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Abstract

Node similarity scores are a foundation for machine learning in graphs for cluster-
ing, node classification, anomaly detection, and link prediction with applications
in biological systems, information networks, and recommender systems. Recent
works on link prediction use vector space embeddings to calculate node similarities
in undirected networks with good performance. Still, they have several disad-
vantages: limited interpretability, need for hyperparameter tuning, manual model
fitting through dimensionality reduction, and poor performance from symmetric
similarities in directed link prediction. We propose MapSim, an information-
theoretic measure to assess node similarities based on modular compression of
network flows. Unlike vector space embeddings, MapSim represents nodes in
a discrete, non-metric space of communities and yields asymmetric similarities
in an unsupervised fashion. We compare MapSim on a link prediction task to
popular embedding-based algorithms across 47 networks and find that MapSim’s
average performance across all networks is more than 7% higher than its closest
competitor, outperforming all embedding methods in 11 of the 47 networks. Our
method demonstrates the potential of compression-based approaches in graph
representation learning, with promising applications in other graph learning tasks.

1 Introduction
Calculating similarity scores between objects is a fundamental problem in machine learning tasks,
from clustering, anomaly detection, and text mining to classification and recommender systems. In
Euclidean feature spaces, similarities between feature vectors are commonly calculated as lengths,
norms, angles, or other geometric concepts, possibly using kernel functions that perform implicit
non-linear mappings to high-dimensional feature spaces [1]. For relational data represented as
graphs, methods using the graph topology to calculate pairwise node similarities can address learning
problems such as graph clustering, node classification, and link prediction. For link prediction, recent
works take a multi-step approach and separate representation learning and link prediction [2, 3]: First,
they learn a latent-space node embedding from the graph’s topology, using methods such as graph
or matrix factorisation [4, 5], or random walk-based techniques [6–8]. Then, they interpret node
positions as points in a high-dimensional feature space, possibly applying downstream dimensionality
reduction. Finally, they use node positions in the resulting feature space to assign new “features”
to pairs of nodes, which can be used to predict links. Taking an unsupervised approach, links are
predicted based on node similarities [9] by calculating distance metrics or similarity scores between
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Figure 1: We calculate node similarities for predicting links based on a network’s modular coding
scheme of the map equation. Blue and orange nodes have a unique codeword within their module,
shown next to the nodes and derived from their stationary visit rates. Decimal numbers show
the theoretical lower limit for the codeword length in bits. Map equation similarity, MapSim for
short, derives description lengths for predicted links, connecting more similar nodes uses fewer bits.
Intra-community links tend to have shorter description lengths than inter-community links.

node pairs to rank them. We can alternatively use a supervised approach [10] by (i) using binary
operators like the Hadamard product [7], (ii) sampling negative instances (node pairs not connected
by links), and (iii) using the features of positive and negative instances to train a supervised binary
classifier [7].

Advances in graph embedding and representation learning have considerably improved our ability to
predict links in networks, with applications in biological [11] and social [12] networks and in recom-
mender systems [13]. However, these methods introduce challenges for real-world link-prediction
tasks: First, they require specifying hyperparameters that control aspects regarding the scale of
patterns in graphs, the influence of local and non-local structures, and the latent space dimensionality
[14]. Network-specific hyperparameter tuning addresses these issues, but is challenging in real
applications and aggravates the risk of overfitting; recent systematic comparisons reveal that the
performance of different methods largely varies across data sets [2, 3]. These challenges make it
difficult for practitioners to choose and optimally parametrise an embedding method. Second, using
latent metric spaces implies symmetric similarities, limiting the performance when predicting directed
links [5, 15]. Third, compared with hand-crafted features, embeddings tend to have low interpretabil-
ity: We can assess the similarity of nodes, but we cannot explain why some nodes are more similar
than others [2–4]. Nevertheless, recent graph neural network-based approaches focus on learning
features for link prediction from local subgraphs [16], overlapping node neighbourhoods [17], or
shortest paths [18], achieving favourable performance. Finally, recent works highlight fundamental
limitations of low-dimensional representations of complex networks [19], questioning to what extent
Euclidean embeddings can capture patterns relevant to link prediction.

Motivated by recent works highlighting the importance of community structures for link prediction
[2, 20, 21], we propose a novel approach to similarity-based link prediction that addresses these
issues. Our contributions are:

• We introduce map equation similarity, MapSim for short, an information-theoretic method to
calculate asymmetric node similarities. MapSim builds on the map equation [22], a framework
that applies coding theory to compress random walks based on hierarchical cluster structures.

• Unlike other random walk-based embedding techniques, our work builds on an analytical
approach to calculate the minimal expected description length of random walks, neither requiring
simulating random walks nor tuning hyperparameters.

• Following the minimum description length principle, MapSim incorporates Occam’s razor
and balances explanatory power with model complexity, making dimensionality reduction
superfluous. With hierarchical cluster structures, MapSim captures patterns at multiple scales
simultaneously and combines the advantages of local and non-local similarity scores.

• We validate MapSim in an unsupervised, similarity-based link prediction task and compare its
performance to six well-known embedding-based techniques in 47 empirical networks from
different domains. This analysis highlights challenges in the generalisability of embedding
techniques and parametrisations across different networks.

• Confirming recent surveys, we find that the performance of popular embedding techniques
for unsupervised link prediction without network-specific hyperparameter tuning depends on
the data. In contrast, MapSim provides high performance across a wide range of networks,
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with an average performance 7.7% and 7.5% better than the best competitor in undirected and
directed networks, respectively. MapSim outperforms the chosen baseline methods in 11 of
the 47 networks with a worst-case performance 44% and 33% better than popular embedding
techniques in undirected and directed networks, respectively.

In summary, we take a novel perspective on graph representation learning that fundamentally differs
from other random walk-based graph embeddings. Instead of embedding nodes into a metric space,
leading to symmetric similarities, we develop an unsupervised learning framework where (i) positions
of nodes in a coding tree capture their representation in a non-metric latent space, and (ii) node
similarities are calculated based on how well transitions between nodes are compressed by a network’s
hierarchical modular structure (figure 1). Apart from node similarities that can be “explained” based
on community structures captured in the coding tree, MapSim yields asymmetric similarity scores
that naturally support link prediction in directed networks. We provide a simple, non-parametric, and
scalable unsupervised method with high generalisability across data sets. Our work demonstrates the
power of compression-based approaches to graph representation learning, with promising applications
in other graph learning tasks.

2 Related Work and Background
We first summarise recent works on graph embedding and similarity-based link prediction. Then, we
review the map equation, an information-theoretic objective function for community detection and
the theoretical foundation of our compression-based similarity score.

2.1 Related Work

Focusing on unsupervised similarity-based link prediction, we consider methods that calculate a
bivariate function sim(u, v) ∈ Rd, where u, v ∈ V are nodes in a directed or undirected, possibly
weighted graphG = (V,E) [23, 24]. While similarity metrics often consider scalar functions (d = 1),
recent vector space embeddings use binary operators to assign vector-valued “features” with d > 1
to node pairs. Since vectorial features are typically used in downstream classification techniques,
this can be seen as an implicit mapping to similarities, for example “similar” features being assigned
similar class probabilities. We limit our discussion to topological or structural approaches [23], and
consider functions sim(u, v) that can be calculated solely based on the edges E in graph G without
requiring additional information such as node attributes or other non-topological graph properties.

Several works define scalar similarities based on local topological characteristics such as the Jaccard
index of neighbour sets, degrees of nodes, or degree-weighted measures of common neighbours
[25]. Other methods define similarities based on random walks, paths, or topological distance
between nodes [9, 26–28]. Compared to purely local approaches, an advantage of random walk-based
methods is their ability to incorporate both local and non-local information, which is crucial for
sparse networks where nodes may lack common neighbours. Since walk-based methods reveal cluster
patterns in networks [22], they generally perform well in downstream tasks such as link prediction
and graph clustering [2]. Graph factorisation approaches that use eigenvectors of different types
of Laplacian matrices that represent relationships between nodes share this high performance [29],
likely because (i) Laplacians capture the dynamics of continuous-time random walks [30], and (ii)
spectral methods can capture small cuts in graphs [31].

Building on these ideas, recent works on graph representation learning combine random walks and
deep learning to obtain high-dimensional vector space embeddings of nodes, serving as features
in downstream learning tasks [3, 14]: Perozzi et al. [6] generate a large number of short random
walks to learn latent space representations of nodes by applying a word embedding technique
that considers node sequences as word sequences in a sentence. This corresponds to an implicit
factorisation of a matrix whose entries capture the logarithm of the expected probabilities to walk
between nodes in a given number of steps [32]. Following a similar walk-based approach, Grover
and Leskovec [7] generate node sequences with a biased random walker whose exploration behaviour
can be tuned by search bias parameters p and q. The resulting walk sequences are used as input
for the word embedding algorithm word2vec [33], which embeds objects in a latent vector space
with configurable dimensionality. Tang et al. [8] construct vector space embeddings of nodes that
simultaneously preserve first- and second-order proximities between nodes. Similar to Adamic and
Adar [25], second-order node proximities are defined based on common neighbours. Extending the
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random walk approach in [6], Perozzi et al. [34] learn embeddings from so-called walklets, random
walks that skip some nodes, resulting in embeddings that capture structural features at multiple scales.

The abovementioned graph embedding methods compute a representation of nodes in a, compared to
the number of nodes in the network, low-dimensional Euclidean space. A suitably defined metric
for similarity or distance of nodes enables recovering the link topology with high fidelity [35],
forming the basis for similarity-based link prediction. In contrast, Lichtenwalter et al. [10] argued
for a new perspective that uses supervised classifiers based on (i) multi-dimensional features of
node pairs, and (ii) an undersampling of negative instances to address inherent class imbalances
in link prediction. Recent applications of graph embedding to link prediction have taken a similar
supervised approach, for example using vector-valued binary operators to construct features for
node pairs from node vectors [6, 7, 24]. Despite good performance, recent works have cast a more
critical light on such applications of low-dimensional graph embeddings. Questioning the distinction
between deep learning-based embeddings and graph factorisation techniques, Qiu et al. [4] show that
popular embedding techniques can be understood as (approximate) factorisations of matrices that
capture graph topology. Thus, low-dimensional embeddings can be viewed as a (lossy) compression
of graphs, while link prediction or graph reconstruction can be viewed as the decompression step.
Fitting this view, a recent study of the topological characteristics of networks’ low-dimensional
Euclidean representations has highlighted fundamental limitations of embeddings to capture complex
structures found in real networks [19].

Techniques like node2vec, LINE, or DeepWalk have been reported to perform well for link prediction
despite those limitations. However, recent surveys concur that finetuning their hyperparameters to the
specific data set is required [2, 21, 36], which can be problematic in large data sets and increase the
risk of overfitting. When used for link prediction, graph embedding methods are typically combined
with dimensionality reduction and supervised classification algorithms, possibly using non-linear
kernels. Comparative studies found that the performance of Euclidean graph embeddings for link
prediction is connected to their ability to represent communities in graphs as clusters in the feature
space [2], which, due to the non-linear nature of graph data [37], strongly depends on their topology.
Using symmetric operators or distance measures in metric spaces limits their ability to predict directed
links because the ground truth for (u, v) can differ from (v, u) [15].

These issues raise the general question whether we should use low-dimensional Euclidean embeddings
for link prediction tasks. Recent works addressed some of those open questions, for example with
hyperbolic or non-linear embeddings [20, 37], extensions of Euclidean embeddings for directed
link prediction [15], or embeddings that explicitly account for community structures [21, 38, 39].
However, existing works still use hyperparameters, require separate dimensionality reduction or
model selection to identify the optimal number of dimensions, fail to capture rich hierarchically nested
community structures present in real-world networks [40], or do not integrate community detection
with representation learning. Addressing all issues at once, we take a novel approach that treats
graph representation learning as a compression problem: We use the map equation [22], an analytical
information-theoretic approach to compress flows of random walks in directed or undirected, possibly
weighted networks based on their modular structure. Unlike recent work by Ghasemian et al. [41]
that predicts links based on how they influence the map equation’s estimated codelength, requiring
inefficient recalculations, we take advantage of the map equation’s coding machinery without any
computational overhead. The map equation’s hierarchical coding tree with node assignments provides
an embedding in a discrete, non-metric latent space of possibly hierarchical community labels with
automatically optimised dimensionality using a minimum description length approach. Following
the map equation’s compression principles, we relate the similarity between nodes u and v to how
efficiently we can compress the link (u, v) with respect to the network’s modular structure. As an
analytical approach, our method neither introduces hyperparameters nor needs to simulate random
walks, and naturally yields asymmetric node similarities suitable to predict directed links.

2.2 Background: the map equation

The map equation is an information-theoretic objective function for community detection that,
conceptually, models network flows with random walks [22]. To detect communities, the map
equation compresses the random walks’ per-step description length by searching for sets of nodes
with long flow persistence: network areas where a random walker tends to stay for a longer time.
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Figure 2: Map equation coding principles. Left: An example network with nine nodes, ten links,
and two communities, A and B, indicated by colours. Each random-walker step is encoded by one
codeword for intra-module transitions, or three codewords for inter-module transitions. Codewords
are shown next to nodes in colours, their length in bits in the information-theoretic limit in black.
Module entry and exit codewords are shown to the left and right of the coloured arrows, respectively.
The black trace shows a possible section of a random walk with its encoding and theoretical length
at the bottom. Right: The corresponding coding tree. Links are annotated with transition rates
to calculate similarities in the information-theoretic limit. Each coding tree path corresponds to
a network link, which may or may not exist. The coder remembers the random walker’s module
but not the most recently visited node. Describing the intra-module transition from node 5 to 3
requires − log2 (3/12) = 2 bits. The inter-module transition from node 5 to 7 requires three steps
and − log2 (1/12 · 1/2 · 2/10) ≈ 6.9 bits.

Consider a communication game where the sender observes a random walker on a network, and uses
binary codewords to update the receiver about the random walker’s location. In the simplest case,
all nodes belong to the same module and we use a Huffman code to assign unique codewords to the
nodes based on their stationary visit rates. With a one-module partition, M1, the sender communicates
one codeword per random-walker step to the receiver. The theoretical lower limit for the per-step
description length, we call it codelength, is the entropy of the nodes’ visit rates [42],

L (M1) = H (P ) = −
∑
u∈V

pu log2 pu, (1)

whereH is the Shannon entropy, P is the set of the nodes’ visit rates, and pu is node u’s visit rate.

In networks with modular structure, we can compress the random walks’ description by grouping
nodes into more than one module such that a random walker tends to remain within modules, and
module switches become rare. This lets us re-use codewords across modules and design a codebook
per module based on the nodes’ module-normalised visit rates. However, sender and receiver need
a way to encode module switches. The map equation uses a designated module-exit codeword per
module and an index-level codebook with module-entry codewords. In a two-level partition, the
sender communicates one codeword for intra-module random-walker steps to the receiver, or three
codewords for inter-module steps (figure 2). The lower limit for the codelength is given by the sum
of entropies associated with module and index codebooks, weighted by their usage rates. Given a
partition of the network’s nodes into modules, M, the map equation [22] formalises this relationship,

L (M) = qH (Q) +
∑
m∈M

pmH (Pm) . (2)

Here q =
∑

m∈M qm is the index-level codebook usage rate, qm is the entry rate for module m,
and Q = {qm |m ∈ M} is the set of module entry rates; mexit is the exit rate for module m, pm =
mexit +

∑
u∈m pu is the codebook usage rate for module m, and Pm = {mexit} ∪ {pu |u ∈ m} is the

set of node visit rates in m, including m’s module exit rate.

The map equation can detect communities in simple, weighted, directed, and higher-order networks,
and can be generalised to hierarchical partitions through recursion [40]. To make use of node metadata
for detecting communities, we can either incorporate a corresponding term in the map equation [43],
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Figure 3: Illustration of map equation similarity between nodes u and v with addresses
addr (M, u) = [p1, . . . , pi, uj , uk] and addr (M, v) = [p1, . . . , pi, vj , vk, vl]. M is the complete
network partition. The longest common prefix between the addresses for u and v is p = [p1, . . . , pi],
and M〈p〉 is the sub-module at address p within M, that is the smallest module that contains u and v.

design metadata-informed flow models [44], or introduce a prior network and reinforce link weights
between nodes with the same metadata label [45].

3 MapSim: node similarities from modular flow compression
Compression-based similarity measures consider pairs of objects more similar if they jointly compress
better. Extending this idea to networks, we exploit the coding of network flows based on the map
equation, and use it to calculate information-theoretic pairwise similarities between nodes: MapSim.
We interpret a network’s community structure as an implicit embedding and, roughly speaking,
consider nodes in the same community as more similar than nodes in different communities.

To calculate node similarities, we begin with a network partition and its corresponding modular
coding scheme2, which can be visualised as a tree, annotated with the transition rates defined by
the link patterns in the network (figure 2). While the network’s topology constrains random walks
to transitions along existing links, the coding scheme is more flexible and can describe transitions
between any pair of nodes. To describe the transition from node u to v, we find the corresponding path
in the partition tree and multiply the transition rates along that path, that is, we use the coarse-grained
description of the network’s community structure, not the network’s actual link pattern; it can describe
any transition regardless of whether the link (u, v) exists in the network or not. The description
length in bits for a path with transition rate r is − log2 (r). For example, consider the scenario in
figure 2 where we calculate similarity scores for the two directed links (5, 3) and (5, 7), neither of
which exists in the network. Nodes 5 and 3 are in module A, and the rate at which a random walker
in A visits node 3 is 3/12, requiring − log2 (3/12) = 2 bits to describe that transition. Node 7 is in
module B, and a random walker in A exits A at rate 1/12, enters B at rate 1/2, and then visits node
7 at rate 2/10, that is, at rate 1/120, requiring − log2 (1/120) ≈ 6.9 bits.

Paths to derive similarities emanate from modules, not from nodes, because the model must generalise
to unobserved data. If compression was our sole purpose, we would use node-specific codebooks
containing codewords for neighbouring nodes, but no longer detect communities, and only be able
to describe observed links. Instead, the map equation’s coding scheme is designed to capitalise
on modular network structures: The modular code structure provides a model that generalises to
unobserved data, coarse-grains the path descriptions, and prevents overfitting.

For the general case, where M can be a hierarchical network partition, we number the sub-modules
within each module m from 1 to nm – we refer to these numbers as addresses – such that an ordered

2In principle, arbitrary network partitions can be used, regardless of the used community detection method.
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sequence of addresses uniquely identifies a path starting at the root of the partition tree. We let
addr: M×N → List (N) be a function that takes a network partition and a node as input, and returns
the node’s address in the partition. To calculate the similarity of node v to u, we identify the longest
common prefix p of the nodes’ addresses, addr (M, u) and addr (M, v), and select the partition tree’s
sub-tree M〈p〉 that corresponds to the prefix p: M〈p〉 is the smallest sub-tree that contains u and
v. We obtain the addresses for u and v within sub-tree M〈p〉 by removing the prefix p from their
addresses. That is, addr (M, u) = p++addr(M〈p〉, u) and addr (M, v) = p++addr(M〈p〉, v), where
++ is list concatenation. The rate at which a random walker transitions from u to v is the product
of (i) the rate at which the random walker moves along the path addr(M〈p〉, u) in reverse direction,
rev(M〈p〉, addr(M〈p〉, u)), that is from u to the root of M〈p〉, and (ii) the rate at which the random
walker moves along the path addr(M〈p〉, v) in forward direction, forw(M〈p〉, addr(M〈p〉, v)), that is
from the root of M〈p〉 to v, where

rev (M, a) =

{
1 if a = [x]

M〈[x]〉,exit · rev(M〈[x]〉, a′) if a = [x] ++ a′
(3)

forw (M, a) =

{
p〈[x]〉/pM if a = [x]

M〈[x]〉,enter · forw(M〈[x]〉, a′) if a = [x] ++ a′
(4)

and a′ denotes non-empty sequences. Here pM is the codebook use rate for module M and p〈[x]〉 is
the visit rate for the node identified by address x within the given module. The final addresses in
equation 3 and equation 4 are treated differently, reflecting that the map equation forgets the most
recently visited node.

We illustrate these ideas in a generic example (figure 3). In short, we define map equation similarity,

MapSim (M,u, v) = rev(M〈p〉, addr(M〈p〉, u)) · forw(M〈p〉, addr(M〈p〉, v)), (5)

where p is the longest common prefix shared by the addresses of u and v in the partition tree defined
by M. To express map equation similarity in terms of description length, we take the − log2 of
MapSim and regard pairs of nodes that yield a shorter description length as more similar.

MapSim is asymmetric since module entry and exit rates are, in general, different and u and v can
have different visit rates. MapSim is zero if one node is in a disconnected component; the exit rate
for regions without out-links is zero, so the corresponding description length is infinitely long. This
issue can be addressed with the regularised map equation [45], a Bayesian approach that introduces
an empirical prior to model incomplete data with weak links between all pairs of nodes, where prior
link strengths depend on the connection patterns of each node.

We calculate node similarities in three steps: (i) inferring a network’s community with Infomap [46], a
greedy, search-based optimisation algorithm for the map equation, (ii) representing the corresponding
coding scheme in a suitable data structure, and (iii) using MapSim to computing similarities based on
the coding scheme. The overall approach is illustrated in figs. 1 – 3 and algorithm 1.

Algorithm 1: Pseudo-code of function MapSim to calculate similarity score for node pair (u, v).
Input :graph G and pair of nodes (u, v)
Output :similarity score of (u, v)

1 // Use Infomap to construct coding tree for compression
2 modules = Infomap.minimiseMapEquation(G)
3 tree = buildPartitionTree(G,modules)
4 p = longestCommonPrefix(tree, u, v)
5 tree〈p〉 = smallestSubtree(tree,p)
6 // calculate code length of random walks from u to v
7 addrU = addr(tree〈p〉, u)
8 addrV = addr(tree〈p〉, v)
9 revRate = rev(tree〈p〉,addrU)

10 fwdRate = forw(tree〈p〉,addrV)
11 return − log2(revRate · fwdRate)
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Figure 4: Link-prediction performance of MapSim, DeepWalk, node2vec, LINE, and NERD on 47
real-world networks. Left: AUC performance. Right: AUPR performance.

4 Experimental Validation
We evaluate the performance of MapSim in unsupervised, similarity-based link prediction for 47
real-world networks, 35 directed (table 1) and 12 undirected (table 3), retrieved from Netzschleuder
[47] and Konect [48]. Details of the directed and undirected networks are shown in tables 2 and 4,
respectively. Our analysis is based on a Python-implementation available on GitHub3, building on
Infomap, a fast and greedy search algorithm for minimising the map equation with an open source
implementation in C++ [46, 49]. As baseline, we use four random walk and neighbourhood-based
embedding methods: DeepWalk [6], node2vec [7], LINE [8], and NERD [15], using the respective
author’s implementation. We also include results for MapSim based on the one-module partition for
each network for comparison, which ignores community structure. Adopting the argument by [7], we
exclude graph factorisation methods and simple local similarity scores because they have already
been shown to be inferior to node2vec. We include NERD because it is a recent random walk-based
embedding method proposed for directed link prediction with higher reported performance than other
walk-based embeddings [15].

4.1 Unsupervised Link Prediction

Different from works that use graph embeddings for supervised link prediction, we address unsuper-
vised link prediction. Like Goyal and Ferrara [2] and Khosla et al. [15], we take a similarity-based
approach that does not require training a classifier. We compute similarity scores based on node
embeddings, rather than applying a supervised classifier to features computed for node pairs. We
adopt the approach by Khosla et al. [15] and calculate node similarities as the sigmoid over the
feature vectors’ dot product.

Considering how different embedding techniques generalise across data sets, we purposefully re-
frained from hyperparameter tuning. We chose a single set of hyperparameters for each method,
informed by the default parameters given by the respective authors and recent surveys’ discussion
regarding which hyperparameter values generally provide good link prediction performance. For
DeepWalk and node2vec, we sample r = 80 random walks of length l = 40 per node, and use a win-
dow size of w = 10. For both methods, the underlying word embedding is applied using the default
model parameters fixed by the authors, skipgram = 1, k = 10 and mincount = 0. For node2vec
we set the return parameter to p = 1. Since for q = p = 1 node2vec is identical to DeepWalk, we
use q = 4, which was found to provide good performance for link prediction [2]. We run LINE
with first-order (LINE1), second-order (LINE2), and combined first-and-second-order proximity
(LINE1+2), use 1,000 samples per node, and s = 5 negative samples. For NERD, we use 800 samples
and κ = 3 negative samples per node. We set the number of neighbourhood nodes to n = 1, as
suggested by the authors for link prediction. We use d = 128 dimensions for all embeddings. Since
MapSim is a non-parametric method, it does not require setting any hyperparameters. However, to
avoid local optima when heuristically minimising the map equation, we run Infomap 100 times and
select the partition with the shortest description length.

We use 5-fold cross-validation to split links into train and test sets, treating weighted links as
indivisible. We calculate the node embedding (for MapSim the coding tree) in the training network,
derive predictions based on node similarities, and evaluate them based on the links in the validation set.

3https://github.com/mapequation/map-equation-similarity
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Figure 5: Runtime behavior for inferring the community structure with Infomap and constructing
the coding tree for MapSim in synthetic k-regular networks with different size.

For each fold, we restrict the resulting training network to its largest (weakly) connected component.
For a validation set with k positive links, we sample k negative links uniformly at random, and
calculate scores for all 2k links. In undirected networks, for each positive link (u, v), we also
consider (v, u) as positive, and, therefore, sample two negative links per positive link. Varying the
discrimination threshold, we obtain a receiver operator characteristic (ROC) per fold, and calculate
the area under the curve (AUC). Detailed results, including average and worst-case performance, are
shown in tables 2 and 4; we also report precision-recall performance (table 5). We include MapSim
based on the one-module partition4 in the results and note that it performs better than using a modular
partition in some cases: this suggests that the network does not have a strong community structure,
which could be addressed with the regularised map equation [45]. When mentioning MapSim in the
following, we refer to using modular partitions.

On average, MapSim outperforms all baseline methods across the 47 data sets in terms of AUC and
AUPR (figure 4); for detailed results on a per-network basis see tables 2, 4, and 5 in the appendix.
Using a one-sided two-sample t-test, we find that MapSim’s average performance across all networks
is significantly higher than that of the best graph embedding method, LINE1+2, both in directed
and undirected networks (p ≈ 0.008 and p ≈ 0.039, respectively). MapSim provides the best
performance in 11 of the 47 networks, with a standard deviation of the AUC score less than half of
that of the best embedding-based method (LINE1+2). For undirected networks, MapSim achieves the
best performance for five of the 12 networks, while none of the embedding methods beats MapSim’s
performance in more than two networks. We find the largest performance gain in the directed
network linux, where MapSim yields an increase of AUC of approximately 22.6% compared to the
best embedding (NERD). MapSim’s worst-case performance across all networks is approximately
44% and 33% above that of the best-performing embedding for directed and undirected networks,
respectively. MapSim’ performance advantage can be as high as 84%, for example AUC = 0.988 of
MapSim in foursquare-friendships-new vs. AUC = 0.537 for node2vec. While node2vec performs
best in the largest directed network, MapSim performs best in the largest undirected network and in
several small networks, suggesting that MapSim works well both for small and large networks.

We attribute those encouraging results to multiple features of our method: Different from graph
embedding techniques that require downstream dimensionality reduction, MapSim’s compression
approach implicitly includes model selection and avoids overfitting. Moreover, the representation of
nodes in the coding tree is integrated with the optimisation of hierarchical community structures in
the network. Due to its non-parametric approach and the use of the analytical map equation, MapSim
performs well in absence of tuning to the specific data set.

4.2 Scalability Analysis

We analyse MapSim’s scalability in synthetically generated networks with modular structure and
tunable size and link density. We generate k-regular random graphs with N nodes and (mean) degree
k. To avoid trivial configurations where a modular structure is absent, we create a network by first
generating two k-regular random graphs with N

2 nodes each and “cross” two links, one from each
of the two graphs, to obtain a single connected network with strong community structure. We then
apply Infomap to (i) minimise the map equation and extract the network’s modular structure, and

4With the one-module partition, MapSim becomes equivalent to preferential attachment.
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(ii) construct the coding tree for calculating node similarities. We repeat this 10 times for random
networks with different numbers of N nodes and degrees k. The average run times are reported
in figure 5, which shows that, for sparse networks, the runtime of MapSim is linear in the size
of the network. Edler et al. [49] report that the theoretical asymptotic bound of computational
complexity for the optimisation of the map equation is inO(NlogN), which is the same as for vector
space embedding techniques like node2vec and DeepWalk5. Thus, MapSim does not entail higher
computational complexity compared to popular graph embeddings. This makes it an interesting
choice for practitioners looking for a simple and scalable method that works well in small, large,
directed, and undirected networks.

5 Conclusion and Outlook
We propose MapSim, a novel information-theoretic approach to compute node similarities based on a
modular compression of network flows. Different from vector space embeddings, MapSim represents
nodes in a discrete, non-metric space of communities that yields asymmetric similarities suitable to
predict links in directed and undirected networks. The results are highly interpretable because the
network’s modular structure explains the similarities. Using description length minimisation, MapSim
naturally accounts for Occam’s razor, which avoids overfitting and yields a parsimonious coding
tree. Performing unsupervised link prediction, we compare MapSim to popular embedding-based
algorithms on 47 data sets covering networks from a few hundred to hundreds of thousands of nodes
and millions of edges. Our analysis shows that the average performance of MapSim is more than 7%
higher than its closest competitor, outperforming all competing methods in 11 of the 47 networks.
Taking a new perspective on graph representation learning, our work demonstrates the potential of
compression-based methods with promising applications in other graph learning tasks. Moreover,
recent generalisations of the map equation to temporal and higher-order networks [49] suggest that
our method also applies to graphs with non-dyadic or time-stamped relationships.
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A Appendix

Table 1: Properties of 35 directed networks, where weighted networks are marked with W, temporal
link counts before aggregation into a static network are marked with ∗, and ρ is link reciprocity.

Data Ref Nodes Edges ρ

uni-email [50] 1,133 10,903 1.000
polblogs [51] 1,490 19,090 0.243
interactome-stelzl [52] 1,706 6,207 0.972
interactome-figeys [53] 2,239 6,452 0.006
us-air-trafficW [54] 2,278 ∗6,390,340 0.757
word-adjacency-japanese [55] 2,704 8,300 0.073
openflightsW [56] 3,214 66,771 0.978
jdk [48] 6,434 150,985 0.009
advogatoW [57] 6,541 51,127 0.307
word-adjacency-spanish [55] 11,586 45,129 0.091
dblp-cite [58] 12,590 49,759 0.004
anybeat [59] 12,645 67,053 0.535
chicago-road [60] 12,982 39,018 0.943
foldocW [61] 13,356 120,238 0.479
google [62] 15,763 171,206 0.254
word-assocW [63] 23,132 312,342 0.094
cora [64] 23,166 91,500 0.051
arxiv-citation-HepTh [65] 27,770 352,807 0.003
digg-replyW [66] 30,398 ∗87,627 0.002
linux [48] 30,837 213,954 0.002
arxiv-citation-HepPh [65] 34,546 421,578 0.003
email-enron [67] 36,692 367,662 1.000
inploid [68] 39,749 57,276 0.272
pgp-strong [69] 39,796 301,498 0.660
facebook-wallW [70] 46,952 ∗876,993 0.588
slashdot-threadsW [71] 51,083 ∗140,778 0.210
python-dependency [72] 58,743 108,399 0.004
lkml-replyW [48] 63,399 ∗1,096,440 0.635
epinions-trust [73] 75,888 508,837 0.405
prosper [48] 89,269 3,394,979 < 0.001
google-plus [74] 211,187 1,506,896 0.482
twitter-higgs-retweetW [75] 256,491 328,132 0.005
amazon-copurchases-302 [76] 262,111 1,234,877 0.543
notre-dame-web [77] 325,729 1,497,134 0.507
twitter-followers [78] 465,017 834,797 0.003
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Table 2: ROC AUC for link prediction in 35 directed networks for DeepWalk (DW), node2vec
(n2v), LINE1 (L1), LINE2 (L2), LINE1+2 (L1+2), NERD, MapSim based on the one-level partition
(MapSim1), and MapSim based on modular partitions. Networks marked with W are weighted. †
marks cases with AUC < 0.5 where we flipped the predicted link scores for AUC > 0.5. The best
results per network are shown in bold, second-best underlined, and then rounded.

Data DW n2v L1 L2 L1+2 NERD MS1 MS

uni-email 0.911 †0.505 0.957 0.903 0.932 0.667 0.711 0.852
polblogs 0.705 0.695 0.804 0.823 0.841 0.652 0.868 0.914
interactome-stelzl 0.810 †0.505 0.913 0.758 0.849 0.524 0.710 0.755
interactome-figeys 0.524 †0.828 †0.905 0.529 †0.850 0.605 0.773 0.839
us-air-trafficW 0.649 0.572 0.563 0.935 0.933 0.774 0.858 0.916
word-adjacency-japanese †0.538 †0.645 †0.580 0.748 0.743 0.526 0.811 0.800
openflightsW 0.782 †0.665 0.918 0.934 0.948 0.708 0.838 0.941
jdk 0.746 0.857 0.820 0.695 0.755 0.725 0.974 0.986
advogatoW 0.738 0.563 0.806 0.865 0.883 0.742 0.812 0.878
word-adjacency-spanish †0.538 0.672 †0.713 0.824 0.791 0.632 0.811 0.805
dblp-cite 0.840 †0.537 †0.589 0.646 0.549 0.877 0.823 0.890
anybeat 0.647 0.539 0.644 0.841 0.857 0.683 0.834 0.850
chicago-road 0.998 0.816 0.981 0.670 0.835 †0.583 †0.608 0.848
foldocW 0.927 0.549 0.951 0.832 0.905 0.571 0.618 0.845
google 0.844 0.792 0.831 0.868 0.896 0.697 0.867 0.962
word-assocW 0.729 0.830 0.813 0.869 0.916 0.884 0.837 0.849
cora 0.939 0.839 0.950 0.761 0.831 0.830 0.839 0.906
arxiv-citation-HepTh 0.878 0.839 0.958 0.857 0.901 0.850 0.842 0.942
digg-replyW †0.546 0.618 †0.552 0.714 0.693 0.841 0.845 0.836
linux 0.704 0.726 0.567 0.722 0.734 0.784 0.959 0.961
arxiv-citation-HepPh 0.959 0.897 0.975 0.835 0.898 0.860 0.830 0.942
email-enron 0.823 †0.594 0.983 0.946 0.963 0.819 0.840 0.931
inploid 0.631 0.766 0.516 0.838 0.828 0.753 0.845 0.870
pgp-strong 0.873 0.527 0.984 0.890 0.924 0.795 0.782 0.925
facebook-wallW 0.877 0.789 0.931 0.809 0.855 0.813 0.768 0.867
slashdot-threadsW 0.565 0.781 0.629 0.748 0.771 0.796 0.877 0.876
python-dependency 0.751 0.735 †0.556 0.520 †0.505 0.832 0.965 0.913
lkml-replyW 0.537 0.731 0.590 0.945 0.944 0.724 0.908 0.933
epinions-trust 0.599 0.777 0.806 0.943 0.952 0.887 0.916 0.937
prosper 0.828 0.631 0.697 †0.614 †0.518 0.952 0.891 0.945
google-plus 0.752 0.725 0.957 0.787 0.893 0.891 0.862 0.946
twitter-higgs-retweetW 0.620 0.879 †0.695 †0.522 †0.569 0.799 0.977 0.820
amazon-copurchases-302 0.963 0.826 0.980 0.896 0.936 0.575 0.638 0.910
notre-dame-web 0.965 0.926 0.975 0.919 0.964 0.923 0.867 0.962
twitter-followers 0.526 †0.993 †0.993 0.510 †0.973 0.917 0.809 0.871

Average 0.750 0.719 0.802 0.786 0.832 0.757 0.830 0.892
Worst 0.524 0.505 0.516 0.510 0.505 0.524 0.608 0.755
Standard Deviation 0.148 0.131 0.164 0.129 0.128 0.118 0.088 0.054
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Table 3: Properties of 12 undirected networks, where weighted networks are marked with W.

Data Ref Nodes Edges

new-zealand-collabW [79] 1,511 4,273
urban-streets-venice [80] 1,840 2,407
urban-streets-ahmedabad [80] 2,870 4,387
power [81] 4,941 6,594
facebook-organizations-L1 [82] 5,793 45,266
reactome [83] 6,327 147,547
physics-collab-arXivW [84] 14,488 59,026
marvel-universe [85] 19,428 95,497
internet-as [86] 22,963 48,436
marker-cafe [74] 69,413 1,644,849
livemocha [48] 104,103 2,193,083
foursquare-friendships-new [87] 114,324 607,333

Table 4: ROC AUC on 12 undirected networks for DeepWalk (DW), node2vec (n2v), LINE1 (L1),
LINE2 (L2), LINE1+2 (L1+2), NERD, MapSim based on the one-level partition (MS1), and MapSim
based on modular partitions (MS). Networks marked with W are weighted. † marks cases with AUC
< 0.5 where we flipped the predicted link scores for AUC > 0.5. The best results per network are
shown in bold, second-best underlined, and then rounded.

Data DW n2v L1 L2 L1+2 NERD MS1 MS

new-zealand-collabW 0.616 0.734 †0.660 0.921 0.895 †0.559 0.834 0.839
urban-streets-venice 0.872 0.834 0.777 0.570 0.668 0.573 †0.607 0.889
urban-streets-ahmedabad 0.939 0.890 0.828 †0.533 0.629 †0.575 †0.731 0.897
power 0.919 0.863 0.827 0.741 0.777 0.600 0.552 0.959
facebook-organizations-L1 0.937 0.516 0.968 0.954 0.966 0.846 0.864 0.979
reactome 0.934 0.592 0.983 0.925 0.950 0.846 0.820 0.978
physics-collab-arXivW 0.929 0.521 0.977 0.807 0.871 0.695 0.568 0.955
marvel-universe 0.854 †0.633 0.879 0.834 0.902 0.852 0.679 0.900
internet-as 0.641 †0.705 0.535 0.921 0.920 0.744 0.766 0.927
marker-cafe 0.576 0.906 0.760 0.920 0.914 0.930 0.907 0.916
livemocha 0.708 0.758 0.839 0.861 0.876 0.924 0.855 0.876
foursquare-friendships-new 0.924 0.537 0.968 0.932 0.950 0.836 0.791 0.988

Average 0.821 0.707 0.834 0.826 0.860 0.748 0.748 0.925
Worst 0.576 0.521 0.535 0.533 0.629 0.559 0.552 0.839
Standard Deviation 0.136 0.140 0.132 0.137 0.106 0.136 0.116 0.045
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Table 5: Average precision on 47 directed and undirected networks for DeepWalk (DW), node2vec
(n2v), LINE1 (L1), LINE2 (L2), LINE1+2 (L1+2), NERD, MapSim based on the one-level partition
(MapSim1), and MapSim based on modular partitions. Weighted networks are marked with W. Results
marked with † correspond to cases with AUC < 0.5 where we flipped the predicted link scores.
Results are rounded, the best results are shown in bold, second-best are underlined.

Data DW n2v L1 L2 L1+2 NERD MS1 MS

uni-email 0.914 †0.513 0.964 0.916 0.940 0.736 0.692 0.870
polblogs 0.627 0.631 0.817 0.838 0.853 0.724 0.851 0.903
new-zealand-collabW 0.643 0.661 †0.768 0.925 0.907 †0.606 0.855 0.865
interactome-stelzl 0.835 †0.513 0.944 0.773 0.853 0.612 0.757 0.820
urban-streets-venice 0.897 0.870 0.828 0.634 0.711 0.597 †0.564 0.890
interactome-figeys 0.533 †0.703 †0.889 0.653 †0.865 0.730 0.730 0.819
us-air-trafficW 0.616 0.552 0.685 0.937 0.934 0.835 0.833 0.903
word-adjacency-japanese †0.494 †0.570 †0.623 0.801 0.796 0.628 0.855 0.831
urban-streets-ahmedabad 0.953 0.919 0.864 †0.577 0.685 †0.523 †0.658 0.915
openflightsW 0.767 †0.621 0.934 0.950 0.960 0.798 0.840 0.950
power 0.936 0.897 0.874 0.800 0.828 0.620 0.566 0.962
facebook-organizations-L1 0.919 0.508 0.977 0.966 0.974 0.882 0.835 0.976
reactome 0.908 0.580 0.985 0.944 0.961 0.890 0.786 0.978
jdk 0.777 0.862 0.891 0.737 0.807 0.761 0.973 0.987
advogatoW 0.769 0.505 0.868 0.892 0.905 0.805 0.810 0.890
word-adjacency-spanish †0.496 0.652 †0.754 0.863 0.848 0.732 0.863 0.851
dblp-cite 0.834 †0.485 †0.551 0.742 0.646 0.908 0.828 0.905
anybeat 0.672 0.523 0.748 0.884 0.894 0.784 0.867 0.883
chicago-road 0.998 0.863 0.986 0.735 0.874 †0.559 †0.579 0.909
foldocW 0.946 0.575 0.966 0.848 0.914 0.629 0.658 0.888
physics-collab-arXivW 0.939 0.592 0.983 0.858 0.899 0.725 0.634 0.964
google 0.859 0.775 0.903 0.878 0.907 0.775 0.889 0.976
marvel-universe 0.864 †0.666 0.914 0.840 0.899 0.884 0.615 0.910
internet-as 0.685 †0.742 0.659 0.930 0.930 0.822 0.817 0.932
word-assocW 0.727 0.846 0.873 0.896 0.922 0.902 0.848 0.862
cora 0.938 0.815 0.958 0.834 0.880 0.847 0.826 0.926
arxiv-citation-HepTh 0.865 0.812 0.966 0.896 0.925 0.868 0.839 0.952
digg-replyW †0.501 0.585 †0.604 0.772 0.761 0.873 0.835 0.834
linux 0.734 0.663 0.701 0.733 0.754 0.835 0.959 0.965
arxiv-citation-HepPh 0.952 0.890 0.975 0.881 0.923 0.870 0.813 0.952
email-enron 0.816 †0.541 0.988 0.963 0.974 0.873 0.860 0.949
inploid 0.667 0.736 0.532 0.879 0.875 0.819 0.869 0.891
pgp-strong 0.879 0.568 0.989 0.927 0.946 0.848 0.804 0.954
facebook-wallW 0.865 0.744 0.951 0.865 0.890 0.833 0.753 0.890
slashdot-threadsW 0.604 0.769 0.744 0.835 0.848 0.855 0.883 0.886
python-dependency 0.790 0.763 †0.715 0.653 †0.632 0.889 0.965 0.915
lkml-replyW 0.494 0.612 0.719 0.959 0.958 0.821 0.920 0.942
marker-cafe 0.539 0.853 0.832 0.921 0.917 0.949 0.901 0.912
epinions-trust 0.611 0.679 0.875 0.960 0.964 0.925 0.921 0.947
prosper 0.818 0.531 0.616 †0.650 †0.465 0.956 0.855 0.927
livemocha 0.694 0.737 0.880 0.868 0.884 0.930 0.854 0.881
foursquare-friendships-new 0.918 0.520 0.976 0.948 0.961 0.858 0.792 0.988
google-plus 0.704 0.679 0.960 0.870 0.921 0.921 0.870 0.960
twitter-higgs-retweetW 0.630 0.880 †0.800 †0.634 †0.707 0.874 0.976 0.822
amazon-copurchases-302 0.966 0.850 0.987 0.931 0.957 0.589 0.656 0.946
notre-dame-web 0.967 0.938 0.980 0.946 0.971 0.930 0.891 0.971
twitter-followers 0.549 †0.987 †0.989 0.714 †0.977 0.955 0.839 0.887
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