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Abstract
Multi-label pedestrian attribute recognition in surveillance is inherently a challenging task due to poor imaging quality, large
pose variations, and so on. In this paper, we improve its performance from the following two aspects: (1) We propose a
cascaded Split-and-Aggregate Learning (SAL) to capture both the individuality and commonality for all attributes, with one
at the feature map level and the other at the feature vector level. For the former, we split the features of each attribute by
using a designed attribute-specific attention module (ASAM). For the later, the split features for each attribute are learned by
using constrained losses. In both modules, the split features are aggregated by using several convolutional or fully connected
layers. (2) We propose a Feature Recombination (FR) that conducts a random shuffle based on the split features over a batch
of samples to synthesize more training samples, which spans the potential samples’ variability. To the end, we formulate a
unified framework, named CAScaded Split-and-Aggregate Learning with Feature Recombination (CAS-SAL-FR), to learn
the above modules jointly and concurrently. Experiments on five popular benchmarks, including RAP, PA-100K, PETA,
Market-1501 and Duke attribute datasets, show the proposed CAS-SAL-FR achieves new state-of-the-art performance.
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1 Introduction

Visual analysis of pedestrian attributes (Wang et al. 2017;
Sarfraz et al. 2017; Lin et al. 2019; Liu et al. 2017; Zhao et al.
2018; Xiang et al. 2019; Tan et al. 2019b; Han et al. 2019;
Li et al. 2019a, b; Tang et al. 2019c), e.g., gender, age and
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hair style, has recently received increasing attention due to
its potential applications in surveillance and security applica-
tions. Although the performance has been greatly improved
owing to the success of deep learning (Krizhevsky et al.
2012; Simonyan and Zisserman 2015; He et al. 2016, 2017;
Huang et al. 2017; Hu et al. 2018a; Liu et al. 2020; Zhu et al.
2019; Shifeng et al. 2019) especially the Convolutional Neu-
ral Network (CNN) (LeCun et al. 1998), accurate recognition
of pedestrian attributes remains a challenging task because
of poor imaging quality (e.g., low resolution and motion
blur), complex variations (e.g., arbitrary human poses, vari-
ous camera viewing angles, and background), small training
datasets and so on.

For multi-label pedestrian attribute classification, most
previous works (Wang et al. 2017; Sarfraz et al. 2017; Lin
et al. 2019; Liu et al. 2017; Li et al. 2019a, b) employ
simple multi-task learning (MTL) framework to analyze
all attributes together with a shared feature extractor. Such
a shared strategy may prefer to capture the common and
general features for all attribute (commonality), while the
specific semantics of each attribute may be less involved
(individuality). In other words, the commonality of all
attributes may be overemphasized while the individuality
of each attribute may be ignored. Actually, for multi-label
pedestrian attribute recognition, different attributes are often
related with different body regions and semantics. For exam-
ple, we mainly look at the head region to recognize a
pedestrian’s hairstyle while the upper body region is often
used to judge the upper clothing style. Moreover, color infor-
mation often determines a pedestrian’s shoe color, while the
texture and shape features are essential to identify the type of
shoes. Therefore, learning the individuality of each attribute
is also very necessary, which ensures each attribute can learn
their own semantics.

In this paper, we propose a split-and-aggregate learning
(SAL) to learn both individuality and commonality among
pedestrian attributes. The features of each attribute are firstly
split out to capture the individualities for all attributes and
then aggregated together by using several CNN layers to
exploit their commonalities and relations. To fully capture
the individuality and commonality, we formulate two SALs
in a cascaded way, with one at the feature map level and the
other at the feature vector level. For the former, an Attribute-
Specific Attention Module (ASAM), which assigns each
attribute with several attention maps, is designed to capture
the features of an attribute from most relevant body regions.
ASAM has been implemented at different feature levels to
access abundant semantic information. For the later, we learn
the attribute-specific features by using the constrained losses
with each loss corresponding to several neurons.

Moreover, we further propose a new feature recombina-
tion operation to synthesize new representations. The key
idea is to recombine the components of different attributes,

which is different from the previous works of creating new
samples via generative models (Goodfellow et al. 2014;
Kingma and Welling 2014; Zheng et al. 2017; Fu et al.
2019). The extracted features of a sample can be regarded as
a combination of the split features of all attributes, with each
denoting the semantics of a specific attributes. By shuffling
the split features over a batch of samples, new synthetic repre-
sentations with different attribute semantics can be achieved.
In recombination stage, our method keeps the integrity and
semantics for each attribute-specific feature while spanning
the potential samples’ variability. To our best knowledge, it
is the first attempt to synthesize new samples at feature level
for pedestrian attribute recognition.

The main contributions of our work are as follows: (1)
We propose a novel unified framework with a cascaded split-
and-aggregate features learning to capture both individuality
and commonality among pedestrian attributes. (2) We pro-
pose a new feature recombination operation to synthesize
new representations. (3) We propose a novel attribute-
specific attention module, which can capture the features
from the most important regions/pixels for each attribute. (4)
We conduct extensive experiments on five popular pedes-
trian attribute benchmarks including RAP, PA-100K, PETA,
Market-1501 and Duke attribute datasets, which shows the
proposed method achieves the new state-of-the-art perfor-
mance.

2 RelatedWorks

2.1 Pedestrian Attribute Recognition

Earlier methods of pedestrian attribute recognition (Deng
et al. 2014; Zhu et al. 2013) typically model each attribute
independently based on the hand-crafted features like color
and texture histograms. Recently, owing to the great suc-
cesses of deep learning (Simonyan and Zisserman 2015;
He et al. 2016), many approaches based on deep networks
also have been developed for pedestrian attribute recogni-
tion (Wang et al. 2017; Sarfraz et al. 2017; Liu et al. 2018b;
Zhao et al. 2019; Li et al. 2019a, b; Tan et al. 2019b). Pre-
vious works mainly solve the task of pedestrian attribute
recognition from following aspects: (1) constructing atten-
tionmechanisms to capture discriminative features (Liu et al.
2017; Sarafianos et al. 2018; Zhao et al. 2019; Tan et al.
2019b; Tang et al. 2019c); (2) formulating a part-basedmodel
by using human poses (Liu et al. 2018b; Li et al. 2018a; Zhao
et al. 2018) or Spatial Transformer Networks (STN) (Tang
et al. 2019c); (3) exploiting the relations among attributes
or image regions (Wang et al. 2017; Zhao et al. 2019); and
(4) dealingwith the imbalance data problem (Sarafianos et al.
2018;Wanget al. 2019).Most of the previousworks construct
their models based on the multi-task learning (MTL) frame-
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work, while the traditional MTL framework usually prefers
to learn the commonality of all attributes while ignoring the
individuality of each attribute. In this work, we aim to cap-
ture both the individuality and commonality of all attributes,
where cascaded split-and-aggregate learning is proposed to
achieve this. The proposed method is also different from the
work (Tang et al. 2019c),which aims to select themost impor-
tant regions for each attribute. Ourwork not only considers to
capture the discriminative features for each attribute, but also
considers how to aggregate those split features with captur-
ing the commonalities and relations among those attributes.
The split-and-aggregate learning is considered to be imple-
mented at different levels, and then learns them jointly and
concurrently.

2.2 AttentionMechanism

Attention models (Hu et al. 2018a; Fu et al. 2017; Li et al.
2018c; Woo et al. 2018; Liu et al. 2017; Tan et al. 2019b;
Guo et al. 2019; Chen et al. 2019; Shuzhe et al. 2019;
Xiangyu et al. 2020) have aroused great interests in recent
years.Hu et al. (2018a) proposeSqueeze-and-ExcitationNet-
workswith recalibrating the channel-wise responses by using
a channels attention. Li et al. (2018c) jointly learn both
soft pixel attention and hard regional attention for person
re-identification. Woo et al. (2018) formulate an attention
mechanism by sequentially extracting the discriminative fea-
tures at channel and spatial dimensions.Moreover,Chen et al.
(2019) propose a high-order attention tomodel and utilize the
complex and high-order statistics information. Inspired by
those works, we also propose an attribute-specific attention
module to select important regions/pixels for each attribute.

2.3 Augmenting Training Samples

Previous methods of augmenting samples can be classified
to following categories: (1) basic image manipulations, like
flipping, translating, adding noises, random erasing (Zhong
et al. 2020), mixup (Hongyi et al. 2018) and so on, (2) synthe-
sizing new samples by using generative models (Goodfellow
et al. 2014; Kingma andWelling 2014; Zheng et al. 2017; Fu
et al. 2019). For example, Zheng et al. (2017) generate the
synthetic samples with GAN in person re-identification, (3)
borrowing the samples from relevant categories (Lim et al.
2011; Tan et al. 2018). For example, Lim et al. (2011) aug-
ment data of the classes with few samples by borrowing and
transforming examples from other classes, and (4) feature
space transfer (Dixit et al. 2017; Liu et al. 2018a). In the
above methods, mixup (Hongyi et al. 2018) is somewhat
related with our proposed FR, where both our FR and mixup
augment training samples by using combinations of different
samples and their labels. However, there are still some crucial
differences between our proposed FR andmixup. For mixup,

it employs a liner combination of a pair of images and their
labels to generate new samples. For our FR, it first obtains
the split features (separating the features of each attribute),
and then just uses a random shuffle over a batch of samples to
generate new samples, which keeps the semantic information
of each attribute unchanged.

2.4 Split-and-Aggregate Learning

Some previous works (Zhang et al. 2020; Tan et al. 2019a;
Szegedy et al. 2015, 2016, 2017) also adopt the idea of
split-and-aggregate learning to capture more discriminative
features. For example, Zhang et al. (2020) propose a Split-
Attention Block, which splits the features into several groups
and learns them individually. Then, the split features of all
groups are aggregated together by using a concatenation. We
further use a recurrent fusion to aggregate those branches
together. Moreover, inception block also can be regarded as
a special case of split-and-aggregate learning (Szegedy et al.
2015, 2016, 2017),where the input features are split by using
several different CNN branches and each one learns different
features from each other. Then, the block finally aggregates
all features together to form more comprehensive features.
Our work conducts the split-and-aggregate learning from a
different aspect. In the split stage, we first split the attribute-
specific features out and capture the individuality for each
task/attribute and then aggregate those split features together
to learn the commonality among all attributes.

3 ProposedMethod

To construct a deep modelM for pedestrian attribute recog-
nition, we assume the available training set contains n images
and is denoted as D = {Ii }ni=1, with corresponding labels
Y = {yi }ni=1. Each pedestrian is annotated with m attributes.
For the i th image Ii , the corresponding image-level anno-
tation is denoted as yi = [yi1, yi2, · · · , yim], where yi j
represents the label of the j th attribute. In the following,
we will introduce the proposed network, namely CAScaded
Split-and-Aggregate Learning with Feature Recombination
(CAS-SAL-FR).

3.1 Network Architecture Design

The network architecture of the proposed CAS-SAL-FR is
illustrated in Fig. 1. It adopts ResNet-50 (He et al. 2016) as
the backbone to extract the features of different levels [the
backbone also can be replaced with any other CNN archi-
tecture, e.g., GoogleNet (Szegedy et al. 2015) and DenseNet
(Huang et al. 2017)]. For convenience, we denote the features
after res3d, res4f and res5c blocks as F1(Ii ), F2(Ii )
and F3(Ii ), respectively. If we adopt a 256 × 128 image as
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Fig. 1 An overview of the proposed CAS-SAL-FR. Two Split-and-
Aggregate Learning (SAL) modules are sequentially applied on the
feature maps level and feature vector level, where the split operation
mainly learns the attribute-specific features for each attribute while the
aggregate operation exploits the commonalities and relations among

multiple attributes by learning how to aggregate them together. Specif-
ically, the split operation at feature maps level is achieved by an
Attribute-Specific Attention Module (ASAM). Moreover, a Feature
Recombination (FR) strategy is adopted to synthesize new samples by
shuffling the split features

the input, F1(Ii ), F2(Ii ) and F3(Ii ) would have the size of
32 × 16, 16 × 8 and 8 × 4, respectively. However, the reso-
lution of 8× 4 is too low, which may hardly contain enough
information for all attributes. Therefore, we change the stride
of the final residual block from 2 to 1. In this way, the size
of F3(Ii ) would be 16 × 8. After extracting those features,
two SALs are formulated in a cascaded way to learn both the
individuality and commonality for all attributes, which will
be introduced in the following.

(I) SAL at Feature Map Level After obtaining F1(Ii ),
F2(Ii ) and F3(Ii ), each of them is followed by an ASAM
to select some important pixels or regions for each attribute
and capture the attribute-specific features (also re-called as
the split features). For the employed ASAM, its detailed
structure is illustrated in Fig. 2. It contains multiple sub-
networks, each of which extracts the most relevant features
for a specific attribute. More specifically, each sub-network
has two streams, with one generating attention masks and
the other extracting high-level features. For clarity, we take
the sub-network for the j th attribute at the κth level as an
example (κ ∈ {1, 2, 3}). For the upper stream, the attention
masksMκ

i j are generated by using several convolutional lay-
ers and a softmax function (the softmax function is applied to
the spatial dimension including height and width). Inspired
by the works (Chen et al. 2017; Yu and Koltun 2016), we
use the spatial pyramid convolutional layers with different
receptive fields to capture abundant semantics. For the lower
stream, it only contains two convolutional layers to extract
high-level featuresHκ

i j . To reduce the number of parameters,
the first convolutional layer in both two streams is shared
for all attributes. Finally, the attentive features Xκ

i j for the
j th attribute are generated by an element-by-element mul-

Fig. 2 Illustration of the proposed ASAM. For each convolutional
layer, {K ,C} indicates its employed kernel size and output channels,
respectively. In the spatial pyramid convolutional layers, K1, K2 and
K3 represent the kernel size of 1× 1, 3× 3, and 3× 3 with a dilatation
rate of 2. We share the first convolutional layer in both two streams for
all sub-networks, which aims to reduce the parameters of the network.
The number of input channels c1, c2 and c3 are 512, 1024 and 2048,
respectively

tiplication between the attention masks Mκ
i j and high-level

features Hκ
i j . The whole process can be denoted as:

Xκ
i j = SFM,κ

j (Fκ(Ii )) (1)

where FM indicates the feature map level and SFM,κ
j rep-

resents the j th subnetwork in the ASAM at the κth level
feature. In our implementations, we let Xκ

i j has the same
shape of aκ × hκ × wκ (the number of channels, height and
width, respectively), with each aκ channels capturing the dis-
criminative features for a specific attribute.

Till now, we have only allocated several attentive maps
for each attribute, without forcing them to capture the infor-
mation only from that attribute. To achieve this, additional
constrained networks should be added. For each attribute-
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specific feature map Xκ
i j , it would be followed by a small

constrained network to produce the corresponding predicted
score for the j th attribute, which can be mathematically
denoted as:

pFM,κ
i j = φ

FM,κ
j

(
Xκ
i j

)
(2)

where φ
FM,κ
j (·) indicates a constrained network with a

convolutional layer, a fully connected layer and a sigmoid
function as shown in Fig. 1. In this way, the predicted
score pFM,κ

i j is generated only from the features Xκ
i j ,

which ensures its learning under the label supervision of
the j th attribute. For our proposed ASAM, it is different
from Squeeze-and-Excitation Networks (SE-Net) (Hu et al.
2018a) in following aspects: (1) SE-net can be considered as
a channel attentionwhich remodulates neurons’ responses by
a channel-wise mask, while our ASAM is constructed based
on a spatial attention mechanism; (2) Our ASAM aims to
capture attribute-specific attention features with considering
each attribute individually.

After the splitting stage, we aggregate those split features
by using a concatenation layer, a convolutional layer and a
Global Average Pooling (GAP) as shown in Fig. 1. Mathe-
matically, we denote such aggregation as GFM(·), and thus
the aggregated features are obtained by:

Ai = GFM(X1
i ,X

2
i ,X

3
i ) (3)

where Xκ
i means {Xκ

i j }mj=1. In the aggregating process, the
network learns how to aggregate the features from differ-
ent attributes, it also learns the commonalities and relations
among those attributes.

(II) SAL at Feature Vector LevelAt feature vector level,
a SAL is further employed as shown in Fig. 1. After the GAP
layer in the former aggregation module, m fully connected
layers are employed to extract the split features with each
layer corresponding to an attribute. We use SFV

j to denote a
fully connected layer for the j th attribute, and then the split
features can be produced by:

xi j = SFV
j (Ai ) . (4)

where FV indicates the feature vector level. Similarly, to
ensure xi j only captures the information for the j th attribute,
those features are then followed by a fully connected layer
to generate the predicted score pFV

i j [the generated process
is similar to Eq. (2)], which is optimized by the label super-
vision of the j th attribute.

Then, two fully connected layers are further employed
to aggregate those split features together. It helps to exploit
the commonalities and relations among those attributes. Dif-
ferent from the previous aggregating module that outputs
the aggregated features, this module directly generates the

Fig. 3 An illustration of the feature recombination. Each row indicates
a feature vector or label vector for a sample, and each column indicate
the features or labels from a specific attribute over a batch of samples

predicted scores pi for final attribute predictions, which is
represented as:

pi = GFV (xi ) (5)

where xi = [xi1, · · · , xim] denotes the feature vector for all
attributes, and GFV indicates two fully connected layers.

Remark Our cascaded split-and-aggregated learning is dif-
ferent from previous works (Tan et al. 2019b; Tang et al.
2019c): (1) The work Tang et al. (2019c) extracts the
attribute-specific features by using a hard regional attention
while we our ASAM uses a soft scheme of assigning each
attribute with several attention maps to explore more infor-
mation. (2) Previous works (Tan et al. 2019b; Tang et al.
2019c) do not consider the attribute-specific features learn-
ing in feature vector level, while we achieve this by using
a simple but elegant structure (constrained loss). (3) Two
SALs are then formulated in a cascaded way to access more
effective features.

3.2 Feature Recombination (FR)

The proposed FR aims to synthesize new samples by shuf-
fling the split features over a batch of samples. Figure 3
illustrates a simple example of FR on a batch of 3 sam-
ples, and each sample is annotated with 4 attributes. In the
proposed FR, a random shuffle is conducted at the batch
level, where the split features from different samples will
be recombined to be new samples. The labels of those new
synthetic samples are obtained by a consistent shuffle on
the original labels. For example, the new corresponding
label vector for the synthetic sample [x31, x22, x13, x24] is
[y31, y22, y13, y24]. The attribute-specific features xi j con-
tains the semantics of indicating the absence or presence of
the corresponding attribute. After feature recombination, the
value of xi j remains unchanged, where semantic information
will be maintained. Thus, the corresponding label of the new
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synthetic sample for the j th attribute also will be consistent
with the original label yi j .

Assume the batch size we used in the training stage is
set as nbs . For the convenience in the following, we remove
the subscript j in the sign of features to denote the fea-
tures over a batch of samples. For example, the split features
over a batch can be denoted as Xκ = [Xκ

1 , · · · ,Xκ
nbs

] and
x = [x1, · · · , xnbs ]. Their corresponding labels also can be
denoted as y = [y1, · · · , ynbs ]. We denote the random shuf-
fle operation asR(·), and thus the recombined split features
at feature map level and their corresponding labels can be
generated as:

Xκ,R1 = R(Xκ), yR1 = R(y). (6)

All of {Xκ,R1}3κ=1 should employ a consistent shuffle to
ensure the semantic consistency in the later aggregating
stage, and thuswe use the same superscriptR1 to indicate the
consistent shuffle among them, and such superscript would
be used in a similarway in the following section. Later,Xκ,R1

is further used for inference to generate the predicted scores
pR1 . The inference details can refer to Eqs. (3), (4) and (5).
Similarly, the random shuffle also can be conducted on x,
and thus the corresponding recombined features xR2 and the
corresponding new labels yR2 can be obtained by:

xR2 = R(x), yR2 = R(y). (7)

The predicted scores pR2 of xR2 can be generated by using
Eq. (5).

For a specific attribute of a generated sample in the pro-
posed FR, its values can be that attribute’s of an arbitrary
sample over a sample batch. Thus, we can generate a lot
of new samples as long as we do more random shuffles. To
generate more synthesized samples, we conduct the random
shuffle 10 times, which generates feature representations
{Xκ,R1} and {xR1} with a number of 10 × nbs for training.

3.3 Model Training

In the training stage, the weighted binary cross-entropy
loss (Li et al. 2015; Tan et al. 2019b; Tang et al. 2019c)
is employed as the loss function on homogeneous binary
datasets, including RAP, PA-100K, and PETA. While the
multi-class softmax loss is employed on heterogeneous
attribute datasets, includingMatket-1501 andDuke. For clar-
ity, we take the weighted binary cross-entropy loss as an
example, and the loss form for the multi-class softmax loss
can be produced similarly. All of the predicted scores are
followed by loss functions. For the predicted score pFM,κ

i j
of the j th attribute, its loss over a batch can be calculated as:

LFM,κ
j = − 1

nbs

nbs∑
i=1

ρi j

(
yi j log(p

FM,κ
i j )

+ (1 − yi j ) log(1 − pFM,κ
i j )

) (8)

where ρi j is a penalty coefficient used to alleviate the imbal-
anced data problem in pedestrian attribute recognition, and
set the same as the work (Tan et al. 2019b). We use r j to
denote the ratio of the images with the j th attribute, and then
ρi j is calculated as follows: ρi j =

√
1
2r j

, if yi j = 1; other-

wise ρi j =
√

1
2(1−r j )

. The sum of the losses over all attributes

can be denoted as: LFM,κ = ∑
j LFM,κ

j . The losses for

the predicted scores p and pFV can be produced in a similar
way, and we denote them asL andLFV , respectively. For the
generated samples, the losses LR1 and LR2 are calculated
based on predicted scores pR1 and pR2 and corresponding
labels yR1 and yR2 , respectively. The calculations of LR1

andLR2 have a similar form to Eq. 8 but withminor changes.
Here we take theLR1

j as an example and it can be formulated
as:

LR1
j = − 1

10 × nbs

10×nbs∑
i=1

ρi j

(
yR1
i j log(pR1

i j )

+ (1 − yi j
R1 ) log(1 − pR1

i j )
) (9)

Then, the losses for all attributes are summed together:
LR1 = ∑

j LR1
j . The loss LR2 is calculated in a similar

way. The overall loss is the sum of all of those losses, and
can be denoted as:

Loverall = L + LFM,1 + LFM,2 + LFM,3

+ LFV + LR1 + LR2 .
(10)

In the above equation, L denotes the loss for the whole net-
work training. LFM,1, LFM,2, LFM,3 and LFV are the
constrained losses for extracting the attribute-specific fea-
tures. Besides, LR1 and LR2 , which are used to guide the
learning of synthetic samples, can be regarded as the regular-
ization terms to span the potential samples’ variability. In the
test stage, the predictions are obtained based on the predicted
scores p.

4 Experiments

We first introduce the datasets, settings, and evaluation met-
rics employed in our experiments. Then, the experimental
results and analysis are presented to validate the effective-
ness of our method.
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4.1 Datasets andMetrics

Five popular datasets including PA-100K (Liu et al. 2017),
RAP (Li et al. 2018b), PETA (Deng et al. 2014),Market-1501
(Lin et al. 2019) and Duke (Lin et al. 2019) are employed for
experiments. For PA-100K, RAP and PETA three datasets,
all of them contain homogeneous binary attributes, while
for both Market-1501 and Duke datasets, they contain het-
erogeneous attributes where different attributes may have a
different number of categories. We adopt both homogeneous
and heterogeneous attribute datasets for experiments to thor-
oughly verify the effectiveness of the proposed method.

PA-100K contains 100,000 pedestrian images from vari-
ous outdoor scenes and is the largest dataset for pedestrian
attribute recognition. Each image is annotated with 26 com-
monly used attributes, e.g., gender, clothing types.According
to the works (Liu et al. 2017; Tan et al. 2019b) the dataset
is randomly split into three subsets with 80,000, 10,000 and
10,000 images for training, validation and test, respectively.
RAP is the largest pedestrian attribute dataset of indoor
scenes, with containing 41,585 images. 51 attributes with
the positive ratio over 1% are selected for experiments. We
evaluate the proposed method over 5 random splits, where
33,268 images are used for training and 8317 images for the
test in each split. We then average the results overall splits
to achieve the final result. PETA is a classical dataset for
pedestrian attribute recognition. Following the works (Deng
et al. 2014; Tan et al. 2019b), 35 binary attributes are selected
for evaluation. The whole dataset is split into three sub-sets:
9500 images for training, 1900 images for validation and
7600 images for test.Market-1501 attribute dataset contains
32,688 images of 1501 identities. This dataset is annotated
in the identity level, and each image is annotated with 10
binary attributes and 2 multi-class attributes. Following to
the works (Lin et al. 2019; Tan et al. 2019b), 751 identi-
ties are used for training, and 750 identities are used for
the test. Duke attribute dataset is also labeled in the iden-
tity level. It contains 34,183 images from 1812 identities,
and each image is annotated with 8 binary attributes, and
2 multi-class attributes. According to the works (Lin et al.
2019; Tan et al. 2019b), 16,522 images are used for training
and 17,661 images are used for the test.

According to previous works (Liu et al. 2017; Li et al.
2018b; Tan et al. 2019b; Tang et al. 2019c), a label-
based criterion mean accuracy (mA) and four instance-
based criteria accuracy (Accu), precision (Prec), Recall, and
F1 are employed for evaluation on PA-100K, RAP, and
PETA datasets. When evaluating on Market-1501 and Duke
datasets, we employ the accuracy on all attributes as the cri-
terion used in Lin et al. (2019) and Tan et al. (2019b).

Table 1 The ablation studies of the SAL-FM

Method RAP PA-100K PETA
mA F1 mA F1 mA F1

w/o attention 81.87 79.50 80.76 86.92 85.52 86.78

w/o multi-level 82.40 79.78 82.18 87.15 85.48 86.36

w/o split 81.62 79.75 81.54 87.17 84.85 86.33

w/o aggregate 68.98 79.50 77.96 87.83 78.67 86.12

SAL-FM 82.96 79.92 82.46 87.22 85.62 86.56

4.2 Experimental Settings

The RGB image with a size of 256 × 128 is used as the
input in our experiments. The input image is first normalized
by subtracting a mean and dividing a standard deviation for
each color channel before being fed to the network. We also
employ the data augmentation to improve the performance of
pedestrian attribute recognition, including random horizon-
tal flipping, random scaling, rotation, translation, cropping,
erasing and adding random gaussian blurs. Those augmen-
tations also facilitate the model to handle the variations of
pedestrian position, human poses, camera angle, and so on.
For the attribute-specific features at the feature map level, the
output shapes aκ ×hκ ×wκ, κ = 1, 2, 3 are set to 1×32×16,
3×16×8 and6×16×8, respectively. The parameter selection
ofaκ canbe founded inSect. 4.5.The feature dimensionofxi j
is set as 32. Therefore, the shape of those generated features
X1,R1 ,X2,R1 ,X3,R1 and xR2 are 10 · nbs × 1 ·m × 32× 16,
10 · nbs × 3 · m × 16 × 8, 10 · nbs × 6 · m × 16 × 8 and
10·nbs×32·m, respectively. All networks are initializedwith
the pretrained weights of ImageNet (Deng et al. 2009), and
then finetuned on pedestrian attribute datasets. We employ
the Adam optimizer (Kingma and Ba 2015) for optimiza-
tion, and set β1 = 0.9, β2 = 0.999 and ε = 10−8. The
batch size is set to 32 in the training stage. The learning rate
is started with 0.0001 and reduced by a factor of 10 along
with the increasing iterative times. All models are trained and
tested with PyTorch on GTX 1080Ti GPU.

4.3 Ablation Studies

In this section, we conduct the ablation studies on the follow-
ing modules: SAL at Feature Map level (SAL-FM), SAL at
FeatureVector level (SAL-FV), FeatureRecombination (FR)
and cascaded learning (CAS). Following to the work (Tang
et al. 2019c), two important criteria, namely mA and F1, are
employed for evaluation. The experiments are conducted on
RAP, PA-100K, and PETA datasets.

Analysis on SAL-FM Various experiments are con-
ducted by removing attention masks, multi-level features,
split losses and aggregating layers. Fromexperimental results
in Table 1 (‘w/o’ denotes ‘without’), we find attention
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Table 2 The ablation studies of the SAL-FV

Method RAP PA-100K PETA
mA F1 mA F1 mA F1

w/o split 82.25 79.94 81.85 86.98 85.29 86.44

w/o aggregate 74.48 80.03 80.33 87.18 84.37 86.41

SAL-FV 82.51 79.83 82.39 86.83 85.74 86.47

masks, split losses, and aggregating layers are extremely
important to SAL-FM. When removing the attention masks,
attribute-specific attention modules degenerate into plain
CNN layers and lose their strong abilities to select the impor-
tant regions/pixels. When removing the splitted losses, the
module fails to capture the attribute-specific features, which
hardly capture the individuality for each attribute. When
removing the aggregating layers, the module makes the pre-
dictions based on the averaging scores of pFM,1

i , pFM,2
i

and pFM,3
i , which are generated by only using split fea-

tures. We can observe that the performance dramatically
drops by over 10% at mA. The drop may be due to the fol-
lowing reasons: (1) In split features, the features of each
attribute are denoted by the feature maps with only several
channels (1, 3, 6 channels are set in the 1th, 2th and 3th fea-
ture level, respectively), which may hardly contain enough
semantics for each attribute. (2) The information exchanges
are not allowed among multiple attributes at high-level fea-
tures, which hardly capture the relations among them. (3)
Although the split features contain the individual semantics
for each attribute, they may still be less discriminative than
the aggregated features.

Analysis on SAL-FV To analyze this module, the net-
work with removed the split losses and aggregating layers
are employed for comparisons. The experimental results are
shown in the Table 2. Although the split losses can only
improve the performance slightly, those losses are indispens-
able components of extracting attribute-specific features,
which are very necessary for later feature recombination and
cascaded learning modules. When removing the aggregat-
ing layers, the performance drops significantly on all three
datasets. The poor performance may due to the same reasons
as mentioned above. The results also show the aggregating
layers are very necessary after splitting the features.

Analysis on Feature RecombinationWe further add the
feature recombination on both SAL-FM and SAL-FV, which
are denoted as SAL-FM-FR and SAL-FV-FR, respectively.
The comparisons between methods with and without feature
recombination are shown in Table 3. The feature recom-
bination improves the performance on both SAL-FM and
SAL-FV networks, which clearly demonstrates its effec-
tiveness. More specially, for SAL-FM, it improves the mA
by 0.95%, 0.77% and 0.36% on RAP, PA-100K and PETA
datasets, respectively.

Table 3 The ablation studies of the feature recombination

Method RAP PA-100K PETA
mA F1 mA F1 mA F1

SAL-FM 82.96 79.92 82.46 87.22 85.62 86.56

SAL-FM-FR 83.91 80.16 83.23 87.42 85.98 86.88

SAL-FV 82.51 79.83 82.39 86.83 85.74 86.47

SAL-FV-FR 83.00 79.91 82.41 87.02 86.04 86.55

Table 4 The ablation studies of the cascaded learning

Method RAP PA-100K PETA
mA F1 mA F1 mA F1

SAL-FM-FR 83.91 80.16 83.23 87.42 85.98 86.88

SAL-FV-FR 83.00 79.91 82.41 87.02 86.04 86.55

CAS-SAL-FR 84.18 80.56 82.86 87.79 86.40 87.18

Analysis on Cascaded Learning We further combine
SAL-FM-FR and SAL-FV-FR together, and formulate a cas-
caded Split-and-Aggregate Learning with Feature Recom-
bination (CAS-SAL-FR). As shown in Table 4, the perfor-
mance can be further improved on all three datasets, which
shows the effectiveness of cascaded learning.

4.4 Comparisons with State-of-the-arts

In this subsection, we compare the proposed CAS-SAL-FR
against previous state-of-the-art methods, including HP-net
(Liu et al. 2017), VeSPA (Sarfraz et al. 2017), JRL (Wang
et al. 2017), Fusion (Li et al. 2018a), LG-Net (Liu et al.
2018b), VAA (Sarafianos et al. 2018), GRL (Zhao et al.
2018), RA (Zhao et al. 2019), JLPLS-PAA (Tan et al. 2019b),
CoCNN (Han et al. 2019), Da-HAR (Wu et al. 2020), MT-
CAS (Zeng et al. 2020), (Jia et al. 2020), DTM+AWK(Zhang
et al. 2020), Gao et al. (2019), Tang et al. (2019c), PedAt-
triNet (Lin et al. 2019) and APR (Lin et al. 2019). On RAP,
PA-100K and PETA datasets, we further add the mean accu-
racy of mA, Accu, Prec, Recall and F1 five criteria for
evaluation (denoted as mFive). This is because some models
may perform verywell on a specific criterion while obtaining
low performance on other criteria. Take mFive into account,
and the evaluation can be more comprehensive.

The experimental results of the homogeneous binary
attributes on RAP, PA-100K and PETA datasets are shown
in Tables 5, 6 and 7, respectively. The experimental results
of the heterogeneous attributes on Market-1501 and Duke
attribute datasets are shown in Table 8. The proposed CAS-
SAL-FRachieves the highest performance on all five datasets
(including three homogeneous binary attribute datasets and
two heterogeneous attribute datasets), showing its superiority
for pedestrian attribute recognition. The mean performance
of our method on RAP, PA-100K, PETA, Market, and Duke
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Table 5 The comparisons on RAP dataset

Method References Backbone mA Accu Prec Recall F1 mFive

VeSPA (Sarfraz et al. 2017) BMVC’17 GoogleNet 77.70 67.35 79.51 79.67 79.59 76.76

HP-net (Liu et al. 2017) ICCV’17 Inception_v2 76.12 65.39 77.33 78.79 78.05 75.14

JRL (Wang et al. 2017) ICCV’17 AlexNet 77.81 – 78.11 78.98 78.58 –

Fusion (Li et al. 2018a) ICME’18 CaffeNet 74.31 64.57 78.86 75.90 77.35 74.20

LG-Net (Liu et al. 2018b) BMVC’18 Inception-v2 78.68 68.00 80.36 79.82 80.09 77.39

GRL (Zhao et al. 2018) IJCAI’18 Inception-v3 81.20 – 77.70 80.90 79.29 –

RA (Zhao et al. 2019) AAAI’19 Inception-v3 81.16 – 79.45 79.23 79.34 –

(Gao et al. 2019) ACM MM’19 ResNet-50 82.45 49.10 55.00 80.44 65.33 66.46

JLPLS-PAA (Tan et al. 2019b) TIP’19 SE-Net 81.25 67.91 78.56 81.45 79.98 77.83

CoCNN (Han et al. 2019) IJCAI’19 ResNet-50 81.42 68.37 81.04 80.27 80.65 78.35

(Tang et al. 2019c) ICCV’19 Inception-v3 81.87 68.17 74.71 86.48 80.16 78.28

Da-HAR (Wu et al. 2020) AAAI’20 ResNet-101 79.44 68.86 80.14 81.30 80.72 78.09

DTM+AWK (Zhang et al. 2020) Arxiv’20 ResNet-50 82.04 67.42 75.87 84.16 79.80 77.86

Jia et al. (2020) Arxiv’20 ResNet-50 76.48 67.17 82.84 76.25 78.94 76.33

CAS-SAL-FR This work ResNet-50 84.18 68.59 77.56 83.81 80.56 78.94

Table 6 The comparisons on PA-100K dataset

Method References Backbone mA Accu Prec Recall F1 mFive

HP-net (Liu et al. 2017) ICCV’17 Inception_v2 74.21 72.19 82.97 82.09 82.53 78.79

Fusion (Li et al. 2018a) ICME’18 CaffeNet 74.95 73.08 84.36 82.24 83.29 79.58

LG-Net (Liu et al. 2018b) BMVC’18 Inception_v3 76.96 75.55 86.99 83.17 85.04 81.54

JLPLS-PAA (Tan et al. 2019b) TIP’18 SE-Net 81.61 78.89 86.83 87.73 87.27 84.47

CoCNN (Han et al. 2019) IJCAI’19 ResNet-50 80.56 78.30 89.49 84.36 86.85 83.91

Tang et al. (2019c) ICCV’19 Inception_v3 80.68 77.08 84.21 88.84 86.46 83.45

MT-CAS (Zeng et al. 2020) ICME’20 ResNet-34 77.20 78.09 88.46 84.86 86.62 83.04

Jia et al. (2020) Arxiv’20 ResNet-50 79.38 78.56 89.41 84.78 86.55 83.73

DTM+AWK (Zhang et al. 2020) Arxiv’20 ResNet-50 81.67 77.57 84.27 89.02 86.58 83.82

CAS-SAL-FR This work ResNet-50 82.86 79.64 86.81 88.78 87.79 85.18

Table 7 The comparisons on PETA dataset

Method References Backbone mA Accu Prec Recall F1 mFive

HP-net (Liu et al. 2017) ICCV’17 Inception_v2 81.77 76.13 84.92 83.24 84.07 82.03

VeSPA (Sarfraz et al. 2017) BMVC’17 GoogleNet 83.45 77.73 86.18 84.81 85.49 83.53

JRL (Wang et al. 2017) ICCV’17 AlexNet 85.67 – 86.03 85.34 85.42 –

Fusion (Li et al. 2018a) ICME’18 CaffeNet 82.97 78.08 86.86 84.68 85.76 83.67

VAA (Sarafianos et al. 2018) ECCV’18 DenseNet-201 84.59 78.56 86.79 86.12 86.46 84.50

GRL (Zhao et al. 2018) IJCAI’18 Inception_v3 86.70 – 84.34 88.82 86.51 –

Gao et al. (2019) ACM MM’19 ResNet-50 86.23 77.21 84.52 87.22 85.85 84.20

RA (Zhao et al. 2019) AAAI’19 Inception_v3 86.11 – 84.69 88.51 86.56 –

JLPLS-PAA (Tan et al. 2019b) TIP’19 SE-Net 84.88 79.46 87.42 86.33 86.87 84.99

Tang et al. (2019c) ICCV’19 Inception_v3 86.30 79.52 85.65 88.09 86.85 85.28

MT-CAS (Zeng et al. 2020) ICME’20 ResNet-34 83.17 78.78 87.49 85.35 86.41 84.24

Jia et al. (2020) Arxiv’20 ResNet-50 85.12 79.14 86.99 86.33 86.39 84.79

DTM+AWK (Zhang et al. 2020) Arxiv’20 ResNet-50 85.79 78.63 85.65 87.17 86.11 84.67

CAS-SAL-FR This work ResNet-50 86.40 79.93 87.03 87.33 87.18 85.57
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Table 8 The comparisons on Market-1501 and Duke datasets

Dataset Market-1501 Duke

PedAttriNet (Lin et al. 2019) 84.64 80.07

APR (Lin et al. 2019) 85.33 80.12

JLPLS-PAA (Tan et al. 2019b) 87.88 85.24

CAS-SAL-FR 88.30 85.91

attribute datasets are 78.94%, 85.18%, 85.57%, 88.30% and
85.91%, respectively. Moreover, compared with the recent
work, Tang et al. (2019c), the proposed method outper-
forms it by 0.66%, 1.73% and 0.29% on RAP, PA-100K,
and PETA datasets, respectively. For the recent work JLPLS-
PAA, our method outperforms it by 1.13%, 0.71%, 0.58%,
0.42% and 0.67% on RAP, PA-100K, PETA, Market-1501
and Duke attribute datasets, respectively. Those improve-
ments are promising because the performance is averaging on
dozens of attributes where the accuracies of some attributes
are really hard to be improved due to low resolution, occlu-
sions, unbalanced data, and so on.

Owing to the lack of a unified benchmark method in the
field of pedestrian attribute recognition, different methods
may adopt different backbones. The backbone of all mod-
els, e.g., AlexNet (Krizhevsky et al. 2012), CaffeNet (Jia
et al. 2014), Inception_v2/v3 (Ioffe and Szegedy 2015),
GoogleNet (Szegedy et al. 2015), DenseNet-201 (Huang
et al. 2017), ResNet-50/101 (He et al. 2016) and SE-Net
(Hu et al. 2018b), also have been clarified. Our method is
constructed based on ResNet-50. Although some previous
methods (Tan et al. 2019b; Sarafianos et al. 2018) construct
their models based on more advanced backbones. For exam-
ple, JLPLS-PAA (Tan et al. 2019b) and VAA (Sarafianos
et al. 2018) build their models based on SE-Net (Hu et al.
2018a) and DenseNet-201 (Huang et al. 2017), respectively.
However, our method can still achieve better performance.
Moreover, in some previous methods (Tan et al. 2019b;
Zhao et al. 2018; Gao et al. 2019), external information is
employed to improve the performance further. For example,
JLPLS-PAA (Tan et al. 2019b) captures the external seman-
tics from human parsing, and GRL (Zhao et al. 2018) utilizes
the human pose information for human body localization.
Moreover, some researchers (Wang et al. 2017) employ an
ensemble of multiple models to obtain higher performance.
Our proposed CAS-SAL-FR still outperforms those mod-
els, which shows the effectiveness of the proposed cascaded
split-and-aggregate learning and feature recombination.

4.5 Further Analysis

Performance on all Classifiers We visualize the results of
all classifiers in Fig. 4a. FM(1), FM(2), FM(3), FV denote the

Fig. 4 The mA results on RAP of a all classifiers, b the network with
using the attention module of different settings and c removing the
splitting operation and low-level features

classifiers at 1st, 2nd, 3th feature map levels and feature vec-
tor level, respectively. The highest performance is obtained
by the final classifier (denoted by Final). The poor perfor-
mance obtained by FM(1), FM(2), FM(3) and FV may due
to that the split features may be less discriminative than the
aggregated features’.

Analysis on aκ in ASAM The number of channels for
each attribute of theASAMat 1st, 2nd, 3th featuremap levels
is denoted as a1, a2, a3 (denoted by a1 − a2 − a3), respec-
tively. The experimental results by varying their values are
shown in Fig. 4b. The highest performance is achieved using
1−3−6, where the small number of ASAM channels is used
at low levels. a1 = 1, a2 = 3 and a3 = 6 are adopted in
other experiments.

Removing Split Operation To investigate how much the
split operation can contribute to the final performance, we
conduct an additional experiment with removing the split
operation on both feature map and vector levels. As shown
in Fig. 4c, the mA is dropped by 1.42% when removing the
split operations, which shows their effectiveness. The split
operation helps the network to capture the individuality for
each attribute, which ensures each attribute can learn its own
semantics.

Removing Low-level Features To further verify the
effectiveness of the low-level features (including both 1th
and 2th levels), we conduct the experiments by removing
those features in our CAS-SAL-FR. The experimental results
can be found in Fig. 4c. The mA is dropped by 0.41% when
removing low-level features, which shows the low-level fea-
tures also contribute a lot to the final performance.

Efficiency Analysis We compare our method with three
popular methods in parameters, FLOPs and inference speed,
including JRL (Wang et al. 2017), VAA (Sarafianos et al.
2018) and JLPLS-PAA (Tan et al. 2019b). As shown in
Table 9, our method has certain advantages compared with
three compared method. For example, JLPLS-PAA is con-
structed based on two large models, where one model
(SE-BN-inception) is used for pedestrian attribute recogni-
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Table 9 The comparisons on
parameters, FLOPs and speed

Method Param FLOPs Speed

JRL∗ (Wang et al. 2017) 58.3M×10 0.72G×10 2.06ms×10

VAA† (Sarafianos et al. 2018) 20.2M 4.37G 39.45ms

JLPLS-PAA (Tan et al. 2019b) 92.75M 48.07G 54.56ms

CAS-SAL-FR 35.2M 5.58G 22ms

JRL∗ is a combined model based on 10 AlexNets, so its complexity is estimated by using 10 AlexNets. VAA†

is constructed based on the DenseNet-201, and its efficiency is estimated with a DenseNet-201

Table 10 Comparisons between FR and mixup

Method RAP PA-100K PETA
mA F1 mA F1 mA F1

SAL-FM + mixup 80.40 80.70 81.61 87.63 85.37 86.63

SAL-FM-FR 83.91 80.16 83.23 87.42 85.98 86.88

tion and the other model (PSPNet, ResNet-101) is used for
generate pedestrian parsing maps. Thus, JLPLS-PAA con-
tains lots of parameters and FLOPs.

GPU memory consumption of FR Although FR gener-
ates a large number of synthetic samples for training, all of
them only need to be delivered in the last few layers of the
network, which takes up very little GPU memory. We con-
duct experiments with two settings, namely CAS-SAL and
CAS-SAL-FR to verify this. Experiments show that CAS-
SAL takes up 5357M GPU memory when running with a
batch size of 32, and the GPU memory occupation increases
to 5697M when adding the proposed FR strategy. This indi-
cates that only about 340M GPU memory are taken up for
FR, which verifies that FR only takes up very little GPU
memory.

FR versus mixup We conduct experiments with both
FR and mixup to compare their performance, and the cor-
responding experimental results are listed in Table 10.
Compared with using mixup, FR helps the model to obtain
a higher accuracy on mA. For example, on RAP dataset, the
mA accuracty of SAL-FM-FR is 3.5% higher than that of
SAL-FM + mixup. In our FR, we just uses a random shuf-
fle on the split features over a batch of samples to generate
new samples, which keeps the semantic information of each
attribute unchanged. For mixup, it achieves low mA accu-
racy may due to that the liner combination may destroy the
integrity of the feature especially when the quality of images
and features are not so high.

Visualizations of Attention We visualize the attention
masks in ASAM after F3(Ii ). We select 6 representa-
tive attributes, i.e., Gender, Glasses, HandBag, LongSleeve,
UpperPlaid and Shorts, and visualize their mean attention
masks. As shown in Fig. 5, different attributes may focus
on different regions to extract the discriminative features for
corresponding attributes. For example, the attention mod-

Fig. 5 Visualizations of the attention masks of ASAM on PA-100K
dataset. a Indicates the raw image, andb–g represent the attentionmasks
of Gender, Glasses, HandBag, LongSleeve, UpperPlaid and Shorts
attributes, respectively

ule focuses on the head region for Glasses attribute. More
visualizations on RAP and PETA datasets can be founded in
Figs. 6 and 7. The visualizations can qualitatively show the
proposed ASAM can really capture discriminative features
from some important regions for each attribute. ASAM is
designed to extract discriminative attribute-specific features
for each attribute with attention mechanisms. Similarly, Our
ASAM also can be extended to the fields of multi-task learn-
ing andmulti-label classification, which helps the network to
learn the discriminative features of each attribute/task sepa-
rately and capture specific semantics of each task/category.

Qualitative Analysis Two predicted examples on the test
set of the PA-100K dataset are shown in Fig. 8. The ground
truth (GT) labels and the predictions of the baseline ResNet-
50 and CAS-SAL-FR are denoted by red, green, and blue
colors, respectively. Benefited from the cascaded split-and-
aggregate learning and feature recombination, the proposed
CAS-SAL-FR can achieve more reliable predictions than the
baseline ResNet-50. For the first image, some attributes like
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Fig. 6 Visualizations of attention masks of ASAM on RAP dataset.
a Indicates the raw image, and b–g represent the attention masks of
Female, BlackHair, LongTrousers, LeatherShoes, Calling and Carry-
ingbyHand attributes, respectively

Fig. 7 Visualizations of attention masks of ASAM on PETA dataset.
a Indicates the raw image, and b–g represent the attention masks
of carryingBackpack, carryingOther, footwearLeatherShoes, hairLong,
personalMale and lowerBodyShorts attributes, respectively

Gender and Skirt&Dress are wrongly predicted by ResNet-
50, while our CAS-SAL-FR can well correct them.

5 Conclusions

In this work, we have proposed a new framework for
pedestrian attribute recognition, named CAScaded Split-
and-Aggregate Learningwith Feature Recombination (CAS-

Fig. 8 Two prediction examples on PA-100K dataset

SAL-FR). At first, a cascaded Split-and-Aggregate Learning
(SAL) has been proposed to capture both the individuality
and commonality for all pedestrian attributes. Besides, fea-
ture recombination has been further proposed to synthesize
more training representations for achieving better perfor-
mance. The experiments have been conducted on five pop-
ular datasets including RAP, PA-100K, PETA, Market-1501
and Duke attribute datasets, showing the proposed method
achieves the new state-of-the-art performance. Finally, we
also have presented feature visualizations and a compre-
hensive analysis on CAS-SAL-FR to qualitatively verify its
effectiveness.
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