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Abstract

Large language models (LLMs) excel on a va-001
riety of reasoning benchmarks, but previous002
studies suggest they sometimes struggle to gen-003
eralize to unseen questions, potentially due to004
over-reliance on memorized training examples.005
However, the precise conditions under which006
LLMs switch between reasoning and memo-007
rization during text generation remain unclear.008
In this work, we provide a mechanistic under-009
standing of LLMs’ reasoning-memorization dy-010
namics by identifying a set of linear features011
in the model’s residual stream that govern the012
balance between genuine reasoning and mem-013
ory recall. These features not only distinguish014
reasoning tasks from memory-intensive ones015
but can also be manipulated to causally influ-016
ence model performance on reasoning tasks.017
Additionally, we show that intervening in these018
reasoning features helps the model more ac-019
curately activate the most relevant problem-020
solving capabilities during answer generation.021
Our findings offer new insights into the under-022
lying mechanisms of reasoning and memory in023
LLMs and pave the way for the development024
of more robust and interpretable generative AI025
systems.1026

1 Introduction027

Large language models (LLMs) have demonstrated028

impressive capabilities in tackling complex rea-029

soning tasks (Roziere et al., 2023; OpenAI, 2024;030

Guo et al., 2025). However, these models some-031

times struggle with more straightforward reasoning032

problems, particularly when faced with questions033

that differ significantly from those encountered dur-034

ing training (Dziri et al., 2024; Hu et al., 2024;035

Xie et al., 2024). This generalization gap between036

LLMs and human reasoning has led to the hypoth-037

esis that these models are essentially “reasoning038

parrots” (Zečević et al., 2023), relying heavily on039

1Our code and data have been uploaded to the submission
system, and will be open-sourced upon acceptance.
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Figure 1: Main findings of our study: (a) There ex-
ists a set of linear features (LiReFs) in the LLM resid-
ual stream that drives the model to switch between
reasoning and memorization modes with different lev-
els of generalizability. (b) LiReFs generally explain
model reasoning capability across various knowledge
domains and languages. (c) Model activation values
along LiReFs correlate strongly with model general-
izability on reasoning tasks. (d) Intervening LiReFs
during inference time can further improve the model
reasoning performance and generalizability.

memorization of text patterns found in their pre- 040

training datasets (Carlini et al., 2022; Tang et al., 041

2023; Shi et al., 2024), rather than engaging in 042

a rigorous, procedural reasoning process to solve 043

problems (Wei et al., 2022; Kojima et al., 2022; 044

Yao et al., 2023). Understanding the interplay be- 045

tween reasoning and memorization in LLMs is es- 046

sential, not only for advancing our understanding 047

of these models but also for developing more reli- 048

able, language-based reasoning systems in the fu- 049

ture (Lanham et al., 2023; Oren et al., 2023; Turpin 050

et al., 2024). 051

In the context of LLM reasoning, researchers 052

often conceptualize memorization as the inability 053

to generalize from familiar problems to their sys- 054

tematically modified counterparts. In this view, 055

reasoning and memorization are two extremes on 056

the spectrum of model generalizability. To investi- 057
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gate this, synthetic reasoning benchmarks are de-058

signed, and memorization is assessed by measuring059

changes in model performance across various se-060

tups (Dziri et al., 2024; Xie et al., 2024; Ye et al.,061

2024). Another line of research focuses on the in-062

ternal mechanisms of LLMs, identifying specific063

components or circuits responsible for tasks like064

arithmetic (Hou et al., 2023; Stolfo et al., 2023a)065

and commonsense reasoning (Geva et al., 2023;066

Yang et al., 2024; Biran et al., 2024). However,067

these studies primarily analyze model outputs or068

hidden representations when dealing with carefully069

crafted synthetic reasoning problems, limiting the070

generalizability of their findings.071

In this paper, we explore the reasoning-072

memorization dynamic of LLMs from a mecha-073

nistic perspective. Recent interpretability research074

has demonstrated that LLMs encode interpretable075

semantic features (Elhage et al., 2022; Park et al.,076

2024)—such as safety (Arditi et al., 2024; Yu et al.,077

2024), truth (Marks and Tegmark, 2023; Li et al.,078

2024), sentiment (Tigges et al., 2023), and lan-079

guage (Bricken et al., 2023)—as linear directions080

within their activation space. We hypothesize that081

there is a similar linear feature, which, when acti-082

vated, enables the model to solve reasoning tasks083

through systematic generalization. When this fea-084

ture is not activated, the model remains in a “mem-085

orization mode,” exhibiting low generalizability086

when addressing variations of familiar reasoning087

problems.088

To examine our hypotheses, we apply methods089

from linear semantic feature analysis (Burns et al.,090

2023; Rimsky et al., 2024) and identify a set of091

Linear Reasoning Features (LiReFs) in the residual092

streams of LLMs. As shown in Figure 1, LiReFs093

can be extracted by contrasting the hidden repre-094

sentations of reasoning-intensive versus memory-095

intensive questions. This contrast allows the two096

types of questions to be linearly separated in the097

model’s activation space. Furthermore, we demon-098

strate via causal analysis (Stickland et al., 2024;099

Hong et al., 2024) that by enhancing the LiReFs100

during inference, we can shift the model into a101

“thinking mode” with strong generalizability in ap-102

plying reasoning rules or patterns. We show via ex-103

tensive experiments on four different LLMs across104

six datasets that the same set of reasoning features105

explain and mediate model reasoning ability across106

various knowledge domains and languages, sug-107

gesting a general control mechanism of switching108

between reasoning and memorization during model109

inference. 110

The main contributions of our work can be sum- 111

marized as follows: 112

• We show that LLM reasoning capability is me- 113

diated by a set of linear features (LiReFs) in its 114

activation space. Such features govern model 115

generalizability in solving various reasoning 116

tasks including math, logical, and scientific 117

questions (Section 3). 118

• We casually validate the functionality of our 119

discovered reasoning features by showing that 120

LLM reasoning generalizability can be en- 121

hanced by intervening LiReFs at inference 122

time (Section 4.1). 123

• We show via case analyses that mediating 124

LiReFs during inference time reduces LLM 125

reasoning errors and misapplication of model 126

reasoning or memorization ability. (Section 127

4.2). 128

2 Related work 129

Memorization in LLMs Memorization in LLMs 130

has been defined in various ways. In the context 131

of privacy and copyright, memorization is often 132

described as the model’s verbatim reproduction of 133

training data during generation (Carlini et al., 2022; 134

Biderman et al., 2023; Huang et al., 2024). Alter- 135

natively, some define memorization as the counter- 136

factual effect of omitting specific training data on 137

model predictions (Zhang et al., 2023; Hu et al., 138

2024), reflecting memorization of rare, specific ex- 139

amples. In reasoning tasks, memorization is often 140

seen as poor generalizability to questions outside 141

the training data, as evidenced by studies on work 142

sequence reversal (McCoy et al., 2023) and alpha- 143

bet shifting (Prabhakar et al., 2024), which show de- 144

graded performance on infrequent patterns. Other 145

studies observe performance degradation from con- 146

trolled perturbations of input questions (Wu et al., 147

2024; Xie et al., 2024). In this paper, we adopt 148

memorization as poor reasoning generalizability 149

and propose a novel mechanistic interpretation of 150

the reasoning-memorization dynamic during model 151

inference. 152

Understanding LLM reasoning Prior research 153

has sought to distinguish reasoning from memo- 154

rization, investigating whether LLMs genuinely 155

infer new conclusions or merely reconstruct pat- 156

terns from pretraining data. Studies suggest that 157

2



LLMs undergo structured multi-step reasoning pro-158

cesses, transitioning through distinct reasoning159

stages that follow an ordered sequence of knowl-160

edge retrieval and rule-based processing (Hou et al.,161

2023). Similarly, extended training beyond over-162

fitting (grokking) has been shown to lead to the163

emergence of reasoning circuits, indicating that rea-164

soning is a learned and structured capability (Power165

et al., 2022; Liu et al., 2022; Nanda et al., 2023;166

Wang et al., 2024a). Further studies on mathemati-167

cal reasoning confirm that LLMs compute neces-168

sary information rather than memorizing templates,169

with reasoning computations leaving identifiable170

traces in model activations, particularly in the resid-171

ual stream (Ye et al., 2024; Stolfo et al., 2023b).172

Additionally, attention heads have been shown to173

play a key role in both knowledge recall and la-174

tent reasoning, suggesting that these processes are175

distinct yet interconnected (Zheng et al., 2024).176

Linear semantic features Recent advances in177

model interpretability have revealed that language178

models encode various semantic concepts as lin-179

ear directions in their activation space (Park et al.,180

2024). These linear semantic features have been181

discovered by contrasting inputs that differ primar-182

ily in the targe semantic dimension (Marks and183

Tegmark, 2023). Once identified, these linear fea-184

tures can be manipulated to control model behavior,185

enabling targeted interventions during the genera-186

tion process (Rimsky et al., 2024; Stickland et al.,187

2024). Our work extends this line of study by188

identifying linear features that mediate the model’s189

ability to switch between genuine reasoning and190

memory recall.191

3 Linear reasoning features (LiReFs)192

3.1 Background193

Transformers A decoder-only transformer lan-194

guage model (Vaswani et al., 2017)M maps an195

input sequence of tokens x = [x1, ..., xT ] into196

a probability distribution over the vocabulary for197

next-token prediction. Within the transformer, the198

i-th token xi is represented as a series of hidden199

states h(l)(xi). Within each layer l ∈ [L], two mod-200

ules compute updates that are added to the layer201

input h(l−1)(xi): (1) a multi-head self-attention202

module outputs a(l)(xi), and a multi-layer per-203

ceptron (MLP) outputs m(l)(xi). Putting together,204

the hidden representation h(l)(xi) is computed as205

2: 206

h(l)(xi) = h(l−1)(xi) + a(l)(xi) +m(l)(xi) (1) 207

Following Elhage et al. (2021), we call each 208

h(l)(xi) the residual stream activation of xi at layer 209

l. We focus on the residual stream of the last token 210

xT of the user turn, as the point when the model is 211

going to generate the first answer token, denoted 212

as H(x) = {h(l)(xT )}Ll=1. 213

Reasoning feature extraction We follow the lin- 214

ear feature hypothesis and postulate that the rea- 215

soning capability of LLMs is mediated by a sin- 216

gle direction in the residual stream, and that by 217

steering this direction, it is possible to control 218

model interplay between reasoning and memoriza- 219

tion. We compute the linear reasoning features 220

(LiReFs) using the difference-in-means technique, 221

which effectively disentangles key feature infor- 222

mation as demonstrated by previous work (Marks 223

and Tegmark, 2023; Rimsky et al., 2024). Specif- 224

ically, given a collection of reasoning-intensive 225

questions x ∈ DReasoning (e.g. “What is the an- 226

swer of (5 + 2) ∗ 3?”) and another set of memory- 227

intensive questions x ∈ DMemory (e.g. “What is the 228

capital city of the USA?”), we calculate the differ- 229

ence between the model’s mean last-token residual 230

stream activations when running on two categories 231

of input questions: 232

r(l) =

∑
x∈DReasoning

h(l)(x)

|DReasoning| −

∑
x∈DMemory

h(l)(x)

|DMemory| (2) 233

The specific construction details of DMemory and 234

DReasoning are provided in Section 3.2. 235

Reasoning feature intervention Given a 236

difference-in-means vector r(l) extracted from 237

layer l, we can modulate the strength of the 238

corresponding reasoning feature via simple 239

linear interventions. Specifically, we can per- 240

form reasoning feature addition by adding the 241

difference-in-means vector to the activations of 242

an input question to shift it closer to the mean 243

activation of typical reasoning-intensive questions, 244

thereby unlocking model reasoning capability: 245

h′(l)(x)← h(l)(x) + α ∗ r(l) (3) 246

Similarly, one can perform reasoning feature 247

ablation by erasing the component along r̂(l) for 248

2Here, we omit some details such as positional encoding
and layer normalization for brevity.
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every residual stream activation h(l)(x):249

h′(l)(x)← h(l)(x)− r̂r̂Th(l)(x) (4)250

where r̂ = r(l)/||r(l)|| is a unit vector encod-251

ing the reasoning feature direction, and h(l)(x)−252

r̂r̂Th(l)(x) is projection that zeroes out the value253

along the reasoning direction.254

3.2 Datasets and Models255

Datasets We curate our dataset for LiReF extrac-256

tion and analysis using the following existing ques-257

tion answering benchmarks: 1) MMLU-Pro (Wang258

et al., 2024b), which is a comprehensive QA bench-259

mark covering a wide range of subjects, including260

STEM, humanities and social sciences fields; 2)261

the GSM-8K math reasoning dataset (Cobbe et al.,262

2021) and its multilingual counterpart MGSM (Shi263

et al., 2022); 3) the PopQA factual knowledge QA264

dataset (Mallen et al., 2023), and 4) the humanity265

sections of the C-Eval Chinese benchmark (Huang266

et al., 2023). A detailed description of each dataset267

can be found in §B.268

To categorize QA questions into the contrastive269

reasoning-intensive and memory-intensive subsets,270

we employ LLM-as-a-judge (Zheng et al., 2023)271

by asking GPT-4o (OpenAI et al., 2024) to as-272

sign a score between 0 and 1 to each question in273

MMLU-Pro, where a score closer to 1 indicates274

a reasoning-intensive question, and a score closer275

to 0 suggests a memory-intensive one. A score276

around 0.5 indicates that both reasoning and mem-277

ory recall may be involved 3. Next, we classified278

questions with scores above 0.5 as MMLU-Pro-279

R (Reasoning Part) and placed them in DReasoning,280

while questions with scores less than or equal to 0.5281

were classified as MMLU-Pro-M (Memory Part)282

and placed in DMemory. For the other benchmarks,283

we assign GSM8K and MGSM intoDReasoning, and284

put PopQA and C-Eval Chinese into DMemory.285

Models We study LiReF by analyzing a diverse286

collection of representative and influential base287

models, as long as their instruction-tuned vari-288

ants: LLaMA3-8B (base, instruct) (Grattafiori289

et al., 2024), Gemma2-9B (base, instruct) (Team290

et al., 2024), Mistrial-7B-v0.3 (base, instruct)291

(Jiang et al., 2023), and OLMo2-7B (base, instruct)292

(OLMo et al., 2025).293

3.3 Analysis results 294

Figure 2 shows the 2-dimensional Principal Com- 295

ponent Analysis (PCA) visualization of the last to- 296

kens representations across different model layers 297

and six datasets in DMemory and DReasoning, where 298

hidden representations are taken from a specific 299

middle layer of each model. 4 Additional PCA 300

results for other layers of the models are provided 301

in Appendix C. We observe that the representations 302

of questions in DMemory and DReasoning can be lin- 303

early separated by the reasoning features, which 304

are computed as the difference vector between cen- 305

troids of the two representation categories (the blue 306

arrows). 307

Robustness of LiReF extraction We also val- 308

idate that our extracted LiReFs indeed capture 309

model reasoning capability, as opposed to some su- 310

perficial lexical patterns that distinguish two ques- 311

tion categories. As suggested by Figure 2, for 312

each model, the same LiReF separates every con- 313

trastive pair of problem subsets in DReasoning and 314

DMemory, regardless of the task format (e.g., multi- 315

ple choice and the open-ended generation), domain 316

(e.g., physics, chemistry and math), or language 317

(e.g., English and Chinese). Moreover, we provide 318

in Appendix C more fine-grained PCA visualiza- 319

tions of questions from various subject domains 320

in MMLU-Pro, suggesting that even for questions 321

from disparate disciplines (e.g., physics vs. his- 322

tory), as long as both of their solutions require 323

strong reasoning capability, their hidden represen- 324

tations shall fall into the same reasoning subspace 325

as determined by the LiReF. 326

To quantitatively measure the relation between 327

LiReF and the reasoning capability required for an- 328

swering each question, we compute the layerwise 329

cosine similarity between the last question token 330

representation of each question and the correspond- 331

ing LiReF, as shown in Figure 3. For each LLM, we 332

also replicate the same analyses for its pre-trained 333

base version before instruction fine-tuning. A posi- 334

tive cosine similarity suggests a positive activation 335

value along LiReF and vice versa. We observe 336

that for all eight models, questions in DReasoning 337

mostly activate the reasoning features positively, 338

while questions in DMemory mostly have negative 339

3The prompt used is provided in §A.
4Figure 10 in the Appendix C shows that the top one prin-

cipal component already captures most of the mean differ-
ence (see Equation 2) between the activations in DMemory and
DReasoning.
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Figure 2: Visualization of the hidden states of four base models using 2-dimensional PCA. For each model, we
plot six groups of points across several datasets. We observe that: (1) For all four models, questions defined
as Reasoning-required and those defined as Memory-required can be naturally distinguished into two distinct
groups, as shown by the boundary (grey dashed line) fitted via logistic regression, with the blue arrows showing
the approximate direction of the Linear Reasoning Features. (2) In the extracted dimensions, the influence of task
domain and language within the same category on the distribution is not significant, and data requiring the same
capability naturally cluster together in the same region.
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Figure 3: Layerwise cosine similarity between the last token residual stream activations and the extracted Linear
Reasoning Features (LiReFs) in four base models and their corresponding instruction-tuned variants.

LiReF activations, especially in the middle lay-340

ers. Furthermore, on 3 out of 4 LLM families341

(LLaMA3-8B, Gemma2-9B, and Mistral-7B-v0.3),342

the layerwise cosine similarity profiles between343

the base and instruction-tuned models are highly344

consistent with each other, suggesting that LLMs345

may have developed linear reasoning features to346

mediate its emergent reasoning capability during347

pre-training rather than post-training.348

3.4 The gradient nature of349

reasoning-memorization interplay350

As observed in Figure 2, questions in DMemory351

and DReasoning tend to have significantly negative352

and positive activations along LiReFs, respectively.353

This raises the question: what types of questions354

fall near the reasoning-memorization boundary355

(i.e., those with near-zero LiReF activation val-356

ues)? Do these problems require both memory and357

reasoning abilities to solve? We investigate this358

question through the following experiments.359

Figure 4 shows the relation between GPT-4o-360

assigned reasoning scores for each question in361

MMLU-Pro, as discussed in Section 3.2, versus362

the LiReF projection value r̂Th(l)(x) of its resid-363
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Figure 4: Strong correlation between Projection Values
on the Linear Reasoning Features (LiReFs) direction
and the Reasoning Score provided by GPT-4o, with
Spearman coefficients of 0.840 (LLaMA3-8B-base) and
0.752 (Mistral-7B-v0.3-base). The LiReFs projections
exhibit a spectrum-like distribution, where continuous
increases in Reasoning Scores correspond to progres-
sively rising Projection Values along the LiReFs direc-
tion.

ual stream representation h(l)(x) by LLaMA3-8B- 364

base and Mistral-7B-v0.3 models. We observe that 365

as problems receive higher reasoning scores as- 366

signed by GPT-4o, they tend to have larger ac- 367

tivation values along the LiReF direction. This 368

correlation is notably strong across both models, 369

with Spearman correlation coefficients of 0.840 for 370

LLaMA3-8B-base and 0.752 for Mistral-7B-v0.3- 371
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The hidden states of coding tasks, which involve both
reasoning and memory recall, are positioned around the
boundary (grey dashed line) fitted via logistic regres-
sion.

base. These findings suggest that problems with372

near-zero LiReF activations likely involve both373

memory and reasoning capabilities.374

To further validate our results, we conducted ad-375

ditional PCA experiments on the Coding tasks -376

which have been identified by numerous studies as377

a representative task type requiring both memory378

and reasoning capabilities in LLMs (Zhao et al.,379

2025; Chen et al., 2024). The results are shown380

in Figure 5, where we observe that the residual381

stream activations of two Coding tasks, MBPP382

(Austin et al., 2021) and HumanEval (Chen et al.,383

2021), are both positioned near the boundary. This384

further supports our finding that data points situ-385

ated between the two extremes represent task types386

that engage both memory and reasoning abilities in387

LLMs.388

4 Causal validation of LiReFs389

4.1 Inference-time LiReF intervention390

In this section, we conduct experiments where we391

manually intervene in the residual stream activa-392

tions during inference time. By adjusting the in-393

tensity of linear reasoning features in model resid-394

ual streams, we examine how model performance395

on both memory-intensive and reasoning-intensive396

tasks will change.397

In particular, for all tokens of each question,398

we modify their residual stream representations399

in a specific layer by adding an intervention vector400

along the LiReF direction, as suggested in Equation401

3. To enhance the most relevant model capability,402

we adopt negative values of α for DMemory, and403

positive α values for DReaoning. After carefully404

tuning α on validation sets, we ask each model405

to generate answers for questions in DMemory and 406

DReaoning, and measure its performance change un- 407

der inference-time LiReF intervention. More de- 408

tails about the experimental setup, including the 409

validation-test set splits, hyperparameter selection 410

criteria and inference settings can be found in Ap- 411

pendix D. 412

The main results are shown in Table 1. We ob- 413

serve that intervening LiReFs during inference time 414

effectively improves the performance of four LLMs 415

on both memory-intensive and reasoning-intensive 416

tasks. Moreover, the improvements remain con- 417

sistent across different task types, domains, and 418

languages, further supporting our claim that the 419

reasoning features in LLM residual streams cap- 420

ture general reasoning capability. In the next sec- 421

tion, we will present specific cases to illustrate how 422

reasoning feature intervention improves model per- 423

formance by reducing reasoning step errors and 424

correcting the misapplication of model abilities. 425

4.2 Cases Study 426

In the PCA analyses presented in Section 3.3, we 427

observed certain sample cases that, although la- 428

beled as reasoning-intensive by GPT-4o or by the 429

task name, have negative LiReF activations on the 430

memorization subspace. Similarly, some cases 431

that were labeled as memory-intensive instead fall 432

into the reasoning subspace with positive-valued 433

LiReFs. In this section, we analyze these cases 434

and also conduct LiReF intervention experiments, 435

aiming to correct any potential reasoning errors or 436

unfaithful reasoning steps. 437

Firstly, we collect questions in MMLU-Pro 438

whose reasoning label contradicts the actual feature 439

subspace in which they are positioned. (e.g., cases 440

whose GPT-4o-assigned reasoning score is much 441

less than 0.5, but have a positive-valued LiReF ac- 442

tivation), and evaluate LLaMA3-8B-base on them 443

to identify a subset of questions where the model 444

provides incorrect answers. Then we obtained a 445

subset of 184 cases in total. Next, we perform 446

inference-time LiReF intervention on these exam- 447

ples following the same settings in Section 4.1, 448

and compare their accuracy and actual outputs be- 449

fore and after the intervention. We found that, by 450

shifting LiReF activation to have the sign that is 451

consistent with GPT-4o-assigned reasoning score, 452

model accuracy on this subset jumps from 0 to 0.21. 453

Table 2 presents some exemplar questions in our 454

analyses, together with model answers before and 455

after LiReF intervention. These results suggest that 456

6



Memory-Intensive Dataset Reasoning Dataset

Base model MMLU-Pro-M PopQA C-Eval-H MMLU-Pro-R GSM-8k MGSM

LLaMA3-8B-base 41.1 / 48.3 ↑7.2 33.4 / 35.6 ↑2.2 45.2 / 47.4 ↑2.2 24.2 / 33.5 ↑9.3 49.0 / 53.1 ↑4.1 28.5 / 34.6 ↑6.1

Gemma2-9B-base 37.5 / 50.1 ↑12.6 29.2 / 30.3 ↑1.1 52.1 / 52.1 29.2 / 44.7 ↑15.5 61.9 / 63.5 ↑1.6 45.8 / 47.0 ↑1.2

Mistral-7B-v0.3-base 37.8 / 43.6 ↑5.8 30.1 / 30.9 ↑0.8 38.2 / 44.0 ↑5.8 20.8 / 21.7 ↑0.9 35.1 / 36.2 ↑1.1 12.0 / 12.0
OLMo2-7B-base 19.4 / 25.0 ↑5.6 19.2 / 20.1 ↑0.9 26.0 / 28.9 ↑2.9 11.3 / 16.5 ↑5.2 11.5 / 12.3 ↑0.8 10.1 / 11.3 ↑1.2

Table 1: The performance of four base models on six benchmarks, before and after feature intervention. The results
indicate that by shifting the residual stream of the reasoning-required or memory-required tasks further to the
specific feature regions, overall task performance can be substantially enhanced.

LLM reasoning errors might not be due to a lack of457

relevant knowledge, but are caused by the insuffi-458

cient activation of its acquired generalizable think-459

ing capabilities, which can be alleviated through460

targeted inference-time intervention of reasoning461

features.462

4.3 Reasoning Generalization Effects463

In the previous experiments, we noticed that the fea-464

tures of certain questions from reasoning datasets465

lie in the memory subspace with negative LiReF466

activations. Therefore, we suspect that the mod-467

els might have solved these reasoning questions468

through memorization (possibly due to training469

data contamination), rather than applying genuine470

reasoning capability that is generalizable under sys-471

tematic input variation. To verify this hypothesis,472

we conduct additional features intervention experi-473

ments on GSM-Symbolic (Mirzadeh et al., 2025) in474

this section. GSM-Symbolic is a variant of GSM-475

8k. It selects 100 question templates from GSM-8k476

and then generates 50 different instances for each477

template by varying numerical conditions, results,478

and other factors. The resulting dataset contains479

5,000 data points, making it ideal for a reliable480

evaluation of the model’s reasoning generalization481

capabilities.482

Figure 6 shows mean model accuracy on GSM-483

Symbolic, GSM-8k, and MMLU-Pro-M under484

inference-time LiReF intervention. We can see that485

as the intervention intensity α increases from 0, the486

performance of all four models on both GSM-8k487

and GSM-Symbolic rises consistently. On the other488

hand, as α decreases from 0, we observe that, com-489

pared to GSM-8k, GSM-Symbolic experiences a490

more significant performance drop with suppressed491

LiReFs. Notably, the performance gain and loss492

on GSM-Symbolic suggests that LiReF interven-493

tion is likely enhancing the genuine model reason-494

ing capability that is generalizable, as opposed to495

case-based reasoning skills that rely more on mem-496

orization of particular training examples. Interest- 497

ingly, we also observe that the performance drop 498

on GSM-8K under LiReF suppression is less pro- 499

nounced compared to GSM-Symbolic, and there is 500

even a slight improvement with a moderate suppres- 501

sion when setting α = −0.05. This implies that 502

the model might have previously been exposed to 503

GSM-8K due to data leakage, and therefore adopts 504

a memory-intensive strategy to answer these ques- 505

tions. While for MMLU-Pro-M, performance im- 506

proves steadily as α decreases, supporting our ob- 507

servation that reducing the projection values of the 508

model’s residual stream in the LiReFs direction en- 509

hances the model’s ability to recall from memory. 510

5 Conclusion 511

In this study, we show that the reasoning and mem- 512

orization abilities of LLMs across various domains 513

and languages are driven by a shared set of lin- 514

ear reasoning features within their activation space. 515

These features can be uncovered by contrasting 516

the hidden representations of reasoning-intensive 517

and memory-intensive queries. Furthermore, we 518

demonstrate that intervening on these Linear Rea- 519

soning Features (LiReFs) during model inference 520

improves both accuracy and robustness to pertur- 521

bations when handling reasoning tasks. We also 522

reveal that manipulating these reasoning features 523

enables the model to more precisely activate the 524

most relevant problem-solving capabilities during 525

answer generation. Our findings offer a mechanis- 526

tic understanding of how reasoning and memoriza- 527

tion interact in LLMs, providing a foundation for 528

future research aimed at building more capable and 529

interpretable generative reasoning systems. 530

6 Limitations 531

Our work has several limitations. First, we only 532

studied reasoning features in relatively small LLMs, 533

while recent studies show that by scaling up both 534
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Example Question Answer before Intervention Correct Answer after Intervention Error Reason

Speed of data transmission in 4-
G network of telecom is?

4G networks are designed to provide ultra-
fast speeds, and with advancements in LTE-
Advanced and carrier aggregation, they can
reach speeds as high as 10 Gbps. The an-
swer is 10 Gbps.

The speed of data transmission in a 4G
network typically ranges from 100 Mbps
(megabits per second) to 1 Gbps (gigabit per
second), depending on factors such as net-
work congestion. The answer is 100 Mbps
to 1 Gbps.

Shallow Mem-
ory recall

A sound wave with frequency
f travels through air at speed v.
With what speed will a sound
wave with frequency 4f travel
through the air?

4f is four times the frequency of f, so the
wavelength of 4f is one-fourth the wave-
length of f. Since the speed of sound is the
product of frequency and wavelength, the
speed of 4f is one-fourth the speed of f. The
answer is v/4.

The speed of sound in air is independent of
the frequency of the sound wave. It only
depends on factors like the medium and the
temperature of the air. So, if a sound wave
with frequency f travels through air at speed
v, a sound wave with frequency 4f will also
travel through the air at the same speed, v.
The answer is v.

Overthinking

Table 2: Example questions and outputs before and after features intervention on the LLaMA3-8B-base model.
They are both Memory-Intensive questions, but the features were incorrectly positioned in the Reasoning region.
After shifting the Features to the appropriate region, the error was corrected.
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Figure 6: Performance of the four base models on the GSM-8k, GSM-Symbolic, and MMLU-Pro-M datasets, with
varying hyperparameter α to control the intensity of feature intervention.

model size and inference-time computation, the535

reasoning capability of LLMs can be significantly536

improved (Hoffmann et al., 2022; OpenAI, 2024).537

Second, we have focused mostly on reasoning prob-538

lems that can be addressed through short answers,539

while it remains unclear whether LiReFs can be540

utilized to enhance model’s ability of performing541

deliberate reasoning via various prompt engineer-542

ing techniques such as chain-of-thought (Wei et al.,543

2022), self-reflection (Shinn et al., 2024), and tree-544

of-thought (Yao et al., 2024). Third, we formu-545

late memorization as performance inconsistency546

against reasoning question perturbation, while an-547

other line of LLM reasoning research has employed548

a different definition of counterfactual memoriza-549

tion – i.e., change of model answers on particular550

test questions after removing a similar example551

from training data (Zhang et al., 2023; Hu et al.,552

2024). Future work should investigate Whether553

perturbational and counterfactual memorization are554

mechanistically equivalent and, therefore, can be555

both mediated by LiReFs.556
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A Prompts1294

Table 3 presents the prompt we used to query GPT-1295

4o to assign a Reasoning Score to each question.1296

B Details of Datasets1297

Here, we provide further details about the datasets1298

used in Sections 3 and 4.1299

MMLU-Pro-M (Wang et al., 2024b) and MMLU-1300

Pro-R MMLU-Pro is a comprehensive bench-1301

mark designed to assess the advanced language1302

understanding and reasoning capabilities of large1303

language models (LLMs). It spans 14 diverse do-1304

mains such as mathematics, physics, chemistry,1305

law, engineering, psychology, and health, encom-1306

passing over 12,000 questions. It features 10 op-1307

tions per question, significantly increasing the dif-1308

ficulty and robustness of the benchmark. Unlike1309

MMLU, MMLU-Pro focuses on more challenging1310

college-level problems that require deliberate rea-1311

soning across various domains. In this work, we1312

use GPT-4o to assign a Reasoning Score to each1313

question. We then divide the questions into two1314

subsets: those with a score greater than 0.5 are cate-1315

gorized as MMLU-Pro-R, while those with a score1316

of 0.5 or below are classified as MMLU-Pro-M.1317

PopQA (Mallen et al., 2023) PopQA focuses1318

on evaluating factual knowledge in large language1319

models, specifically targeting knowledge about en-1320

tities, defined as triplets of (subject, relationship,1321

object). The task is framed as open-domain ques-1322

tion answering, where a model is asked to pre-1323

dict an answer without pre-given ground-truth para-1324

graphs. This study explores few-shot learning and1325

prompts LMs without parameter updates, in con-1326

trast to fine-tuning approaches. The performance is1327

measured by accuracy, where a prediction is consid-1328

ered correct if any substring matches a gold answer.1329

C-Eval-H (Huang et al., 2023) C-EVAL is a1330

comprehensive Chinese evaluation suite designed1331

to assess the advanced knowledge and reasoning1332

abilities of large language models (LLMs) in a Chi-1333

nese context. As traditional NLP benchmarks pri-1334

marily focus on English and fail to capture the1335

unique challenges of Chinese language models, C-1336

EVAL addresses this gap by providing a detailed1337

evaluation framework tailored to the Chinese lan-1338

guage and culture. It includes 13,948 multiple-1339

choice questions across 52 diverse disciplines, rang-1340

ing from humanities to science and engineering,1341

and spans four difficulty levels: middle school, 1342

high school, college, and professional exams. In 1343

this work, we focus on the humanities portion and 1344

refer to it as C-Eval-H. 1345

GSM8k (Cobbe et al., 2021) GSM8k is a dataset 1346

designed to evaluate the mathematical reasoning 1347

abilities of large language models (LLMs). It con- 1348

sists of 8.5K grade school-level math problems 1349

paired with natural language solutions. The dataset 1350

aims to address the challenges faced by LLMs 1351

in performing multi-step mathematical reasoning, 1352

which often reveals a critical weakness in these 1353

models. 1354

MGSM (Shi et al., 2022) The MGSM (Multi- 1355

lingual Grade School Math) benchmark is intro- 1356

duced to assess multilingual reasoning abilities 1357

in large language models, addressing the gap be- 1358

tween English-based chain-of-thought (COT) rea- 1359

soning and multilingual NLP tasks. Building on 1360

the GSM8K dataset, MGSM extends it to ten typo- 1361

logically diverse languages through manual trans- 1362

lations. . 1363

C Additional Experiments 1364

C.1 Detailed Plot of the PCA results 1365

In this section, we present additional PCA results 1366

from various layers of the LLaMA3-8B-base and 1367

Gemma2-9B-base models discussed in Section 3.2, 1368

which is shown in Figure 7 and Figure 8. We also 1369

provide fine-grained PCA visualizations of ques- 1370

tions from different subject domains in MMLU-Pro 1371

in Figure 9. Additionally, we include heatmaps 1372

in Figure 10 demonstrating that the first principal 1373

component from our PCA experiments captures 1374

the majority of the mean activation differences be- 1375

tween DMemory and DReasoning. 1376

D Details of the Intervention Experiments 1377

Here, we provide more implementation details in 1378

the Features Intervention Experiments described in 1379

Section 4. 1380

Inference Settings For the few-shot settings, we 1381

adhere to the original experimental setup across all 1382

datasets. Specifically, we use 5-shot for MMLU- 1383

Pro-M, MMLU-Pro-R, and C-Eval-H, and 8-shot 1384

for GSM8k, MGSM, and GSM-Symbolic. Addi- 1385

tionally, we run 0-shot for PopQA, following the 1386

original configuration. 1387
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Prompt

• Analyze the question to determine its position on the reasoning-memory
spectrum. Return:

1. Concise justification (1-2 sentences)

2. Score [0.0–1.0] where:

– 1.0 = Strictly requires multi-step reasoning
(calculations/formulas/deductions)

– 0.0 = Purely factual recall or the inference of humanities knowledge

– Intermediate values indicate hybrid characteristics

Scoring Guidelines:

– +0.5 if contains numerical values/percentages

– +0.3 per required calculation step

– +0.2 if requires unit conversions

– -0.4 if answer appears verbatim in STEM textbooks

– Max 1.0 | Min 0.0

Examples:

1. Score 0.0:

Question: “Polarization is a property of...”
Options: [transverse waves,...]
Analysis: Directly tests textbook knowledge about wave properties
without calculations.
Score: 0.0

2. Score 0.35:

Question: “An owner of an apartment building in a rundown section
of town knew...If the neighbor asserts a claim against the owner
to recover damages for his injury, he should”
Options: [not recover, because the owner can’t be held
responsible...]
Analysis: Humanities-oriented question, which, although
requiring multi-step reasoning, still leans more towards a
memorization-based approach.
Score: 0.35

3. Score 0.95:

Question: “Order from greatest to least: 3, 3 and 1 over 8, 3.8,
3.18.”
Options: [’3.8, 3 and 1 over 8, 3.18, 3’,...]
Analysis: Requires comparing numerical values and determining
their order.
Score: 0.95

Current Analysis:

Question: “{question_text}”
Options: {options_list}
Analysis:

Table 3: Prompt used to query GPT-4o to assign a Reasoning Score to each question.

16



For both open-ended generation and multi-1388

choices question answering tasks, we allow the1389

model to generate the next 200 tokens.1390

Validation-Test Set Split For parameter tuning1391

and inference, we directly utilized the pre-existing1392

validation and test sets that were already partitioned1393

within each dataset.1394

Hyperparameters Selection Based on the val-1395

idation and test sets we have split, we tune the1396

hyperparameter, α, on the validation set. We adjust1397

it in intervals of 0.05 in absolute value and select1398

the value of α that performs best on the validation1399

set to apply to the test set.1400

All the experiments in this work were conducted1401

on four 80GB NVIDIA A800 GPUs.1402
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Figure 9: Fine-grained PCA visualizations of questions from different subject domains in MMLU-Pro on the model
of LLaMA3-8B-base and Gemma2-9B-base.
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Figure 10: The top one principal component in PCA experiments captures most of the mean difference (Equation 2
between the activations in DMemory and DReasoning.
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