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ABSTRACT

Emotional Image Content Generation (EICG) aims to generate semantically clear
and emotionally faithful images based on given emotion categories, with broad
application prospects. While recent text-to-image diffusion models excel at gen-
erating concrete concepts, they struggle with the complexity of abstract emotions.
There have also emerged methods specifically designed for EICG, but they exces-
sively rely on word-level attribute labels for guidance, which suffer from semantic
incoherence, ambiguity, and limited scalability. To address these challenges, we
propose CoEmoGen, a novel pipeline notable for its semantic coherence and high
scalability. Specifically, leveraging multimodal large language models (MLLMs),
we construct high-quality captions focused on emotion-triggering content for
context-rich semantic guidance. Furthermore, inspired by psychological insights,
we design a Hierarchical Low-Rank Adaptation (HiLoRA) module to cohesively
model both polarity-shared low-level features and emotion-specific high-level se-
mantics. Extensive experiments demonstrate CoEmoGen’s superiority in emo-
tional faithfulness and semantic coherence from quantitative, qualitative, and user
study perspectives. To intuitively showcase scalability, we curate EmoArt, a large-
scale dataset of emotionally evocative artistic images, providing endless inspira-
tion for emotion-driven artistic creation. The dataset and code will be available on
GitHub.

1 INTRODUCTION

“The artist is a receptacle for emotions that come from all over the place: from the sky,
from the earth, from a scrap of paper, from a passing shape...” –Pablo Picasso

Emotion is an innate human instinct that shapes our perceptions and reactions to the world (Minsky,
2007), and to better enable artificial intelligence to understand and respond to human emotional
needs, affective computing has rapidly advanced in recent years (Tao & Tan, 2005), with Visual
Emotion Analysis (VEA) emerging as a hot research area. VEA explores the emotional information
embedded in visual stimuli and analyzes human responses, offering significant potential for real-
world applications such as mental health (Wieser et al., 2012) and more. As the field progresses, an
intriguing question arises: can we reverse the VEA paradigm, shifting from emotional recognition
to generating images that evoke specific emotions, thereby enabling emotionally intelligent content
creation?

Owing to the remarkable advancements in diffusion models (Ho & Salimans, 2022; Dhariwal &
Nichol, 2021; Song et al., 2020; Ho et al., 2020), a large number of text-to-image models have
emerged, enabling users to input prompts and control conditions to generate high-quality customized
images (Zhang et al., 2023; Peebles & Xie, 2023; Ruiz et al., 2023; Rombach et al., 2022; Tian et al.,
2025; Gal et al., 2022). Unfortunately, although these existing models are proficient at generating
concrete concepts (e.g., dogs, tables, cars), they struggle and even collapse when tasked with gen-
erating abstract concepts such as emotions (e.g., contentment, awe, sadness) (Yang et al., 2024).
This limitation hampers the progress of emotional intelligence, highlighting the urgent need for the
exploration of a model capable of generating images that evoke specific emotions.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

"Sadness"

Attribute label:
scene: railroad track
object: tree, jeans, trousers

Word-level
Attribute label:
scene: railroad track
object: tree, jeans, trousers

Word-level
Attribute label:
scene: railroad track
object: tree, jeans, trousers

Word-level

Caption: 
A man wearing a hoodie and jeans 
stands on a railroad track, looking 
down, and appears to be sad.

Sentence-level
Caption: 
A man wearing a hoodie and jeans 
stands on a railroad track, looking 
down, and appears to be sad.

Sentence-level
Caption: 
A man wearing a hoodie and jeans 
stands on a railroad track, looking 
down, and appears to be sad.

Sentence-level

"Fear"

Attribute label:
scene: none
object: fashion accessory

Word-level
Attribute label:
scene: none
object: fashion accessory

Word-level
Attribute label:
scene: none
object: fashion accessory

Word-level

Caption: 
A woman is sitting at a bar with a 
clown in front of her, and she is 
covering her face with her hands.

Sentence-level
Caption: 
A woman is sitting at a bar with a 
clown in front of her, and she is 
covering her face with her hands.

Sentence-level
Caption: 
A woman is sitting at a bar with a 
clown in front of her, and she is 
covering her face with her hands.

Sentence-level

"Fear"

Attribute label:
scene: none
object: fashion accessory

Word-level
Attribute label:
scene: none
object: fashion accessory

Word-level

Caption: 
A woman is sitting at a bar with a 
clown in front of her, and she is 
covering her face with her hands.

Sentence-level
Caption: 
A woman is sitting at a bar with a 
clown in front of her, and she is 
covering her face with her hands.

Sentence-level

"Amusement"

Caption: 
A city skyline is lit up with 
fireworks, creating a festive 
atmosphere.

Sentence-level
Caption: 
A city skyline is lit up with 
fireworks, creating a festive 
atmosphere.

Sentence-level
Caption: 
A city skyline is lit up with 
fireworks, creating a festive 
atmosphere.

Sentence-level

Attribute label:
scene: none
object: none

Word-level
Attribute label:
scene: none
object: none

Word-level
Attribute label:
scene: none
object: none

Word-level

"Amusement"

Caption: 
A city skyline is lit up with 
fireworks, creating a festive 
atmosphere.

Sentence-level
Caption: 
A city skyline is lit up with 
fireworks, creating a festive 
atmosphere.

Sentence-level

Attribute label:
scene: none
object: none

Word-level
Attribute label:
scene: none
object: none

Word-level

(a) lack contextual associations (b) weak correlations to emotions (c) missing attribute label annotations

"Contentment"

Attribute label:
scene: none
object: plant

Word-level
Attribute label:
scene: none
object: plant

Word-level
Attribute label:
scene: none
object: plant

Word-level

Caption: 
A woman wearing headphones and 
laying on the grass with her eyes 
closed, conveying a sense of  
relaxation and contentment.

Sentence-levelCaption: 
A woman wearing headphones and 
laying on the grass with her eyes 
closed, conveying a sense of  
relaxation and contentment.

Sentence-levelCaption: 
A woman wearing headphones and 
laying on the grass with her eyes 
closed, conveying a sense of  
relaxation and contentment.

Sentence-level

"Contentment"

Attribute label:
scene: none
object: plant

Word-level
Attribute label:
scene: none
object: plant

Word-level

Caption: 
A woman wearing headphones and 
laying on the grass with her eyes 
closed, conveying a sense of  
relaxation and contentment.

Sentence-levelCaption: 
A woman wearing headphones and 
laying on the grass with her eyes 
closed, conveying a sense of  
relaxation and contentment.

Sentence-level

"Awe"

Attribute label:
scene: field road
object: plant

Word-level
Attribute label:
scene: field road
object: plant

Word-level
Attribute label:
scene: field road
object: plant

Word-level

Caption: 
A rainbow in the sky over a field 
of grass with a road leading to it.

Sentence-level

Caption: 
A rainbow in the sky over a field 
of grass with a road leading to it.

Sentence-level

Caption: 
A rainbow in the sky over a field 
of grass with a road leading to it.

Sentence-level

"Awe"

Attribute label:
scene: field road
object: plant

Word-level
Attribute label:
scene: field road
object: plant

Word-level

Caption: 
A rainbow in the sky over a field 
of grass with a road leading to it.

Sentence-level

Caption: 
A rainbow in the sky over a field 
of grass with a road leading to it.

Sentence-level

"Anger"

Attribute label:
scene: none
object: none

Word-level
Attribute label:
scene: none
object: none

Word-level
Attribute label:
scene: none
object: none

Word-level

Caption: 
A woman with long hair and a blue 
shirt is making a face, conveying a 
strong emotion of anger.

Sentence-level
Caption: 
A woman with long hair and a blue 
shirt is making a face, conveying a 
strong emotion of anger.

Sentence-level
Caption: 
A woman with long hair and a blue 
shirt is making a face, conveying a 
strong emotion of anger.

Sentence-level

Figure 1: Comparison of sentence-level
captions and word-level attribute labels as
semantic guidance, where the latter suf-
fers from (a) lack of contextual associa-
tion, (b) weak correlation to emotions, and
(c) missing annotations.
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Figure 2: Emotions of the same polarity exhibit sim-
ilarity in low-level features but differ in high-level
fine-grained semantics.

Some attempts have sought to achieve target emotion conveyance by modifying the color or style
of images, but their potential is constrained by fixed image content (Liu et al., 2018; Weng et al.,
2023). From a psychological perspective, visual emotions are strongly correlated with specific se-
mantics (Brosch et al., 2010), making mere adjustments to low-level features ineffective in con-
veying the intended emotion. To bridge the gap between abstract emotions and concrete im-
ages, EmoGen (Yang et al., 2024) pioneered the definition of Emotional Image Content Genera-
tion (EICG) as generating semantically clear and emotionally faithful visual content based on a
given emotion, and explored leveraging word-level attribute labels (i.e., objects or scenes) from
EmoSet (Yang et al., 2023) as guidance to align the constructed emotion space with the semanti-
cally rich Contrastive Language-Image Pre-training (CLIP) (Radford et al., 2021) space, making a
promising step toward effective emotional image generation. Nevertheless, overly relying on at-
tribute labels poses the following limitations: (1) Restricted to word-level and used in isolation,
attribute labels lack contextual connections, which prevents them from conveying comprehensive
semantics (Figure 1 (a)). (2) Some annotated attribute labels may weakly correlate with emotions,
while the truly emotion-triggering elements are missing, leading to ambiguity (Figure 1 (b)). (3)
Attribute labels in EmoSet are not always annotated, which significantly limits the diversity and
scalability of training corpus (Figure 1 (c)). Therefore, exploring ways to overcome these limita-
tions and achieve greater flexibility in EICG is a worthwhile direction for research.

Based on the above observations, we propose CoEmoGen, a novel pipeline towards semantically
coherent and highly scalable EICG. Specifically, we focus on sentence-level captions rather than
word-level attribute labels for semantically-coherent guidance, integrating visual-emotional logic
through rich context and achieving alignment closer to human cognition. Leveraging the powerful
capabilities of multimodal large language models (MLLMs) (Li et al., 2025), we organize effec-
tive captions that are concise yet focused on emotion-related content for the images in EmoSet,
and use CLIP space for filtering to mitigate the noise inevitably introduced by MLLM hallucina-
tions (Bai et al., 2024). Figure 1 shows the superiority of sentence-level semantically-coherent
guidance over word-level guidance, while the aforementioned standardized construction paradigm
also lays the foundation for high scalability. Furthermore, inspired by the psychological observa-
tion that emotions of the same polarity (positive or negative) share similarities in low-level visual
attributes (e.g., brightness, color) but differ in high-level semantic features (as illustrated in Fig-
ure 2) (Yang et al., 2023), we propose a Hierarchical Low-Rank Adaptation (HiLoRA) module,
which includes polarity-shared LoRAs to capture common base features within the same polar-
ity and emotion-specific LoRAs to learn the fine-grained exclusive elements of specific emotions.
Extensive experiments, including quantitative comparisons, qualitative analyses, and a user study,
demonstrate the superiority of CoEmoGen in semantic coherence and emotional fidelity. To further
showcase its scalability, we collect EmoArt, a dataset of 13,633 emotionally evocative artistic im-
ages, which CoEmoGen effortlessly leverages to inspire artists in creating emotion-driven artworks.
Our contributions can be summarized as follows:
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• We propose CoEmoGen, a novel semantically-coherent and highly scalable EICG pipeline.
• We introduce reliable captions with emotion-related content for EmoSet, leveraging their

rich coherent context for sentence-level semantic guidance.
• Inspired by psychology, we design a HiLoRA module with polarity-shared LoRAs for mod-

eling the common base features and emotion-specific LoRAs for capturing the fine-grained
exclusive elements.

• Extensive experiments, encompassing quantitative, qualitative, and a user study, showcase
CoEmoGen’s superiority in EICG, while EmoArt, a dataset composed of emotionally stim-
ulating artworks, is constructed to further highlight its flexible scalability.

2 RELATED WORK

Visual emotion analysis. Visual Emotion Analysis (VEA) aims to predict people’s emotional re-
sponses to visual stimuli and has been studied for over two decades (Zhao et al., 2021). The most
commonly employed Mikels model classifies emotions into eight categories: amusement, awe, con-
tentment, excitement, anger, disgust, fear, and sadness, with the first four belonging to the positive
polarity and the latter four to the negative polarity (Mikels et al., 2005). In the early stages, inspired
by psychology and art theory, Machajdik & Hanbury (2010) extracted specific image features related
to emotions, such as color and composition, for analysis. With the rapid development of deep learn-
ing, Rao et al. (2020) proposed MldrNet, which integrates different levels of deep representations
(image semantics, aesthetics, and low-level features) to classify emotions across various types of
images. Yang et al. (2021) first introduced stimulus selection, extracting unique emotional features
from different stimuli. Ultimately, VEA is a classification task, while reversing this process to gen-
erate images that evoke specific emotions has broad practical applications in areas such as mental
health and artistic creation, making it worth further exploration.

Emotional image content generation. Recently, with the remarkable progress of diffusion mod-
els (Ho & Salimans, 2022; Ho et al., 2020), a large number of text-to-image models have emerged,
allowing users to generate high-quality and diverse images (Peebles & Xie, 2023; Betker et al.,
2023; Rombach et al., 2022; Tian et al., 2025). Furthermore, to achieve customization, several
personalized text-to-image generation methods (Zhang et al., 2023; Ruiz et al., 2023; Zhu et al.,
2024) have been proposed, which typically rely on learning new embeddings or fine-tuning model
parameters. While these methods have attained impressive results in generating concrete concepts,
they fall short when it comes to abstract concepts such as emotions. Some attempts aim to modify
low-level visual elements to alter the emotional tone of input image, thus performing image emotion
transfer. Representative works include Peng et al.’s changing the emotions evoked by adjusting the
image’s color and texture features (Peng et al., 2015), and Sun et al.’s proposal to activate a speci-
fied emotion through style transfer (Sun et al., 2023). Due to the fixed content of the image, and the
strong correlation between visual emotions and specific semantics, simply modifying these super-
ficial features is insufficient to evoke the desired emotion. Therefore, EmoGen (Yang et al., 2024)
initially defined the EICG task as creating semantically clear and emotionally faithful visual content
based on a specified emotion category, and it achieved promising outcomes in generating emotion-
ally evocative images. Nevertheless, due to the reliance on word-level attribute labels, which lack
semantic context, are weakly related to emotions, and often suffer from label deficiencies, EmoGen
lacks semantic coherence and flexibility in practical applications. Unlike EmoGen, the proposed
CoEmoGen introduces sentence-level captions as supervision and designs a HiLoRA module in ac-
cordance with psychological consensus, resulting in a semantically-coherent and highly scalable
EICG pipeline that excels in both semantic clarity and emotional fidelity.

3 METHODOLOGY

3.1 COHERENT SEMANTIC ACQUISITION

EmoSet (Yang et al., 2023) is a recently constructed large-scale visual emotion dataset that follows
the popular eight-category Mikels model. It retrieves relevant images from the Internet based on
emotions and their synonyms, annotating 118,102 images not only with emotional labels but also
with emotion-related visual attributes at different levels, including low-level (i.e., brightness, col-
orfulness), mid-level (i.e., scene type, object class), and high-level (i.e., facial expressions, human

3
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(a) Data construction procedure and examples of filtering

16%

13%

14%

17%

9%

9%

11%

11% Amusement: 15552

Awe: 12028

Contentment: 13068

Excitement: 15860

Anger: 8524

Disgust: 8529

Fear: 10752

Sadness: 10136

(b) Emotion distribution

"Anger""Contentment"

"Awe"

"Amusement" "Fear"

"Excitement" "Sadness"

"Disgust"

"Anger""Contentment"

"Awe"

"Amusement" "Fear"

"Excitement" "Sadness"

"Disgust"

(c) Wordcloud
Figure 3: Summary of sentence-level coherent semantic guidance acquisition

actions). The annotation process is semi-automated; for example, scene types are annotated using
a scene recognition model trained on Places365 dataset (Zhou et al., 2017), while object classes
are annotated using an object detection model trained on OpenImagesV4 dataset (Kuznetsova et al.,
2020). Despite manual intervention for corrections, these word-level labels still suffer from a lack
of coherent associations, emotional ambiguity, and missing elements. As a result, EmoGen (Yang
et al., 2024), which relies on attribute labels such as scenes or objects for semantic guidance, faces
challenges in terms of semantic coherence and the scalability of training corpus.

Recognizing the shortcomings of attribute label supervision, we seek to introduce context-rich and
coherent sentence-level captions as guidance. Thanks to the remarkable capabilities demonstrated
by recent MLLMs (Li et al., 2025), generating a tailored caption for an image has become cost-
effective and feasible. Based on this, we meticulously design a prompt that takes the given im-
age’s corresponding emotion label as prior knowledge while enforcing a focus on different levels
of emotion-related visual attributes, aligning with those mentioned in EmoSet, thereby encouraging
MLLMs to produce a concise yet emotion-rich caption. The designed prompt is as follows:

<Image> This image evokes a strong emotion of <emotion>. Provide a one-sentence caption that vividly describes the visual
details, focusing on elements like brightness, colorfulness, scene type, object classes, facial expressions, and human actions that
effectively convey and express this emotion.

We investigate the impact of captions obtained from different prompts on subsequent emotional
image generation, with details provided in Section 4.3. We equip all images in EmoSet with corre-
sponding captions. However, it is worth noting that due to the inherent hallucinations of MLLMs,
which refer to a phenomenon where models generate unrealistic or fabricated content (Bai et al.,
2024), some inaccurate captions are inevitably produced. To address this, we compute the similarity
of the preliminarily obtained image-caption pairs in the CLIP space (Radford et al., 2021), discard-
ing the bottom 20% of samples in each category based on similarity rankings to ensure sufficiently
reliable semantic guidance. The standardized data construction procedure sets the stage for high
scalability, and this entire process, along with examples of filtering, is shown in Figure 3 (a). The
emotional distribution of the final training corpus is presented in Figure 3 (b), while a word cloud for
each emotion, based on corresponding captions, is shown in Figure 3 (c), with clearer ones provided
in Appendix.

3.2 COEMOGEN

Based on the aforementioned constructed dataset D, we propose CoEmoGen, an EICG pipeline
developed for semantic coherence and high scalability.

Overview. Given a sample Di = {Ii, yi, ci}, where Ii represents the i-th image, yi denotes the cor-
responding emotion label, and ci indicates the generated caption, we first apply one-hot encoding to
yi, setting the position of the present category to 1 and all others to 0, obtaining yoi . The input yoi
is then processed by a Neuro-symbolic Mapper composed of fully connected layers with non-linear
activations to obtain the emotional descriptor ei. This neuro-symbolic mapping provides greater
flexibility and diversity in emotional image generation, which is further discussed in Section 4.3.
To achieve more precise alignment with contextually coherent and semantically rich captions, en-
hancing perception and interaction with visual information is beneficial. Specifically, we fuse the
neuro-symbolic vector ei with the visual embedding vi, which is obtained by encoding Ii through
the CLIP image encoder, utilizing a Visual-Perception Encoder primarily based on a cross-attention
mechanism. This process can be formulated as follows:

evi = Softmax(
eiWq(viWk)

T

√
d0

)viWv, (1)

where evi is visually-enhanced emotion descriptor, Wq , Wk, and Wv are learnable weights, and d0
is feature dimension. Subsequently, evi is fed into CLIP text encoder to obtain the emotion condition
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"Amusement"

[1,0,0,0,0,0,0,0]

Neuro-symbolic Mapper H
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Lo

RA

Image Encoder

Visual-perception Encoder

Text Encoder

"A large inflatable Santa Claus is 
standing in front of a house, holding a 
blue and red gift bag."

Diffusion Process

U
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et

Negative LoRA

Positive LoRA

Fear LoRA

Anger LoRA

Amusement LoRA

A1 B1

Awe LoRA

A8 B8

A2 B2

A2 B2

A1 B1

A7 B7

···
Hierarchical LoRA (HiLoRA)

Emotion-specific LoRA

Polarity-shared LoRATrainable
Frozen
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Figure 4: The overall architecture of the proposed CoEmoGen. The one-hot vectors derived from
emotion categories first undergo neuro-symbolic mapping and interact with the visual embedding,
then are encoded by the text encoder to obtain emotion conditions, which further guide the denoising
network U-Net equipped with HiLoRA, which consists of emotion-specific LoRAs and polarity-
shared LoRAs.
eci , which further contributes to the U-Net equipped with Hierarchical LoRA. The entire process
described above is illustrated on the left side of Figure 4.

Hierarchical LoRA. Low-Rank Adaptation (LoRA) (Hu et al., 2022) is a popular parameter-
efficient fine-tuning technique that trains only a small number of parameters through low-rank matrix
decomposition, enabling the fine-tuning of pre-trained model weights at a lower computational cost.
Its core concept can be formulated as follows:

W ′ = W +∆W = W +A ·B,∆W = A ·B (2)

where W and W ′ ∈ Rd×d′
represent the weights before and after adaptation, respectively, with A ∈

Rd×r and B ∈ Rr×d′
being the introduced low-rank adaptation matrices, satisfying the condition

r ≪ min(d, k).

However, in performing EICG, when dealing with the complex concept of representing emotions,
a single LoRA proves insufficient. Inspired by psychological observations that emotions with the
same polarity share common characteristics in low-level features such as brightness while differing
in high-level semantic elements (as shown in Figure 2), we design a hierarchical LoRA (HiLoRA)
module, which consists of eight emotion-specific LoRAs {∆W e

j }8j=1 tailored to each emotion and
two polarity-shared LoRAs {∆W p

k }2k=1. These LoRAs function with distinct roles, with only the
LoRAs corresponding to the input image’s emotion label and its associated polarity activated during
updates. Taking amusement (j = 2) under the positive polarity (k = 1) as an example, Equation 2
transforms into:

W ′ = W +∆W p
1 +∆W e

2 = W +Ap
1 ·B

p
1 +Ae

2 ·Be
2. (3)

Here, ∆W p
1 is responsible for modeling the high brightness and colorfulness associated with the

positive polarity, while ∆W e
2 captures the high-level fine-grained semantics related to amusement.

The detailed structure of HiLoRA is shown on the right side of Figure 4.

Loss function. During training, we optimize the Neuro-symbolic Mapper, Visual-perception En-
coder, and HiLoRA while keeping the image encoder, text encoder, and U-Net frozen. Our loss
constraints consist of two components. One is the Latent Diffusion Model (LDM) loss, which
guides the learning of pixel-level representations:

LLDM = EE(·),Ii,eci ,ϵ,t

[
∥ϵ− ϵθ(zt, t, E(Ii), eci )∥

2
2

]
, (4)

where E(·) denotes the latent encoder, ϵθ(·) indicates the denoising network U-Net, ϵ refers to the
added noise, and zt is the latent noise at time step t. However, applying LLDM alone may lead to an
excessive focus on pixel-level commonalities and even collapse into specific semantics. To maintain
the semantic diversity and coherence of the same emotion, we explicitly approximate the cosine
similarity between the emotion condition eci and the encoded sentence-level caption in the CLIP
space, introducing the semantic loss LSEM, formulated as follows:

LSEM = 1− eci · T (ci)

∥eci∥∥T (ci)∥
, (5)

where T is the CLIP text encoder. The combination of the above two losses achieves synergy
between pixel-level guidance and sentence-level coherent semantic guidance.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

C
oE

m
oG

e
n

(O
ur
s)

D
re

am
B

oo
th

T
e
x
tu

al
 

I
nv

e
rs

io
n

S
ta

b
le

 
D

if
fu

si
on

E
m

oG
e
n

w
/o

 p
ol

ar
it

y-
sh

ar
e
d
 L

oR
A

w
/o

 e
m

ot
io

n-
sp

e
ci

fi
c 

L
oR

A
w

/o
 L

S
E

M

"Awe""Awe" "Anger""Anger" "Contentment""Contentment"

Figure 5: Qualitative comparisons of the proposed CoEmoGen with state-of-the-art generation meth-
ods and ablation variants.

During inference, similar to Yang et al. (2024), we obtain visual embedding vi by randomly sam-
pling from corresponding emotion cluster, which is pre-constructed and represented by a Gaussian
distribution, achieving a high degree of diversity.

4 EXPERIMENTS

4.1 SETTINGS

Implementation details. We initialize the latent encoder and denoising network with pre-trained
weights from Stable Diffusion v1.5 (Rombach et al., 2022) and choose the pre-trained CLIP ViT-
L/14 (Radford et al., 2021) model for both the image and text encoders to ensure a fair comparison.
Regarding the model configuration, the hidden layer size of the Neuro-symbolic Mapper is set to
512, the embedding dimension d0 in the Visual-perception Encoder is set to 768, and the rank r in
HiLoRA is set to 4. During training, we set the batch size to 1, utilize the AdamW optimizer with
β1 = 0.9, β2 = 0.999, a weight decay of 1e−2, and a constant learning rate of 1e−3 for 130,000
iterations. Following Yang et al. (2024), we also adopt a random oversampling strategy to help
mitigate class imbalance. All experiments are conducted on two NVIDIA RTX 4090 GPUs with
PyTorch. Metrics. To comprehensively evaluate model’s performance in executing the EICG task
in terms of emotion fidelity, semantic clarity, and semantic diversity, following Yang et al. (2024),
we generate 1,000 images for each emotion and employ five evaluation metrics: (1) FID (Heusel
et al., 2017) to measure the distribution distance between generated and real images to assess fi-
delity, (2) LPIPS (Zhang et al., 2018) to assess the overall diversity of the generated images, (3)
Emo-A (Emotion Accuracy) based on emotion classification accuracy to evaluate the consistency
between the generated images and the target emotion, (4) Sem-C (Semantic Clarity) to measure the
explicitness of the generated image contents, and (5) Sem-D (Semantic Diversity) to quantify the
richness of content corresponding to each emotion in the generated images. The implementation
details of these metrics are in the Appendix.

4.2 COMPARISONS

We compare the proposed CoEmoGen with the most relevant and state-of-the-art generation mod-
els, including the general image generation model Stable Diffusion, the customized image gen-
eration models Textual Inversion and Dreambooth, as well as EmoGen, which is specifically de-
signed for EICG. The fine-tuning of all the above comparison methods is consistent with that in
EmoGen. Qualitative analysis. Figure 5 presents a qualitative comparison between our proposed
CoEmoGen and other methods, with analysis focused on three emotional categories: awe, anger, and
contentment (complete results for all emotions are provided in Appendix). It can be observed that
both general and customized image generation models struggle to capture the complex and diverse
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Method FID↓ LPIPS↑ Emo-A↑ Sem-C↑ Sem-D↑

Stable Diffusion (Rombach et al., 2022) 44.05 0.687 70.77% 0.608 0.0199
Textual Inversion (Gal et al., 2022) 50.51 0.702 74.87% 0.605 0.0282
DreamBooth (Ruiz et al., 2023) 46.89 0.661 70.50% 0.614 0.0178
EmoGen (Yang et al., 2024) 41.60 0.717 76.25% 0.633 0.0335
CoEmoGen (Ours) 40.66 0.732 80.15% 0.641 0.0349

w/o LSEM 50.32 0.698 65.90% 0.562 0.0255
w/o emotion-specific LoRAs 45.30 0.713 75.37% 0.625 0.0308
w/o polarity-shared LoRAs 41.47 0.724 78.83% 0.638 0.0336

Table 1: Quantitative comparisons with state-of-the-
art methods and ablation variants on the EICG task,
covering five metrics.
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Figure 6: User study results on preference
selection between CoEmoGen and a com-
parative method.

semantic elements of a specific emotion, often collapsing into a single feature point or exhibit-
ing severe semantic distortion, which makes them highly uncontrollable. In comparison, EmoGen
introduces attribute labels as semantic guidance, improving diversity and emotional conveyance,
whereas, constrained by the word-level supervision, it unintentionally binds emotions to specific
objects or scenes, leading to unnatural collage-like combinations that challenge semantic coherence.
For example, anger is frequently associated with fire, tigers, and wide-open mouths, and although
EmoGen indeed successfully captures these elements, it fails to consider their semantic relation-
ships, resulting in unrealistic outputs such as a flaming tiger. In contrast, the proposed CoEmoGen
achieves more natural and vivid emotion conveyance, owing to context-rich sentence-level captions
that constrain logical connections between elements as guidance, which ensures semantic coherence.
Moreover, CoEmoGen preserves diversity while generating images with richer colors and smoother
visuals, drawing from the cooperation of emotion-specific LoRAs for fine-grained semantics capture
and polarity-shared LoRAs for low-level feature modeling in HiLoRA. Another noteworthy aspect is
that CoEmoGen demonstrates versatile photographic composition, rooted in camera-related words
like “close-up” in the captions, giving the generated images a stronger sense of perspective and
realism. Quantitative comparison. Table 1 quantitatively compares CoEmoGen with other meth-
ods, demonstrating its overall performance advantage by leading across all five evaluation metrics.
Specifically, Emo-A shows an improvement of at least 3.9%, confirming the accuracy of emotional
conveyance in the generated images. FID indicates that the generated images better align with the
real data distribution, while Sem-C ensures consistent semantic clarity throughout the generation
process. Additionally, LPIPS and Sem-D highlight the dual advantages of visual diversity and se-
mantic richness in the generated results. These quantitative findings align with the visualizations in
Figure 5, jointly proving CoEmoGen’s superiority in achieving the EICG task. User study. To eval-
uate whether CoEmoGen’s generation aligns with human perceptual cognition, we further conduct
a comprehensive user study in addition to the aforementioned qualitative and quantitative analyses.
The user study involved 17 participants (8 female and 9 male) aged 13-51 with diverse backgrounds.
Each participant was presented with two image groups conveying the same target emotions, one
generated by CoEmoGen and the other by a comparative method, and asked to select their pref-
erence through four criteria-oriented questions: (1) “Which group appears more realistic?” (Image
fidelity); (2) “Which group better evokes [specific emotion]?” (Emotion faithfulness); (3) “Which
group shows greater diversity?” (Semantic diversity); (4) “Which group demonstrates more natural
coherence?” (Semantic coherence). As evidenced in Figure 6, CoEmoGen achieves overwhelming
preference across all four dimensions, particularly excelling in semantic coherence with an average
selection rate of 88.42%. Notably, despite being relatively close to EmoGen in some quantitative
metrics, CoEmoGen secures an average user preference rate of 78.67% in direct pairwise compar-
isons, demonstrating superior alignment with human emotional perception and cognitive intuition,
which ultimately translates into stronger emotional resonance in practical applications.

4.3 ABLATION STUDY

We conduct ablation studies to explore the effects of each component of the proposed CoEmoGen,
as well as the selection of important settings.

We individually remove each component from the complete CoEmoGen and observe the results
to explore its effect, which is quantitatively presented in Table 1 and qualitatively shown in Fig-
ure 5. Semantic loss. It can be observed that when LSEM is absent, the model, deprived of the
essential semantic guidance and relying solely on LLDM, excessively focuses on pixel-level recon-
struction, even collapsing into specific semantics, leading to significant semantic distortion and a
lack of semantic diversity. Emotion-specific LoRAs. When emotion-specific LoRAs are removed,
the model’s ability to capture emotion-specific fine-grained semantics diminishes. Meanwhile, the
effect of polarity-shared LoRAs introduces semantic entanglement among emotions belonging to
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the same polarity. As a result, although the model performs reasonably well in terms of seman-
tic clarity and diversity, the semantic confusion among emotions of the same polarity significantly
reduces the accuracy of conveying the target emotion and amplifies the divergence from the true
distribution. Polarity-shared LoRAs. In comparison, when polarity-shared LoRAs are removed,
the quantitative results appear to show only a slight decline compared to the complete CoEmoGen.
However, qualitative comparisons reveal that the color saturation and brightness tend to become
overly monotonous or unnatural, which further confirms the important role of polarity-shared Lo-
RAs in modeling the low-level features of polarity. In summary, each component of CoEmoGen
performs its specific function, and when working in unison, they exhibit the optimal performance in
terms of emotional fidelity, semantic diversity and coherence.

Emotional Prior Details FID↓ LPIPS↑ Emo-A↑ Sem-C↑ Sem-D↑

✗ ✗ 43.32 0.714 75.29% 0.612 0.0303
✓ ✗ 40.66 0.732 80.15% 0.641 0.0349
✗ ✓ 44.91 0.716 73.68% 0.604 0.0315
✓ ✓ 42.58 0.724 77.42% 0.628 0.0338

(a) Type of captions for semantic guidance.
Type of Input FID↓ LPIPS↑ Emo-A↑ Sem-C↑ Sem-D↑

Learnable 43.77 0.705 78.49% 0.593 0.0289
Text 42.38 0.697 78.92% 0.611 0.0275

One-hot 40.66 0.732 80.15% 0.641 0.0349

(b) Type of inputs for emotion representation.
Type of LSEM FID↓ LPIPS↑ Emo-A↑ Sem-C↑ Sem-D↑

MAE 42.40 0.721 78.83% 0.626 0.0311
MSE 41.87 0.725 79.04% 0.618 0.0327
K-L 48.36 0.693 70.01% 0.609 0.0272

Cosine 40.66 0.732 80.15% 0.641 0.0349

(c) Type of semantic constraint mechanisms in LSEM.

Table 2: Quantitative results of CoEmoGen with
different choices of important settings. Default
settings are marked in gray .

Table 2 compares the results of different choices
of important settings. Type of caption. To ob-
tain the most suitable captions as sentence-level
semantic guidance, we explore four prompts to
drive the MLLMs, controlling whether the cap-
tions focus on emotion-related elements and con-
tain complete details, with further details pro-
vided in the Appendix. As shown in Table 2 (a),
adding emotional priors to the prompt promotes
consistent improvement in the model’s ability,
highlighting the importance of focusing on emo-
tional elements. However, removing the restric-
tion to generate only one sentence and allow-
ing the inclusion of as many details as possible
leads to performance degradation, likely due to
the noise introduced by irrelevant elements and
the increased risk of hallucinations in MLLMs
with longer captions, making model convergence more difficult. Therefore, we ultimately choose
a prompt with emotional priors and the constraint of generating a single sentence. Type of input.
We compare three different types of input representations, including learnable class vectors, frozen
text encodings of emotion class names, and the one-hot vectors with the Neuro-symbolic Mapper.
As shown in Table 2 (b), experimental results reveal significant limitations in the first two types in
terms of diversity, which is due to the representation bottleneck from the limited capacity of learn-
able vectors and over-constraining semantics in the embedding space from the frozen text encoder.
In contrast, the Neuro-symbolic Mapper expands the latent space exploration while maintaining
semantic consistency through a differentiable symbolic reasoning mechanism, enabling greater di-
versity. Design of LSEM. In the design of the semantic loss LSEM, constructing an effective semantic
constraint mechanism is a question worth considering. To address this, we systematically com-
pare the performance differences of four constraint methods: Mean Absolute Error (MAE), Mean
Squared Error (MSE), Kullback-Leibler Divergence (K-L divergence), and Cosine Similarity. As
shown in Table 2 (c), Cosine Similarity achieves the best performance, owing to its inherent ad-
vantage in measuring semantic similarity in high-dimensional vector spaces, enabling more precise
guidance for the model to capture deep semantic relationships. Therefore, we choose it by default.

4.4 SCALABILITY OF COEMOGEN

Thanks to MLLMs facilitating the accessibility of sentence-level semantic guidance captions, Co-
EmoGen exhibits high scalability compared to EmoGen, which relies on high acquisition costs and
limited word-level attribute labels for supervision. This feature enables CoEmoGen to incorporate
any emotionally evocative images into the training corpus.

To illustrate this, we construct the first large-scale emotional art image dataset, EmoArt. Specifi-
cally, we first collect approximately 100,000 artistic images from WikiArt, covering 129 artists, 11
genres, and 27 styles. Then, we utilize a classifier pre-trained on EmoSet to predict the emotional
categories of these artistic images, setting an emotion confidence threshold of 0.75, which ultimately
filters out 13,633 strongly emotion-representative samples. Notably, due to the low-frequency pres-
ence of excitement and disgust in artistic expressions (accounting for less than 1%) (Pearce et al.,
2016), EmoArt focuses on the remaining six emotion categories. A visualization of EmoArt’s im-
ages across different emotions is provided in Appendix. Next, following the same process as Fig-
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Figure 7: Visualization of emotionally evocative
artistic images generated by EmoArt-driven Co-
EmoGen for each emotion.
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Figure 8: Visualization of emotion transfer by
fusing emotion representations with neutral el-
ements.
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Figure 9: Visualization of emotion fusion by
combining different emotion representations.

ure 3 (a), we obtain reliable sentence-level captions for each image, which are then utilized to train
CoEmoGen. Figure 7 presents the results generated by EmoArt-driven CoEmoGen, demonstrating
its ability to create emotionally faithful and stylistically diverse artistic images for each emotion
category, offering endless inspiration for artists in crafting emotionally evocative artworks.

The construction of EmoArt intuitively showcases CoEmoGen’s high flexibility and scalability,
allowing users to follow a standardized construction paradigm to effortlessly customize diverse
emotion-rich datasets and generate emotionally stimulating images tailored to their specific needs.

4.5 APPLICATIONS

Given its strong emotional content generation capability, we further explore CoEmoGen’s intrigu-
ing applications. Emotion Transfer. By integrating the emotional representations learned by Co-
EmoGen with common neutral elements, we achieve targeted emotion transfer, as shown in Figure 8.
Excitingly, this results in a seamless fusion, where the emotional semantics are incorporated while
staying true to the original neutral elements. Importantly, instead of rigidly overlaying emotion-
related elements onto the neutral ones, this process perceives the semantic characteristics of the
neutral elements and adaptively adjusts their textures, colors, and layouts to ensure overall coher-
ence. For example, in the fear transfer applied to a street scene, CoEmoGen enhances shadow
contrast and spatial depth, generating a dark and deep corridor that aligns with real-world lighting
principles rather than mechanically adding horror symbols, ensuring a gradual and immersive in-
fusion of emotional semantics and offering promising potential for interpretable image emotional
editing. Emotion Fusion. We also explore the possibility of combining different emotional repre-
sentations, as shown in Figure 9, which illustrates the pairwise combinations of amusement, awe,
and fear, showcasing a visually rich narrative intertwined with complex emotions. For example, in
amusement+awe, colorful balloons and a rainbow in mountain valley create a fantastical yet digni-
fied visual language, while in awe+fear, the transformation of mountain contours shapes the rock
formations into a devil-like face, collectively reinforcing a sense of wonder and fear. When fusing
emotions, we are essentially organically integrating emotional semantics at visual level, allowing
CoEmoGen not only to generate single-emotion images but also to explore more multi-dimensional
emotional experiences.

5 CONCLUSION AND FUTURE WORK

In this paper, we develop CoEmoGen, a novel EICG pipeline excelling in semantic coherence and
high scalability. Leveraging MLLMs, we obtain reliable context-rich sentence-level captions for the
images in EmoSet to serve as semantically-coherent guidance. Referring to psychological theory,
we design a HiLoRA module, including polarity-shared LoRAs to model common low-level fea-
tures and emotion-specific LoRAs to capture high-level exclusive semantics. We demonstrate the
superiority of the proposed CoEmoGen in EICG from qualitative, quantitative, and user study per-
spectives, and further collect and construct the first large-scale emotional art image dataset, EmoArt,
to concretely showcase high scalability. In future work, we plan to investigate the denoising pro-
cess in depth, explicitly analyzing the dynamic shifts of attention toward emotion-related attributes
across different denoising stages.
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APPENDIX

A ADDITIONAL VISUALIZATIONS

We present qualitative comparisons of the proposed CoEmoGen with state-of-the-art generation
methods and ablation variants across all emotion categories in Figure 10 to 13, from which conclu-
sions aligned with those discussed in Section 4.2 of the main manuscript can be drawn, demonstrat-
ing the consistency. To better illustrate the newly collected large-scale emotional art image dataset,
EmoArt, we also provide stylistically diverse sample examples for each emotion category in Fig-
ure 14. Besides, we generate word clouds for each emotion category based on the corresponding
captions, allowing us to observe the high-frequency words or phrases in each category, as shown in
Figure 15.

B PROMPTS

To obtain the most suitable and effective sentence-level captions as coherent semantic guidance, we
conduct an ablation study in Section 4.3 of the main manuscript, exploring the impact of captions
derived from different versions of prompts. The key differences in these prompts lie in two aspects:
whether they include emotional priors and whether they restrict the generation to a single sentence.
The specific details of the adopted prompts are provided in Table 3. Additionally, considering the
differences in emotional representation elements between artistic and natural images, we design
a customized prompt specifically for generating captions for artworks in EmoArt, which guides
MLLMs to focus on key elements that convey emotions in artistic images, as detailed in Table 4.

• “<Image> Provide a one-sentence caption that vividly describes the visual details of this image.”
• “<Image> This image evokes a strong emotion of <emotion>. Provide a one-sentence caption

that vividly describes the visual details, focusing on elements like brightness, colorfulness, scene
type, object classes, facial expressions, and human actions that effectively convey and express this
emotion.”

• “<Image> Write a terse but informative summary of the picture.”
• “<Image> This image evokes a strong emotion of <emotion>. Provide a terse but informative

summary that vividly describes the visual details, focusing on elements like brightness, colorful-
ness, scene type, object classes, facial expressions, and human actions that effectively convey and
express this emotion.”

Table 3: Different versions of prompts used to drive MLLMs for generating semantically coherent
sentence-level captions.

<Image> This artwork evokes a strong emotion of <emotion>. Provide a one-sentence caption
that vividly describes the visual details, focusing on elements like artistic style, material textures,
composition balance, symbolic elements, dominant color choices, expressive brushstrokes, and dra-
matic light/shadow contrasts that effectively convey and express this emotion.

Table 4: A customized prompt specifically designed for generating captions for artworks in EmoArt.

C EVALUATION METRICS

To comprehensively evaluate the model’s performance in executing the EICG task, we employ five
evaluation metrics, which are introduced below.

FID (Fréchet Inception Distance) (Heusel et al., 2017). FID is a metric employed to evaluate the
performance of generative models by measuring the distribution similarity between generated and
real images in feature space, which can be formulated as:

FID = ∥µr − µg∥2 + Tr
(
Σr +Σg − 2(ΣrΣg)

1/2
)
, (6)
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where µr and µg represent the means of features extracted from real and generated images using the
Inception network (Szegedy et al., 2015), respectively, while Σr and Σg denote the corresponding
covariance matrices. A lower FID value indicates a closer match between the statistical properties
of the generated and real images. It is important to note that due to the inherent limitations of
FID (Jayasumana et al., 2024), we need to incorporate other metrics for a more accurate evaluation.

LPIPS (Learned Perceptual Image Patch Similarity) (Zhang et al., 2018). We employ LPIPS, a
perceptual metric aligning with human vision by measuring image differences through deep feature
correlations, to evaluate the overall diversity of generated images. Specifically, we randomly select
Pi pairs of generated images for each emotion category and calculate the LPIPS score by averag-
ing the perceptual distances between these pairs. Finally, the overall LPIPS metric is obtained by
averaging the LPIPS scores across all emotion categories, as formalized below:

LPIPS =
1

C

1

Pi

C∑
i=1

Pi∑
p=1

LPIPS(aip, b
i
p), (7)

where C denotes the total number of emotion categories, Pi represents the number of sampled image
pairs for the i-th emotion, and LPIPS(aip, b

i
p) indicates the perceptual similarity score between the

p-th pair of images a and b the i-th emotion category.

Emo-A (Emotion Accuracy). Emo-A is introduced as a metric to quantitatively evaluate emotion
faithfulness. It leverages a pre-trained emotion classifier to predict the emotion category of gener-
ated images, which are then compared against the target emotion. The final accuracy is computed
exclusively based on samples with correct emotion alignment.

Sem-C (Semantic Clarity). To quantify semantic clarity, Sem-C employs a pre-trained object clas-
sifier (He et al., 2016) from ImageNet (Deng et al., 2009) and a pre-trained scene classifier (He
et al., 2016) from Places365 (Zhou et al., 2017) to classify the generated images. The final metric is
computed by taking the highest probability between these two classifiers, as formalized below:

Sem-C =
1

N

N∑
n=1

max (vobject(xn), vscene(xn)) (8)

where N represents the total number of generated images, where vobject and vscene denote the object
and scene classifiers, respectively.

Sem-D (Semantic Diversity). To measure semantic diversity, we randomly sample Pi pairs of
generated images for each emotion category and compute the Mean Squared Error (MSE) between
their CLIP image embeddings for each pair, averaging the results to obtain the Sem-D score for that
emotion. The overall Sem-D metric is then obtained by averaging these scores across all emotion
categories, as formalized below:

Sem-D =
1

C

1

Pi

C∑
i=1

Pi∑
p=1

MSE
(
CLIPI(a

i
p), CLIPI(b

i
p)
)
, (9)

where C denotes the total number of emotion categories, Pi represents the number of sampled image
pairs for the i-th emotion, and CLIPI indicates the CLIP image encoder.

D THE USE OF LLMS

In this work, LLMs were used to assist with grammar checking and sentence refinement to improve
the clarity and overall readability of the manuscript.
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Figure 10: Qualitative comparisons of the proposed CoEmoGen with state-of-the-art generation
methods and ablation variants on amusement and awe emotions.
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Figure 11: Qualitative comparisons of the proposed CoEmoGen with state-of-the-art generation
methods and ablation variants on contentment and excitement emotions.
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"Disgust"

Figure 12: Qualitative comparisons of the proposed CoEmoGen with state-of-the-art generation
methods and ablation variants on anger and disgust emotions.
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Figure 13: Qualitative comparisons of the proposed CoEmoGen with state-of-the-art generation
methods and ablation variants on fear and sadness emotions.
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Figure 14: Sample examples of each emotion in the constructed EmoArt.
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Figure 15: Word clouds generated from captions corresponding to each emotion category.
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