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Abstract

Keyword spotting (KWS) offers a vital mech-001
anism to identify spoken commands in voice-002
enabled systems, where user demands often003
shift, requiring models to learn new keywords004
continually over time. However, a major prob-005
lem is catastrophic forgetting, where models006
lose their ability to recognize earlier keywords.007
Although several continual learning methods008
have proven their usefulness for reducing for-009
getting, most existing approaches depend on010
storing and revisiting old data to combat catas-011
trophic forgetting. Though effective, these012
methods face two practical challenges: 1) pri-013
vacy risks from keeping user data and 2) large014
memory and time consumption that limit de-015
ployment on small devices. To address these016
issues, we propose an exemplar-free Analytic017
Continual Learning (AnalyticKWS ) method018
that updates model parameters without revisit-019
ing earlier data. Inspired by efficient learning020
principles, AnalyticKWS computes a closed-021
form analytical solution for model updates022
and requires only a single epoch of adapta-023
tion for incoming keywords. AnalyticKWS de-024
mands fewer computational resources by avoid-025
ing gradient-based updates and does not store026
old data. By eliminating the need for back-027
propagation during incremental learning, the028
model remains lightweight and efficient. As029
a result, AnalyticKWS meets the challenges030
mentioned earlier and suits resource-limited031
settings well. Extensive experiments on var-032
ious datasets and settings show that Analyt-033
icKWS consistently outperforms existing con-034
tinual learning methods. Furthermore, code035
will be made publicly available, to facilitate036
future studies.037

1 Introduction038

As a key component of edge intelligence, de-039

vices such as robots, autonomous systems, and040

smart assistants interact naturally with humans041

through voice (Bello et al., 2018; Zhang et al.,042

2018; Mandal et al., 2014). Spoken keyword spot- 043

ting (KWS) (López-Espejo et al., 2021) identifies 044

specific keyword phrases within recorded speech 045

and is essential for edge computing devices. These 046

devices require quick responses, low energy con- 047

sumption, and high accuracy to meet user demands. 048

Cloud-based solutions may not be ideal in these se- 049

tups because sending private data to a remote server 050

can violate privacy rules, and real-time updates of- 051

ten require immediate on-device adaptation. Due 052

to the KWS system always being applied in prac- 053

tical real-world scenarios, modern small-footprint 054

KWS systems (Tang and Lin, 2018; Choi et al., 055

2019; Kim et al., 2021; Ng et al., 2023) based on 056

deep learning often use compact models to balance 057

performance and computational cost. However, 058

these systems face significant challenges as their 059

performance usually drops when encountering new 060

keywords in the target domain. 061

With the increasing demand for voice as the 062

mode for interaction-oriented tasks in embodied 063

AI, it is important to support more personalized 064

applications (Yang et al., 2022b), such as smart 065

home devices and in-car assistants. These devices 066

must continuously learn new keywords while re- 067

specting user privacy and resource limits. How- 068

ever, re-training a KWS model from scratch with 069

new keywords is not only time-consuming, but also 070

resource-intensive. Previous work (Awasthi et al., 071

2021; Mazumder et al., 2021; Parnami and Lee, 072

2022) addresses this issue through a few-shot fine- 073

tuning, which adapts a model to target data with 074

minimal samples but suffers from catastrophic for- 075

getting (McCloskey and Cohen, 1989), where pre- 076

vious knowledge deteriorates. 077

To solve the forgetting issue, continual learn- 078

ing (CL) (Parisi et al., 2019) integrates new data 079

while retaining previous knowledge. Within this 080

framework, class incremental learning (CIL) (Be- 081

louadah et al., 2021) focuses on adding new classes 082

to the model sequentially, making it especially rel- 083
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evant for KWS that involve evolving label sets.084

Recent CIL strategies split into rehearsal-based085

methods that store past examples for future train-086

ing and exemplar-free approaches that do not keep087

old data. For rehearsal-based methods, Xiao et088

al. (Xiao et al., 2022) first suggested choosing089

examples through a diversity-based approach for090

KWS. Based on that, the latest works of Peng et091

al. (Peng and Xiao, 2024) further saved model pre-092

dictions to distill prior knowledge. However, due093

to the constraints present in real-world, rehearsal-094

based CIL is often not reliable for KWS. First,095

storing past examples risks breaching user privacy.096

Second, it consumes excessive memory, which is097

not feasible for resource-limited edge devices.098

Although exemplar-free class incremental learn-099

ing (EFCIL) methods avoid storing historical data100

and thus bypass privacy concerns (Goswami et al.,101

2024c; Zhuang et al., 2022; Goswami et al., 2024a;102

Huang et al., 2022), many of these methods still103

rely on complex optimizers or dynamic network104

structures. This approach can be unsuitable for105

edge devices, which lack the computational power106

for extensive gradient-based updates. Hence, we107

propose a more efficient method that preserves108

the benefits of EFCIL but removes the need for109

complex adaptations, making it more practical for110

resource-constrained KWS systems.111

As we mentioned, the key challenge in incre-112

mental KWS is catastrophic forgetting, where new113

keywords overwrite knowledge of previous ones.114

Existing solutions address this issue but often store115

prior data, creating privacy risks and high memory116

use. To avoid these concerns, we propose Analyt-117

icKWS , an exemplar-free method that mitigates118

catastrophic forgetting while eliminating the need119

for using past examples. Drawing on analytic learn-120

ing (Zhuang et al., 2021), AnalyticKWS uses a121

recursive least-squares procedure in place of back-122

propagation, letting it incorporate new knowledge123

and protect user data. Our core contribution is to124

maintain previous knowledge without retaining ret-125

rospective data, thus resolving catastrophic forget-126

ting in a privacy-preserving and resource-efficient127

manner. We evaluate the proposed AnalyticKWS128

for a wide range of incremental KWS task settings129

to demonstrate its effectiveness. Moreover, by pro-130

cessing new keywords in a single forward pass131

without gradient updates, AnalyticKWS has the ca-132

pability to lower the computational overhead mak-133

ing it ideal for edge devices. The primary contribu-134

tions of this paper can be summarized as follows:135

• Mitigate Forgetting: AnalyticKWS reduces 136

catastrophic forgetting by preserving the 137

knowledge of past tasks without using histori- 138

cal data. Comprehensive experiments on three 139

datasets with up to 100 keywords are con- 140

ducted to compare AnalyticKWS with other 141

baselines to project its effectiveness for incre- 142

mental KWS. 143

• Privacy and Memory Efficiency: We pro- 144

pose AnalyticKWS, which adopts a frozen 145

acoustic feature extractor and an analytic clas- 146

sifier without retaining any past data. By elim- 147

inating exemplars, this design enhances user 148

privacy and reduces memory usage, making it 149

suitable for devices with limited resources. 150

• Low Computational Overhead: During CL, 151

our method updates the analytic classifier in 152

a single step without requiring gradient back- 153

propagation. We measure both training time 154

and extra memory to project the capability 155

of AnalyticKWS with fewer resources and 156

adaptation to new keywords within a single 157

epoch, meeting the demands of real-world, 158

resource-constrained environments. 159

2 Related Work 160

Small-footprint Keyword Spotting: With the 161

widespread adoption of voice interfaces in smart 162

consumer electronics, the application of small con- 163

volutional neural networks in compact KWS has 164

become increasingly significant. Recent works in- 165

vestigated innovative convolution techniques to im- 166

prove KWS performance. Chen et al. (Chen et al., 167

2014) were the first to apply deep neural networks 168

to treat KWS as a classification task. TC-ResNet 169

proposed in (Choi et al., 2019) applies 1D tempo- 170

ral convolution to enhance efficiency and accuracy. 171

The authors of (Kim et al., 2021) introduced broad- 172

casted residual learning in BC-ResNet combining 173

1D and 2D convolutions. Despite the effective- 174

ness, these methods are typically trained with a 175

limited set to reduce computation and memory us- 176

age. However, users need to customize a new set of 177

voice commands to suit their environment. In this 178

work, we investigate the CL to develop a dynamic 179

KWS approach while incrementally learning from 180

unseen keywords. 181

Exemplar-Free Class Incremental Learning: 182

Exemplar-based methods (Belouadah and Popescu, 183

2019; Hou et al., 2019; Rebuffi et al., 2017; 184

Chaudhry et al., 2018) store small subsets of data 185
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from each task. These exemplars are later replayed186

with current data during training for new tasks. Al-187

though effective, these methods necessitate storing188

input data from previous tasks, leading to multiple189

challenges in practical settings such as legal con-190

cerns with new regulations (e.g. European GDPR191

where users can request to delete personal data),192

and privacy issues when dealing with sensitive data193

like in medical signals. Recently, the exemplar-194

free CIL (Pelosin et al., 2022; Petit et al., 2023;195

Goswami et al., 2024b) setting has been exten-196

sively studied in the image classification domain.197

ADC (Goswami et al., 2024d) estimates seman-198

tic drift and restores old class prototypes in the199

new feature space. EWC (Kirkpatrick et al., 2017)200

and some more advanced versions (Ritter et al.,201

2018) calculate the importance of the parameter by202

the fisher information matrix then add a quadratic203

penalty in the loss function that penalizes the vari-204

ation of each parameter to perform the previous205

tasks. Despite EFCIL methods are quite suitable206

for incremental KWS application, the exploration207

of EFCIL methods in KWS is limited. In addi-208

tion, most EFCIL methods are only effective when209

starting with high-quality feature representations210

and always fall behind the exemplar-based meth-211

ods. In this work, we propose developing a robust212

EFCIL method that outperforms exemplar-based213

approaches for small-footprint KWS applications.214

Continual learning for Speech Processing: CL215

has shown promise in addressing incremental216

speech processing tasks by enabling systems to217

adapt to new data while mitigating catastrophic218

forgetting (Cappellazzo et al., 2023; Yang et al.,219

2022a). Chen et al. (Chen et al., 2024) proposed220

a hyper-gradient-based exemplar strategy for dia-221

logue systems, periodically retraining models us-222

ing selected exemplars. Xiao et al. (Xiao and Das,223

2024) introduced an unsupervised framework with224

distillation loss to add new sound classes while225

maintaining task consistency. CL has also been ex-226

plored for incremental KWS. RK proposed in (Xiao227

et al., 2022) first introduced a diversity-based sam-228

ple mechanism to select representative exemplars.229

More recently, DE-KWS (Peng and Xiao, 2024)230

saved model predictions to distill past knowledge231

beyond exemplars. However, these methods rely232

on storing exemplars, which creates challenges for233

memory- and privacy-constrained on-device appli-234

cations. To this end, we propose constructing a235

lifelong KWS system without storing the previous236

predictions or data in this work.237

Analytic Learning. Analytic learning (AL) uses 238

least squares (LS) to obtain closed-form solutions, 239

providing an efficient alternative to back propa- 240

gation. Recently, the recursive formulation (e.g., 241

BRMP (Zhuang et al., 2021)) of AL brings inspira- 242

tion to CL. The BRMP can stream new samples to 243

update the weight without weakening the impact of 244

previous samples. ACIL (Zhuang et al., 2022) was 245

the first to apply AL to CL by reframing training as 246

a recursive LS procedure, achieving accuracy simi- 247

lar to joint training for linear classifiers. However, 248

our work advances AL in the speech domain by 249

proposing the AnalyticKWS method, which adopts 250

an exemplar-free strategy. Through recursive up- 251

dates, AnalyticKWS preserves knowledge without 252

storing any past data, representing a notable step 253

forward for AL-based CL in speech processing. 254

3 Our Method 255

3.1 Problem Formulation 256

In this work, we examine a KWS system that learns 257

different keyword categories through a sequence 258

of tasks {τ0, τ1, . . . , τT }. We treat this problem as 259

a CIL scenario, where the system must recognize 260

all keywords from each task, even as new tasks 261

are introduced. For each task τt, the input data 262

(x, y) follow a distinct distribution Dt. Our goal 263

is to train a model f(x; θ) that adapts to new data 264

while preserving its understanding of earlier tasks. 265

Formally, we aim to minimize the cross-entropy 266

loss across all tasks: 267

argmin
θ

T∑
t=0

E(x,y)∼Dt
[LCE (y, f(x; θ))] , (1) 268

However, storing or reusing all past data is imprac- 269

tical due to memory costs and privacy concerns. 270

Simply fine-tuning the model on new data often 271

causes catastrophic forgetting, where the model 272

loses the knowledge it gained from previous tasks. 273

3.2 Proposed AnalyticKWS Method 274

This section describes the AnalyticKWS method 275

in detail, including the feature extraction pretrain- 276

ing, the feature recalibration, and the incremental 277

keyword adaptation. Our explanation focuses on 278

small-footprint KWS models, which include a con- 279

volutional neural network (CNN) backbone as an 280

acoustic feature extractor and a linear layer as the 281

classifier. Figure 1 provides an overview of the 282

proposed AnalyticKWS method. 283
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(a) Feature Extraction Pretraining for Multiple Epochs

Yes No

...

Yes No

...

(b) Feature Recalibration with Analytic Linear

Expansion

Left Cat

...

(c) Incremental Keyword Adaptation

Expansion

Forward

Back-Propagation

Analytic Learning

Linear Classifier

Analytic Linear

CNN Feature Extractor Freezed

Finetune

AFAM  Update AFAM 

Figure 1: An overview of the AnalyticKWS method: (a) Train the whole model on the first task for multiple
epochs to get a strong feature extractor, then (b) Apply analytic re-alignment for one epoch to increase the pre-
classifier feature dimension. Next, proceed to the incremental keywords stage, where the model trains for one epoch
per new task, assisted by a correlation matrix AFAM (Eq. (6)) that encodes past knowledge. This process enables
the model to learn new tasks while preserving previously acquired information.

3.2.1 Feature Extraction Pretraining284

The first stage as shown in Figure 1(a), is known285

as the feature extraction pretraining. In this step,286

the network is trained on the dataset D0 of task287

0 for multiple epochs using a back-propagation288

optimization method (e.g., stochastic gradient de-289

scent) as the conventional supervised learning to290

learn representations of acoustic features. After291

the feature extraction pretraining stage, we obtain292

one CNN acoustic feature extractor with weight293

θ
(0)
cnn as well as one classifier with weight θ(0)cls . The294

pretrained feature extractor is then frozen to ensure295

consistency during subsequent stages.296

3.2.2 Feature Recalibration297

The second stage, called feature recalibration (Fig-298

ure 1(b)), is central to the AnalyticKWS formula-299

tion. In this step, we also use the training data D0300

(with inputs x0 and labels y0). Unlike the last stage,301

we replaced the classifier with an analytic classifier302

to shift the network’s learning toward an analytic303

learning style. First, we pass the inputs through304

the CNN feature extractor (freezed) backbone to305

obtain the speech feature S0. Next, we perform an306

acoustic feature expansion (AFE) process by insert-307

ing an extra linear layer with weight θafe to project308

S0 into a higher-dimensional feature space, result-309

ing in S′
0. To randomly initialize the θafe, we draw310

each element from a normal distribution. We con-311

trol the AFE by a chosen “expansion size” larger312

than the S0 size. This AFE approach is very useful313

for small-footprint KWS because it converts the314

original feature into a richer representation without315

greatly increasing computational demands. The S′
0 316

can keep more subtle distinctions in speech signals, 317

allowing it to preserve complex patterns. Finally, 318

we use linear regression to map the expanded fea- 319

ture S′
0 to the label matrix y0 as: 320

argmin
θ
(0)

cls

∣∣∣∣∣∣y0 − S′
0θ

(0)
cls

∣∣∣∣∣∣2
F
+ γ

∣∣∣∣∣∣θ(0)cls

∣∣∣∣∣∣2
F

(2) 321

where ||·||F indicates the Frobenius norm of ma- 322

trix (Golub and Van Loan, 2013). Here we set γ as 323

the regularization of Eq. (2) preventing overfitting. 324

The optimal solution to Eq. (2) can be found in: 325

θ̂
(0)
cls =

(
S′
0
⊤S′

0 + γI
)−1

S′
0
⊤y0 (3) 326

where θ̂
(0)
cls indicates the estimated analytic linear 327

layer weight of the final classifier layer before out- 328

putting the predictions. After the feature recalibra- 329

tion stage, the KWS model updates the classifier 330

weights in this analytic learning style. 331

3.2.3 Incremental Keyword Adaptation 332

With the learning process now recalibrated to an- 333

alytic learning (see Eq. (3), we can incrementally 334

adapt to new keywords using the analytic learn- 335

ing approach. Suppose we can access all task data 336

D0, D1, . . . , Dt−1. In this non-continual-learning 337

case, we can extend the learning task defined in 338

Eq. (2) to incorporate all these datasets, ensuring 339

the model can handle multiple tasks jointly. 340

argmin
θ
(t−1)

cls

∣∣∣∣∣∣∣∣Y0:t−1 − S′
0:t−1

θ
(t−1)
cls

∣∣∣∣∣∣∣∣2
F

+ γ
∣∣∣∣∣∣θ(t−1)

cls

∣∣∣∣∣∣2
F

(4) 341
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where Y0:t−1 is the block-diagonal matrix whose342

main diagonal elements are y0, y1, . . . , yt−1. And343

S′
0:t−1

is formed by stacking the expanded feature344

matrices. The solution to Eq.(4) can be written as:345

θ̂
(t−1)
cls =

(
t−1∑
i=0

S′
i
⊤S′

i + γI

)−1

S′⊤
0:t−1

Y0:t−1 (5)346

where θ̂
(t−1)
cls with a column size proportional to347

task number t. The goal of AnalyticKWS is to348

calculate the analytical solution that satisfies (4) at349

task τt based on θ̂
(t−1)
cls given Dt. Specifically, we350

aim to obtain θ̂
(t)
cls recursively based on θ̂

(t−1)
cls , S′

t,351

and label yt that are available only at the current352

task. When the updated weight θ̂(t)cls satisfy Eq. (4)353

with all previous task data, AnalyticKWS could354

reduce forgetting in the sense that the recursive355

formulation (i.e., incremental learning) gives the356

same answer with the joint learning. To achieve357

this, we introduce At−1, the acoustic feature auto-358

correlation matrix (AFAM) from the task τt−1.359

At−1 =

(
t−1∑
i=0

S′
i
⊤S′

i + γI

)−1

(6)360

With the the weight θ̂(t)cls could obtained by:361

θ̂
(t)
cls =

[
θ̂
(t−1)
cls − AtS

⊤
t S

′
tθ̂

(t−1)
cls AtS

′
t
⊤yt

]
(7)362

which is identical to that obtained by (5). To calcu-363

lated the weight, the current AFAM At can also be364

recursively calculated by:365

∆ = At−1S
′
t
⊤(I + S′

tAt−1S
′
t
⊤)−1S′

t
⊤At−1 (8)366

367 At = At−1 −∆ (9)368

For the full proof please see the appendix.369

As a result, the final classifier layer weight can be370

updated recursively using θ̂
(t−1)
cls , S′

t, At and label371

yt. This means that even though the KWS model372

is incremental learning of incoming keywords, the373

classifier prediction is equal to the outcome of a374

joint analytic learning solution applied to all tasks.375

We summarize the computational steps of An-376

alyticKWS in Alg. 1. This algorithm begins with377

a Feature Extraction Pretraining, where the model378

first learns from the dataset using conventional379

back-propagation training. After this training, we380

freeze the feature extractor. Then we input the data381

of task 0 again for the Feature Recalibration. We382

first utilize the AFE to obtain the speech feature383

Algorithm 1: AnalyticKWS
Feature Extraction Pretraining: with D0.
Conventional supervised training for multiple
epochs on the task 0.

Feature Recalbration:
i) Obtain expanded feature matrix with AFE;
ii) Obtain re-aligned weight θ̂(0)cls with (3).
iii) Save feature autocorrelation matrix A0.

Incremental Keyword Adaptation:
for t = 1 to T (with Dt, θ̂

(t−1)
cls and At−1) do

i) Obtain and stack the feature matrix;
ii) Update At with (8) and (9);
iii) Update weight matrix θ̂

(t)
cls with (7);

end for

matrix. Then based on the feature matrix, we shift 384

the classifier into analytic learning and save the 385

acoustic feature autocorrelation matrix. Following 386

the recalibration stage, the algorithm moves into 387

class incremental learning. AnalyticKWS uses the 388

newly received utterances for the new keywords 389

in each task, extracts its feature matrix, updates 390

the AFAM, and finally updates the linear classifier 391

weight. This process is repeated for each incoming 392

task, ensuring the model adapts to new keywords 393

while preserving knowledge from all previously 394

learned tasks. 395

4 Experiment Setting 396

4.1 Dataset 397

Unlike previous CL studies on KWS that focus on 398

a single dataset, we evaluate our method on three 399

different datasets to show its robustness. First, we 400

use the widely adopted Google Speech Commands 401

(GSC) v1 dataset, which includes 64,727 short au- 402

dio clips, each lasting one second, covering 30 403

distinct keywords. We also use the larger GSC v2 404

dataset with 105,829 audio clips. This expanded 405

version contains the original 30 keywords plus 406

5 new words (“Backward", “Forward", “Follow", 407

“Learn", and “Visual"), resulting in a richer variety 408

of speakers and improved data diversity. Follow- 409

ing established practices, we split each dataset into 410

training (80%) and validation (20%) sets, with all 411

audio sampled at 16 kHz. 412

In addition, we evaluate our method on the SC- 413

100 dataset (Song et al., 2024), which consists of 414

313,951 keyword utterances covering 100 different 415
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Table 1: Comparison of various CL methods for KWS. Finetune serves as the lower bound, and Joint training acts
as the upper bound. We evaluate each method on accuracy (ACC in %) and backward transfer (BWT). “T" is the
task number. Bold values indicate the best results, and underlined values denote the second-best. A dash (-) marks
unavailable results. An asterisk (*) signifies that the method uses a buffer of size 500 for exemplar storage. The
proposed AnalyticKWS methods are highlighted .

Metric Method GSC-v1 GSC-v2 SC-100
T=6 T=11 T=21 T=6 T=11 T=21 T=11 T=26 T=51

ACC(%↑)

Joint 94.93 94.76 95.32
Finetune 26.84 17.99 9.59 30.07 16.82 8.92 15.07 6.45 3.30
EWC (Kirkpatrick et al., 2017) 72.28 71.65 69.66 71.55 68.20 66.76 43.90 40.56 35.39
BiC* (Wu et al., 2019) 80.22 79.39 79.19 75.79 76.52 76.92 -
iCaRL* (Rebuffi et al., 2017) 85.24 81.14 73.61 84.72 79.16 67.35 69.3 46.34 23.70
Rwalk* (Chaudhry et al., 2018) 87.03 85.38 84.55 87.12 87.27 86.77 76.93 77.21 76.78
RK* (Xiao et al., 2022) 85.56 83.19 80.87 83.49 80.52 78.91 68.72 61.62 59.54
DE-KWS* (Peng and Xiao, 2024) 88.82 85.59 85.53 87.78 85.34 82.38 67.71 59.78 54.34
AnalyticKWS-128 88.95 84.91 84.58 88.88 88.87 88.85 85.77 85.66 85.55
AnalyticKWS-256 89.51 85.83 85.60 89.48 89.53 89.50 87.99 87.85 87.63

BWT(↑)

Joint - - -
Finetune -0.376 -0.249 -0.163 -0.362 -0.256 -0.166 -0.264 -0.144 -0.086
EWC (Kirkpatrick et al., 2017) -0.117 -0.061 -0.035 -0.122 -0.072 -0.045 -0.146 -0.076 -0.048
BiC* (Wu et al., 2019) -0.084 -0.045 -0.025 -0.095 -0.053 -0.028 -
iCaRL* (Rebuffi et al., 2017) -0.054 -0.037 -0.029 -0.057 -0.041 -0.032 -0.067 -0.047 -0.038
Rwalk* (Chaudhry et al., 2018) -0.048 -0.026 -0.015 -0.047 -0.024 -0.014 -0.052 -0.023 -0.013
RK* (Xiao et al., 2022) -0.047 -0.033 -0.021 -0.061 -0.040 -0.025 -0.065 -0.040 -0.023
DE-KWS* (Peng and Xiao, 2024) -0.032 -0.026 -0.014 -0.037 -0.024 -0.015 -0.058 -0.030 -0.018
AnalyticKWS-128 -0.034 -0.025 -0.013 -0.033 -0.016 -0.008 -0.021 -0.008 -0.004
AnalyticKWS-256 -0.032 -0.024 -0.012 -0.030 -0.015 -0.007 -0.017 -0.007 -0.003

keywords. The SC-100 dataset is created from the416

LibriSpeech corpus using the KeywordMiner tool,417

which identifies words and their timestamps, and a418

segmenter that extracts individual words from full419

sentences. This process results in a large, diverse420

dataset suitable for complex KWS tasks.421

Following (Peng and Xiao, 2024; Zhuang et al.,422

2022), we first train the network (Task 0) on a base423

dataset. Then, the network learns the remaining424

classes over T tasks, with each phase containing425

classes disjoint from earlier tasks. For the GSC426

dataset, we report results for T = 6, 11, 21. As an427

example, when T = 11, we pre-train TC-ResNet-8428

using 10 unique keywords from GSC-v1; the re-429

maining data is divided into 20 tasks, each holding430

1 new keyword. For SC-100, we extend T to 51,431

with 50 keywords for the base training phase and432

50 follow-up tasks to test large-scale incremental433

learning. For more details please see the appendix.434

4.2 Experimental Setup435

We use 40-dimensional MFCC with a 160 hop436

length as input features and adopt the TC-ResNet-437

8 model as the backbone following (Peng and438

Xiao, 2024). TC-ResNet-8 (Choi et al., 2019) is a439

lightweight CNN developed for KWS on devices440

with limited computing. It contains three residual441

blocks, each composed of 1D temporal convolu-442

tional layers, batch normalization layers, and ReLU443

activation functions. Across these layers, the chan- 444

nel sizes are {16, 24, 32, 48}, including the first 445

convolutional layer. For each task, we train the 446

model for 50 epochs. 447

4.3 Metrics 448

We first use two metrics for performance evaluation: 449

Average Accuracy (ACC), and Backward Transfer 450

(BWT) (Lopez-Paz and Ranzato, 2017). ACC is the 451

average accuracy over all completed tasks that eval- 452

uates the overall performance of CIL algorithms: 453

ACC = 1
T+1

∑T
t=0At where At indicates the av- 454

erage test accuracy of the network incrementally 455

trained at task t by testing it on Dtest
0:t . A higher 456

ACC score is preferred when evaluating CL algo- 457

rithms. BWT measures how learning new tasks af- 458

fects previous tasks: BWT = 1
T

∑T
t=1 (AT − At) 459

where AT represents the final average accuracy 460

after all T tasks are learned. A positive BWT sug- 461

gests that learning new tasks improves performance 462

on earlier tasks, while a negative BWT indicates 463

catastrophic forgetting. We also assess efficiency 464

using task training time (TT) and extra memory. TT 465

is the average time required to train each epoch of 466

all tasks. Extra memory represents the extra mem- 467

ory used to store replay data or model weights. 468
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Figure 2: Task-wise performance comparison of different methods with 500 buffer size.

5 Results and Analysis469

5.1 Comparable Study for ACC&BWT470

Table 1 compares various CL methods for KWS,471

using ACC and BWT as key metrics. In these ex-472

periments, Finetune represents the lower bound,473

while Joint training serves as the upper bound. The474

Finetune method suffers from significant forgetting475

and achieves low ACC with high negative BWT.476

EWC and BiC show some improvement, but not477

very significant. Other exemplar-based methods,478

such as iCaRL, Rwalk, and RK, maintain better479

ACC due to storing examples in a buffer (size =480

500), but this practice adds extra memory usage.481

DE-KWS is also an exemplar-based baseline that482

achieves reasonable accuracy as the most recent483

baseline, yet it still does not match the best results.484

In contrast, AnalyticKWS-128 and AnalyticKWS-485

256 achieve stronger and more consistent ACC486

across the tasks and datasets. They exhibit minimal487

forgetting, as shown by their higher BWT scores,488

often approaching the ideal performance of Joint489

training. Crucially, these methods do not use ex-490

emplars, preserving data privacy and cutting down491

on memory needs. Overall, the results demonstrate492

the effectiveness of our AnalyticKWS method for493

continual KWS. It offers near-Joint accuracy with-494

out needing a large exemplar buffer, proving that495

our approach can mitigate catastrophic forgetting496

and maintain high performance.497

5.2 Comparable Study for TT498

Table 2 shows that our proposed AnalyticKWS re-499

duces TT across all datasets, allowing faster learn-500

ing of new tasks. We calculate the training time501

per epoch as the TT. All experiments are estimated502

by the NVIDIA RTX 3090. Methods like EWC,503

Rwalk, and RK demand more computation be-504

cause they track extra parameters or buffers. DE-505

KWS also has a lower TT than some baselines506

Table 2: Average task training times TT (Second) com-
parison across methods. Each method is evaluated based
on the average (Avg.) TT across three settings.

Method GSC-v1 Avg. GSC-v2 Avg. SC-100 Avg.

Finetune 262.08 277.75 433.29
EWC 373.54 454.10 827.21
BiC 288.67 372.51 -
iCaRL 353.04 410.81 453.33
Rwalk 385.13 538.16 865.59
RK 956.55 1239.46 1771.76
DE-KWS 270.82 350.42 576.85
AnalyticKWS-128 5.09 5.97 9.31
AnalyticKWS-256 5.49 6.48 10.47

but still cannot match AnalyticKWS. In contrast, 507

AnalyticKWS-128 and AnalyticKWS-256 reach 508

higher efficiency without storing large numbers 509

of examples and only require one epoch to adapt 510

to each new task. As a result, they operate more 511

efficiently, running faster and consuming fewer re- 512

sources on small-footprint devices. 513

5.3 Comparable Study for Extra Memory 514

The AnalyticKWS stores Rt instead of speech clips 515

or the previous model weights. As an example, the 516

memory used by storing AnalyticKWS-128 on all 517

three datasets is 128× 128 = 16K tensor elements, 518

while other methods consume 8M (e.g.,on GSC- 519

v1 with 500 buffer is at least 16000 × 1 × 1 × 520

500 ≈ 8M). Some methods like Rwalk and RK 521

even require preserving the whole weight of the 522

existing model. With a limited buffer size but large 523

task numbers, the rehearsal-based method performs 524

struggles in SC-100. This shows that our method 525

is memory-friendly to large-scale KWS datasets 526

(e.g., SC-100) in the edge-device application for 527

example the robot voice control. 528

6 Task-wise Analysis 529

From the heatmap in Figure 2 (GSC-v2, six tasks), 530

we observe that DE-KWS maintains high accuracy 531

in early and later tasks through its “dark experience” 532
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Figure 3: Task-wise accuracy on GSC-v2 with 11 tasks.

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14 16 18 20

AC
C 

(%
)

Task number

EWC BiC
iCaRL RK
DE-KWS AnalyticKWS-256

Figure 4: Task-wise accuracy on GSC-v2 with 21 tasks.

strategy, effectively balancing long-term retention533

and new-task adaptation. However, our Analyt-534

icKWS shows better stability and accuracy across535

the entire task sequence, despite using no buffer536

for replay. In contrast, approaches like RK—which537

stores 500 exemplars—still struggle with mid-term538

forgetting (e.g., Task 2), suggesting that their re-539

liance on extra data does not guarantee sustained540

performance. AnalyticKWS avoids storing histor-541

ical samples but remains resistant to catastrophic542

forgetting through its analytic learning updates, en-543

abling it to preserve key information from past544

tasks while smoothly integrating new ones.545

As illustrated in Figures 3 and 4, task-wise accu-546

racy on GSC-v2 steadily declines as the task count547

grows from 1 to 11 and then up to 21, highlighting548

the difficulty of preventing catastrophic forgetting549

over many tasks. Methods such as EWC, BiC, and550

RK drop quickly as they learn more classes, indicat-551

ing a struggle to maintain old knowledge. Notably,552

iCaRL faces only a moderate drop at 11 tasks but553

suffers a much steeper decline at 21 tasks, likely554

because its fixed-size buffer cannot store enough555

representative exemplars for a larger number of556

classes, leading to greater forgetting. While DE-557

KWS performs better than these baselines, it still558

undergoes a downward trend across tasks. By con-559

trast, AnalyticKWS-256 preserves higher accuracy560

in both 11-task and 21-task scenarios, suggesting561

that its exemplar-free, analytic approach more ef-562

Table 3: Ablation study of acoustic feature expansion
(AFE) and regularization in AnalyticKWS. The sym-
bol “✓” indicates the use of AFE or regularization,
while “✗” means they are disabled. Accuracy (ACC)
improves by increasing the AFE size and combining it
with regularization, with the best result obtained by a
512-dimensional expansion plus regularization.

Feature Expansion Regularization ACC(% ↑)

✗ ✓ 86.57
✓(64) ✓ 87.19
✓(128) ✓ 88.72
✓(256) ✓ 89.23
✓(512) ✓ 89.68
✓(512) ✗ 89.64

fectively balances long-term retention and new- 563

class adaptation. 564

7 Ablation Study 565

This ablation study compares models with different 566

acoustic feature expansion (AFE) sizes and regu- 567

larization settings as reported in Table 3. With- 568

out AFE and only regularization, the accuracy is 569

86.57%. As we introduce a small AFE (64) with 570

regularization, the accuracy improves to 87.19%, 571

and further expansion from 128 to 512 dimensions 572

continues to enhance performance, reaching a peak 573

accuracy of 89.68% with the 512-dimensional AFE. 574

Removing regularization at this level slightly de- 575

creases accuracy to 89.64%. These findings con- 576

firm that combining an expanded feature space 577

with regularization is crucial to maximize accu- 578

racy, while models lacking either approach exhibit 579

lower performance. This result demonstrates the 580

effectiveness of our proposed method. 581

8 Conclusion 582

In this work, we have introduced a novel exemplar- 583

free analytic CL method, namely AnalyticKWS 584

that addresses catastrophic forgetting and protects 585

data privacy by avoiding the storage of historical 586

examples. Incorporating a closed-form analytic 587

update, our approach maintains knowledge across 588

multiple tasks and ensures that incremental learn- 589

ing matches the performance of joint training with- 590

out requiring repeated access to old data. The re- 591

cursive structure of AnalyticKWS grants absolute 592

memorization, allowing it to achieve state-of-the- 593

art results in both small-scale and large-phase sce- 594

narios. Our experiments on various KWS bench- 595

marks verify these benefits, highlighting Analyt- 596

icKWS’s potential for practical deployment on 597

resource-limited devices. 598
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Limitations599

While our proposed AnalyticKWS method is600

privacy-preserving and shows strong performance,601

it still has some limitations. First, we have not ex-602

plored its effectiveness in multilingual KWS, which603

remains a vital challenge for real-world speech ap-604

plications. Second, the current CNN-based feature605

extractor, used similarly to transfer learning, might606

not be optimal for every domain, and improving607

it could increase the computational costs of GPU608

operations. Lastly, although AnalyticKWS retains609

knowledge well, enhancing its plasticity for future610

learning is necessary for scenarios that demand611

rapid task switching or adaptation.612
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A Proof of equations802

Proof. We first solve the recursive formulation for803

the At, the acoustic feature autocorrelation matrix804

(AFAM) from the task τt. According to the Wood-805

bury matrix identity, for any invertible square ma-806

trices we have A and C, we have807

(A+ UCV )−1 = A−1 −A−1U(C−1 + V A−1U)V A−1.808

Let A = A−1
t−1, U = S′

t
⊤, V = S′

t, and C = I .809

Hence, from At = (A−1
t−1 + S′

t
⊤S′

t)
−1 and the810

Woodbury matrix identity, we have811

At = At−1 − At−1S
′
t
⊤(I + S′

tAt−1S
′
t
⊤)−1S′

tAt−1 (a)812

which completes the proof for the recursive formu-813

lation of AFAuM. Now we proof calculate θ̂
(t)
cls .814

Let Qt−1 = [S′
0
⊤y0, . . . ,S′

t−1
⊤yt−1]. According815

to (5), (6), and (a), we have816

θ̂
(t)
cls = At

[
Qt−1 − S′

t
⊤Y train

t

]
817

= [AtQt−1 − AtS
′
t
⊤Y train

t ] (b)818

where819

AtQt−1 = At−1Qt−1820

− At−1S
′
t
⊤(I + S′

tAt−1S
′
t
⊤)−1S′

tAt−1Qt−1.821

This simplifies to:822

θ̂
(t)
cls = θ̂

(t−1)
cls823

− AtS
′
t
⊤(I + S′

tAt−1S
′
t
⊤)−1S′

tAt−1Qt−1. (c)824

Let Kt = (I + S′
tAt−1S

′
t
⊤)−1. Since,825

I = KtK
−1
t = Kt(I + S′

tAt−1S
′
t
⊤),826

then we have827

Kt = I −KtS
′
tAt−1S

′
t
⊤.828

Thus, substituting in equation (c),829

θ̂
(t)
cls = θ̂

(t−1)
cls − AtS

′
t
⊤KtS

′
tAt−1Qt−1830

= θ̂
(t−1)
cls − (At − At−1)Qt−1831

= (At − At−1)Qt−1832

= (At − At−1)S
′
t
⊤.833

This allows equation (c) to be reduced to:834

θ̂
(t)
cls = θ̂

(t−1)
cls − AtS

′
t
⊤θ̂

(t−1)
cls . (d)835

Finally, we could complete the proof by substitut-836

ing equation (d) into (b).837

838

B Details of datasets 839

This section summarizes the three datasets used 840

in our incremental KWS experiments: GSC-V1, 841

GSC-V2, and SC-100. We list their core attributes, 842

such as the number of classes, total samples, and 843

the data pre-processing differences in ensuring a 844

uniform 1-second duration per clip. In SC-100, 845

each actual keyword utterance lasts between 0.4 846

and 1 second, and zero-padding is used at the begin- 847

ning or end of the sample. This design also includes 848

precise timestamp annotations for keyword onset 849

and offset, enabling more refined early-decision 850

analysis. By contrast, GSC-V1 and GSC-V2 only 851

use zero-padding or truncation at the end of the 852

audio clip and do not provide temporal boundaries 853

for keyword occurrence. 854

The three datasets differ in their number of 855

classes, total samples, and recording procedures. 856

Table 4 outlines their main specifications, includ- 857

ing examples of keywords, data sources, and addi- 858

tional information on background noise or speaker 859

diversity. Each dataset has a fixed length of one 860

second per audio clip. However, SC-100 preserves 861

more granular structure for the actual keyword ut- 862

terance, using random zero-padding to maintain a 863

total length of one second. In contrast, GSC-V1 864

and GSC-V2 do not provide specific onset or offset 865

timestamps, which can obscure where the keyword 866

appears within the audio. 867

C Baseline details 868

To comprehensively evaluate our proposed method 869

on incremental KWS tasks, we compare it against 870

six representative baselines from the incremental 871

learning field: 872

EWC (Kirkpatrick et al., 2017). EWC limits for- 873

getting by selectively restricting changes to crucial 874

model parameters. It computes the Fisher Infor- 875

mation Matrix (FIM) to estimate parameter impor- 876

tance and adds a quadratic penalty to discourage 877

large shifts in these weights. 878

Rwalk (Chaudhry et al., 2018). Rwalk improves 879

upon EWC by introducing a path integral-based 880

approach to track parameter changes throughout 881

training. Additionally, it replays a small subset 882

of past data, boosting adaptability while retaining 883

older knowledge. 884

iCaRL (Rebuffi et al., 2017). iCaRL stores selected 885

“exemplar” samples in a fixed-size memory buffer 886

and employs a Nearest Mean-of-Exemplars (NME) 887

classifier. This method thus blends replay with 888
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Table 4: Overview of the three datasets used in our incremental KWS experiments.

Dataset Classes Samples Keyword Examples Audio Duration

GSC-V1 30 64,727 "yes", "no","up", "down" 1 sec each
GSC-V2 35 105,829 "yes", "no", "backward", "forward" 1 sec each
SC-100 100 313,951 "change", "turn", "light", "door" 1 sec each

Table 5: Incremental task division for different datasets.
The format follows (Initial Task Size + Incremental
Steps × Classes per Step), where the model first trains
on the initial task size and then progressively learn addi-
tional classes in multiple incremental steps.

Dataset Incremental Task Division

GSC-V1 (30 classes)
15 + (5 × 3)
10 + (10 × 2)
10 + (20 × 1)

GSC-V2 (35 classes)
15 + (5 × 4)
15 + (10 × 2)
15 + (20 × 1)

SC-100 (100 classes)
50 + (10 × 5)
50 + (25 × 2)
50 + (50 × 1)

knowledge distillation to address forgetting.889

BiC (Wu et al., 2019). BiC tackles class imbalance890

by adding a bias correction layer after the final clas-891

sifier. Following a two-stage training plan, it first892

uses knowledge distillation and memory replay,893

then adjusts bias using a small validation set.894

RK (Xiao et al., 2022). RK targets online KWS895

scenarios with limited resources. It uses a diversity-896

aware sampler that selects uncertain samples for a897

memory buffer. Together with data augmentation898

and knowledge distillation, this design helps reduce899

forgetting on edge devices.900

DE-KWS (Peng and Xiao, 2024). DE-KWS inte-901

grates dark knowledge distillation into a rehearsal-902

based pipeline. Besides storing past examples, it903

also keeps a log of pre-softmax logits to replay904

“dark” knowledge. Sampling and updating these905

logits throughout training lead to smoother task906

transitions and better model adaptability.907

D Supplementary Experiment Results908

Table 6 compares ACC, BWT, and TT across vari-909

ous exemplar-based methods (with a 1000-sample910

buffer) and our proposed exemplar-free Analyt-911

icKWS variants. As the number of tasks grows912

from T = 11 to T = 51, rehearsal-based ap-913

proaches like RK, DE-KWS, and BiC exhibit no-914

Table 6: Comparison of ACC, BWT, and TT for differ-
ent exemplar-based methods with a buffer of size 1000
in the SC-100 dataset. We also compare them with our
proposed exemplar-free method AnalyticKWS.

Method T=11 T=26 T=51

ACC (%)

RK 77.27 74.18 72.37
Rwalk 84.61 83.95 84.49
DE-KWS 74.91 67.61 63.70
iCaRL 75.48 51.00 26.05
BiC 69.50 70.41 70.26
AnalyticKWS-128 85.77 85.66 85.55
AnalyticKWS-256 87.99 87.85 87.63

BWT

RK -0.046 -0.024 -0.014
Rwalk -0.033 -0.014 -0.007
DE-KWS -0.045 -0.024 -0.014
iCaRL -0.049 -0.039 -0.035
BiC -0.069 -0.028 -0.016
AnalyticKWS-128 -0.021 -0.008 -0.004
AnalyticKWS-256 -0.017 -0.007 -0.003

TT (s)

RK 1141.46 691.95 439.79
Rwalk 810.47 797.58 790.24
DE-KWS 515.03 389.21 333.37
iCaRL 419.16 238.35 174.44
BiC 434.41 343.11 341.61
AnalyticKWS-128 15.35 6.77 5.82
AnalyticKWS-256 15.67 8.64 7.12

ticeable drops in accuracy and increasingly neg- 915

ative BWT values. iCaRL also suffers a drastic 916

decline, suggesting it struggles to retain knowl- 917

edge under large increments. In contrast, both 918

AnalyticKWS-128 and AnalyticKWS-256 sustain 919

the highest ACC scores (up to 87.63%) while show- 920

ing minimal forgetting, indicated by their near-zero 921

BWT. Moreover, they complete training in only 922

a few seconds per task, vastly outperforming all 923

baselines in TT. These findings highlight that our 924

analytic, exemplar-free approach effectively miti- 925

gates catastrophic forgetting while cutting compu- 926

tational costs and meeting the needs of real-world, 927

resource-constrained keyword spotting. 928
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