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a b s t r a c t

We study the performance of long short-term memory networks (LSTMs) and neural ordinary
differential equations (NODEs) in learning latent-space representations of dynamical equations for an
advection-dominated problem given by the viscous Burgers equation. Our formulation is devised in a
nonintrusive manner with an equation-free evolution of dynamics in a reduced space with the latter
being obtained through a proper orthogonal decomposition. In addition, we leverage the sequential
nature of learning for both LSTMs and NODEs to demonstrate their capability for closure in systems
that are not completely resolved in the reduced space. We assess our hypothesis for two advection-
dominated problems given by the viscous Burgers equation. We observe that both LSTMs and NODEs
are able to reproduce the effects of the absent scales for our test cases more effectively than does
intrusive dynamics evolution through a Galerkin projection. This result empirically suggests that time-
series learning techniques implicitly leverage a memory kernel for coarse-grained system closure as
is suggested through the Mori–Zwanzig formalism.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

High-fidelity simulations of systems characterized by nonlin-
ear partial differential equations represent immense computa-
tional expenditure and are prohibitive for decision-making tasks
for applications. Recently, researchers have expended significant
effort in the reduced-order modeling (ROM) of such systems to
reduce the degrees of freedom of the forward problem to man-
ageable magnitudes [1–8]. This field finds extensive application in
control [9], multifidelity optimization [10], and uncertainty quan-
tification [11,12], among others. ROMs are limited in how they
handle nonlinear dependence, however, and they perform poorly
for complex physical phenomena that are inherently multiscale
in space and time [13–16]. To address this issue, researchers
continue to search for efficient and reliable ROM techniques for
transient nonlinear systems.

A common ROM development procedure may be described by
the following tasks:

1. Reduced basis identification
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(A. Mohan), blusch@anl.gov (B. Lusch), smadireddy@anl.gov (S. Madireddy),
pbalapra@anl.gov (P. Balaprakash), livescu@lanl.gov (D. Livescu).

2. Nonlinear dynamical system evolution in the reduced basis
3. Reconstruction in full-order space for assessments

The first two tasks individually constitute areas of extensive
investigation, and studies have attempted to combine these into
one optimization problem as well. In this investigation, we utilize
conventional ideas for reduced basis identification with the use of
the proper orthogonal decomposition (POD) for finding the opti-
mal global basis. We consider a parameterized time-dependent
partial differential equation given (in the full-order space) by

u̇(x, t, ν) + N [u(x, t, ν)] + L[u(x, t, ν); ν] = 0,

(x, t, ν) ∈ Ω × T × P, (1)

where Ω ⊂ R1, T = [0, T ],P ⊂ R1 and N , L are nonlinear and
linear operators, respectively. Our system is characterized by a
solution field u : Ω×T ×P → R1 and appropriately chosen initial
as well as boundary conditions. We assume that our system of
equations can be solved in space–time on a discrete grid resulting
in the following systems of parameterized ordinary differential
equations (ODEs),

u̇h(t, ν) + Nh[uh(t, ν)] + Lh[uh(t, ν); ν] = 0 (t, ν) ∈ T × P, (2)

where uh : T × P → RNh is a discrete solution and Nh is the
number of spatial degrees of freedom. Specifically, our problem
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is given by the viscous Burgers equation with periodic boundary
conditions that can be represented as

u̇ + u
∂u
∂x

= ν
∂2u
∂x2

,

u(x, 0) = u0, x ∈ [0, L], u(0, t) = u(L, t) = 0.
(3)

These equations can generate discontinuous solutions even if
initial conditions are smooth and ν is sufficiently small because
of advection-dominated behavior. We can then project our gov-
erning equations onto a space of reduced orthonormal bases for
inexpensive forward solves of the dynamics.

1.1. Proper orthogonal decomposition

In this section, we review the POD technique for the con-
struction of a reduced basis [17,18]. The interested reader may
also find an excellent explanation of POD and its relationship
with other dimension-reduction techniques in [19]. The POD
procedure is tasked with identifying a space

Xf
= span

{
ϑ1, . . . ,ϑf } , (4)

which approximates snapshots optimally with respect to the
L2-norm. The process of ϑ generation commences with the col-
lections of snapshots in the snapshot matrix

S = [ û1
h û2

h · · · ûNs
h ] ∈ RNh×Ns , (5)

where ûi : T ×P → RNh corresponds to an individual snapshot in
time (for a total of Ns snapshots) of the discrete solution domain
with mean value removed, namely,

ûi
h = ui

h − ūh,

ūh =
1
Ns

Ns∑
i=1

ui
h.

(6)

with ui : P → RNh being the time-averaged solution field.
Our POD bases can then be extracted efficiently through the
method of snapshots where we solve an eigenvalue problem for
a correlation matrix

CW = ΛW,

C = STS ∈ RNs×Ns ,
(7)

where Λ = diag
{
λ1, λ2, . . . , λNs

}
∈ RNs×Ns is the diagonal matrix

of eigenvalues andW ∈ RNs×Ns is the eigenvector matrix. Our POD
basis matrix can then be obtained by

ϑ = SW ∈ RNh×Ns . (8)

In practice, a reduced basis ψ ∈ RNh×Nr is built by choosing the
first Nr columns of ϑ for the purpose of efficient ROMs, where
Nr ≪ Ns. This reduced basis spans a space given by

Xr
= span

{
ψ1, . . . ,ψNr

}
. (9)

The coefficients of this reduced basis (which capture the under-
lying temporal effects) may be extracted as

A = ψTS ∈ RNr×Ns . (10)

The POD approximation of our solution is then obtained via

Ŝ = [ ũ1
h ũ2

h · · · ũNs
h ] ≈ ψA ∈ RNh×Ns , (11)

where ũi
h : T ×P → RNh corresponds to the POD approximation

to ûi
h. The optimal nature of reconstruction may be understood

by defining the relative projection error∑Ns
i=1

ûi
h − ũi

h

2
RNh∑Ns

i=1

ûi
h

2
RNh

=

∑Ns
i=Nr+1 λ2

i∑Ns
i=1 λ2

i

, (12)

which indicates that with increasing retention of POD bases,
increasing reconstruction accuracy may be obtained. As will be
explained later, the coefficient matrix A forms our training data
for time-series learning.

1.2. Galerkin projection onto reduced space

The orthogonal nature of the POD basis may be leveraged for a
Galerkin projection onto the reduced basis. We start by revisiting
Eq. (1) written in the form of an evolution equation for fluctuation
components:
˙̂uh(x, t, ν) + Nh[ûh(x, t, ν)] + Lh[ûh(x, t, ν); ν] = 0, (13)

which can expressed in the reduced basis as

ψȧr (t, ν) + Nh[ψar (t, ν)] + Lh[ψar (t, ν); ν] = 0, (14)

where ar : T × P → RNr , ar ∈ α corresponds to the tem-
poral coefficients at one time instant of the system evolution
(i.e., equivalent to a particular column of A). The orthogonal
nature of the reduced basis can be leveraged to obtain

ȧr (t, ν) + Nr [ar (t, ν)] + Lr [ar (t, ν); ν] = 0, (15)

which we denote the POD-Galerkin projection formulation (POD-
GP). Note that we have assumed that the residual generated by
the truncated representation of the full-order model is orthogonal
to the reduced basis. It is precisely this assumption that necessi-
tates closure. From the point of view of the Burgers equations
given in Eq. (3), our POD-GP implementation is

dak
dt

= b1k + b2k +

Nr∑
i=1

(
L1ik + L2ik

)
ai +

Nr∑
i=1

Nr∑
j=1

Nijkaiaj,

for k = 1, 2, . . . ,Nr , (16)

where ak : T × P → R1 is one component of ar and where

b1k =
(
νL[uh],ψ

k) ,

b2k =
(
N[uh;uh],ψ

k) ,

L1ik =
(
νL

[
ψi] ,ψk) ,

L2ik =
(
N

[
uh;ψ

i]
+ N

[
ψi

;uh
]
,ψk) ,

Nijk =
(
N

[
ψi

;ψj] ,ψk) ,

(17)

are operators that can be computed offline (i.e., b1k, L
1
ik : P →

R1
; b2k, L

2
ik,Nijk ∈ R1) and where we have defined an inner product

by

(f , g) =

∫
Ω

fgdΩ. (18)

with L[f ] =
∂2f
∂x2

and N[f ; g] = −f ∂g
∂x , the operators stemming

from the Burgers equation. Later we will demonstrate that the
absence of higher-basis nonlinear interactions causes errors in
the forward evolution of this system of equations. We note that
the POD-GP process essentially consists of Nr coupled ODEs and
is solved by a standard total-variation-diminishing third-order
Runge–Kutta method. The reduced degrees of freedom lead to ef-
ficient forward solves of the problem. Note that this transformed
problem has initial conditions given by

ar (t = 0) =
(
ψT ûh(t = 0)

)
. (19)

1.3. Contribution

In this article, we investigate strategies to bypass the POD-
GP process with an intrusion-free (or equation-free) learning of
dynamics in reduced space. We deploy machine learning strate-
gies devised for sequential data learning on time-series samples
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Fig. 1. Full-order solution of the advecting shock problem. Note the presence
of a moving discontinuity.

extracted from the true dynamics of the problems considered.
In recent literature, considerable interest has been expressed
in the utility of machine learning techniques for effective ROM
construction. Data-driven techniques have been used in various
phases of ROM techniques, such as in reduced basis construc-
tion [20], augmented dynamics evolution [5,6,15,16,21–26], and
system identification [27–31].

Here we study the utility of data-driven techniques to make
a posteriori predictions for state evolution in reduced space, with
assessments made of their ability to reconstruct transient char-
acteristics of the full-order solution. We observe that the ability
to learn a time series (possible through the in-built design of
memory and an assumption of non-i.i.d. sequential data in the
learning) leads to an implicit closure whereby the effects of
uncaptured frequencies are retained, drawing parallels to a Mori–
Zwanzig formalism. In related work, the study in [32] utilizes
recurrent neural networks to explicitly specify a subgrid stress
model for large eddy simulation with the lower-frequency evo-
lution controlled by coarse-grained partial differential equations
(PDEs). Our framework is also similar to [33], where a long short-
term memory is utilized to learn a parametric memory kernel
for explicit closure of nonlinear PDEs. The present study can be
considered a nonintrusive counterpart of these investigations. In
addition, we detail a formalism for efficient machine learning ar-
chitecture selection using scalable Bayesian optimization. Our test
problems are given by the advection-dominated viscous Burgers
equation [15] with a moving shock as well as a pseudo-turbulence

test case denoted ‘‘Burgulence’’ [34,35] showing the characteristic
k−2 scaling in wavenumber (k) space.

2. Latent-space learning

In this section, we outline our machine learning techniques for
latent-space time-series learning. We study two techniques built
around the premise of preserving memory effects within their
architecture: neural ordinary differential equations (NODE) and
long short-term memory networks (LSTMs). Both frameworks are
tasked with predicting the evolution of ar over time.

2.1. Neural ordinary differential equations

In recent times, several studies have interpreted residual neu-
ral networks using dynamical systems theory [36–39]. The frame-
work of the NODE [40] envisions the learning of ar over time as
dar
dt

= f (ar , θ ), (θ ) ∈ Θ, (20)

where Θ ⊂ RNw is a space of Nw user-defined model param-
eters. The learning can be thought to be through a continuous
backpropagation through time, that is, where there an infinite
number of layers in the network with the input layer given by
ar (t = 0) and the output layer given by ar (t = T ). Therefore,
the NODE approximates the latent-space evolution as an ordinary
differential equation that is continuous through time in a manner
similar to the Galerkin projection. The function f : α × Θ → RNr

in this study is represented by a neural network with a single
40-neuron hidden layer and a tan-sigmoid activation where α ⊂

RNr , Θ ⊂ RNw , and Nw is the number of parameters of the neural
network architecture. Note that the assumption of a single hidden
layer architecture for the right-hand side of the latent-space ODE
allows for upper-bound guarantees given by the universal ap-
proximation theorem (Barron, 1993) although more complicated
dynamics may require deeper architectures. Readers are referred
to the work of Chen et al. [40], for a detailed discussion of the
neural ODE and its utility in learning sequential data.

The forward propagation of information through time (i.e.,
from t = 0 to t = T ) is performed through a standard ODE
solver (in this case a first-order accurate Euler method) whereas
backpropagation of errors is performed through the backward
solve of an adjoint system given by
dbg

dt
= −bT

g
∂ f (ar , θ )

∂ar
, (21)

where bg : T × α × E → RNr+Nw+1 is the augmented state vector
given by

bg = [
∂E
∂ar

,
∂E
∂θ

,
∂E
∂t

]
T , E ∈ E, (22)

Fig. 2. Training and validation loss convergence with epochs for time-series predictions of the advecting shock case.



4 R. Maulik, A. Mohan, B. Lusch et al. / Physica D 405 (2020) 132368

Fig. 3. POD-space coefficient evolution for the advecting shock case.

with scalar loss at final time E ⊂ R1 obtained at the t = T
following forward propagation. Each calculation of E is followed
by the backward solve of Eq. (21) (which may be interpreted
as continuous backpropagation in time) to calculate bg (t = 0),
which can then be used to determine ∂E

∂θ
(t = 0). This value of the

gradient can then be used to update the parameters θ by using an
optimization algorithm. In this article, we utilize RMSProp for our
loss minimization with a learning rate of 0.01 and a momentum
parameter of 0.9. Instead of performing the forward deployment
of the NODE and backpropagation of the model errors for the
entire domain, we utilize 1000 samples of our total data as our
training and validation dataset using the technique detailed in
the original article to speed up training. Each sample is given
by a sequence of 10 timesteps. The training, for each epoch,
is performed by using 10 randomly chosen samples (i.e., our
batch size is 10) for the calculation of parameter gradients. The
final gradient deployed for model training is averaged across
this batch. A set of samples (20% of the total 1000), chosen
randomly before training, is kept aside from the learning process
to assess validation errors. Note that validation errors are also

characterized by final timestep loss (i.e., at timestep 10 of each
batch), thereby incorporating the degree of error accumulation
due to an inaccurately trained model at that epoch. The best
model corresponds to the lowest validation loss (averaged across
all validation samples). We do not utilize a separate dataset for
testing.

All assessments for the problems are through forward (or a
posteriori) deployment. In other words, the NODE is specified an
initial condition and then deployed to obtain state vectors using
an ODE forward solve until the final time. The prediction at each
timestep is obtained by the Euler integration, which requires
the knowledge of previous state alone. Note that apart from the
first prediction by NODE (which utilizes the initial condition),
state predictions are recursively utilized for predicting the future.
Therefore, testing may be assumed to be a long-term predictive
test of the model learning in the presence of deployment error.

2.2. Long short-term memory networks

LSTM networks were introduced to consider time-delayed
processes where events farther back in the past may potentially
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Fig. 4. Field reconstruction ability for NODE and LSTM for the advecting shock
case.

affect predictions for the current location in the sequence. The
basic equations of the LSTM in our context for an input variable
z are

input gate: G i = ϕS ◦ FNc
i (z),

forget gate: G f = ϕS ◦ FNc
f (z),

output gate: Go = ϕS ◦ FNc
o (z),

internal state: st = G f ⊙ st−1 + G i ⊙
(
ϕT ◦ FNc

z (z)
)
,

output: ht = Go ◦ ϕT (st) ,

(23)

where z is a fixed sequence of inputs ar comprising past history.
Also, ϕS and ϕL refer to tangent sigmoid and tangent hyperbolic
activation functions, respectively, and Nc is the number of hidden
layer units in the LSTM network. Note that Fn refers to a linear
operation given by a matrix multiplication and subsequent bias
addition, namely,

Fn(x) = Wx + B, (24)

where W ∈ Rn×m and B ∈ Rn for x ∈ Rm and where
a ⊙ b refers to a Hadamard product of two vectors. The LSTM
implementation will be used to advance ar as a function of time
in the reduced space. The LSTM network’s primary utility is the
ability to control information flow through time with the use of
the gating mechanisms. A greater value of the forget gate (post-
sigmoidal activation) allows for a greater preservation of past
state information through the sequential inference of the LSTM,
whereas a smaller value suppresses the influence of the past. Our

LSTM deployment utilized 32 neurons in its input, forget, output,
and state calculation operations each and utilized a learning rate
of 0.001. It used a sequence to sequence prediction utilized as
a rolling window for predicting the output at the next timestep.
We utilized a batch size of 16 samples, with each sample having
a sequence of 10 timesteps for all of our LSTM deployments. As
in the previous learning approach, a set of data was kept aside
for validation. This validation loss is used to make decisions about
model selection. We note that the total number of samples (1000)
is the same as for the NODE deployment.

2.3. Connection with Mori–Zwanzig formalism

Next, we outline the Mori–Zwanzig formalism [41,42] for the
viscous Burgers equation and connect it to time-series learning in
POD space. We frame the (full-order) dynamics evolution in latent
space using the following formulation derived from the first step
of the Mori–Zwanzig, treatment
dar
dt

= eWtWar , (25)

where W is the viscous Burgers operator given by

W = −Nr [.] − Lr [.] . (26)

We define two self-adjoint projection operators into orthogo-
nal subspaces given by

Pah =
(a0r , a0h)
(a0r , a0r )

ar , Q = I − P, (27)

with QP = 0 and a0 = a(t = 0). Therefore, P may be assumed
to be a projection of our full-order representation in POD space
(ah living in Xf ) onto the reduced basis (ar living in Xr ). We can
further expand our system as
dar
dt

= eWt (Q + P)War , (28)

which may further be decoupled to a Markov-like projection
operator M given by

eWtPWar =
(a0r , a0h)
(a0r , a0r )

eWtar = Mar (29)

and a memory operator G given by

eWtQWa0r = eQWtQWa0r +

∫ t

0
eW(t−t1)PWeQWt1QWa0r dt1 = Gar ,

(30)

for which we have used Dyson’s formula [43] and where t1
corresponds to a hyperparameter that specifies the length of

Fig. 5. Comparison of three different LSTM predictions for the advecting shock case.
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Fig. 6. Comparison of three different NODE predictions for the advecting shock case. The deployment with 16 neurons coincides with the true solution.

Fig. 7. Ensemble training and validation losses for the LSTM architecture for the advecting shock case.

memory retention. The second relationship may be assumed to
be a combination of memory effects and noise. The final evolution
of the system can then be bundled into a linear combination of
these two kernels, namely,
dar
dt

= Gar + Mar . (31)

The reader may compare this expression with that of the
internal state update within an LSTM,

st = G f ⊙ st−1 + G i ⊙
(
ϕT ◦ FNc

ar (ar )
)
, (32)

where a linear combination of a nonlinearly transformed input
vector at time t with the gated result of a hidden state at a
previous time t − 1 is used to calculate the result vector at the
current time. The process of carrying a state through time via
gating may be assumed to be a representation of the memory
integral (as well as the noise), whereas the utilization of the
current input may be assumed to be the Markovian component
of the map. In contrast, from the point of view of the NODE
implementation, the goal is to learn eWtWar directly through a
neural network.

3. Experiments

In this section, we assess the performance of both NODE
and LSTM frameworks in representing latent-space dynamics

appropriately. We investigate two problems given by the vis-
cous Burgers equation in a periodic domain. Both problems are
advection dominated: the first has a moving discontinuity over
time (which we designate the advecting shock problem), and the
second is characterized by standing shocks of various magnitudes
(which we designate Burgulence). Their problem statement and
results are shown below.

3.1. Advecting shock

Our first problem is given by the following initial and bound-
ary conditions:

u(x, 0) =
x

1 +

√
1
t0
exp

(
Re x2

4

) , (33)

u(0, t) = 0, (34)

u(L, t) = 0, (35)

where we specify L = 1 and maximum time tmax = 2. An
analytical solution for this set of equations is given by

u(x, t) =

x
t+1

1 +

√
t+1
t0

exp
(
Re x2

4t+4

) , (36)
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Fig. 8. Ensemble training and validation losses for the NODE architecture for the advecting shock case.

Fig. 9. Initial and final conditions for the Burgulence case showing multiple
standing discontinuities decaying in strength over time.

where t0 = exp(Re/8) and Re = 1/ν is kept fixed at 1000. We
directly utilize this expression to generate our snapshot data for
ROM assessments. A visualization of the time evolution of the
initial condition is shown in Fig. 1. As outlined in a previous
assessment of this problem [15], a reduced basis constructed of
20 basis vectors retains 99.93% of the energy of the system. For
our assessments, we retain only three modes, resulting in an
unresolved ROM that corresponds to only 86.71% of the total
energy, thus necessitating closure.

We perform an optimization for learning the modal coefficient
time series using the LSTM and NODE frameworks. To recap
model specifics, we deploy NODE (using 40 neurons) and LSTM
(using 32 hidden layer neurons) for learning the sequential nature
of the modal coefficient evolution in POD space. We utilize the
RMSprop optimizer using a learning rate of 0.01 for the former
and 0.001 for the latter and a momentum coefficient of 0.9
for both. Batch sizes of 10 and 16 respectively are also used
at each epoch of the learning phase. We use 1000 randomly
chosen sequence lengths of 10 for learning and validation through
time, with 20% of the total data kept aside for the latter. We
note that the best validation loss (aggregated over all validation

samples) is utilized for model selection. Fig. 2 shows the progress
to convergence for both LSTM and NODE architectures during
training for the first three modal coefficients. Both NODE and
LSTM trainings are run until validation loss magnitudes hover
around a magnitude of 10−4. We observe that the LSTM frame-
work reaches convergence more quickly although the oscillating
losses of the NODE potentially indicate better exploration. The
oscillations may also indicate the requirement of a lower learning
rate.

The time-series predictions for the trained frameworks are
shown in Fig. 3, where a0, a1, and a2 correspond to the first
three retained modes. For comparison, we also show predictions
from GP and the true modal coefficients, the latter of which
are utilized for training our time-series predictions. We observe
that both LSTM and NODE deployments capture coefficient trends
accurately indicating that sequential behavior has been learned.
The GP predictions can be seen to show unphysical growth in
coefficient amplitude due to the lack of presence of the finer
modes. However, LSTM and NODE deployments embed memory
into their formulation in the form of a hidden state or through
explicit learning of a latent-space ODE respectively. The memory-
based nature of their learning leads to excellent agreement with
the true behavior of the resolved scales.

The final time reconstructions for the true as well as the GP,
LSTM and NODE time-series predictions are shown in Fig. 4. One
can observe that at this severely truncated state, the discontinuity
is not completely resolved. The GP reconstructions show the
manifestation of large oscillations (now in the physical domain)
whereas NODE and LSTM are able to recover the true solution
well. Figs. 5 and 6 show a validation of our learning in an ensem-
ble sense, where multiple architectures (with slight differences
in the hidden layer neurons) are able to recover similar trends in
accuracy as examined through final time reconstruction ability.
This reinforces our assumption that an implicit closure is being
learned through time-series trends in a statistical manner. The
corresponding training losses for the LSTM and NODE architec-
tures are shown in Figs. 7 and 8, where similar learning trends
are obtained with slight variations in the number of trainable
parameters.

3.2. Burgers’ turbulence

Our next test case is given by the challenging Burgers turbu-
lence or Burgulence test case that leads to multiscale behavior
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Fig. 10. POD-space coefficient evolution for the Burgulence case.

Fig. 11. Kinetic-energy spectra predictions (left) and their residuals (right) as predicted by NODE and LSTM.
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Fig. 12. Field reconstruction abilities for the NODE and LSTM frameworks showing superior performance as compared with GP.

Fig. 13. Pairwise dependency plots for LSTM hyperparameter search using DeepHyper. Diagonal entries show distributions of configurations sampled. Note that loss
is encoded as negative since the hyperparameter search is based on objective function maximization.

in wavenumber space. Our problem domain is given by a length
L = 2π , and the initial condition is specified by an initial energy

spectrum (in wavenumber space) given by

E(k) = Ak4 exp
(
− (k/k0)2

)
, (37)
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Fig. 14. Pairwise LSTM hyperparameter correlations for the Burgers turbulence
case.

where k is the wavenumber and k0 = 10 is the parameter at
which the peak value of the energy spectrum is obtained. The
constant A is set to

A =
2k−5

0

3
√

π
, (38)

in order to ensure a total energy of
∫
E(k)dk = 1/2 at the initial

condition. The initial velocity magnitudes can be expressed in
wavenumber space by the following relation with our previously
defined spectrum,

û(k) =

√
2E(k) exp(i2πΨ (k)), (39)

where Ψ (k) is a uniform random number generated between 0
and 1 at each wavenumber. Note that this distribution is con-
strained by Ψ (k) = −Ψ (k) to ensure that a real initial condition
in physical space is obtained. For our assessment, we use energy
spectra given by

E(k, t) =
1
2
|û(k, t)|2. (40)

The aforementioned initial conditions are solved for the viscous
Burgers equation in wavenumber space by a Runge–Kutta Crank–
Nicolson scheme as described in [44]. Note that our ν is chosen to
be 2.5 × 10−3 to ensure that sharp discontinuities emerge from
the smooth initial condition. Our NODE and LSTM hyperparam-
eters are identical to the previous test case. Our investigations
here are performed for the initial condition (and its corresponding
time evolution) as shown in Fig. 9. We observe that the solu-
tion has a considerable multiscale element that makes this a
challenging problem for POD-ROM techniques.

Fig. 10 shows reduced-space time-series evolutions of the
three retained modal coefficients for the frameworks we are
comparing. We observe that the LSTM and NODE techniques
are successful in coefficient evolution stabilization in comparison
with GP, although the LSTM adds an element of phase error. The
NODE, however, captures latent-space trends exceptionally well.
The performance of these time-series learning models is further
assessed by their reconstruction in physical space as shown in
Fig. 11, where one can see that the LSTM and NODE perform
well in preventing spurious oscillations near discontinuities as
exhibited by an unclosed GP evolution. A further validation of this
hypothesis is observed in Fig. 12, where kinetic energy spectra
in wavenumber space show that the high residuals of the GP

Table 1
Search range for LSTM hyperparameters and their optimal values deployed for
the Burgers’ turbulence test case.
Hyperparameter Type Starting value Ending value Optimal

Sequence size Integer 5 30 30
Neurons Integer 5 100 73
Learning rate Real 0.0001 0.1 0.0005
Momentum Real 0.99 0.999 0.9988
Epochs Integer 100 1000 317
Batch Size Integer 5 30 8

method are controlled effectively by the LSTM and NODE de-
ployments. The LSTM results in slightly higher residuals for this
particular test case and choice of hyperparameters and optimizer.

3.3. Improving performance through hyperparameter search

While the results presented in the preceding sections indicate
an acceptable choice for hyperparameters, we utilize DeepHy-
per [45] to improve the test performance of our frameworks. This
choice is motivated by the comparatively poorer performance
of STM in the Burgulence experiment. DeepHyper relies on an
asynchronous-model-based search (i.e., a dynamically updated
surrogate model S , which is inexpensive to evaluate) for ob-
taining hyperparameters with the lowest validation losses. To
ensure an expressive surrogate model that is still computationally
tractable, we utilize random forest (RF). This results in a superior
search algorithm as compared with both a random-search and
a genetic-algorithm-based search. We note that RF also enables
us to handle discrete and nonordinal parameters directly without
the need for any encoding. DeepHyper is configured for searching
the hyperparameter space using a standard Bayesian optimization
framework. In other words, for each sampled configuration s, S
predicts a mean value for the validation loss µ(s) and standard
deviation σ (s). This information is utilized recursively to improve
the approximation to the loss surface as predicted by S. In terms
of exploring the hyperparameter search space, evaluation points
with small values of µ(s) indicate that s can potentially result
in the reduction of validation error subject to the accuracy of S.
Evaluation of points with large values of σ (s) improves S since
these locations are areas where S is least confident about the
approximation surface. The choice for the selection of a config-
uration s is utilized by minimizing an acquisition function given
by

A(s) = µ(s) − λ ∗ σ (s), (41)

where λ = 1.96 for encouraging exploration.
DeepHyper requires a range specification for real variables and

a list of possible choices for discrete hyperparameters. Table 1
outlines the range of hyperparameters for the LSTM architec-
ture utilized for the Burgers turbulence test case as well as the
optimal hyperparameters obtained. A summary of the distribu-
tion of sampled hyperparameters and pairwise dependencies is
also shown in Fig. 13. Note that loss is encoded as negative
since the hyperparameter search is based on objective function
maximization. Hyperparameter correlations are summarized in
Fig. 14, where we observe that most hyperparameters are weakly
correlated with each other. We note, however, that these results
are problem specific. In total, 2151 hyperparameter combinations
were evaluated during this search.

For comparison, we also show results from a similar hyper-
parameter search experiment for the NODE but for the advect-
ing shock experiment. The optimal parameters and ranges of
this search are listed in Table 2. A summary of the distribution
of sampled hyperparameters and pairwise dependencies is also
shown in Fig. 15. Correlation plots between hyperparameters are
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Fig. 15. Pairwise dependency plots for NODE hyperparameter search using DeepHyper. Diagonal entries show distributions of configurations sampled. Note that loss
is encoded as negative since the hyperparameter search is based on objective function maximization.

Table 2
Search range for NODE hyperparameters and their optimal values deployed for
the Burgers’ turbulence test case.
Hyperparameter Type Starting value Ending value Optimal

Sequence size Integer 5 30 5
Neurons Integer 10 100 82
Learning rate Real 0.0001 0.1 0.0074
Momentum Real 0.99 0.999 0.9983
Epochs Integer 200 1200 546
Batch Size Integer 5 30 21

shown in Fig. 16. In total, 734 hyperparameter combinations were
evaluated during this search.

We also deployed the optimal hyperparameter configuration
for an a posteriori assessment. The results are shown in Fig. 17. We
can see that by using LSTM, an improved performance has been
obtained that now matches NODE and true observations. In addi-
tion, an analysis of the spectra and residuals in Fig. 18 confirms
the superior performance as well. DeepHyper has successfully led
to an improved LSTM architecture.

4. Discussion and conclusions

We have investigated using LSTMs and NODEs as nonintrusive
learning models for the projections of nonlinear partial differen-
tial equations to a latent-space spanned by severely truncated
POD modes. We note that the choice of the POD modes (which
form a linear subspace) also ensures the applicability of the sym-
metries of the PDE-governed solution on the machine-learned
predictions.

We tested our ideas on two test cases governed by the viscous
Burgers equation, with the first exhibiting an advecting shock
and the second displaying a multiscale nature in full-order space.
Both LSTM and NODE formulations are seen to learn the transient
nature of our systems in the reduced space: they exploit the
sequential nature of data and provide an implicit closure. In the
second case, we also utilize DeepHyper, a scalable Bayesian opti-
mization package for an improved hyperparameter configuration
choice, in order to obtain superior performance for LSTM. The
non-i.i.d. assumption of the data and associated learning allows
for the embedding of a memory effect that provides for accurate
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Fig. 16. Pairwise NODE hyperparameter correlations for the Burgers turbulence
case.

coarse-grained evolution of modal coefficients in a manner simi-
lar to the Mori–Zwanzig formalism. Our assessments reveal that
the machine learning techniques studied here are able to provide
stable evolutions of the modal coefficients in comparison with
their intrusive and unclosed counterpart (i.e., GP).

These methods have several potential limitations that pro-
vide a focus for future studies. For example, we have observed
that nonintrusive ROMs constructed by using autoregressive ma-
chine learning models (such as the LSTM formulation presented
here) are particularly susceptible to error accumulation during
deployment. Extending these methods to long prediction hori-
zons remains an important unanswered question. The current
study fixes this length to be a 400 timestep simulation and
avoids this issue. Moving beyond this range to somewhere around
O(4000) timesteps while retaining stable predictions is a difficult
task to accomplish. The long-term stability of these machine
learning methods may intuitively be linked with the underlying
dynamics of the full-order model, but thorough empirical and
rigorous studies need to be performed to establish these links.
We also note that, in the absence of strong a priori physics
constraints, these frameworks are unreliable in an extrapolatory
sense (for instance, predicting in the future for previously unseen
dynamics) and for parametric regimes that do not correspond
to the training data. With this point in mind, embedding uncer-
tainty estimates into such methods thus is important. However,
quantifying the uncertainty of a nonintrusive ROM remains com-
putationally and mathematically challenging. The current train-
ing data were generated by using numerical simulations and
were noise-free. However, the practical deployment of such ROMs
needs to account for learning from noisy data in the presence
of measurement uncertainty. In order to deal with this issue,
machine learning methods are complemented by strategies such
as the incorporation of artificial noise into the training data or the
use of weight regularization during training. We note, however,

Fig. 17. POD-space coefficient evolution for the Burgulence case with improved hyperparameter choices. The LSTM performance is significantly improved.
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Fig. 18. Kinetic-energy spectra predictions (left) and their residuals (right) as predicted by NODE and LSTM deployed with optimal hyperparameters.

that these strategies rarely behave in a universal manner, and
significant problem-specific tuning may be needed. An avenue for
exploration is to move beyond the use of POD and employ nonlin-
ear embeddings to characterize the reduced space. This may aid
with high-dimensional dynamics that are insufficiently captured
by a set of truncated POD basis vectors; some early results are
shown in [20]. Another interesting direction to improve shock
resolution with training neural networks is by using wavelet
bases of the data [46], due to their adaptive nature and suitability
for equations with strong non-stationarity and discontinuities.
We conclude by noting that ROM developments that incorporate
history explicitly (such as in the LSTM) or implicitly (such as
through a NODE) represent an attractive avenue for exploration
for efficient reduced basis dynamics learning of systems that are
advection-dominated.
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