the given identity image prompts.

Adaptive Human-specific Timestep Scheduling. Despite
an identity-preserved 3D avatar with decent appearance can
be generated with HDS, it still requires a long training
time. Aims to achieve faster HDS optimization within fewer
training steps, we propose an adaptive diffusion timestep
scheduling strategy motivated by [16, 25], which results in
a non-increasing timestep against training step (¢ — ¢) curve
tailored for 3D human generation tasks. Inspired by the
denoising process in 2D human generation, we may natu-
rally divide the entire 3D HDS process into three synergis-
tic phases: geometry and base textures (phase 1), middle-
level textures (phase 2) and fine facial and garment details
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Figure 2. Illustration of the optimized weight PDF for sampling timesteps and the corresponding timestep vs. training step (t-i) curve. a)
Phase 1, 3 occupy the majority of the training steps, while Phase 2 occupies only a small portion, allowing a quick transition to the detailed
texture learning in Phase 3. b) We sample the final timestep between the lower bound and ¢pg for each phase. Note that for the geometry
phase (¢ < 500), we sample between 500 and the maximum timestep to ensure a smooth start.

(phase 3). Each phase is assigned with a timestep range,
range, = [t;,t;+1],% = 1,2,3. Intuitively, more training
steps should be assigned to phase 1, 3 to model human ge-
ometry and intricate details. Phase 2 can be seen as a tran-
sitional stage, requiring slightly fewer steps. To derive a
t — 1 curve that accurately exhibits these trends, we start
by optimizing a weighting PDF function of timesteps ¢ then
map it to the final ¢ — ¢ curve. Empirically, a dual-piecewise
Gaussian function Wpg(¢; s1, s2,T) is employed to repre-
sent the probability distribution:

L_ exp (— (th)2> t<T
\/2ms2 257 -
Woa(t) = 21 ' (thl)2 ©
— exp (— 522 ) t>1T.
V 27s5 S2

The long-tail property may cause a swift timestep decrease
at phase 1 to avoid over-large ¢ (SMPL-X provides a rough
geometry so the training can start with smaller ¢) and sup-
press over-small ¢ at phase 3, which introduces high gradi-
ent variance. Given the training steps assigned to the three
phases n;,7 = 1,2, 3 and the total step N, We can estimate
the parameters of Wpg by solving an optimization prob-

lem:

with the results presented in Fig. 2 (a). This objective en-
sures that the accumulative probability of each range aligns
with the desired training step proportion of each phase, fa-
cilitating the mapping between Wp¢ and the ¢ — ¢ curve.
Finally, the corresponding timestep for each training step @

3
S1, 82, T = argmin E
81,82,T k=1

2
S Woalt) — 7;\’;) .

tErange,,
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can be solved by:

T .
‘ . i
tpg(i) = argmin Z Wpa(t) — ~| e 3)
T t=1

where € is a small tuning factor. To prevent texture over-
saturation and ensure smooth transitions between stages,
we set a lower bound for each phase and sample the final
timestep within the range between this lower bound and tpg
(shown in Fig. 2 (b)). This adaptive timestep scheduling
function can be seamlessly integrated into our HDS process
to form the AHDS guidance, ensuring a faster and smoother
training process that produces detail-enhanced results.

3.3. View-consistent Refinement Mechanism

With the assistance of the AHDS guidance in stage 1, 3D
avatars with rich garment details and better identity consis-
tency can be generated efficiently. However, the distillation
process itself may inevitably cause slight texture smoothing.
To further enhance detail articulation based on the AHDS
training results, a straightforward approach is to add noise
to the rendered multi-view images, denoise them, and then
optimize the 3DGS using the denoised images. The inde-
pendent denoising process, however, may lead to texture
inconsistencies across multi-view images, as there is no ex-
change of view information during processing. To address
this issue, we design an elegant refinement strategy, which
is shown in Fig. | (c). The entire refinement process con-
sists of two sub-process, key view refinement and interme-
diate features propagation. We first guide the denoising of k
key views with the attention features of main views (front,
back, left, right), ensuring a roughly consistent appearance
among key and main views, then we propagate the refine-
ment effects to other views via weighted attention fusion.
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Key Views Refinement. For a specific key view P, we
inject the attention keys K ,,, and values V,,, of its nearest
main view M into the denoising process. Directly apply-
ing this injection may cause texture drift, as some unwanted
features (from invisible areas) may be queried. To miti-
gate this, we inflate the self-attention keys and values for
the main view, so the keys and values from the two views
act as a mutual reference. Denote the attention operation

as Attn(Q, K, V) = Softmax (Q—\‘ZT) V, where d is the

model dimension, we can denote the main view guided mu-
tual attention as:

Oma = Attn(Q,,, (K, K.}, [V, Vin]), ©)]
where K, V, denote the keys and values of view P, re-
spectively, and [, -] is the concatenate operation. This mu-
tual reference attention ensures that all the key views share
an aligned appearance with the main views, laying a solid
foundation for the following process.

Intermediate Features Propagation. Finally, to obtain a
smooth transition of refinement effects between two adja-
cent key views (we may regard main views as key views
here), we “propagate” the attention features of two key ad-
jacent views to their intermediate views. Given such a view
1, we first query its nearest neighbor key views P; and P,
and calculate the relative distance based on their azimuths,

that is: Dist(1, P) = % where ¢y is the azimuth
( 1

of view V. We can naturally regard n; = 1 — Dist(I, P)
as the influence of P, on I. To properly fuse the attention
features K,,,V, of P, and K, ,V, of P, into the de-
noising process of I, we introduce a novel weighted atten-
tion fusion strategy guided by relative distances. Specifi-
cally, the attention output is combined with two parts, pure
self-attention Oy, = Attn(Q,, K;,V;) and fused atten-
tion, which is obtained by Oy, = n;Attn(Q,, Kp,,Vp,) +
nAttn(Q;, K p,,V p,). The output of the complete atten-
tion operation can then be derived as:

Oﬁnal == Aselfosa + (1 - )\self)Ofaa (10)
where Agir € [0, 1] is a weight factor. Through this attention
fusion process, the refined image of I will have high texture
consistency with the results of its neighboring views.

3D Human Gaussian Optimization. With the refined
multi-view images which are aligned with each other in
textures and semantics, we can optimize the 3D Human
Gaussians from stage 1 by directly applying reconstruction
losses. At each training step, we randomly select b views
from those used in the refinement stage and compute the re-
construction loss between the rendered images X and the
ground truth X:

Lrecon = /\Ll Ll (Xa th) + )\lpips Llpips (X7 Xgl)> (1 1)
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where Ay and Apips are weight factors. To improve effi-
ciency, we crop each rendered image to the rectangular re-
gion of the human body, downsample it by half, and then
calculate the reconstruction loss against similarly processed
ground truth images.

4. Experiments

4.1. Implementation Details

AHDS Guidance and Stage 1 Training Setups. We adopt
IP-Adapter-FacelD-PlusV2 [65] as our human-centric dif-
fusion prior. When solving the time scheduling ¢ — ¢ curve,
we set t1 = 20, to = 350, t3 = 450 and t4 = 800, re-
spectively. The training steps assigned to the three phases
are n1 = 900, ne = 500 and nz = 1000, respectively, and
the total step of phase 1 training is 2400. During the train-
ing process, we set the classifier-free guidance coefficient
to v = 7.5 and the time threshold in Eq. 6 to 7 = 170.
The lower bounds for the three stages are 400, 150 and 20,
respectively. The densification & pruning operation is con-
ducted from 200 to 1700 steps at an interval of 800 steps
while the prune-only operation is applied once at step 1800.
Stage 1 is trained with Adam optimizer, with the learning
rates of each Gaussian attribute is scheduled following [34].
Refinement and Stage 2 Training Setups. The total de-
noising step is set to 8 during the refinement process and
the number of key views is 4. When conducting interme-
diate view refinement, the weighted attention fusion factor
Aselr 18 set to 0.55. We use the refined images to optimize
the 3D human Gaussians for 800 steps with a batch size
b = 8. The weight factors Ar; and Ajpips are set to 10 and
15, respectively. All experiments are conducted on a single
NVIDIA V100 GPU.

Baselines. For fair comparison, we compare with recent
SOTA text-to-3D human works instead of general text-to-
3D methods, which include DreamWaltz [17], TADA [32],
AvatarVerse [69], X-Oscar [39] and HumanGaussian [34].
Criteria. We conduct a user study to evaluate the 3D human
humans generated by different methods. We randomly se-
lected 20 prompts to generate 3D human models using each
of the comparison methods. 24 participants were asked to
evaluate the generated models based on 4 criteria: Facial
Detail, Clothing Texture Richness, Overall Visual Quality,
and Text Prompt Alignment. We also have ChatGPT-40 rate
the images comprehensively on these aspects. Each crite-
rion was rated on a scale from 1 to 5 (higher is better). Ad-
ditionally, we compare the training time of each method to
assess training efficiency.

4.2. Text-guided 3D Human Generation

Qualitative Results. Our method demonstrates clear ad-
vantages over [2, 24, 32, 34] in two key aspects. As shown
in Fig. 3, it excels in facial detail, capturing sharper and
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Figure 3. Qualitative comparison results with SOTA text-guided 3D human generation models. Please zoom in for better observation. Note
that the baselines cannot handle image prompts, so we compare their text-to-3D results instead. Due to space limitations, please refer to

the supplementary materials for the video comparison results.

more realistic facial features. For clothing texture richness,
our method preserves intricate patterns and fabric details
that others often miss. Additionally, our method generates
results with high identity consistency to the given user por-
traits, which broadens its potential application scenarios.

Quantitative Results. As shown in Table 1, our method
achieves consistently higher scores across all five crite-
ria, demonstrating superior fidelity and alignment with
prompts. Additionally, We utilize an off-the-shelf commer-
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cial face verification algorithm (Face++) to evaluate the per-
formance of our method with regard to identity preserva-
tion. All faces of the generated humans successfully match
the corresponding user portraits with an average confidence
level exceeding 83%. Regarding the training time, all base-
line methods necessitate over one hour to complete their
training tasks, while our method manages to accomplish the
same tasks in approximately 40 minutes, thereby demon-
strating its superior training efficiency.
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Methods Fac. Det. Cloth. Tex. Vis. Qual. Text Align. GPT Score Training Time ID Pres.
DreamWaltz [17] 1.33 1.46 1.38 1.58 1.82 1.3h X
TADA [32] 2.21 2.46 2.58 3.13 3.24 2h X
AvatarVerse [69] 3.67 3.29 2.63 2.96 3.05 1h X
X-Oscar [39] 3.29 3.83 3.58 3.63 3.64 3h X
HumanGaussian [34] 4.29 4.17 3.96 4.42 4.08 1.2h X
Ours 4.71 4.50 4.17 4.62 4.52 40min v

Table 1. Quantitative comparison results. We conduct evaluations on generation quality from five aspects: (1) Facial Detail; (2) Clothing
Texture Richness; (3) Overall Visual Quality; (4) Text Prompt Alignment; (5) ChatGPT Score. We also compare the training time and
identity preserving ability here.

! )
ID Image
Prompt: “A
girl wearing

ski clothes.”

a) 3DGS+SDS

b) + HDS

¢) + AHDS

Figure 4. Ablation studies on various module designs. We present
the generation results of the human frontal view under four abla-
tion settings: (a) baseline; (b) + HDS; (c) + AHDS; (d) + View-
consistent Refinement Mechanism. Detailed ablation settings and
result analysis are depicted in Sec. 4.3.

w/ View-consistent Refinement

w/o View-consistent Refinement

Figure 5. Ablation study on our VCR module. When the multi-
view images are denoised independently, the results will loss
cross-view texture consistency. In contrast, images refined with
our VCR module maintain high 3D texture consistency.

4.3. Ablation Studies

Ablations for AHDS and Refinement Mechanism. We
evaluate the visual results of a) our baseline approach
(3DGS+SDS) and progressively add b) HDS, ¢) AHDS
(HDS with adaptive timestep scheduling), and d) the View-
Consistent Refinement (VCR) mechanism. The results in
Fig. 4 show that the avatar generated with the baseline
forms basic shapes but tends to produce an over-saturated
appearance and lacks fine details. Incorporating HDS leads
to improvements in identity preservation and clothing de-
tails. With the addition of timestep scheduling in AHDS,
the training time required for HDS is significantly reduced
(with training steps reduced from 3600 to 2400) while
achieving enhanced generative quality. The generated re-
sults display more intricate textures and detailed facial fea-
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tures. Finally, the refinement mechanism further improves
multi-view consistency, achieving high-fidelity, coherent
textures across views.

Ablation for View-consistent Refinement. To assess the
importance of multi-view consistency, we perform an ab-
lation on the refinement mechanism. As illustrated in Fig.
5, when the image of each view undergoes independent de-
noising process, the result lacks some texture consistency
across various views, showing misaligned and blurred de-
tails when we change the camera views. In contrast, ap-
plying our view-consistent refinement ensures texture align-
ment across all views, maintaining consistent and realistic
details, especially in critical facial and garment features.

5. Conclusion

In this paper, we present GaussianlP, a novel two-stage
framework for generating realistic 3D human avatars from
text and image prompts while preserving critical facial iden-
tity features. We propose AHDS guidance to facilitate the
learning of identity attributes and accelerate the generation
process. Additionally, we introduce a VCR mechanism to
enhance the texture fineness of 3D human avatars without
sacrificing 3D multi-view consistency. Extensive experi-
ments validate the superiority of GaussianIP, highlighting
its advantages in both training efficiency and visual fidelity.
Limitations and future work. Our method faces chal-
lenges in rendering highly complex poses or extreme gar-
ment textures. Further research is required to generalize the
framework to broader applications, such as human-object
and human-human interactions. We aim to investigate these
aspects in future work, enabling more immersive and richer
interactive experiences in VR/AR environments.
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