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SUMMARY
To infer potential causal relationships between 3D chromatin structure, enhancers, and gene transcription,
wemapped each feature in a genome-wide fashion across eight narrowly spaced time points of macrophage
activation. Enhancers and genes connected by loops exhibit stronger correlations between histone H3K27
acetylation and expression than can be explained by genomic distance or physical proximity alone. At these
looped enhancer-promoter pairs, changes in acetylation at distal enhancers precede changes in gene
expression. Changes in gene expression exhibit a directional bias at differential loop anchors; gained loops
are associated with increased expression of genes oriented away from the center of the loop, and lost loops
are often accompanied by high levels of transcription within the loop boundaries themselves. These results
are consistent with a reciprocal relationship where loops can facilitate increased transcription by connecting
promoters to distal enhancers, whereas high levels of transcription can impede loop formation.
INTRODUCTION

3D chromatin structure is thought to play a critical role in gene

expression, cellular identity, and organismal development by

modulating contact frequencies between gene promoters and

distal regulatory elements such as enhancers (Dekker and Mirny,

2016). Alterations in 3D chromatin architecture have been associ-

atedwith developmental abnormalities and human disease (Spiel-

mann et al., 2018; Akdemir et al., 2020; Johnstone et al., 2020;

Rosencranceetal., 2020;Ahnetal., 2021).Despitegrowing knowl-

edge regarding the proteins and molecules that govern 3D chro-

matin architecture, the relationship between 3D chromatin archi-

tecture and gene transcription is less certain. Although some

functional connections between chromatin interactions and tran-

scriptionhavebeenestablished, thedegree towhich3Dchromatin

structure shapes—or is shapedby—transcription remains unclear.

The continued development of chromatin conformation cap-

ture (3C)-based technologies has provided valuable insights
C
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into the mechanisms driving 3D chromatin structure (Dekker

et al., 2002; Dostie et al., 2006; Simonis et al., 2006; Fullwood

et al., 2009; Lieberman-Aiden et al., 2009; Rao et al., 2014;Mum-

bach et al., 2016). In particular, genome-wide approaches,

including Hi-C, have revealed tens of thousands of loops

throughout the human genome, many of which connect regula-

tory elements such as enhancers to gene promoters. With

some notable exceptions (Lee et al., 2017; Monahan et al.,

2019; Ahn et al., 2021), the majority of loops are bound at each

anchor by CCCTC-binding factor (CTCF) and are formed via

loop extrusion by the cohesin complex (Heidari et al., 2014; San-

born et al., 2015). Mapping these loops across cell types and

biological conditions has revealed cell-type-specific looping

events that often correlate with differences in gene transcription

(Rao et al., 2014; Phanstiel et al., 2017; D’Ippolito et al., 2018;Wi-

nick-Ng et al., 2021).

Despite these advances, the mechanisms and degree to

which looping drives transcriptional changes are far less certain.
ell Reports 41, 111567, November 1, 2022 ª 2022 The Author(s). 1
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A widely held hypothesis is that chromatin loops facilitate tran-

scriptional activation by increasing the frequency of interactions

between enhancers and gene promoters; however, studies that

removed looping genome wide have produced conflicting re-

sults. Acute depletion of cohesin in a human cancer cell line

was sufficient to eliminate cohesin-bound loops but had only a

modest effect on transcription, casting doubt on the importance

of DNA looping for transcriptional control (Rao et al., 2017). In

contrast, deletion of the cohesin loading factor NIPBL (Nipped

B-like protein) in mouse liver cells in vivo induced transcriptional

changes of thousands of genes (Schwarzer et al., 2017). Deple-

tion of cohesin and CTCF has been shown to significantly affect

the ability of human and mouse macrophages to mount a proper

transcriptional response to the endotoxin lipopolysaccharide

(LPS) (Cuartero et al., 2018; Stik et al., 2020), which suggests

that loops might be specifically important for regulating changes

to (as opposed to maintenance of) transcriptional signatures.

Mounting evidence also suggests that transcription can shape

3D chromatin structure, although the exact relationship remains

unclear. Several studies have shown that transcription can

displace cohesin and condensin complexes (Lengronne et al.,

2004; Busslinger et al., 2017; Brand~ao et al., 2019). For example,

knocking down CTCF and the cohesin unloader WAPL (Wings

apart-like protein homolog) causes cohesin to accumulate at

the 30 end of highly transcribed genes, suggesting that cohesin

may be relocated by transcription in the absence of boundary el-

ements (Busslinger et al., 2017). Other work has demonstrated

that transcription-induced displacement of structural mainte-

nance of chromsosome (SMC) complexes results in altered chro-

matin structure.Macrophages infectedwith influenzaA,which in-

hibits transcription termination, show readthrough transcription

that displaces cohesin at CTCF binding sites, repositioning it to-

ward the 30 end of genes and disrupting existing chromatin struc-

ture (Heinz et al., 2018). Fibroblasts undergoing senescence

exhibit de novo transcription-dependent cohesin peaks at the

30 end of select genes, resulting in newly formed loops (Olan

et al., 2020). Alternatively, knockdown of RNA polymerase II (-

RNAPII) causes new loops to form at CTCF anchors and many

enhancer-promoter loops to be lost (Zhang et al., 2022). These

findings are supported by in vitro experiments performed on

DNA ‘‘curtains,’’ showing that RNAP or other translocases can

push cohesin; however, more recent studies suggest that mole-

cules as large as 200 nmmay be able to pass through SMC com-

plexes (Davidson et al., 2016; Stigler et al., 2016; Pradhan et al.,

2021).

One approach to dissect causal relationships between looping

and transcription while circumventing genome-wide perturba-

tions with potential knock-on effects is to quantify changes in

looping, transcription, and other regulatory features across bio-

logical time courses. 3C-based time courses of biological transi-

tions have produced valuable insights into the dynamics of 3D

chromatin architecture (Bonev et al., 2017; Abramo et al.,

2019; Bertero et al., 2019; Zhang et al., 2019a, 2019b; Yang

et al., 2020; Furlan-Magaril et al., 2021; Vilarrasa-Blasi et al.,

2021). For example, D’Ippolito et al. (2018) characterized differ-

ential looping at 4 time points after glucocorticoid treatment and

found that, on average, loops changedmaximally at 4 h, whereas

gene expression changedmaximally at 9 h. This timing is consis-
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tent with a regulatory relationship, but the relatively broad

spacing of time pointsmade temporal ordering of individual pairs

of loops and genesmore difficult. Beagan et al. (2020) used chro-

mosome conformation capture carbon copy (5C) to identify dif-

ferential looping events in activated neurons in time frames as

short as 20 min (Beagan et al., 2020); however, these studies

focused on just a handful of genomic loci.

To characterize the temporal order of regulatory events and

infer potential causal relationships, wemapped 3D chromatin ar-

chitecture, histone H3K27 acetylation, chromatin accessibility,

and gene expression across eight time points of macrophage

activation. Narrowly spaced timepoints allowed correlation and

temporal ordering of events at a locus-by-locus level. These an-

alyses provided insights into the putative causal relationships

between these events, which were consistent with a reciprocal

relationship between chromatin looping and gene transcription.

RESULTS

LPS + IFNᵧ treatment triggers genome-wide changes in
chromatin looping, enhancer acetylation, and gene
expression
To understand how chromatin loops and enhancers work

together to regulate gene transcription in response to external

stimuli, we used an eight-point time course of human macro-

phage activation (Figure 1A). Human macrophages derived

from the THP-1 monocytic cell line were stimulated with 10 ng/

mL LPS and 20 ng/mL interferon-gamma (IFNᵧ) and collected

at eight time points (0, 0.5, 1, 1.5, 2, 4, 6, and 24 h). At each

time point, we profiled 3D chromatin structure using in situ

Hi-C (Rao et al., 2014), putative enhancer activity using chro-

matin immunoprecipitation sequencing (ChIP-seq) targeting his-

tone 3 lysine 27 acetylation (H3K27ac), chromatin accessibility

using assay for transposase-accessible chromatin using

sequencing (ATAC-seq; Buenrostro et al., 2013), and gene

expression using RNA sequencing (RNA-seq).

With eight time points and roughly 2 billion contacts per Hi-C

map, this is one of the most comprehensive characterizations

of 3D chromatin changes to date (D’Ippolito et al., 2018; Rowley

et al., 2020). To comprehensively catalog long-distance chro-

matin interactions, we combined our maps from each time point

into a single, ultra-deep ‘‘mega’’ map comprising 24.5 billion

reads and 15.6 billion chromatin contacts (Figures S1A and

S1B). This increased read depth provided the power to identify

over 10,000 additional loops at 5-kb resolution that were unde-

tectable at the resolution of individual time points (Figure S1C).

Loops from each timepoint as well as the Mega map were then

merged, combining any loops with both anchors within 20 kb

to provide 42,690 total loops for this study.

To identify potential regulatory connections among these

loops, we classified putative enhancers (hereafter called en-

hancers) as loci with overlapping ATAC-seq and histone

H3K27 acetylation peaks that did not overlap gene promoters

(STAR Methods). Intersecting these enhancers with chromatin

loops revealed 5,039 enhancer-promoter loops (Figure 1B).

The regulatory activity of enhancers was inferred via quantifica-

tion of histone H3K27ac at each enhancer. Finally, we used

stranded rRNA-depleted RNA-seq at each time point to quantify
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Figure 1. Multi-omics time course of macrophage activation physically and temporally connects regulatory events

(A) Experimental design to identify changes to 3D chromatin structure, enhancers, and gene expression across eight time points during macrophage proin-

flammatory activation. Differential chromatin loops were identified using Hi-C from 5 technical replicates across 3 biological replicates for a total of roughly 2

billion contacts per time point. Differential H3K27ac peaks and genes were identified from 2 biological replicates of H3K27ac ChIP-seq and RNA-seq,

respectively.

(B) Fraction and number of loops that connect two distal elements.

(C) A cumulative sum of differential events identified by each time point reveals the relative timing of changes to genes, loops, and enhancers.

(D) Intersecting differential chromatin loops, enhancers, and genes provides the regulatory context of transcriptional changes. Predicted CTCF binding sites

obtained from the CTCF R package are also shown for this locus. At this region, a 570-kb loop connects the promoter of theGEM gene to a distal enhancer. The

enhancer’s activity peaks 30 min before gene expression but remains high throughout the treatment, whereas the loop connecting them fades alongside gene

expression after 2 h. Line plots show the log2 fold change of Hi-C, enhancer H3K27ac, and GEM expression signal over the full time course. Hi-C is shown at

10-kb resolution for the full region and 5-kb resolution for the loop magnifications. Scales indicate read signal (RNA, ChIP) or KR-normalized counts (Hi-C).
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the potential effects of these loops and enhancers on gene

expression.

Differential analysis using the DESeq2 package (Love et al.,

2014) identified statistically significant genome-wide alterations

in DNA looping, enhancer activity, and gene expression at

each time point (Figures 1C, S2A, Tables S1, S2, and S3). The

transcriptional changes we observed are consistent with previ-

ously established profiles of inflammatory activation (Figures

S2B ad S2C). Only 1.2% (220 up, 282 down) of loops were de-

tected as differential for at least one time point compared with

53.0% (21,858 up, 19,089 down) of enhancers and 28.2%

(3,025 up, 2,823 down) of genes. Of these 502 differential loops,

79 were detected only at intermediate time points and were not

visible at 0 or 24 h, highlighting the insights offered from this level

of temporal resolution. On average, enhancers and loops

changed faster than genes, with 58.4% of differential enhancers

and 47.2% of differential loops changing significantly within the

first 2 h of LPS + IFNᵧ treatment compared with only 23.1% of

genes (Figure 1C). This temporal lag between changes in loops

and enhancers compared with changes in gene expression is

consistent with our understanding of loops and enhancers as
regulators of gene transcription and highlights the power of using

temporal analysis to generate hypotheses about causal relation-

ships (Arner et al., 2015; Rowley andCorces, 2018; Schoenfelder

and Fraser, 2019; Zheng and Xie, 2019).

Integrating the resulting multi-omics data provided insights

into gene-regulatory mechanisms of macrophage activation.

An example of this concept can be seen at the GEM locus on

chromosome 8 (Figures 1D, S2D, and S2E). The GEM gene is

transiently upregulated during LPS + IFNᵧ treatment, with

expression increasing at 30 min and peaking at 1.5 h. An

enhancer 570 kb downstream of the GEM promoter becomes

acetylated and physically looped to the promoter of GEM after

only 30 min of treatment, coinciding with increased expression

of GEM. Although the enhancer remains acetylated throughout

the time course, a precipitous drop in contact frequency be-

tween the enhancer and promoter at 1.5 h is followed by a similar

decrease in gene expression 30–60 min later. These data are

consistent with a model in which contacts between active en-

hancers and gene promoters play a causal role in transcriptional

changes. Throughout the rest of this paper, we explore these re-

lationships quantitatively on a genome-wide scale.
Cell Reports 41, 111567, November 1, 2022 3
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Figure 2. Enhancer acetylation and gene expression correlate most highly at looped enhancer-promoter pairs

(A) Distal enhancers looped to the promoters of differential genes were compared with matched enhancers of equal H3K27ac and contact frequency (dark gray)

or distance (light gray).

(B) Representative distributions of contact- and distance-matched enhancers compared with the pool of non-looped enhancer-promoter pairs and the looped

subset. Compared with looped pairs, contact-matched enhancers are closer on average in base pairs (Wilcoxon rank-sum test, p < 10�6), whereas distance-

matched enhancers are in less frequent contact (Wilcoxon rank-sum test, p < 10�11). Both sets of matched enhancers have H3K27ac levels similar to the looped

pairs (Wilcoxon rank-sum test, p = 0.028, 0.86).

(C) Average log2 fold change of gene expression (gold) for genes reaching minimum ormaximum fold change at 2, 4, or 6 h compared with log2 fold change of the

H3K27ac levels of their looped enhancers (red), contact-matched enhancers (dark gray), and distance-matched enhancers (light gray). Looped enhancers

correlate significantly with changes in gene expression, to a larger extent than matched enhancers. Contact-matched enhancers tend to correlate better than

distance-matched enhancers at upregulated genes. Changes in distal enhancer H3K27 acetylation precede changes in gene expression among all time scales

and among up- and downregulated genes.
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Looped enhancer-promoter pairs exhibit ordered and
correlated changes in acetylation and expression
The importance of chromatin looping for transcriptional regula-

tion remains unclear; studies disrupting chromatin loops com-

prehensively throughout the genome have produced mixed re-

sults (Rao et al., 2017; Schwarzer et al., 2017; Cuartero et al.,

2018; Stik et al., 2020). Ablation of loops in the human colorectal

cancer cell line HCT-116 only altered the expression of a handful

of genes (Rao et al., 2017). In contrast, loss of loops in murine

liver cells and macrophages responding to LPS induced

thousands of transcriptional changes (Schwarzer et al., 2017;

Cuartero et al., 2018; Stik et al., 2020). Differences in biological

systems, cellular contexts, and even the method of loop disrup-

tion could potentially explain the conflicting findings.

We investigated our data to see whether it supported a role of

looping in gene regulation in response to external stimuli. Our an-

alyses were based on the assumption that, if loops play a role in

transcriptional control, then looped enhancer-gene pairs should

exhibit correlated changes in histone H3K27ac and gene expres-

sion. Because only a small fraction of loops change over time, all

loops were used to connect enhancers to promoters regardless

of differential status. In total, this involved 5,039 enhancer-pro-

moter loops featuring 4,093 unique genes, 1,483 of which were

differential. In total, 25.4% of differential genes were connected

to a distal enhancer via a chromatin loop. We investigated the

temporal patterns of these looped enhancer-promoter pairs

and compared themwith sets of non-looped enhancer-promoter
4 Cell Reports 41, 111567, November 1, 2022
pairs of similar genomic distance (base pairs) or contact fre-

quency (Hi-C measurements). These matched non-looped sets

were identified using the matchRanges function available from

the nullranges R/Bioconductor package (Figure 2A; Davis

et al., 2022). Because of the absence of long-range chromatin

loops at these enhancer-promoter pairs, contact-matched pairs

had Hi-C contact frequencies similar to looped pairs but were

much closer in base pairs (Figure 2B, dark gray). In contrast, dis-

tance-matched pairs were separated by a similar number of

base pairs as the looped pairs but had much lower Hi-C contact

frequencies (Figure 2B, light gray). Comparisons between these

non-looped matched sets and the looped enhancer-promoter

pairs allowed us to isolate the effect of contact frequency and

distance independently and investigate the additional effect of

chromatin looping by adjusting for these features.

To explore the correlation of enhancers and genes over time,

we clustered our differential genes based on the time point

when they exhibited their maximal up- or downregulation with

respect to the 0 h time point and plotted their average normalized

expression (Figure 2C, yellow lines). Only clusters peaking at in-

termediate time points andwith more than 100 genes are shown.

For each gene cluster, we identified enhancers that were con-

nected to those genes via a chromatin loop and plotted their

average normalized histone H3K27ac signal (Figure 2C, red

lines). All 6 clusters revealed a clear correlation between histone

H3K27ac and gene expression at looped enhancer-promoter

pairs, supporting the idea that looped pairs are functionally
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connected. Interestingly, the changes in acetylation preceded

changes in gene expression by 30–60 min. This lag is also

seen in changes in promoter acetylation (Figure S3A, black

lines), and is consistent with enhancer activation causing

changes to gene expression.

Despite this evidence, it is important to consider that chro-

matin loops occur over relatively short distances (median,

�390 kb), and at such short distances, even non-looped en-

hancers and promoters exhibit elevated chromatin contact fre-

quencies compared with randomly selected enhancers and

genes across the genome. Therefore, the correlation between

looped enhancers and promoters we observe could be ex-

plained by genomic distance alone. To determine whether

looped enhancer-promoter pairs exhibited higher correlation

than expected given their genomic distance, we compared

looped enhancer-promoter pairs with non-looped enhancer-

promoter pairs that were matched for genomic distance (Fig-

ure 2A). Distance-matched, non-looped enhancer-promoter

pairs exhibited some degree of correlation (Figure 2C, light

gray lines); however, the correlation was weaker than that

observed at looped enhancer-promoter pairs. Thus, distance

alone does not account for the enhancer-promoter correlations

observed at loop anchors and offers further support for the func-

tional role of loops in enhancer-based gene regulation.

One explanation for how loops exhibit transcriptional control is

by increasing contact frequencies between enhancers and their

target genes. To determine whether looped enhancer-promoter

pairs exhibited a higher correlation than expected given their

contact frequency, we compared looped enhancer-promoter

pairs to non-looped enhancer-promoter pairs that werematched

for contact frequency. Surprisingly, although contact-matched

pairs exhibited a stronger correlation than distance-matched

pairs, the correlation was still weaker than that observed at

looped enhancer-promoter pairs (Figure 2C, dark gray lines).

We confirmed these results using data from our previously pub-

lished study of monocyte differentiation (Figures S3B and S3C;

Phanstiel et al., 2017). There too, looped enhancer-promoter

pairs exhibited better correlation than enhancer-promoter pairs

that were matched for distance or contact frequency. This was

surprising and suggests that the presence of a chromatin loop

may facilitate a functional regulatory connection through mech-

anisms beyond simply increasing their frequency of physical

proximity. We explore some possible explanations for this in

the discussion.

Changes in gene expression exhibit a directional bias at
differential loop anchors
Given the correlation we observed between acetylation and

gene expression at opposite ends of chromatin loops, we hy-

pothesized that changes in looping would be associated with

altered transcription of genes at loop anchors and that the direc-

tionality of changes in expression would match that of the

changes in looping. To test this, we used k-means clustering

to identify four categories of differential looping: gained early,

gained late, lost early, and lost late. Generally, ‘‘early’’ differential

loops changed within the first 2 h of treatment, whereas ‘‘late’’

differential loops did not change until 4 h or beyond,many unique

to the 24-h time point. Examples of loops from each cluster are
shown in Figure 3A. Differential loops spanned approximately

170–200 kb on average, with the exception of gained late loops,

which were much larger with an average length of 610 kb (Fig-

ure S4A). Compartmental analysis revealed that these gained

late loops were also closer to the B compartment than other dif-

ferential loop classes (Figure S4B). Although all loops on average

fall into the more transcriptionally active A compartment, differ-

ential loops shifted farther to the A compartment over the course

of activation.

Next we calculated the percentage of genes at each set of

loop anchors that were significantly up- or downregulated in

response to LPS + IFNᵧ treatment (Figures 3B, S4C, and D). An-

chor genes were defined by overlapping gene promoters with

loop anchors (STAR Methods). Gained loop anchors were en-

riched for the promoters of upregulated genes (permutation

test, n = 10,000, p < 0.05) and shifted toward the A compart-

ment during treatment (Figure S4B). These observations are

consistent with findings from previous work by our lab and

others that have associated increased looping with increased

transcription of anchor genes (Rao et al., 2014; Phanstiel

et al., 2017) and generally support a causal role of looping in

transcriptional control. However, lost loops were also associ-

ated with increased transcription of anchor genes and a shift

toward the A compartment (permutation test, n = 10,000,

p < 0.05). Although surprising, this is consistent with data

from Rao et al., (2017) that showed that removal of DNA loops

is not necessarily accompanied by decreased transcription of

anchor genes.

To explore this further, we separately analyzed anchor gene

expression based on whether genes were oriented toward or

away from the center of the loop. Intriguingly, genes at the

anchors of gained and lost loop classes exhibited different direc-

tional biases (Figures 3C and S4E). At gained loops, outward-ori-

ented anchor genes exhibited significantly more increased

expression than inward-oriented genes (Wilcoxon rank-sum

test, p < 0.05). In contrast, at lost loops, inward-oriented anchor

genes exhibited more increased expression than outward-ori-

ented genes (Wilcoxon rank-sum test, p < 0.05). Similar trends

can be seen using differential loops from monocyte-to-macro-

phage differentiation (Figure S4F). To investigate this further,

we examined the temporal profiles of differential loops and an-

chor genes. For each loop cluster, we calculated the average

fold change of inward- and outward-facing anchor genes (Fig-

ure 3D). At gained loops, the contact frequency and transcription

of anchor genes were positively correlated over time, particularly

for loops oriented away from the center of the loop. The gained

early loops exhibited increased contact frequency 30–60 min

prior to the increased transcription of outward-oriented anchor

genes, which is consistent with the notion of loops playing a

causal role in gene expression. We see a similar lag between in-

creases in compartment and transcription on a coarser level

(Figure S5). The gained late loops showed correlated changes

in outward-oriented anchor gene expression, but because they

changed most drastically between 6 and 24 h, the time points

were not close enough to observe a temporal lag. In contrast,

at lost loops, contact frequency and transcription of anchor

genes were inversely correlated, particularly for loops oriented

toward the center of the loop.
Cell Reports 41, 111567, November 1, 2022 5
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Figure 3. Upregulated genes anchored at differential loops exhibit directionality bias
(A) 502 differential loops were clustered (k-means) according to their timing and direction. Generally, ‘‘early’’ changes occurred within the first 2 h, and ‘‘late’’

changes occurred within 4 h and beyond. Representative loops are shown for each cluster (5-kb resolution).

(B) The anchors in all differential loop clusters are enriched for upregulated genes.

(C) Distributions of log2 fold changes of genes with promoters in the anchors of static and differential loops. Anchor genes were classified by whether they are

oriented toward (inward, orange) or away from (outward, yellow) the center of the loop. Among genes at gained loop anchors, the fold change of outward-facing

genes is significantly higher than of inward-facing genes, whereas the opposite trend is seen among genes at lost loops (Wilcoxon rank-sum test, p < 0.05).

(D) Average log2 fold change of differential loops (blue) and inward- and outward-facing genes (orange, yellow) with promoters overlapping those loop anchors.
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Lost loops are associated with high levels of
transcription within loop boundaries
One possible explanation for the directional biases we observe

at differential loop anchors is that transcription may be antago-

nistic to loop extrusion and that high levels of transcription at

loop anchors, or within the loop itself, may destabilize loop extru-

sion complexes. This would agree with several previous studies

highlighting the ability of RNAP to push and/or displace cohesin

(Busslinger et al., 2017; Heinz et al., 2018).

To determine whether antagonism between transcription and

loop extrusion could explain the increased expression we

observed at lost loop anchors, we explored the absolute and

relative levels of transcription occurring within the boundaries

of differential loops. As with anchor genes, the sets of genes

within the bounds of loops of the various clusters were largely

unique, with minimal overlap (Figures S4G and S4H). Because

the majority of transcription occurs at introns, which are gener-

ally not captured in our RNA-seq data, we devised an inferred

transcription score (ITS) to roughly estimate the levels of tran-

scription for every 10-kb bin in the genome using our RNA-seq

data (STAR Methods). Briefly, the transcript per million (TPM)

value for each gene was assigned to every genomic bin covered

by the gene body. Values were summed for bins that overlapped

multiple genes.

Using our ITSs, we observed that gained loops have relatively

low levels of internal transcription at all time points (average ITS

% 50; Figure 4A). In contrast, decreasing loops achieved much

higher average levels of internal transcription during the time
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course (Figure 4A; ITS > 50 at most time points), and the amount

of internal transcription is inversely correlated with changes in

loop strength (R2 is �0.59 for lost early and �0.99 for lost late

loops). To determine how big of a change in ITS was required

to observe a decrease in loop strength, we explored how the

changes in ITS within a loop correlated with loop fold change.

Loops with a mean increase in ITS of 10 or more exhibited a

statistically significant decrease in loop strength (Wilcoxon

signed-rank test, p < 0.01; Figure 4B). Visualizing transcription

relative to the loop boundaries (Figure 4C) confirmed these

findings. Transcription was enriched outside of the boundaries

of gained loops (in the 50 kb upstream of the upstream anchors,

or downstream from the downstream anchors). In contrast, tran-

scription was enriched between the anchors of lost loops, within

the loop bounds. These data are consistent with a model in

which high levels of transcription antagonize loop extrusion.

This suggests that the causal arrow between looping and tran-

scription might point both ways: DNA loop formation may

contribute to increased transcription of target genes, but very

high levels of transcription could contribute to the weakening

loops by antagonizing loop extrusion, as observed previously

(Busslinger et al., 2017; Heinz et al., 2018; Brand~ao et al.,

2019; Gu et al., 2020; Banigan et al., 2022; Leidescher et al.,

2022). An example of these potential phenomena can be seen

at the GBP locus (Figure 5A; see Figure S6 for other examples).

In untreated cells, seven GBP genes are encompassed by two

large (370- and 470-kb) ‘‘structural’’ loops whose anchors do

not overlap active gene promoters. Small loops start to form as
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Figure 4. Lost loops are characterized by high levels of internal transcription

(A) Log2 fold change of differential loops (blue) and average internal inferred transcription score (ITS; gold) for loops of each cluster. Gained loops have lower

levels of internal transcription than lost loops, and the temporal dynamics of changes in transcription are anti-correlated with changes in loop strength among lost

loops. For each loop, ITS was calculated and averaged across 2 biological replicates.

(B) Binning loops based on their change in internal transcription shows significant weakening of loops that gain 10 or more ITSs per 10 kb (Wilcoxon signed-rank

test, p < 10�20).

(C) Average ITSwithin and 50 kb beyond loop boundaries. Transcription is highest at and beyond loop anchors in gained early loops, low among gained late loops,

and localized within loop bounds in lost loops.

Article
ll

OPEN ACCESS
early as 30 min after activation, connecting H3K27ac peaks to

promoters. This is followed by increased expression of genes

at the anchors of those loops. This increased expression is

coupled with loss of the large structural loops that span this lo-

cus. Visualizing these changes via line plots (Figures 5B–5E)

highlights the correlation between looping and anchor gene tran-

scription as well as the inverse correlation between structural

loops and internal transcription.

DISCUSSION

Temporal analysis of macrophage activation
We used a fine-scale multi-omics time course of macrophage

activation and quantified changes in DNA looping, enhancer

acetylation, and gene expression. The high temporal resolution

of the Hi-C data revealed changes in chromatin looping along

short, transcriptionally relevant time scales that were undetected

at time course endpoints. Combining the data across time points

yielded Hi-C data at a depth of over 16 billion contacts, allowing

sensitive and robust detection of macrophage chromatin loops.

Integration of the data revealed several findings regarding the

nature of DNA loops.

The influence of chromatin structure on transcription
The correlated changes we observe between looped enhancers

and promoters are consistent with loops serving as a functional

bridge between enhancers and their target genes, at least for

genes regulated in response to external stimuli. This is supported

by temporal ordering of events that reveal that loop formation

and looped-enhancer activation occur prior to increases in an-

chor gene expression. This agrees with a previous study of cells
responding to glucocorticoids in which maximal changes in

loops were observed earlier than maximal changes in genes

(D’Ippolito et al., 2018). These results are somewhat inconsistent

with results from Rao et al. (2017), which showed very few

changes in gene expression in response to global loop disruption

via RAD21 degradation (Rao et al., 2017); however, in that study,

the cells were grown in steady state and not responding to

external stimuli. In experimental designs more comparable with

ours, cohesin or CTCF depletion did disrupt the transcriptional

response of macrophages to microbial stimuli (Cuartero et al.,

2018; Stik et al., 2020). This suggests that loops likely play a crit-

ical role in mediating transcriptional changes in cellular response

to stimuli.

Intriguingly, we found that non-looped enhancer-promoter

pairs that were matched for contact frequency and histone

H3K27ac levels did not exhibit the same level of temporal corre-

lation as looped enhancer-promoter pairs. This suggests that

loops may exert their regulatory control via mechanisms beyond

merely increasing contact frequency between enhancers and

promoters. One possible but speculative explanation is that acti-

vation of transcription by distal enhancers may require pro-

longed enhancer-promoter contact rather than overall contact

frequency. Transcription factor binding is typically quite transient

(Lu and Lionnet, 2021), and prolonged contact might be required

for proper formation of enhancer, polymerase, or mediator com-

plexes that drive transcriptional activation. Recent work using 3D

super-resolution live-cell imaging found that loops stabilized

contact between anchors for 10–30 min (Gabriele et al., 2021).

In the absence of a chromatin loop, such prolonged contact is

unlikely even for non-looped enhancers and promoters that are

separated by relatively short genomic distances. Closely spaced
Cell Reports 41, 111567, November 1, 2022 7
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Figure 5. Long-distance loops are lost concurrently with increased internal transcription and restructuring at the GBP locus

(A) Chromatin structure (5-kb resolution), H3K27 acetylation, and gene transcription change drastically over the first 4 h at the GBP locus of chromosome 1.

Predicted CTCF binding sites are also shown. Prior to treatment, two large ‘‘structural’’ loops (not connecting enhancers and promoters) encompass severalGBP

genes. After 30–60 min of LPS/IFNg treatment, GBP promoters become acetylated. From 1 h onward, as acetylation increases, connections form between the

GBP promoters. As genes become more highly expressed at 1.5 h and beyond, the original long-distance structural loops weaken in favor of shorter-range,

transcription-correlated contacts. Hi-C scale is indicated in KR-normalized counts.

(B) The TPM of each gene in the region, with the up-regulated genes highlighted in yellow (as in A).

(C) The Z score-normalized change in H3K27ac at promoters (red) and putative enhancers (gray) in this region. The promoters and enhancers plotted are

highlighted in the 4-h panel in (A).

(D) The log-transformed ratio of observed to expected contact frequency of several points in the region. ‘‘Structural’’ loops (as in A, 0 h) are colored dark blue, and

promoter-promoter and promoter-enhancer loops (as in A, 4 h) are colored light blue.

(E) The mean TPM (for expressed genes), Z score (for H3K27ac), and log2 observed/expected ratio (for structural or promoter contacts) for the individual features

highlighted in (B)�(D).

Article
ll

OPEN ACCESS
but non-looped enhancer-promoter pairs might participate in

muchmore frequent but shorter-duration contacts that are insuf-

ficient for transcriptional activation. Hi-C data measure contact

frequency but cannot differentiate between frequent short inter-

actions and infrequent but prolonged interactions. Further explo-

ration is required to determine whether prolonged contacts do

indeed account for these differences and, if so, what the exact

mechanisms are.

These observations are consistent with many possible

models of long-range enhancer activity, including those that

require stable or transient contact (also called ‘‘hit-and-run’’

or ‘‘kissing’’ models) (Brand~ao et al., 2021; Karr et al., 2022).

We see gained transcription at not just de novo but also quan-

titatively strengthened loops, which is consistent with a model

where modest enhancer contact coupled with futile cycles of

promoter activity could result in large effects on transcription

(Xiao et al., 2021). This futile cycle model also predicts a lag be-

tween changes in loop strength and transcription but on a

longer timescale than we observed. Other models, such as

the transcription factor activity gradient (TAG) model, suggest

that proximity rather than direct contact is required for long-
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range regulation (Karr et al., 2022). Although such a model

could also support looped enhancers regulating distal pro-

moters, it would require promoter-specific activities to explain

how non-looped enhancers in equal contact frequency are

not as strongly regulated.

The influence of transcription on chromatin structure
Several analyses from this paper support a model in which high

levels of transcription could stall, displace, or generally antago-

nize loop extrusion complexes. First, we found that changes in

gene expression exhibit a directional bias at differential loop an-

chors. The anchors of gained enhancer-promoter loops were

associated with increased gene expression of genes oriented

away from the center of the loop but not genes oriented toward

the center of the loop. In contrast, lost enhancer-promoter loops

were associated with increased expression of anchor genes ori-

ented toward the center of the loop but not those oriented away

from it. The temporal patterns of loop loss and internal transcrip-

tionwere anti-correlated, although,when averaging across all lost

loops, the temporal order is not as obvious as the trends seen

among gained loops, which more clearly precede transcriptional
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changes. These temporal analyses agree with previous work

showing accumulation of cohesin at the 30 ends of genes in a

manner correlated with the amount of transcription and also sen-

sitive to transcriptional inhibition (Busslinger et al., 2017; Heinz

et al., 2018; Olan et al., 2020) and recent studies demonstrating

that RNAPmay act as a ‘‘moving barrier’’ to loop extrusion (Bani-

gan et al., 2022). Transcription may also shape chromatin inde-

pendent of cohesin. Recent high-resolution microscopy and

Micro-C experiments have detected fine-scale cohesin-indepen-

dent structures between and within highly expressed genes,

which could compete with or disrupt cohesin-mediated struc-

tures (Hsieh et al., 2020; Leidescher et al., 2022). Transcription in-

hibition interrupts these local structures but leaves intact broader

loops, domains, and compartments. Virtually all transcriptionally

active chromatin exhibits elevated contact frequency via a phe-

nomenon called compartmentalization that does not require co-

hesin (Rao et al., 2017; Rowley and Corces, 2018; Vian et al.,

2018). It remains possible that such compartmentalization itself

could disrupt loops surrounding highly expressed genes.

Finally, lost loops were associated with relatively high levels of

internal transcription, and only very large changes in transcrip-

tion were associated with decreased looping. This might reflect

the fact that, in most cases, collisions between transcription and

loop extrusion are rare. Indeed, transcription occurs in relatively

infrequent bursts (Fukaya et al., 2016), and loops appear to

spend at least some time in fully looped or fully non-looped

states (Gabriele et al., 2021). So at low tomoderate levels of tran-

scription, collisions might be uncommon and are not a major

driver of 3D chromatin structure. So perhaps it is only at

extremely high levels of transcription where such collisions are

frequent enough to lead to observable losses in loop-based con-

tacts. Alternatively, it is possible that transcription only slightly

impedes extrusion and that at low levels of transcription,

changes in contact frequency are imperceptible. This agrees

with studies showing that transcription briefly stalls condensin

translocation but that it only measurably affects 3D chromatin

structures at extremely highly expressed loci, such as at rRNA

genes (Brand~ao et al., 2019).

Future directions
This fine-scale time course of looping in human macrophages

provides insight into the temporal organization of regulatory

events in human cells responding to external stimuli and a

deeper understanding of the mechanisms driving transcriptional

regulation in human cells. Some of the findings could be useful

for predicting functional enhancer-promoter pairs. For example,

the temporally coordinated changes observed at looped

enhancer-promoter pairs could be employed to refine and

potentially improve predictions made by the activity-by-contact

model (Fulco et al., 2019).

This work supports a model in which loop extrusion and tran-

scription participate in a coordinated dance and can influence

each other in a reciprocal relationship. If this holds true, then it

could have important implications for how genes are organized

in the context of chromatin loops. For example, genes oriented

toward the center of a loop could be regulated by a negative

feedback mechanism in which high levels of transcription might

decrease looping between the promoter and a distal enhancer.
Moving forward, incorporation of more data types into these

time courses should reveal further insights into the mechanisms

of 3D chromatin structure and gene regulation.

Limitations of the study
This paper aimed to place genomic events in temporal order, but

several caveats should be considered based on the methods

used. RNA-seq measures accumulation of transcribed RNA

but does not directly measure the amount of transcription along

the genome. Our ITS, calculated by expanding TPM counts

across gene bodies including introns, was used as a proxy, but

alternative methods, such as precision nuclear run-on

sequencing (PRO-Seq) or global run-on sequencing (GRO-

Seq), would be required to directly measure this. Use of bulk

methods in independent cell populations provided high sample

numbers and allowed us to view general trends, but it means

that we are only able to detect how changes correlate on a pop-

ulation level and cannot determine how events are co-occurring

in individual cells. Finally, additional time points would provide

further insights into the changes observed here. For example,

evenly spaced time points of every 30 min would reduce extrap-

olation and improve temporal correlation assessments. Simi-

larly, more closely spaced timepoints could reveal even finer-

scale lags in temporal trends but could be more logistically chal-

lenging for high-throughput methods. Other studies implement-

ing single-cell techniques could complement these limitations

nicely and would be interesting to compare with the trends

observed here.
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Antibodies

Anti-Histone H3 (acetyl K27)

antibody - ChIP Grade, rabbit

AbCam Cat# ab4729; RRID: AB_2118291

Chemicals, peptides, and recombinant proteins

Corning cellgro RPMI-1640

medium with L-Glutamine

Fisher Scientific Cat# MT10040CV

Fetal bovine serum Fisher Scientific Cat# 26-140-079

Penicillin-Streptomycin Fisher Scientific Cat# 15-140-122

12-O-tetradecanoylphorbol-l3-acetate (PMA) Sigma-Aldrich Cat# P1585-1MG

Lipopolysaccharides (LPS) from Escherichia coli Sigma-Aldrich Cat# L2630-10MG

Recombinant human interferon type gamma (IFNg) Peprotech Cat# 300-02

Formaldehyde, 37% w/v Fisher Scientific Cat# F79-500

UltraPure Glycine Invitrogen Cat# 15527013

1.0 M HEPES, pH 8 Fisher Scientific Cat# AAJ63578AK

5 M NaCl Sigma-Aldrich Cat# 71386-1L

0.5 M EDTA VWR Cat# 351-027-721EA

glycerol VWR 97062-832

10% NP-40 Fisher Scientific Cat# PI85124

10% Triton X-100 Signa-Aldrich Cat# 93443-100ML

1 M Tris-HCl, pH 8.0 Fisher Scientific Cat# 15-567-025

1 M Tris-HCl, pH 7.5 Fisher Scientific Cat# 15-567-027

0.5 M EGTA Fisher Scientific Cat# NC0300614

10% SDS Fisher Scientific Cat# 15-553-027

3 M Sodium acetate Sigma-Aldrich Cat# S7899-100ML

Tween 20 Sigma-Aldrich Cat# P9416-100ML

IGEPAL CA-630 Sigmal-Aldrich Cat# I8896-50ML

Protease inhibitor cocktail Sigma-Aldrich Cat# P8340-5ML

Nanodroplets (C18) Triangle Biotechnology, Inc

(Marcel et al., 2021)

FF101-5000

Proteinase K VWR Cat# 97062-670

RNase A Fisher Scientific Cat# FEREN0531

Dulbeccos PBS (13) w/o Ca2+ or Mg2+ Sigma-Aldrich Cat# PBS2541

Pure ethanol (200 proof) Fisher Scientific Cat# 07-678-003

10X NEBuffer 2 NEB Cat# B7002S

MboI restriction enzyme NEB Cat# R0147S

Biotin-14-dATP Life Technologies Cat# 19524-016

DNA Polymerase I, Large Klenow Fragment NEB Cat# M0210L

10X NEB T4 DNA ligase buffer NEB Cat# B0202S

BSA (20 mg/mL) NEB Cat# B9000S

T4 DNA ligase (2,000,000 U/mL) NEB Cat# M0202T

Proteinase K NEB Cat# P8107S

Agencourt AMPure XP beads Beckman Coulter Cat# A63881

Dynabeads MyOne Streptavidin T1 beads ThermoFisher Cat# 65601

100 mM dNTP Solution Set NEB Cat# N0446S

NEB T4 Polynucleotide kinase (PNK) NEB Cat# M0201S
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NEB T4 DNA polymerase I NEB Cat# M0203S

NEB Klenow Fragment (3’/50 exo-) NEB Cat# M0212L

5X Quick Ligation Reaction Buffer NEB Cat# B6058S

NEB DNA Quick Ligase NEB Cat# M2200S

Critical commercial assays

RNeasy Mini Kit with DNase I treatment Qiagen Cat# 74104

Tapestation RNA ScreeTape Agilent Technologies Cat# 5067-5576

Qubit RNA High Sensitivity Assay Fisher Scientific Cat# Q32852

NEB rRNA Depletion Kit (Human/Mouse/Rat)

with RNA Sample Purification Beads

NEB Cat# E6350L

Qubit dsDNA High Sensitivity Assay Fisher Scientific Cat# Q32854

Tapestation HS D1000 ScreenTape Agilent Technologies Cat# 5067-5584

Illumina NextSeq 500 High Output Kit Illumina Cat# 20024907

Zymo ChIP DNA Clean & Concentrator Kit Zymo Research Cat# D5205

Qubit dsDNA Broad Range Assay Fisher Scientific Cat# Q32850

ChIP-IT High Sensitivity Kit Active Motif Cat# 53040

NEBNext DNA Ultra II DNA Library

Prep w/Sample Purifcation Beads

NEB Cat# E7103S

NEBNext Multiplex Oligos for

Illumina (Index Primers Set 1)

NEB Cat# E7335S

TruSeq Nano DNA LT Library

Preparation Kit - Set A

Illumina Cat# FC-121-4001

Nextera�DNA Library Preparation Kit (24 samples) Illumina Cat# FC-121-1030

Nextera XT Index Kit (24 indexes, 96 samples) Illumina Cat# FC-131-1001

KAPA Library Quantification Kit KAPA Biosystems Cat# 4854

Deposited data

in situ Hi-C in THP-1-derived macrophages

activated by LPS/IFNg (raw)

SRA SRA: PRJNA831239

in situ Hi-C in THP-1-derived macrophages

activated by LPS/IFNg (processed)

GEO GEO: GSE201353

RNA-Seq in THP-1-derived macrophages

activated by LPS/IFNg (raw)

SRA SRA: PRJNA830916

RNA-Seq in THP-1-derived macrophages

activated by LPS/IFNg (processed)

GEO GEO: GSE201354

ATAC-Seq in THP-1-derived macrophages

activated by LPS/IFNg (raw)

SRA SRA: PRJNA830918

ATAC-Seq in THP-1-derived macrophages

activated by LPS/IFNg (processed)

GEO GEO: GSE201351

H3K27ac ChIP-Seq in THP-1-derived

macrophages activated by LPS/IFNg (raw)

SRA SRA: PRJNA830917

H3K27ac ChIP-Seq in THP-1-derived

macrophages activated by LPS/IFNg (processed)

GEO GEO: GSE201352

Experimental models: Cell lines

H. sapiens THP-1 monocyte cell line ATCC Cat# TIB-202; RRID: CVCL_0006

Software and algorithms

Trim Galore! (version 0.4.3) Babraham Bioinformatics, 2015 http://www.bioinformatics.babraham.

ac.uk/projects/trim_galore/

BWA mem (version 0.7.17) Li (2013) http://bio-bwa.sourceforge.net/

PicardTools (version 2.10.3) Broad Institute, 2019 https://broadinstitute.github.io/picard/

Samtools (version 1.9) Danecek et al. (2021) http://www.htslib.org/

MACS2 (version 2.1.1.20160309) Zhang et al. (2008) https://github.com/macs3-project/MACS
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bedtools (version 2.28) Quinlan and Hall (2010) https://bedtools.readthedocs.io/en/latest/

FastQC (version 0.11.5) Babraham Bioinformatics, 2010 https://www.bioinformatics.

babraham.ac.uk/projects/fastqc/

MultiQC (version 1.5) Ewels et al. (2016) https://multiqc.info/

R (version 3.3.1) R Core Team (2022) https://www.R-project.org

DESeq2 (version 1.33.5) Love et al. (2014) https://github.com/mikelove/DESeq2

Juicer (version 1.5.6) Rao et al. (2014) https://github.com/aidenlab/juicer

SIP (version 1.6.1) Rowley et al. (2020) https://github.com/PouletAxel/SIP

DBScan (version (1.1.8) Hahsler et al. (2019) https://CRAN.R-project.org/package=dbscan

strawr (version 0.0.9) Durand et al. (2016) https://github.com/aidenlab/

straw/tree/master/R

tximport (version 1.2.0) Soneson et al. (2015) https://github.com/mikelove/tximport

Salmon (version 1.4.0) Patro et al. (2017) https://combine-lab.github.io/salmon/

HISAT2 (version 2.1.0) Kim et al. (2019) http://daehwankimlab.github.io/hisat2/

deeptools (version 3.0.1) Ramirez et al. (2016) https://deeptools.readthedocs.io/en/develop/

nullranges (version 1.2.0) Davis et al. (2022) https://nullranges.github.io/

nullranges/index.html

CTCF (version 0.99.4) Dozmorov et al., 2022 https://github.com/mdozmorov/CTCF

Article
ll

OPEN ACCESS
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact Douglas

Phanstiel (douglas_phanstiel@med.unc.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d Processed data for Hi-C, RNA-seq, ATAC-seq, and ChIP-seq data are publicly available on GEO: SuperSeries GSE201376.

Raw data for each are publicly available on SRA. Individual accession numbers are listed in the key resources table.

d This paper does not report original code.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines
Human male THP-1 monocytes (RIID CVCL_0006, ATCC TIB-202) were grown and maintained in RPMI media with 10% fetal bovine

serum (FBS) and 1% penicillin-streptomycin (PS). Cells were routinely checked for mycoplasma using Genetic Cell Line Testing and

confirmed negative. Cell lines were also authenticated using STR analysis via the UNC Vironomics Core.

METHOD DETAILS

Macrophage differentiation and activation
For differentiation intomacrophages, THP-1monocyteswere transferred to 6-well plates (RNA-seq, ATAC-seq) or T-175 flasks (Hi-C,

ChIP-seq) at a density of 2 3 105 cells/mL and treated with 25 nM PMA for 24 h, over which time the cells become adherent. The

media was then aspirated off, the flasks were washed gently with RPMI, and then fresh RPMI (10% FBS, 1% PS) and rested for

72 h.

The resting macrophages were then treated with a combination of 10 ng/mL lipopolysaccharide (LPS) and 20 ng/mL interferon

gamma (IFNᵧ) in fresh RPMI (10% FBS, 1% PS). Cells were harvested without treatment, or 0.5, 1, 1.5, 2, 4, 6, or 24 h after LPS

and IFNᵧ treatment.
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During each treatment, extra 0- and 2-h samples were prepared simultaneously for RNA extraction, and qPCR was used to mea-

sure the regulation of FOS, IL1B and IL6 to confirm consistent treatment response.

For all library preparations, the differentiation and activation treatment was performed from freshly thawed THP-1 cells on two

separate occasions, to achieve the closest approximation to two biological replicates using cultured cell types.

Crosslinking
For ChIP-seq and Hi-C, cells were grown in T-175 flasks, each containing 203 106 cells at a density of 23 105 cells/mL. Cells were

crosslinked using 1% formaldehyde in RPMI for 10 min with gentle shaking. Crosslinking was then quenched with 10% 2.0 M cold

glycine for 5 min. The media was then removed and cells were scraped into cold PBS. Each flask was divided into 4 tubes of approx-

imately 5 3 106 cells each. Cells were spun down at 526 G for 5 m, resuspended in PBS and respun to wash away residual formal-

dehyde. Cells were then frozen in liquid nitrogen and stored at �80 for library preparation.

RNA-seq library preparation
RNA was extracted using the QIAGEN RNeasy Mini kit with DNase I treatment. RNA integrity numbers were confirmed using a Ta-

pestation RNA screentape to be above 9.8, and a Qubit High Sensitivity assay was used to determine RNA concentration.

Ribosomal RNA was removed using the NEB rRNA Depletion Kit (Human/Mouse/Rat) using 500 ng of RNA as input. Following

depletion, RNA-seq libraries were prepared using the NEB Ultra II Directional RNA Library Prep Kit for Illumina, and NEBNext Multi-

plex Oligos for Illumina. Library concentration and fragment size was determined using Qubit (dsDNA HS assay) and Tapestation

(D1000 screentape). Libraries from each timepoint were pooled to a final DNA concentration of 15 nM, and 75-bp paired-end reads

were sequenced on an Illumina NextSeq 500 using a High Output Kit.

ChIP-seq library preparation
Four frozen cell pellets (5 3 106 cells each) were used for each timepoint. Pellets were first rinsed in 10 mL rinse buffer 1 (50 mM

HEPES pH 8, 140 mM NaCl, 1 mM EDTA, 10% glycerol, 0.5% NP-40, Triton-X), incubated on ice for 10 min, and then spun down

at 2,400 G at 4�C for 5 min. Supernatant was removed and the pellets were rinsed again in rinse buffer 2 (10 mM Tris pH 8, 1 mM

EDTA, 0.5 mM EGTA, 200 mM NaCl), and spun at the same settings. Supernatant was removed, and 5 mL of shearing buffer

(10 mM Tris pH 8, 2% Triton-X, 1% SDS, 100 mM NaCl, 1 mM EDTA) was added to the tubes to wash out the rinse buffer. The sam-

ples were centrifuged at 2,400G at 4�C for 3 min, the shearing buffer was removed and this step was repeated. The cell pellets were

then resuspended in 88 uL of shearing buffer, 2 uL of protease inhibitor cocktail (PIC), and 10 uL of nanodroplets (Triangle Biotech-

nology, Inc.) per 10 million cells (Kasoji et al., 2015; Marcel et al., 2021). Samples were aliquoted into 100 uL tubes and sheared using

a Covaris E110 (intensity 6, 210 s). Cells were spun down at max speed for 2 min and the supernatant was retained.

In order to determine the concentration of chromatin, 10 uL was removed (while the rest of the sample was stored at �80�C), and
crosslinking was reversed by adding 5 uL of 5 MNaCl, 125 uL of TE buffer (10 mM Tris pH 8, 1 mM EDTA) and 125 uL of elution buffer

(1 M Tris pH 8, 10 mM EDTA, 1% SDS), vortexed, and incubated overnight at 65�C. Samples were spun down and added 7.5 uL of

proteinase K and 3 uL of RNase A. DNA was extracted using the Zymo ChIP DNA Clean & Concentrator Kit, quantified using Qubit

(dsDNA broad-range (BR) assay), and run on a gel to ensure fragment sizes of 100–300 bp and concentrations high enough to

continue with library prep.

Immunoprecipitation of the remaining volume from each sheared sample was completed using the Active Motif ChIP-IT High

Sensitivity kit, using 2.8 ug of chromatin from each timepoint (as determined by the lowest yield samples), and 4 ug of anti-

H3K27ac antibody (AbCam ab4729). Following overnight antibody incubation and washing steps, crosslinking was reversed by

adding 100 uL of elution buffer (described previously) and 4 uL of 5 M NaCl to 100 uL of the IP reactions, vortexing, and then

incubating overnight at 65�C. DNA was purified using the Zymo ChIP DNA Clean & Concentrator kit, and quantified using Qubit

(dsDNA high-sensitivity (HS) assay), as before.

Following the final dilution, libraries were prepared using the NEB Ultra II DNA Library Prep Kit with NEBNext Multiplex Oligos for

Illumina with 0.88 ng of DNA as input. Libraries were analyzed using Qubit (dsDNA HS assay) and Tapestation (D1000 screentape)

and pooled to a final concentration of 12 nM, and then 75-bp paired-end reads were sequenced on an Illumina NextSeq 500 using a

High Output Kit.

In situ Hi-C library preparation
Three treatments (biological replicates) were conducted, and one or two frozen cell pellets (53 106 cells each) were used to generate

separate libraries as technical replicates (1 technical replicate for first biological replicate; 2 technical replicates for second and third

biological replicates). Libraries were prepared using the in situ Hi-C protocol as described in Rao et al. (2014) (Rao et al., 2014). In

brief, crosslinked cells were lysed on ice, nuclei were isolated, and chromatin was digested overnight with the MboI restriction

enzyme. Chromatin ends were biotinylated, proximity ligated, and crosslinking was reversed. Samples were sheared on a Covaris

LE 220 (DF 25, PIP 500, 200 cycles/burst, 90 s), quantified using Qubit (dsDNA High Sensitivity (HS) assay), and a small sample

was run on an agarose gel to ensure proper fragmentation. DNA sized 300–500 bp was selected for using AMPure XP beads, and

then eluted. Biotinylated chromatin was then pulled down using streptavidin beads. Following removal of biotin from unligated

ends and repair of sheared DNA ends, unique Illumina TruSeq Nano (Set A) indices were ligated onto the samples. Libraries were
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amplified off of streptavidin beads using 7–10 PCR cycles based on post-size selection concentrations, quantified again using a Qu-

bit (dsDNA HS assay), and fragment length was determined using Tapestation (D1000 screentape). Libraries were pooled to 10 nM.

Paired-end 150-bp reads were sequenced on one or two lanes of an Illumina NovaSeq S4.

ATAC-seq library preparation
ATAC-seq libraries were prepared using the Omni ATAC-seq protocol as described in Corces et al. (2017). Adherent macrophages

were washed once with PBS and lifted off of the plate with EDTA for 5 min. EDTA was quenched with RPMI, and library preparation

was performed on 50,000 cells. 3.75 mL of Illumina Nextera XT indices were used in PCR and qPCR.

After performing the initial 5 cycles of PCR, 5% of the PCR reaction was used in qPCR to determine how many additional cycles

were required. 4–7 cycles were determined to be sufficient for the final amplification. A 2-sided bead cleanup with AMPure XP beads

was performed (0.5X, then 1.3X). Libraries were quantified using Qubit (dsDNA HS Assay) and the KAPA Library Quantification kit.

Libraries from each timepoint were pooled to a concentration of 8 nM or 10 nM for each biological replicate, and 75-bp paired-

end reads were sequenced on an Illumina NextSeq 500 using a High Output Kit.

QUANTIFICATION AND STATISTICAL ANALYSIS

RNA-seq processing and gene quantification
Adaptors and low-quality reads were trimmed from paired-end reads using Trim Galore! (version 0.4.3; Babraham Bioinformatics,

2015). Salmon (version 1.4.0; Patro et al., 2017) was used in quantmode to quantify reads to hg19 transcripts fromGENCODE (version

19). For signal tracks, readswere aligned usingHISAT2 (version 2.1.0; Kim et al., 2019), indexed and replicatesweremergedwith sam-

tools (version 1.9; Danecek et al., 2021), and converted to bigwigs using deeptools (version 3.0.1; Ramı́rez et al., 2016). Reads were

summarized to a gene level using tximport (R version 3.3.1, tximport version 1.2.0; R Core Team, 2022; Soneson et al., 2015), which

was then used as input for differential analysis in DESeq2 (version 1.33.5; Love et al., 2014). FastQC andMultiQCwere used to assess

library quality metrics (version 0.11.5; version 1.5; Babraham Bioinformatics, 2010; Ewels et al., 2016).

Inferred transcription score (ITS) calculations
Inferred transcription scores (ITS) were calculated in order to estimate the degree of transcription occurring throughout gene bodies,

including introns, as extrapolated from the mature mRNA TPM levels. Gene-level TPM as quantified by Salmon and summarized by

txImport (see RNA-seq processing methods). The genome was binned into 10-kb or 50-kb regions using bedtools makewindows

(version 2.28), and then overlapped with gene bodies (Quinlan and Hall, 2010). Gene TPM values were applied to each overlapping

bin, adjusted based on the percentage of bin overlap. For example, a gene of TPM 50 with a TSS at position 100,000 bp and a TTS at

position 115,000 bp would contribute an ITS of 50 to the bin of 100,000–110,000, and an ITS of 25 to the bin of 110,000–120,000. In

bins with multiple genes, ITS scores were generated by summing the TPM contribution from each gene.

ATAC- and ChIP-seq processing and peak calling
Adaptors and low-quality reads were trimmed from paired-end reads using Trim Galore! (version 0.4.3; Babraham Bioinformatics,

2015). Reads were aligned using BWA mem (version 0.7.17; Li, 2013) and sorted using Samtools (version 1.9; Danecek et al.,

2021). Duplicates were removed with PicardTools (version 2.10.3; Picard, no date) and for ATAC-seq libraries, mitochondrial reads

were removed using Samtools idxstats. Samtools was also used to merge replicates for each timepoint, and index BAM files. Peaks

were called from themerged alignments usingMACS2with the following settings: -f BAM -q 0.01 -g hs –nomodel –extsize 200 –keep-

dup all -B –SPMR (version 2.1.1.20160309; Zhang et al., 2008). ChIP-seq peaks used the MACS2 setting –shift 0, while ATAC-seq

peaks used –shift 100. Peaks from all timepoints were then merged using bedtools (version 2.28; Quinlan and Hall, 2010), generating

118,344 ChIP-seq and 193,853 ATAC-seq peaks in total. For each replicate BAM file, ChIP-seq counts were extracted from ATAC-

seq peak locations using bedtools multicov. Bedtools intersect was used to subset for ATAC-seq peaks that overlapped H3K27ac

ChIP-seq peaks, and these 89,503 peaks were considered putative regulatory regions. Raw counts at these enhancers (8 timepoints,

2 replicates each) were used as input for differential analysis with DESeq2 (version 1.33.5; Love et al., 2014). Signal tracks weremade

from alignments using deeptools (version 3.0.1; Ramı́rez et al., 2016).

Enhancer and promoter definitions
Gene promoters were identified as regions 2,000 base pairs upstream and 200 base pairs downstream of gene transcriptional start

sites (TSS). Promoter H3K27ac signal was calculated based on any overlapping H3K27ac and ATAC-seq peaks within promoter

regions using bedtools intersect (version 2.28; Quinlan and Hall, 2010). Enhancers were identified as overlapping H3K27ac and

ATAC-seq peaks that did not overlap with defined promoter regions.

Predicted CTCF binding sites
Directional predicted CTCF binding sites for hg19 were obtained from AnnotationHub ID AH95565 using the ‘‘CTCF’’ R package

(Dozmorov et al., 2022). The specific track used here features data from UCSC Jaspar, and represents the hg19 coordinates of bind-

ing motif MA0139.1 as detected by FIMO.
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Hi-C processing, loop and compartment calling
Hi-C data were processed using the Juicer pipeline as initially described in Rao et al. (version 1.5.6; Rao et al., 2014). Hi-Cmaps were

made at 5- and 10-kb resolution for each technical replicate (8 timepoints, each with 5 technical replicates across 3 biological rep-

licates), as well as for each timepoint (all replicates combined). Additionally, a ‘‘Mega’’ map from all timepoints was made, also using

Juicer.

Loops were identified at 5-kb using SIP (version 1.6.1; Rowley et al., 2020). Loops were called from the individual timepoint maps

using the settings ‘‘-g 2 -t 2000 -fdr 0.05’’, and from the Mega map with the settings ‘‘-g 1 -t 2000 -fdr 0.05’’. The loops were then

extrapolated to 10-kb, concatenated, and merged in R using DBScan (version 1.1.8; Hahsler et al., 2019) with an epsilon of 20 kb

(manhattan distance), keeping the mean of modes for coordinates, resulting in 42,690 total loops. The counts for these loops

were then extracted from the Hi-C files of each technical replicate (un-normalized, 10-kb resolution) using strawr (version 0.0.9; Du-

rand et al., 2016). These raw counts (8 timepoints, 3 biological replicates each, twowith 2 technical replicates and onewith 1 technical

replicate each) were used as input for differential analysis with DESeq2 (Love et al., 2014).

Compartments were called for Hi-C biological replicates 2 and 3 using the EigenVector script at a 50-kb resolution (Olshansky,

2021). Biological replicate 1 was not used for this analysis due to its decreased sequencing depth and the method of differential

compartment calling (see ‘‘differential compartment and ITS bin analysis’’ section below). The A compartment was determined based

on gene content overlap on a per-chromsome basis.

Differential gene and peak analysis
DESeq2 was used for differential analysis of genes, loops, and peaks (Love et al., 2014). Each analysis used a likelihood ratio test

(LRT), with a full design of ‘‘�bioRep + time’’ and a reduced design of ‘‘�bioRep’’. Posterior log-2 fold changes (LFC) were estimated

using apeglm (Zhu et al., 2019). Significant results were determined based on an absolute LFC greater than 1 and an adjusted p value

below 0.01.

Raw counts were converted into Z-scores by first conducting a variance-stabilizing transformation across all features, and then

centering and scaling the data in each feature based on standard deviations from the mean. Genes were categorized into up-

and downregulated based on the signage of their Z-score at 0 h of LPS/IFNg treatment, and then sorted based on their timepoint

of maximum Z-score.

Differential loop analysis and clustering
DESeq2 was also used for differential analysis of loops (Love et al., 2014). Differential analysis used a likelihood ratio test (LRT), with a

full design of ‘‘�techRep + bioRep + time’’, and a reduced design of ‘‘�techRep + bioRep’’. Significant results were determined

based on an absolute LFC greater than 0.585 (fold-change of ±1.5) and an adjusted p value below 0.05.

Raw counts were converted into Z-scores by first conducting a variance-stabilizing transformation across all features, and then

centering and scaling the data in each feature based on standard deviations from themean. These Z-scoreswere then used to cluster

loops using k-means clustering (k = 4). For the survey of loop contacts at the GBP locus, log2 observed/expected KR-normalized

counts were extracted using strawr.

Differential compartment and ITS bin analysis and clustering

Compartment eigenvectors (EV) and ITS values were both binned at 50-kb for comparison and overlap. Differential EV and ITS bins

were identified based on an average raw difference of 0.5 (EV) or a fold-change of 2 (ITS) between any timepoint and 0 h. False-pos-

itive rates of 13.4% for EV and 10.7% for ITS were calculated by finding the number of bins with differences beyond these thresholds

between biological replicates (regarded as false positives) out of the total number of bins passing the threshold. ITS bins were further

subset for bins containing a score of 5 or higher in any biological replicate. A total of 5,611 differential EV bins were found, and a 8,068

differential ITS bins were found, with 930 bins that were differential for both.

Differential compartment and ITS bins were then categorized according to their timing and direction of change. First, z-scores were

calculated for each bin at each timepoint bymeaning the eigenvector or ITS values between replicates, then centering and scaling the

data. The overall direction (up or down) of each differential bin was determined based on the sign of their initial z-score. Based on

these categorizations, 81.2% of overlapping differential bins have EV and ITS that changed in the same direction. The increasing

and decreasing bins were then further categorized by the timepoint of minimum or maximum z-score (30 min–24 h), as for differential

gene categorization.

Matched enhancer-promoter sets
Covariate-matched subset selection among non-looped enhancer-promoter pairs was performed using the matchRanges function

from the nullranges package (Davis et al., 2022). Enhancer-promoter pair distance or total contact frequency were used as covari-

ates. Total contact frequencywas calculated fromKR normalized counts from the combinedMegamap, effectively a sumof contacts

across all timepoints and replicates. Matching was done with the stratified matching method without replacement. Enhancer

strength, defined by the sum of H3K27ac variance-stabilized counts across all timepoints and replicates, was compared between

the looped and matched non-looped sets.
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