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Abstract

We present SCAFF-PD, a fast and communication-
efficient algorithm for distributionally robust fed-
erated learning. Our approach improves fairness
by optimizing a family of distributionally robust
objectives tailored to heterogeneous clients. We
leverage the special structure of these objectives,
and design an accelerated primal dual (APD) al-
gorithm which uses bias corrected local steps
(as in SCAFFOLD) to achieve significant gains in
communication efficiency and convergence speed.
We evaluate SCAFF-PD on several benchmark
datasets and demonstrate its effectiveness in im-
proving fairness and robustness while maintain-
ing competitive accuracy. Our results suggest
that SCAFF-PD is a promising approach for feder-
ated learning in resource-constrained and hetero-
geneous settings.

1. Introduction

Federated learning is a popular approach for training ma-
chine learning models on decentralized data, where data
privacy concerns or other constraints prevent centralized
data aggregation (McMahan et al., 2017; Kairouz et al.,
2021). In federated learning, model updates are computed
locally on each device (the client) and then aggregated to
train a global model at the center (the server). This ap-
proach has gained traction due to its ability to leverage data
from multiple sources while preserving privacy, security,
and autonomy, and has the potential to make machine learn-
ing more participatory in a range of interesting problem
domains (Kulynych et al., 2020; Jones and Tonetti, 2020;
Pentland et al., 2021).

Federated learning is naturally most attractive when the par-
ticipating clients have access to different data, leading to
data heterogeneity (du Terrail et al., 2022). This hetero-
geneity can lead to significant fairness issues, where the
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performance of the global model can be biased towards the
data distribution of some clients over others (Dwork et al.,
2012; Li et al., 2019; Abay et al., 2020). Heterogeneity can
also hurt the generalization of the global model (Quinonero-
Candela et al., 2008; Mohri et al., 2019). Specifically, if
some clients have a disproportionate influence on the global
model, the resulting model is neither fair nor will it gen-
eralize well to new clients. Such disparities are especially
prevalent and detrimental in medical research, and have re-
sulted in misdiagnosis and suboptimal treatment (Graham,
2015; Albain et al., 2009; Nana-Sinkam et al., 2021).

To address these challenges, distributionally robust
objectives (DRO) explicitly account for the heterogeneity
across clients and seek to optimize performance under the
worst-case data distribution across clients, rather than just
the average performance (Rahimian and Mehrotra, 2019).
This approach can lead to more robust models that are less
biased towards specific clients and more likely to generalize
to new clients (Mohri et al., 2019; Duchi et al., 2023).
However, such robust objectives are significantly harder to
optimize. Current algorithms have very slow convergence,
potentially to the point of being impractical (Ro et al.,
2021). This leads to the central question of our work:

Can we design federated optimization techniques for the
DRO problem with convergence rates that match their
average objective counterparts?

1.1. Our Contributions
‘We summarize our contributions below.

Framework. We present a general formulation for the
cross-silo federated DRO problem:

N
min max {F(w, A) = ; Ai - fi(®) — ww} , (LD
where f;(x) is the loss suffered by client i. Instead of
minimizing a simple average of the client losses, equation
(1.1) incorporates weights using A € RY. The choice of
A is made in a worst-case manner, while being subject to
the constraint set A and regularized with (). As we will
show, this formulation is a generalization of several specific
fair objectives that have been proposed in the federated
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Figure 1: (left) In federated learning, the data distribution across individual clients differ significantly from one another.
(right) When directly applying SOTA federated optimization algorithm (SCAFFOLD), the learned global model is biased
toward certain clients, leading to noticeably worse performance when applied to a subset of participating clients. Our
proposed algorithm—S CAFF-PD—Ilargely mitigates this bias via learning a distributionally robust global model, which
significantly enhances the performance of the most challenging subset of clients, specifically the worst 20%.

learning literature (Mohri et al., 2019; Li et al., 2019; 2020a;
Zhang et al., 2022a; Pillutla et al., 2021).

Algorithm. The objective defined in equation (1.1) is
a min-max problem and can be directly optimized using
well-established algorithms such as gradient descent ascent
(GDA). However, such approaches ignore the unique struc-
ture of our formulation, particularly the linearity of the in-
teraction term between X\ and x. We leverage this to design
an accelerated primal-dual (APD) algorithm (Hamedani
and Aybat, 2021). Additionally, we propose to use con-
trol variates (a la SCAFFOLD) to correct the bias caused
by local steps, making optimal use of local client compu-
tation (Karimireddy et al., 2020). Our proposed method,
SCAFF-PD, combines these ideas to provide an efficient and
practical algorithm, compatible with secure aggregation.

Convergence. We provide strong convergence guaran-
tees for SCAFF-PD when f; are strongly convex. If
() is a generic convex function, we achieve an accel-
erated O (1/T?) rate of convergence. Furthermore, if ¢) is
strongly convex, SCAFF-PD converges linearly at a rate of
exp (—O(T')). This represents the first federated approach
for the DRO problem that achieves /inear convergence, let
alone an accelerated rate. Finally, we extend our analysis
to the stochastic setting, where we obtain an optimal rate of
O (1/T), and improve over the previous O(1/+/T) rate.

Practical Evaluation. We conducted comprehensive sim-
ulations and demonstrate accelerated convergence, robust-
ness to data heterogeneity, and the ability to leverage local
computations.

For deep learning models, we avail ourselves of a two-stage
Train-Convexify-Train method (Yu et al., 2022). First, we
train a deep learning model using conventional federated
learning methods, such as FedAvg. Then, we apply SCAFF-
PD to fine tune a convex approximation. To evaluate our
algorithms, we use several real-world datasets with various

distributionally robust objectives, and we study the trade-off
between the mean and tail accuracy of these methods.

QOutline. In consideration of the page constraints, we intro-
duce the related work in Section A and establish the problem
setup in Section B. Our proposed algorithms are presented
in Section 2, accompanied by convergence analysis in Sec-
tion 3. The results of our experiments are summarized in
Section C.

2. SCAFF-PD: Accelerated Primal-Dual
Federated Algorithm with Bias Corrected
Local Steps

In this section, we describe our proposed algorithm SCAFF-
PD (Stochastic Controlled Averaging with Primal-Dual up-
dates) for solving the federated DRO problem (1.1). We
present the pseudo-code for SCAFF-PD in Algorithm 1 and
algorithm used for local updates in Algorithm 2.

As described in Algorithm 1, SCAFF-PD comprises three
main steps that are executed at each communication round
7: (1). Collecting loss vector [LY, ..., L] and gradients
{gi(z")}}L, (for bias correction); (2). Update to the dual
variable; (3). Local updates to each client model, and aggre-
gating the updates by using the updated dual variable. We
provide the pseudo-code for local updates in Algorithm 2.

Extrapolated Dual Update. Based on the computed
loss vector VA®(z",A") = [L},...,L%]" in the first
step, we update the weight vector A. Importantly, when
6. > 0, we use both the dual gradient from the cur-
rent round (VA®(x",A")) as well as the past round
(VA®(z"1, A"1)) to obtain the extrapolated gradient s”.
The gradient extrapolation step is widely used in primal-dual
hybrid gradient (PDHG) methods (Chambolle and Pock,
2016) for solving convex-concave saddle-point problems,
and it provides the key component in our algorithm for
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Algorithm 1 SCAFF-PD(z°, A?)

Algorithm 2 LOCAL-UPDATE(x, ¢;, )

forr=1,2,...,Rdo
#(1) . Collect gradient and loss
vector

Set parameters {7, oy, Y, 0, }
fori=1,2,...,N do
L} = fi(z"), ¢f = gi(z"),
Communicate (L7, ¢}') to center
end for
#(2) . Update dual A

8" = (1+6,)Va®(x",A") — 0, Vad(z" ", A7)

AT — argminy . , {w()\) — (Sd)\) + %D()\,/\T)}

# (3).Update primal =
c = Ziv=1 )\;7+1c§, Communicate ¢” to each client
fori:=1,2,...,N do
Auf <+ LOCAL-UPDATE(z",c],c"),
Communicate Au] to the center

end for
Aggregate updates from different client via the weight
vector A7 1

i=1

N
r4+1 _ . r+1 T i T
' = argmmm{< E AT Aug, @) + TTD(wﬂc )}

end for
Return: (zfi1, A+l

achieving acceleration. The extrapolation step used in dual
update is to Nesterov’s acceleration (Nesterov, 2003), which
can lead to faster convergence rate and has been widely uti-
lized for achieving acceleration in solving various optimiza-
tion problems. (Chambolle and Pock, 2011; 2016; Zhang
and Lin, 2015; Hamedani and Aybat, 2021).

Local Steps and Control Variates c;. Supposing that com-
munication is not a limiting factor, each client can compute
its local gradient and transmit it to the server without any
local steps. In this case, the update to the primal variable x

becomes
Auj = gi(z"),
N
1 2.1
argmin { (3" A" gi(a"), @) + —D(w.a")}.
i=1 r

This update performs the primal update with the unbiased
gradient V, F'(z", A\""1), which is equivalent to the stan-
dard primal update in primal-dual-based algorithms (Cham-
bolle and Pock, 2016; Hamedani and Aybat, 2021; Zhang
et al., 2022b). However, such an update does not effec-
tively utilize the local computational resources available
on each client. Hence, we would like to perform multiple
local update steps. The catch is that performing multiple

Input: optimization parameters (7, .JJ), model parame-
ters (¢;, ¢, )
U0 =T
fory)=1,2,...,Jdo
Ui = i1 — e (9i(Uij-1) — i+ ¢
end for
Au; = (T — u;,7)/(ne])
Return: Au;

local steps is known to lead to biased updates and “client-
drift” (Karimireddy et al., 2020; Woodworth et al., 2020;
Wang et al., 2020). We explicitly correct for this bias us-
ing control variates {c;};c|y) similar to SCAFFOLD. As
we will demonstrate in the subsequent theoretical analysis,
this correction allows SCAFF-PD to converge to the saddle-
point solution of the DRO problem regardless of the data
heterogeneity.

While we use local updates on the primal variable, we do
not perform any on the dual variable. This is unlike gen-
eral federated min-max optimization algorithms (Hou et al.,
2021; Beznosikov et al., 2022). This design aligns well with
the federated DRO formulation since it is impractical for
each client to update the weight vector at each local step
due to their lack of knowledge regarding the loss values of
other clients. The aggregation of SCAFF-PD on the server
resembles federated algorithms used for solving minimiza-
tion problems, with the key difference being the utilization
of the updated weight vector for primal aggregation.

3. Theoretical Analysis

We now present the convergence results for SCAFF-PD in
solving the min-max optimization problem described in
Eq. (1.1). Firstly, in Section 3.1, we introduce the results
for the strongly-convex-concave setting. Subsequently, in
Section 3.2, we present the results for the strongly-convex-
convex setting.

3.1. Strongly-convex-concave Setting

We first introduce how to choice the parameters for SCAFF-
PD in when 1 is convex and { f; };c[n] are strongly convex
in Condition 3.1.

Condition 3.1. The parameters of Algorithm I are defined
aso_1 = YT, 0r = YT, Or = 0p_1/0r, Y41 =

7r<1 + ,Ufar:’rr)~

Next we present our convergence results in this setting.

Theorem 3.1. Supppose { fi}ic|n) are ji-strongly convex.
If Assumption B.3 and AssumptionB.4 hold, and we let the
parameters {7y, 0,V 0} of Algorithm 1 satisfy Condi-
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tion 3.1, then the R-th iterate (x, A\Tt) satisfies

Cq Co

E R %2 < 22D ~a -2

[z &*|%] < 25D + S2¢2,

where C1,Cy > 0 are non-negative constants, and Dy =

[l —a[* + A% — A*||%.

Corollary 3.2. Under the assumptions in Theorem 3.1,

* (deterministic local gradient): If the local gradient

satisfies g;(x) = Vfi(x) for i € [N], then after

19) (\Iw**woll2+\|>\°*>\*H2

€

3.1)

) rounds, we have | &% —x*||?> <

e (stochastic local gradient): If the local gradient
satisfies Assumption B.4 with ¢ > 0, then af-

*_ 02 0__ y*12 2
ter O(Hm z | \7\|>\ A7l +%> rounds, we have

g

E[l|=® —z*|?] <e

Remark 3.3. As suggested by the Corollary 3.2, in the de-
terministic setting (( = 0, when applying SCAFF-PD for
solving the min-max problems in the vanilla AFL and the
super-quantile approach, SCAFF-PD achieves the conver-
gence rate of O(1/R?). The rate of SCAFF-PD is faster
than existing algorithms — the convergence rate is O(1/R)
in both Mohri et al. (2019); Pillutla et al. (2021). In addi-
tion, the algorithm with theoretical convergence guarantees
introduced in Mohri et al. (2019) does not apply local steps
(i.e., number of local updates J = 1), resulting in inferior
performance in practical applications.

Remark 3.4. SCAFF-PD matches the rates (O(1/R?))
of the centralized accelerated primal-dual algo-
rithm (Hamedani and Aybat, 2021) when ( = O.
Meanwhile, our proposed algorithm converges faster
compared to directly applying centralized gradient descent
ascent (GDA) and extra-gradient method (EG) for solving
Eq. (1.1), which achieve a rate of O(1/R).

3.2. Strongly-convex-strongly-concave Setting

We next present results for the strongly-convex-strongly-
concave setting. Differing from the strongly-convex-
concave setting, the parameters of Algorithm 1 are fixed
across different rounds, as follows.

Condition 3.2. The parameters of Algorithm 1 are de-
fined as ot — O(50). xo = 0 (35°), 11y —
Lew | [ 13a <
0 (( Ha + uﬁu) v Hm5> ’
Theorem 3.5. Suppose {fi}ic|n) are jiq-strongly convex
and 1) is [iy-strongly convex. If Assumption B.3 and As-
sumptionB.4 hold, and we let the parameters {T,0,0} of
Algorithm 1 satisfy Condition 3.2, then the R-th iterate
(2, AF) satisfies
<2
E [,umeT — :B*||2] < C1Dof" + Cy(1 — G)Iu—,

T

(3.2)

where Cy,Cy > 0 are non-negative constants and Dy =
[ — ¥ + A% — X2

Corollary 3.6. Under the assumptions in Theorem 3.5,

¢ (deterministic local gradient): If the local gradient
satisfies g;(x) = Vfi(x) for i € [N], then after
O La= + / Lia

. 2% | rounds, pl|2? —x*|? < e

e (stochastic local gradient): If the local gra-
dient satisfies Assumption B.4 with ¢ > 0,

L2 2
Az < ) rounds,

Ha X Ha€

then after 9] <l;f: +
E [pazf —x*|?] <e.

Remark 3.7. Our algorithm converges linearly to the global
saddle point when each client applies a noiseless gradient
for local updates (i.e., ( = 0) in the presence of data hetero-
geneity and client-drift in federated learning. In contrast,
previous approaches exhibit only sub-linear convergence. In
the strongly-convex-strongly-concave setting, DRFA (Deng
et al., 2020) converges to the saddle-point solution with rate
O(1/R) when there is no data heterogeneity and ¢ = 0.

Remark 3.8. By applying bias correction in local updates,
the convergence rates of our algorithm match those of the
centralized accelerated primal-dual algorithm (Zhang et al.,
2021) in both deterministic and stochastic settings.

Remark 3.9. Compared to the standard minimization in
federated learning, the DRO objective results in a slightly
worse condition number in terms of convergence rate. In
comparison to the standard minimization objective in fed-
erated learning, the DRO objective yields a slightly worse
condition number. Solving DRO with SCAFF-PD requires
(v Laa/bz + /L3, /(Laxiin)) times more communica-
tion rounds compared to solving minimization problems
with ProxSkip (Mishchenko et al., 2022).

4. Conclusions

We have demonstrated the ability of SCAFF-PD to address
challenges of fairness and robustness in federated learning.
Theoretically, we obtained accelerated convergence rates for
solving a wide class of federated DRO problems. Experi-
mentally, we demonstrated strong empirical performance of
SCAFF-PD on real-world datasets, improving upon existing
approaches in both communication efficiency and model
performance. An interesting future direction is the inte-
gration of DRO and privacy-preserving techniques in the
context of federated learning, making SCAFF-PD applica-
ble for a wider range of real-world applications. Another
exciting direction is to explicitly integrate SCAFF-PD with
game-theoretic mechanisms. Finally, studying the interplay
between distributional robustness and personalization is an
important open problem.
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A. Related Work

Cross-silo FL. Federated learning (FL) is a distributed machine learning paradigm that enables model training without
exchanging raw data. In cross-silo FL (which is our focus), valuable data is split across different organizations, and each
organization is either protected by privacy regulations or unwilling to share their raw data. Such organizations are referred
to as “data islands” and can be found in hospital networks, financial institutions, autonomous-vehicle companies, etc. Thus,
cross-silo FL involves a few highly reliable clients who potentially have extremely diverse data.

The most widely used federated optimization algorithm is Federated Averaging (FedAvg) (McMahan et al., 2017), which
averages the local model updates to produce a global model. However, FedAvg is known to suffer from poor convergence
when the local datasets are heterogeneous (Hsieh et al., 2020; Li et al., 2020b; Karimireddy et al., 2020; Reddi et al., 2021;
Wang et al., 2021; du Terrail et al., 2022). Scaffold (Karimireddy et al., 2020) corrects for this heterogeneity, leading to
more accurate updates and faster convergence (Mishchenko et al., 2022; Li et al., 2022a; Yu et al., 2022). However, all of
these methods are restricted to optimizing the average of the client objectives.

Distributionally Robust Optimization. DRO is a framework for optimization under uncertainty, where the goal is to
optimize the worst-case performance over a set of probability distributions. See Rahimian and Mehrotra (2019) for a review
and its history in risk management, economics, and finance. Fast centralized optimization methods have been developed
when uncertainity is represented by f-divergences (Wiesemann et al., 2014; Namkoong and Duchi, 2016; Levy et al., 2020)
or Wasserstein distances (Mohajerin Esfahani and Kuhn, 2018; Gao and Kleywegt, 2022). The former approach accounts for
changing proportions of subpopulations, relating it to notions of subpopulation fairness (Duchi et al., 2023; Santurkar et al.,
2020; Piratla et al., 2021; Martinez et al., 2021). Our work also implicitly focuses on f-divergences. Deng et al. (2020)
and Zecchin et al. (2022) adapt the gradient-descent-ascent (GDA) algorithm to solve the federated and decentralized DRO
problems respectively. However, these methods inherit the slowness of both the GDA and FedAvg algorithms, making their
performance trail the state of the art for the average objective (Mishchenko et al., 2022).

Fairness in FL.. While fairness is an extremely multi-faceted concept, here we are concerned with the distribution of
model performance across clients. Mohri et al. (2019) noted that minimizing the average of the client losses may lead to
unfair distribution of errors, and instead proposed an agnostic FL (AFL) framework which minimizes a worst-case mixture
of the client losses. Alternatives and extensions to AFL have also been proposed subsequently Li et al. (2019; 2020a);
Pillutla et al. (2021). Again, the convergence of optimization methods for these losses (when analyzed) is significantly
slower than their centralized counterparts.

While all of these works demand equitable performance across all clients, others propose to scale a client’s accuracy in
proportion to their contribution (Sim et al., 2020; Blum et al., 2021; Xu et al., 2021; Zhang et al., 2022a; Karimireddy et al.,
2022). These methods are motivated by game-theoretic considerations to incentivize clients and improve the quality of the
data contributions. Our framework (1.1) can be applied to such mechanisms by an appropriate choice of {f;}, A, and 1.
For example, Zhang et al. (2022a) show how to set these to recover the Nash bargaining solution (Nash Jr, 1950). Thus, our
work can be seen as a practical optimization algorithm to implement many of the mechanisms studied in FL.

Finally, personalization—serving a separate model to each client—has also been proposed as a method to improve the
distribution of client performance (Yu et al., 2020). However, personalized models are sometimes not feasible either due to
regulations (Vokinger et al., 2021) or because the client may not have additional data. Further, personalization does not
remove the differences in performance (though it does reduce it) (Yu et al., 2020), nor does it solve the game-theoretic
considerations described above. Extending our work to this setting is an important question we leave for future work.

B. Problem Setup

We consider the min-max optimization problem in the context of federated learning, where the objective function, defined
in Eq. (1.1), is distributed among N clients. Each f; : R? — R is the local function on the i-th client, where f;(x) =
Ecup,[f(x, )] and D; is the data distribution of the i-th client. For example, we can define D; as the uniform distribution
over the training dataset present on the i-th client.

Notation. We use the notation 2" € R? to denote the global iterate at the r-th round, and use u; ;€ R? to denote the

local iterate at the j-th step on the i-th client (at the 7-th round). We apply A = [A,...,An] " € RY to denote the weight
vector, where \; is the weight for client . We let [IN] denote the set {1, ..., N'}. To facilitate clarity and presentation, we let

8



SCAFF-PD: Communication Efficient Fair and Robust Federated Learning

O(x, ) = Zfil Ai - fi(). For local gradients, we let g;(u; j_1) denote the stochastic gradient of f; at iterate w; j_1:

gi(u;jfl) = Vfi(u;j,pﬂ;jq) (B.1)

Choosing ) and A. We let 1 : RY — R denote the regularization on the weight vector X. The x? penalty (Levy et al.,
2020) involves setting

N
v(\) = % SO(NA —1)% and A = AV (B.2)
=1

When regularization is set to zero with p = 0, the DRO formulation (1.1) recovers the agnostic federated learning (AFL)
of Mohri et al. (2019). A non-zero value of p can be used to trade off the worst-case loss against the average loss. In
particular, setting p — oo recovers the standard average FL objective. While we will primarily focus on (B.2) in this work,
other choices are also possible. The DRO objective becomes the a-Conditional Value at Risk (CVaR) loss (Duchi and
Namkoong, 2021), also known as super-quantile loss (Pillutla et al., 2021) by setting

PY(A)=0,and A ={A e A\, <1/(aN)}.

Finally, we can recover the Q-FL loss of Li et al. (2019) by setting
141 N
YA) =[|A' "9, and A =R .

Definitions and assumptions. In the convergence analysis of our proposed algorithms, we rely on the following definitions
and assumptions regarding the local functions and the regularization term ):

Definition B.1 (Smoothness). f(-) is convex and differentiable, and there exists L > 0 such that for any x, x5 in the
domain of f;(-),

[V fi(x1) = Vi(z2)]| < Ll|z1 — 22 (B.3)

Definition B.2 (Strong convexity). f(-) is p-strongly convex, i.e.,
J(@2) 2 fl@) + (Vi (@), e = @1) + Gz — ]

Assumption B.3 (Smoothness w.r.t. ®). ®(x,-) is concave and differentiable, and there exists Lz > 0 such that for any
X1, T2 in the domain of (-, A) and A1, Ag in the domain of ®(x, -),

[VA®(z1, A1) — Va®(z2, X2)|| < Lazllz1 — 2|

Assumption B.4 (Bounded noise). There exist ¢ > 0 such that for all i € [N|, the local gradient g;(x) defined in Eq. (B.1)
satisfies

E[llgi(x) - Vfi(@)I] < ¢, Elgi(x)] = Vfi().

C. Experiments

We now study the performance of SCAFF-PD for solving federated DRO problems on both synthetic datasets and real-world
datasets. Our primary objective when working with synthetic datasets is to validate the convergence analysis of SCAFF-PD.
On real-world datasets, we compare with existing federated optimization algorithms for learning robust and fair models
(DRFA (Deng et al., 2020), AFL (Mohri et al., 2019), and ¢-FFL (Li et al., 2019)) as well as widely used federated algorithms
for solving minimization problems including FedAvg (McMahan et al., 2017) and SCAFFOLD (Karimireddy et al., 2020).
After conducting thorough evaluations, we have observed that our proposed accelerated algorithms achieve fast convergence
rates and strong empirical performance on real-world datasets. We have provided supplementary experimental results in
Appendix F, which includes additional baseline methods, ablations on our algorithm, and other relevant findings.
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Figure 2: We compare our proposed algorithm with the existing method DFRA (Deng et al., 2020) on synthetic datasets.
p is the strength of regularization v (defined in Eq. (B.2)). X -axis represents the number of communication rounds, and
Y -axis represents the distance to optimal solution.

C.1. Results on Synthetic Datasets

To construct the synthetic datasets, we follow the setup described in Eq. (1.1) and consider a simple robust regression
problem. Specifically, for the i-th client, the local function f; is defined as f;(x) = ;- -7 ((a], ®) — y])* + L[|z,
where j is sample index on this client and there are m; training samples on client-i. We apply the x? penalty for regularizing
the weight vector . To generate the data, each input @] is sampled from a Gaussian distribution @] ~ N (0, I;x4). Then
we random generate Z ~ N (0, ¢2I54), and 6% ~ N (0,021, 4). Based on (&, 6%), we generate y! as y! = (a, T + 0%).
Therefore, there exist distribution shifts across different clients (i.e., concept shifts). We set N = 5, d = 10, and m; = 100
for i € [N]. To measure the algorithm performance, we evaluate the distance between ¥ and the optimal solution z*:
[ — a*||?.

We compare SCAFF-PD with DRFA (Deng et al., 2020) on this synthetic dataset. The regularization parameter p for v is
varied from 0.01 to 0.1. For both algorithms, we set the number of local steps to be 100 and select the algorithm parameters
through grid search. The comparison results are summarized in Fig 2. As shown in Fig 2, we observe that our proposed
algorithm SCAFF-PD achieves linear convergence rates in all three settings. In contrast, DRFA converges much more slowly
compared to SCAFF-PD. We have included more experimental results under this synthetic setup in Appendix F, including
results on the effect of local steps and data heterogeneity.

C.2. Results on Real-world Datasets

Dataset setup. We evaluate the performance of various federated learning algorithms on CIFAR100 (Krizhevsky et al., 2009)
and TinyImageNet (Le and Yang, 2015). We follow the setup used in Li et al. (2022b): we consider different degrees of data
heterogeneity by applying Dirichlet allocation, denoted by Dir(«), to partition the dataset into different clients. Smaller «
values in Dir(«) leads to higher data heterogeneity. Additionally, after the data partition through the Dirichlet allocation, we
randomly sample 30% of the clients and remove 70% training samples from those clients. Such a sub-sampling procedure
can better model real-world data-imbalance scenarios. We consider the number of clients N = 20 for both datasets. Results
on larger number of clients and other real-world datasets can be found in Appendix F.

Model setup. We consider learning a linear classifier by using representations extracted from pre-trained deep neural net-
works. Previous studies have demonstrated the efficacy of this approach, particularly in the context of data heterogeneity (Yu
et al., 2022) as well as sub-group robustness (Izmailov et al., 2022). For both datasets, we apply the ResNet-18 (He et al.,
2016) pre-trained on ImageNet-1k (Deng et al., 2009) as the backbone for extracting feature representations of the image
samples. To apply the pre-trained ResNet-18, we resize the images from CIFAR100 and TinyImageNet to 3 x224 x224.

Comparisons with existing approaches. We consider three data heterogeneity settings for both datasets. To measure
the performance of different algorithms, beside the average classification accuracy across clients, we also evaluate the
worst—20% accuracy' for comparing fairness and robustness of different federated learning algorithms. Previous studies

'First sort the clients by test accuracy, then select the lower 20% of clients and compute the mean from this subset.
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Table 1: The average and worst-20% top-1 accuracy of our algorithm (SCAFF-PD) vs. state-of-the-art federated learning
algorithms evaluated on CIFAR100 and Tiny-ImageNet. The highest top-1 accuracy in each setting is highlighted in bold.

Datasets Methods Non-i.i.d. degree
a=0.01 a=0.05 a=0.1
average worst-20% | average worst-20% | average worst-20%
FedAvg 38.77 15.93 | 3596 24.43 | 3657 26.50
SCAFFOLD 37.38 14.65 | 3528 24.77 | 35.63 25.61
g-FFL 26.39 543 | 29.60 18.62 | 3038 21.98
CIEAR-100 AFL 47.38 18.04 | 4473 2206 | 44.89 27.27
DRFA 46.47 26.77 | 4l6l 27.66 | 4320 32.04
SCAFF-PD 49.03 29.30 |  42.06 28.37 | 43.69 32.77
average worst-20% | average worst-20% | average worst-20%
FedAvg 33.66 18.18 | 3153 23.46 | 35.08 27.61
SCAFFOLD 31.79 15.85 | 3043 22.57 | 3458 27.33
g-FFL 25.50 9.70 | 2745 19.38 | 3290 26.24
TinyImageNet AFL 45.32 1865 | 4554 2802 | 4611 29.50
DRFA 36.80 22.32 | 3739 28.38 | 3739 28.38
SCAFF-PD 41.26 25.32 | 3932 30.27 | 4123 29.78

have employed this metric for comparing different model in federated learning (Li et al., 2019). The comparative results
are summarized in Table 1. We find that our proposed algorithm outperforms existing methods in most settings, especially
under higher heterogeneity. For example, when the level of data heterogeneity is low (o = 0.1), applying SCAFF-PD does
not yield very large improvements compared to the existing algorithms. In the case of high data heterogeneity (o« = 0.01),
our proposed algorithm largely improves the worst-20% accuracy performance on both datasets.

Effect of p in DRO. To gain a better understanding of the empirical performance of our algorithm, we investigate the role
of p in DRO when applying our algorithm. We consider p € {0.1,0.2,0.5} and measure both the average and worst-20%
accuracy during training. We present the results in Fig 3. We find that when p is small, SCAFF-PD can achieve better
fairness/robustness—the worst-20% accuracy significantly improves when we decrease the p in SCAFF-PD. Meanwhile,
the experimental results suggest that smaller p leads to faster convergence w.r.t. worst-20% accuracy for our algorithm.
On the other hand, when applying smaller p, the condition number of the min-max optimization problem becomes worse.
Fortunately, our algorithm is guaranteed to achieve accelerated rates, making it particularly beneficial in scenarios where fux
is small. As we have demonstrated in Fig 2, our proposed algorithm still converges relatively fast when p is small.

In addition, we study the trade-off between average accuracy vs. worst-20% accuracy vs. best-20% accuracy for different
algorithms. The results are summarized in Fig 4 (in Appendix F). Without sacrificing much on average accuracy and
best-20% accuracy, our algorithm largely improves the worst-20% accuracy.

D. Technical Lemmas

This section is dedicated to presenting several lemmas that serve as building blocks in proving the convergence of our
proposed algorithms.

Lemma D.1 (Perturbed strong convexity, Karimireddy et al. (2020)). Suppose the function f(-) : X — R is L-smooth and
u-strongly convex, then for any x,y,z € X,

(Vi(@),z —y) = f(z) ~ fy) + Ly - 2)* = Ll|z - 2] (1)

We now present the lemma for analyzing the drift term.

Lemma D.2 (Bounded drift). Suppose 7, = J n¢ g, and ng > 1, then we have

2 2 2
£ < T [va@(mr,xﬂﬂf} L BT 0 e e (D.2)
Mg g U
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Figure 3: We study the effect of regularization term p in our proposed algorithm SCAFF-PD. We measure both the average
test accuracy (a) and worst-20% accuracy (b) during training. In addition, we include SCAFFOLD (orange dashed lines) as
a baseline method for comparison.

where &, is defined as

|

1 N J
£ == > NE([llui; — 2|, (D.3)
i=1 j=1

and x is defined as

N

= 2. D.4
X = max 2% (D.4)

Proof. We omit the r superscript in the following proof. Recall that the definition of u; ; in Algorithm 1, i.e.,

Ui = i1 — e (gi(wij-1) — & +¢),
and we have
Elgi(uij—1)] = Vfilui;-1),

(D.5)

N
Ele] = Z \iVfi(x) =c.
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Then we can upper bound E [||lu; ; — x||?] as follows,

[
[Huw 1= —ne(gi(uij—1) — & + &) }

(i1 — 2 —ne(V fi(wij—1) — é + &) *] + 7€ [llgi(wij—1) — V fi(wij—1)|?]
[Huw 1—x—ne(Vfi(uij-1) — & + é)HQ] "‘77?(2

E
=E
E
<E
1
§<1+_>EUM¢4wH]+JWEMVﬁwu D) — &+ &2 +nic?

T-1
1 . N
= (14 757 ) Elhos = 0lP] + T (1WAl gon) = o+ 2lP] +
1 27 (D.6)
< (14— ) Elluij—1 — 2)*] + SZE[[Vfilui 1) —ci +¢l?]
T-1 27
272
“TE e — e a2 2 42
+77§J [llei — ci +c—e*] +ni¢

1
: (1 * J1> E [llwij—1 — =[] + T]E [V filwij-1) = ei +c?]

2 472
——E [Héz Cz” ] +7JE [”é_CHQ] +77%C2a

E [llui; — ]
1 b E s E IV 2 4T2E 21,1
< (1+ 5= ) Ellluwig-1 -] ]+? [V fi(wij1) — e ]+77§—J [lell?] +
1 47212 T2 (D.7)
< (14— 2L ) E [[|lu; ;-1 — |?] + =E[|le|?] +T
_<+J_1 n2J ) [l i1 Cvll]+773J [llell®] +
2 2 )
< 1+7J—1 E [[lwij—1 — ]+77§7JE[HC” ]+,
where we apply the condition that m < 5=5- Then we have
j—1 % 2
4t
E [ui; —*] <) <1+> (WE[W} +r>
=t (D.8)
T 1272
§3J<E c||? +r> +3JT.
27 llel’] 7 Ellel?]
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Then the drift error £, can be upper bounded as follows,

1 N J
5r = j ZZ)\ZE [Hui,j — 82”2]

i=1 j—l
N J
S*ZZ/\ E [llelf?] ZZ 3\JT
i=1 j=1 9 i=1 j=1
127’ 41 N 47.2
- = E szjz-( ]4—3] <J2 cz—cz||2]+UE[ne—cn?Hn%c?)
Mg L i=1 1 Mg
12721 & 2 1272 1272 372
<=k HZANﬁ(m)H + ZAE le: = eill] + =5-E[le - el?] + 2=
ng "= Un Ty
1272 1 9 1272 1272 372
< E[IVat(@ NP + ¢+ N ¢ o=
e Va ) 2 2 ; -
——
<x
1272t 2 1272 372
< T E[|Vad (2, A ]+ ¢+ =02
2 Vz2(z, A 2 (I+x) o
which completes the proof. U

The next lemma is useful in effectively controlling the drift term in our later analysis.
Lemma D.3. Suppose 1, = J nyng, and ng > 1, then we have

D.9)

)

1
—E [l — 2] > —7 2,6 + — HV oz, ||
Tr
where Vo ®(x", \"T1) is defined as
Ve®(z", A1) = ZAT“Vﬁ . (D.10)

Proof. In start with, we analyze 7= [lz"+! — 2" || based on the local updates, i.e.,

lE [er—&-l _ erZ]

T

[ 1 NI
S 5
L =1 5=1
i 1 NI
e[ 555 s of
L =1 5=1
I LN N 9 - )
> —7,E HjZZ)\’““Vj}( ;) = Y NFV@E)| |+ TE[[|[Vet(@ A
i=1 j=1 i=1
1 I r+1 r ro\r+1y(|2
> =2 3 Y NTE [V, ) - Ve + SE[[Vee@, A
i=1 j=1
2 1 Al 7+1 |2 Tr r r+1 2
> 7L, jz::z:: E[[Jut; 1 — '] +FE[[Vel@ X

Er

= T Liaft SE[[|Vat(@, A
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which completes the proof.

The next two lemmas focus on the primal update and dual update, respectively.

Lemma D.4. Suppose 1, = J ngng, and ng > 1, then we have
,¢(A'r+1) _ <Sr7)\r+1>

<P~ (57, A) + - [DOAT) ~ DN = DOV AT = 22 xR,

T

Proof. Based on Property 1 in Tseng (2008), and D(X, X') = ||A — X'||?/2.
Lemma D.5. Suppose 7, = Jnyng, and ng > 1, then we have

E KA:BT,;CTH - m>} < lE [D(z,z") — D(z,z" ") — D(z"", a")]

and "
E [<Aazr,w’"+1 — $>}
=E [<A:cr,wr — :B>} +E Kﬁwr, 't — :BT>] +E [<AwT — ﬁwr, 't — wr>},
T1 T2 T3
where

Ti ZE (2", X)) — (2, A7) + ’ffE llz" = 2)?] = Lo,

To >E[@(x" T, AT — (2", AN"HY)] = 2L40E [|l2" T — 27 ||?] — 2L4af,
2XTr .9 1

> A T e
T3 2 J ¢ 47,

and Az" and Ax" are defined as

E D, z")],

N J
ZZ)\H’lgz ii—1)s ﬁmT:E[AiL’T]:%ZZ ATTE [Vi(ui;m)] -

11]1

Proof. Based on Property 1 in Tseng (2008), for the update step of 2”1, we have
Tr

N
E [< Z AT AW 2™ — a:>] < lE [D(z,z") — D(z,z"*") — D(z" ", ")],
i=1

then we analyze the term Ax" = vazl /\’-'HAuT-’, ie.,

N
ZA;’“Au{:—Zz/\”l gi(uj; ) —¢& +¢")
=1

i= 1_] 1
N J N J
jZZM“gz 1) ,%ZZ Ajtler %ZZA?“&T
XJ: r+1 )
LJ 1
1j=1

Next we decompose E KA:B xrtl — >} as follows,

E[(aar,am —2)
e [(a0 a0 _w>}+ [(Bor o —a7)] € [(807 - Bar,ar* —a7)].

T T2 Ts

K‘\
HMZ \
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We then analyze the upper bound for | 73|, i.e.,
75| = E “(Awr — Az " — a:r>|]

~ 1
< nE [|a2" - Ba’|?] + —E [Jl2"*! — 2" (D.19)
2XTT' 2 1 r4+1 T2
< gy o -

Next, we analyze term 7y, i.e.,

1 T T Hex r T T
>= S NTE[A@) - file) + Bl — 2 — Laallul;, — 2|

1,9

T T T Ha T 1 T T T
=E Y A=) =) N @) + Tl — ] - Law > A g 2|
A i %7

—E [®(2", A1) — Dz, ATHY)] + %E (2" — 2] = Lawér,

where we apply the perturbed strong convexity lemma (Lemma D.1) for the first inequality.

We then analyze term 7,

=1 j=1
r r roAT M r Lo r r r
>E [@(w H,)\ H) —®(z", A H) + ZH"L' g ||2 7 >‘i+1||ui,j—1 - +1||2
4,J
> E |:¢($T+17A7+1) _ @(:L'T,AT—H) 4 (% _ 2me) ||w'r+1 _ m7-||2:| _ 2megr
>E [T AT — @(x", A7) — 2L40E [|2"T! — 2"|?] — 2Laaé,

where we apply the perturbed strong convexity lemma (Lemma D.1) for the first inequality and apply ||z + y|?> <
2||z||? + 2||y||? for the second inequality. This completes our proof. O
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E. Convergence of SCAFF-PD

In this section, we present the missing proofs in Section 3. Specifically, Section E.1 contains the proofs for the strongly
convex-concave setting (Section 3.1), while Section E.2 includes the proofs for the strongly convex-strongly concave setting
(Section 3.2).

E.1. Proofs — strongly-convex-concave (SC-C) setting

In this subsection, we first present the technical lemma in Section E.1.1. Next, we analyze how to set the step size related
parameters in Section E.1.2. Finally, we prove Theorem 3.1 in Section E.1.3.

E.1.1. TECHNICAL LEMMA

Lemma E.1. If we set the step size in Algorithm 1 as 7, - Lyo < 1, and the parameters of Algorithm 1 satisfy Condition 3.1,
then for any x, A we have

E[F(x™ ) — Fle, X)) < -Z, 11+ V, + A, + C1. (%, (E.1)
where Z,. 11, V,, A, are defined as
T s S R o (e e e Pl
L ' 20+ 27y 8 20041 ’
Ve =€ [B04a" A A £ S I AR+ e — el 4 2l E2)
r = | r{q , 20, 27, %, q , .
_ [ a’l‘er _ L r+1 _ 372 Lim _ L r+1 _ _r2

A= |5 - o )N X (G2 48k - ) e -

q" is defined as
q" = VaA®(x", A\") — Vad(z A1), (E.3)

and C > 0 is a constant.

Proof. To start with, by applying Lemma D.4, we have

w()\r-ﬁ—l) _ <ST7>\T+1 _ >\> < w(A) 4 i [D()\,AT) _ D()\, Ar—l—l) - D(AT+17>\T)]7 (E.4)
Or
B,
where we define B, as )
B, = — [D(A, A7) = DA, A" = DA™ AT (E.5)
0—7’

Then by applying Lemma D.5, for the update step of =" +!, we have

E [<Aa:r, 't — w>] < lE [D(:E, x") — D(x, ") — D(x" $T)] , (E.6)

Tr

where Az" is defined in Eq. (D.15). Then we decompose the term E[(Az", 2" +! — x)] as follows,

E [<A:cr,mr+1 - xﬂ

—E KAQ:T, " — w>} +E K&:ﬂ', 't — w7>} +E [<A$T' — ﬁw",w’*l — a:’>] (E.7)
T1 T2 T3
=T+ T2+ Ts,

and by Lemma D.5,
Ti >E [®(x", X)) — B2, \H)] + ‘ffE [la" — )] = Lawér,
To 2 E[@(x" AT — (x”", NTY)] = 2L00E [[l&" T — 2 ||?] — 2L2a&s, (E.8)

2X Tr
- J

¢ - ﬁE [D(z" !, 2")].
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Therefore, by combining Eq. (E.6) and Eq. (E.8), we have

E[®(z" A) — &(z, ")

SE[@(A) = @@ T AT 4 @A) — (2 AT -T2 - T
n TiE [D(,2") ~ Dlw,2"") = D(@",2")] ~ “2E [Jla” - 2]*] + Laak

1

—E {D(w,wr) —D(z, 2" — L

*D((ET+17 wr)

SE[@@ N -2 AT + 5

Tr

r T T 2 T
—E2E[|la" — 2|%] 4 2LacE """ — @"|*] + 3Lené + ’ff %
<E[B(@,A) — @@ N )] + BLaak [J27 — &72] + BLaas + 257
1 r r41 1 r4+1 _r Hax r41 2
+—E |D(@,2") - D(@,a’") ~ ;D@ 2")| — E2E o7 — x|’
Tr

Ar

=E[@(z" X)) — (" NT] + 3LasE [||2"1! — 2"||*] + 3Leals + 2x TT( + A,

where we apply the lower bound of 73 and T3 (Eq. (E.8)) for the second inequality, and apply —||z||? < [|y||* —

for the third inequality, and apply gz < Ly, for the last inequality. We define A,. as

1 x
D@2 | - EZE o — 2]

A, = iE D(z,z") — D(z, ") — 3

Tr
Next, we apply the concavity of ®(z"*1,-) and combining the above two steps, for the z-update we have

E[®(z" A) — &(z, X" )]

SE[VAS(@ LAY, A = AN 4+ Ay + 3LaoE [[l27 — @[] + 3Lasés + ZXJT" ¢,

By combining the inequality of A-update (Eq. (E.4)) and x-update (Eq. (E.11)), we can get
E[F(z""A) = Faz, X))

= [( 1 JA) — w()\)) — ((I)(a:,)\r—kl) o ¢(>\TH))]
<E[(Va®(x™ X, A = X)) 4 (s X — X) + 4, + B,

+ 3Laelr + 3Laak [|lz" — 27| + QX—JTT(?
=—E[(g""" A" = N)] +6,E[(¢", A" = A)] + A, + B,
4 3Lunbs + 3LagE [z — 2 |?] + ZXTT%?
=—(E[g" N = XN)] +0,E[q" A" = N)] +6,E [(¢", AT — A7)

2X 7y

+ A, + By + 3Lz & + 3L4E [”errl - xT”z} + J Cz’

(E.9)

sllz+yl?

(E.10)

(E.11)

(E.12)

where we apply Eq. (E.11) for the first inequality, and the definition of g" for the second equality, and q" is defined as

q" = Va®(z", A7) = Vad(x" AT,
The term 67 (g", A"T1 — A™) can be upper bounded as

0,(q", X — A7) = 0,(VA® (", A") — Va®(z" 1 A", AT — A7)
= Qr<v>\q)(wr’)‘r) _ VA@(mT717AT),)\T+1 _ )\r>

g THT
(2", A7) = Vad(@'~ X2 + S AT - A2
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where we apply Va®(z" 1, A7) = V®(z" 1, A"71) (because the ® is linear in ) for the second equality, and apply the
smoothness assumption

lg"[| = [Va®(a", A7) = Va® (@' X")|| < Laglla” — 2|
in the second inequality. Then by combining Eq. (E.14) and Eq. (E.12), we have

E[F(z"'\A) — F(z,\"™)]

I (e s 1 T 1 s £ T 1 (s
<—E[(@ AT =N+ DN + D@2’ + L2 — a4+ g +1||2]
L r +1

T ’ 8
Zyria
—|—E _0 <qr )\r_)\>+iD()\ )\T)—FLD(:E mr)+ er quHZ +a7‘0TE|:HAT+1_ATH2}
| or ’ T ’ 20, 2
Ve
[ 1 1 2x T,
E 412 me r+1 7 2 me - D r+1 Ty 7D A'r+1 )\'r XTr .2
HE o 107 P+ 3hanlle™ a4 8Lty — oD@ ) - DAY+ G
arer r+1 LA::: r+1 )2 r+1 12
<-z E[INT = NIP] + g 2= E[l2"" — @"|*] + 3Las [[l2""" —a"|?]
2 Oér,+
1 r4+1 r 1 r+1 T QXTT 2
+3Laas — 5 D™, z")] - ~ DA + =5=¢
_ arer 1 r+1 2 Liw 1 r+1 2
- T+1+VT+< 5 20?) E[IIA A2+ (—2%+1 +3Lao = 1 ) Ellz z"|?]
2 Tr 1 ” ”
X AT 4 8Lants — —E [l —2|7].
Ta
Next, to get the upper bound of 73, we apply Lemma D.3 to analyze the term g—E [||z" ™ — z"||?],
1
E e —2"|?] > - ms + ZE[|Vat(@, A (E.16)
87,
By applying Lemma D.2, we can upper bound the drift error as follows,
1272 872 372
& < =5 E||[Va(@ A Y] + [ (14 )+ QJ] ¢, (E.17)
ng nf] .‘1

Then if we set the effective step size as 7, = O(1/ L)), the term T4 can be upper bounded as

1 41 2
Ta = 3Lgz&r — %E [l — 2"|%]

TrLim Tr ’I‘ r 2
< (3Lm + ) £~ TLE [vafb(w AT ]

8

3672 Law  277L2, T SN

< ( Lo | 2mles E) e[| Vat(a’ A )]
Mg Mg (E.18)
<0
Tr L 87' 3T
+ ( 3L ) { 14+ x ]C
( 8 Uk ( ) ngJ

< 127, (3 (1+x) + %) ¢ <o
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where C' > 0 is a non-negative constant. Then by combining Eq. (E.18) and Eq. (E.15), we have

E[L(z"' X) — L(z,A"1")]

2x 1
<= Zopi + Ve + 4 O
o0, 1 L3 1 E.19)
O 2 Y EIAT T2 Az Lo — = YE Iz — £7||2 (E.
(5 - 5o JEIN T = NP) (522 430w = ) E I - 27
Ay
— — Lpr41 + V:r‘ +Ar +CTrC27
which completes the proof. ]

E.1.2. HOW TO SET PARAMETERS IN STRONGLY-CONVEX-CONCAVE (SC-C) SETTING?

Next we study how to set the parameters of Algorithm 1 in the strongly-convex-concave setting.

Lemma E.2. In Algorithm 1, if we set the parameters as

o_1 =T, Or=7%%Ty, b= Ur—l/grv Vr+1 = ’77’(1 + NmTr)v (E.20)
and we set t, as
t, = o, /0y, (E.21)
then we have
1 t t t t
tr ( +um) > L> L . (E.22)
Tr Tr+1 Op Or41 tr+1
Proof. Because we have ¢, = 0,. /0, then t,. (Ti + ,um> > i“: can be written as
t
(14 Tpg) > L rt = T Ordl (E.23)
Tr+1 ty Tr+1 Or

then due to the updates of 7y, (41 = V(1 + 7-s)) and update of o, (o, = ~,7;-), we have

o ’Yr+1 Or41 E

I+ 7rpg) = v = P (E.24)
therefore, the three inequalities in Eq. (E.22) are satisfied. (|
Lemma E.3. For Algorithm I, we have

v (ﬁ) 1w =0(?), 0=00), mnor=7n (E25)

Proof. Since 7,41 = Tr\/V/7Vr+1, then we have 7. = T91/70/7r, then based on the update rule for v, (y,11 =
Y (1 4 pie7)), we have

Yr41 = 7r(1 + ,umTr) = Tr + HaTo\/ Y0 Vr- (E26)
Then we apply induction to prove that
2.2
> H=T070 2

= F (E27)
Therefore, for o,., we have
2
Yr+1 — HT5 70
Op = YTy = +T > 1o 07 > ?), T, (E.28)
€T
and ) )
O, = Or _ (’Yr+l2_ Vr) _ 7_0270 = constant, (E.29)
Tr Mmryr
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furthermore, we have

w_1_, (1) _ (E.30)
0

Remark E.4. For the sake of simplicity, we establish the validity of the aforementioned two lemmas by considering the case
where the parameter (1/7,. + 1) is used. It is worth noting that in subsequent proofs (Theorem E.G6), it suffices to substitute
a smaller value of iz, such as (1/7 + pie /4).

Proposition E.5. If we first set 0y = 1, then we set T, 0, 0, such that

> 6Lgo + ; > Ora, (E31)

where § € (0,1). Then A, <O0forr=1,...,R.

E.1.3. CONVERGENCE ANALYSIS

Finally, we prove the convergence of Algorithm 1 in the strongly-convex-concave setting.

Theorem E.6. Under the assumptions of Theorem 3.1, Algorithm 1 will converge to x*, and

c . C.
E [l —a*’] < 53 [l = 2%l + X = A7) + 5 ¢ (E:32)

where C1,Co > 0 are constants.

Proof. For 0,., we have

or TrYr . 1 .
where we apply the fact that 7,1 = 7, \/m . Next we set t,., ;. as
t, =o0./00, Qp =co/0r_1, (E.34)
where ¢, € (0,1) is a constant. then Eq. (E.31) can be written as

1-6 202 o,
> 12040 + =227 1 (§4¢,) >0, (E.35)

Tr Ca

the second one can be easily satisfied, the first one we apply induction to prove it,

1-6 1-=6 [~ 2% o, ” 2L2 o,
= Tril > (12Lm + a7 ) Tril > (12Lm + ”"“) : (E.36)
Tr41 Tr Tr Ca Tr Ca

where we apply the fact that
Yea1 /e 21, Orp1 = T/ Vw1 /e (E.37)

Therefore, by Eq. (E.35), we can prove that

a0, 1 L? 1
A.=E o r+1 _ y7r(2 Az L o r+1 _ 72 < 0.
= [(95 - g ) IN T N (52 3L - ) e e <0

Meanwhile, given the parameters of Algorithm 1 satisfy Condition 3.1, by Lemma E.2, we have
trp1 Vg1 <20y (E.38)
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Then, by multiplying Eq. (E.1) and summing up from r = 0, --- , R, we have
R
pot
r=0
R

t 4
T—OD(:B*, x°) + U—OD(A*, A+ (e O,
0 0 r=0

E[F(z"\) — F(z, \TT1)] + 'n g [D(z™F z*)]
TR

<

where we defined 70T, Afi+1 as

1 & 1 &
~R+1 _ Z r XR+1 — EAT
xr R triL' , R Z r 5
Zr:() t’” r=0 Zr:O tT r=0
because by Lemma E.3, we have
R
or/TR =0(R?), Y t,=0(R?), tr=o0r/0o0, t.7 =73,
r=0
then we have o o
to to 2
ED R+1 _ x < ~1 ID(z* 0 DD+ )‘0 ~2 .2
[DE@™!.2%)] < 45 | 2D a%) + 2D A)| + 2%

where we apply the fact that ~
F(@f X)) — F(x*, A1) > 0.

This completes our proof.
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E.2. Proofs — strongly-convex-strongly-concave (SC-SC) setting

In this subsection, we first present the technical lemma in Section E.2.1. Next, we analyze how to set the step size related
parameters in Section E.2.2. Finally, we prove Theorem 3.5 in Section E.2.3.

E.2.1. TECHNICAL LEMMAS
Lemma E.7. If we set the step size in Alg 1 as 7 - Ly < 1, then for any x, A\ we have

E[F(@™ X)) = F(x, X)) < —Z, 11 + Vo + A, + C1C3, (E.44)
where Z,.. V., A, are defined as

. 1 . 1
_ r4+1 7+l T a2 r+1 32 T r+1 12
Zra =@ N - (o )N AP (4 ) el
Vo —E |07 A — A+ AT AP 4 e — a? (E.45)
r = | q , 2 2T ’ :
_ [ 0Lz 1 r+1 2 70 Lxg 1 r41 2
A= (T2 - g )W =N (TR s - ) e -

where w > 0 is a parameter and C > 0 is a constant.

Proof. Most of the steps are the same as in the Lemma E.1. To start with, based on the condition that 1(\) is strongly
convex in A, we apply Lemma D .4,
¢(AT+1) _ <Sr’)\r+1 _ )\>

1

E.46
SG(N) + — [DOVAT) = DA™ = DOV AN] = X - )2 o

Next, we change the way we upper bound §(g", A"** — A"} in the strongly-convex-concave setting, and we upper bound
this term as follows,

0(q", A" — AT) = (Vad (2", \") — Vad(z" L AT AT - A7)
= O(VAD(x", A") — Va® ("1, A7), AT — \")

S 6‘||V)‘(I)(£ET,)\T) _ v}\q)(mr—l’Ar)””Ar—H _ ATH (E47)
7T6L>‘m r r— QL)\E r r
< 2 e =P R AT =
2 2w

where m > 0 is a constant. Then we have
Fx™ A) = Fz, A1)

< B[l A N 4 D@ o e e IDANT ¢ R A

Zyr41
. ™ 1 ™ 1 s eL x s rT— eL xT T s
HE[0" N =2+ 2D+ ID(@,a)| + e (a7 -]+ PR I X
o T 2 2w
Ve
+ 3LawE [l — 2"|*] + 3Lewls — %E [D(z"*,2")] - éE DA™, AM)] + 2"77&
0Lxo 1 r+1 2 T0LAg 1 r+1 2
= - ZT s — a_ E - — a LCD(D - 4 E -
+1+V+< 5 20) [IA A||]+< 5 3 4T> [z z"|?]
1 r+1 2 2XT o
+ 3Lzz&r 87_E [z z"||I*] + 7 ¢
QLAE 1 r+1 (2 7T0L>\w 1 r+1 T2
>— 2 s - 5 - - — Tz — -
> Z+1+V—&-< 5 20)E[”>‘ A1)+ 5 +3L o E [l z"||”]
A
+Cr¢,
where the last inequality is because Eq. (E.18). This completes our proof. (Il
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E.2.2. HOW TO SET PARAMETERS IN STRONGLY-CONVEX-STRONGLY-CONCAVE (SC-SC) SETTING?

Lemma E.8. For Algorithm 1, if we set the parameters as

1-6 1-46 1 Lya L3
T = _— s = _— s _— — AT s E.4
e = O < 7 ) uxo =0 ( 0 ) T4 e + TN (E.48)

then we have

1 L 1 1 L 1 1 1 _ O0Lxg
— + = > — 4> = >12L,, +2m0Ly,, — > E.49
2T+8_279’ 200 2 T 200" T~ +4mola o T (E49)
Proof. The conditions in Eq. (E.49) can be reformulated as follows,
1 L 1 1-0
o — > zT 2 477
27 TR 29 O MeTEET
1 1 1-0
7+%Zﬁ ~ MAUZTa
. g g ) (E.50)
— > 12040 +270Lye < — > 12045 + 27 L,
T T
l > GL)‘E - E > 0L>\€B’
o s o T
where ¢ € (0, 1].
Next we study how to set {7, o, 8} such that Eq. (E.50) holds, we could set
S 4 1-46 11-6
T>——, 0> ——,
T pe 0 px 0
0o Ly
=2 (E.51)
c
2 2
) 9L, > 20015, > (179)214)@7
4(1-9) c clix
therefore, once 6 satisfy the following condition
a0 2L%
————— — 12L4, > (1 — 0)—22 E.52
4(1_0) :1::13_( )C,U/)\7 ( )
and then we can set 7 and o based on the value of 6 according to Eq. (E.51). Then if we let
1
therefore, based on Eq. (E.52), by setting ¢ = 1, we have
_ 2
w—lwps 19L,, > l2L)\w’
w 4 w U
- w=C (,Umﬂ)\ + 48,U>\me) + \/(Umﬂk + 48,U>\me)2 + 32HmHAL§\m
¢ 2 pix ’
3 . (E.54)
1 24L 1 24L 16L
& w=C, |+ m+\/<+ m) +—22 |,
2 L 2 U [P 5N
L L?
& w=0 |24 2= |,
Ha 122725
where C,, > 1 is a constant. This completes our proof.
O
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E.2.3. CONVERGENCE ANALYSIS
Theorem E.9. Under the assumptions in Theorem 3.5, Algorithm 1 will converge to x*, and
2
E [la” — 2*|] < 167 [[l® — 2|2 + |A° — A*[)?] + Ca(1 — o)i— (E55)

2 )
xT
where C1,Cs > 0 are non-negative constants.

Proof. The last two conditions in Eq. (E.49) ensure

OLxre 1 0 Lxa 1
A, =E Az VAT o2 (AR 8L, - — ) 2 - 2% <o,
2w 20 2 4t

forr = 0,..., R. The first two conditions in Eq. (E.49) ensure
1
Zri1 2 §Vr+1-
Therefore, by applying Lemma E.7, we have

1
E[F@@A) = F@, A" + 5Via <V + A 4 O7C, (E.56)

Then we plug £ = x*, A = X\* in Eq. (E.44), and we have F(z" 1, \*) — F(z*, A"*1) > 0, then we have

Vep1 <0V, + A, + COTC?, (E.57)
therefore, we can derive that )
Cré
Vi < 07Vo+ 60k + — i) : (E.58)
meanwhile, we can set the parameters {7, o, 8} (according to Eq. (E.50)) such that
C720¢?
E[lz" — z||*] <4707V, + 17_ g (E.59)
since 7 = 2(1 — 0)/(Ouz),
X 4C(1 - 6)¢?
Ellz" —|?] <4767V, + 40(1 = 6)¢” (E.60)
Opz

2
We need to run at least N, rounds such that 476057V, + % < 2e.

N.=0 (m (‘?) /ln (;)) : (E.61)

then we have 47021}, < e. Because In(1/6) is convex in 6 € R, then we have

Suppose N, satisfies

1 1

therefore, to get an upper bound for N., we only need to get the upper bound for 1%0' Then if we set w = ﬁ, then based

on Eq. (E.54), we have
L | L2
w=0 T Ax | (E.63)
Mz M X

meanwhile, we need to ensure 40(91;26)42 is small, i.e.,
4C(1 — 6)¢? 1 4C¢?
012 c 1-60  Ou2e 64
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therefore, in ensure E [||@” — x[|?] < 2, the number of communication rounds satisfies

. L L2 2
N.=O T + Az + CT , (E.65)
Ha Hzpx  HzE
which completes our proof. O

F. Additional Implementation Details and Experimental Results

In this section, we provide further details for algorithm implementations (Section F.1) as well as additional experimental
results — trade-off between worst-20% and average accuracy (Section F.2), convergence performance on synthetic datasets
(Section F.3), and comparison with existing methods (Section F.4).

F.1. Additional Experimental Details

In order to enhance the performance of baseline methods, we incorporate local steps into the AFL (Mohri et al., 2019)
method. We find that employing local steps yields significantly better performance compared to taking a single gradient
step. To ensure a fair comparison, we employ identical feature extraction procedures across all methods. Following the
setup outlined in Yu et al. (2022), we first compute the empirical neural tangent kernel (eNTK) representations of the input
samples. Then, we randomly select 50,000 features from the eNTK representation through subsampling. For the (local)
objective function, we utilize the mean squared error (MSE) loss, which has been used for classification tasks as described
in Yu et al. (2022). To calculate the average accuracy, we begin by computing the test accuracy of each client. Then, we
compute the average accuracy by averaging the results from all clients.

F.2. Trade-off between Worst-20% Accuracy and Average Accuracy

We present the trade-off between worst-20% accuracy and average/best-20% accuracy through a scatter plot, as illustrated in
Figure 4. We consider the TinylmageNet dataset with the Non-i.i.d. degree parameter o = 0.01. Our proposed algorithm,
as illustrated in Figure 4, showcases a compelling trade-off between accuracy in the worst-20% and the average/best-20%
scenarios.

0.26 s 0.26 P
> 0.24 > 0.24
@) @)
© o2 a © o2 a
>S5 5
é,:u') 0.20 g 0.20
o 018 v e o 0.18 v o
N >~
8 0.16 * 8 0.16 +*
1 1
1 o014 R IE -
B @ SCAFF-PD % SCAFFOLD :6 @ SCAFF-PD * SCAFFOLD
= 0.12 @ DRFA © AFL = 0.12 @ DRFA © AFL
0101 ¢ VvV FedAvg ¢ g-FFL 01014 Vv FedAvg ¢ g-FFL
0250 0375 0300 0325 0350 0375 0400 0425 0.450 0.40 045 050 055 0.60
Average Accuracy Best-20% Accuracy
(a) Worst-20% v.s. Average accuracy. (b) Worst-20% v.s. Best-20% accuracy.

Figure 4: Compare the average/worst-20%/best-20% accuracy of different algorithms on TinyImageNet with o = 0.01.
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F.3. Additional Experiments on Synthetic Datasets

We vary the level of data heterogeneity by changing the parameter ¢ from 0.01 to 0.1, where ¢ is used for generating
0F (6F ~ N(0, oIy 4)). Figure 5a illustrates the fast convergence of SCAFF-PD to the optimal solution across various
data heterogeneity settings. We also explore the effect of varying the number of local steps. Figure 5b demonstrates that
increasing the number of local steps results in faster convergence towards the optimal solution.

Vary Shift Magnitude o | Vary Local Steps J
10719 1019 —e— SCAFF-PD (J=1)
SCAFF-PD (J =10)
—e— SCAFF-PD (J=100)
1072 1072
o I 2 Tl el o
4(>< i><
| 107* —e— SCAFF-PD (0=0.01) - | 107
> SCAFF-PD (0=0.05) | X ‘\
— —e— SCAFF-PD (0=0.1) | — \
1076 —=- DRFA (0=0.01) - 1076 e
DRFA (0 = 0.05) \\
——- DRFA (0=0.1) ;
10-8 R : ‘ ; 108 : \-

0 100 200 300 400 500 0 100 200 300 400 500
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Figure 5: (left) Compare SCAFF-PD and DRFA under different levels of data heterogeneity. (right) Study the effect of local
steps for our proposed algorithm on the synthetic dataset.

F.4. Additional Experiments on Comparison with Existing Methods

More clients. On the CIFAR100 dataset, we conduct a comparison of different algorithms in the 50 clients setting,
following the configuration outlined in Table 1. The summarized results are presented in Table 2. Consistent with our
previous findings, SCAFF-PD exhibits superior robustness when compared to existing methods.

Table 2: The average and worst-20% top-1 accuracy of our algorithm (SCAFF-PD) vs. state-of-the-art federated learning
algorithms evaluated on CIFAR100 with 50 clients. The highest top-1 accuracy in each setting is highlighted in bold.

Datasets Methods Non-i.i.d. degree
a=0.01
average worst-20%
FedAvg 45.45 20.64
SCAFFOLD 43.73 18.33
q-FFL 33.42 8.13
CIFAR-100 AFL 49.93 31.87
DRFA 51.07 31.23
SCAFF-PD 50.43 33.03

Additional dataset. We consider another dataset — CIFAR10 dataset, the setup mostly follows the configuration outlined
in Table 1. We summarize the results in Table 3. We observe that SCAFF-PD outperforms existing methods.
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Table 3: The average and worst-20% top-1 accuracy of our algorithm (SCAFF-PD) vs. state-of-the-art federated learning
algorithms evaluated on CIFAR10 with 20 clients and o« = 0.05. The highest top-1 accuracy in each setting is highlighted in
bold.

Datasets Methods Non-i.i.d. degree
a=0.05
average worst-20%
FedAvg 77.42 60.63
SCAFFOLD 77.75 62.89
q-FFL 68.52 41.26
CIFAR-100 AFL 78.89 65.07
DRFA 79.04 65.02
SCAFF-PD 79.71 69.59

Additional baselines. In addition to the baseline methods listed in Table 1, we include A-FL (Pillutla et al., 2021) and
FedProx (Li et al., 2020b) in our evaluation. We adopt a similar setup as presented in Table 1 to assess the performance of
these two methods. The summarized results are presented in Table 4, indicating that our proposed algorithm surpasses both
A-FL and FedProx in terms of worst-20% accuracy and average accuracy.

Table 4: The average and worst-20% top-1 accuracy of our algorithm (SCAFF-PD) vs. state-of-the-art federated learning
algorithms evaluated on CIFAR100 and Tiny-ImageNet. The highest top-1 accuracy in each setting is highlighted in bold.

Datasets Methods Non-i.i.d. degree
a=0.01 a = 0.05 a=0.1
average worst-20% | average worst-20% | average worst—-20%
FedProx 38.76 15.58 \ 35.91 24.57 \ 36.49 26.45
CIFAR-100 A-FL 30.09 7.26 \ 33.18 15.82 \ 31.69 16.63
SCAFF-PD 49.03 29.30 \ 42.06 28.37 \ 43.69 32.77
average worst-20% | average worst-20% | average worst-20%
FedProx 33.65 18.09 \ 31.52 23.62 \ 34.98 27.59
TinyImageNet A-FL 29.06 1194 | 36.77 2224 | 3647 20.13
SCAFF-PD 41.26 25.32 \ 39.32 30.27 \ 41.23 29.78
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