

# 000 RIPPLENET: LEARNING CAUSAL MARITIME DY- 001 NAMICS FOR FORECASTING WARNING-INDUCED RIP- 002 PLE EFFECTS

003  
 004  
 005  
 006 **Anonymous authors**  
 007 Paper under double-blind review  
 008  
 009  
 010  
 011

## ABSTRACT

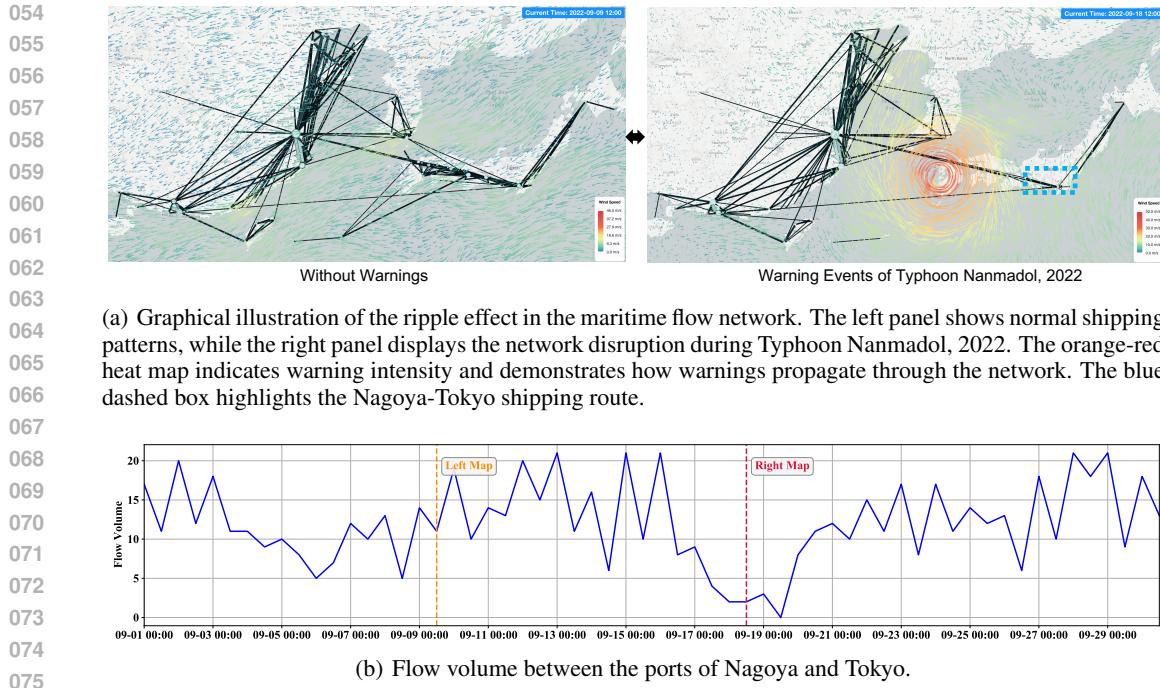
013 Maritime transportation networks, including cargo vessels, tankers, and passenger ships, are critical to global trade but remain highly vulnerable to disruptions  
 014 such as extreme weather or security alerts. These events often trigger ripple effects,  
 015 with cascading impacts extending far beyond the initial warning zones. Traditional  
 016 spatio-temporal forecasting methods struggle to capture these dynamics  
 017 due to their reliance on correlations rather than causal reasoning, particularly in  
 018 maritime contexts. To address this challenge, we propose RippleNet, a novel  
 019 causal spatio-temporal framework that explicitly models causal dependencies to  
 020 predict port-to-port flow disruptions under warning-induced ripple effects. RippleNet  
 021 comprises three key components: (i) a neural deconfounding module that  
 022 employs causal adjustment techniques to disentangle genuine causal effects from  
 023 spurious correlations, addressing confounding factors that arise when warnings  
 024 simultaneously affect multiple maritime operational aspects, (ii) a continuous-  
 025 time ODE module that simulates the propagation of disruptions across vessel  
 026 networks, and (iii) LLM-generated warning vectors that quantify the multidimen-  
 027 sional operational impacts of various warning types. Experiments on maritime  
 028 flow datasets from East Asia and Northwest Europe show that RippleNet signif-  
 029 icantly outperforms state-of-the-art baselines under warning scenarios, while  
 030 offering interpretable causal insights into heterogeneous vessel flow behavior.

## 1 INTRODUCTION

032 Maritime transportation networks form the backbone of global trade and mobility, with cargo vessels  
 033 carrying over 90% of international freight, tankers transporting essential energy resources, and passenger ships facilitating human mobility across oceans He et al. (2019); Zhou et al. (2020). However,  
 034 these diverse vessel networks exhibit remarkable vulnerability to disruptions, where localized warnings  
 035 can trigger cascading effects across the entire system, affecting all vessel types simultaneously.  
 036 The September 2022 typhoon “Nanmadol” exemplified this phenomenon: while primarily affecting  
 037 Japanese waters, the resulting warnings caused vessel traffic reductions of 70% across cargo,  
 038 tanker, and passenger operations in Tokyo Bay, 72-hour delays for container ships in Shanghai, oil  
 039 tanker rerouting through alternative channels, passenger ferry cancellations affecting thousands of  
 040 travelers, and unexpectedly, 15% throughput drops in Singapore—located 3,000 kilometers from the  
 041 typhoon’s path—impacting all three vessel categories.

042 This “ripple effect” reveals a fundamental challenge in maritime operations: warning impacts  
 043 propagate through complex causal mechanisms that extend far beyond geographical proximity  
 044 El Mekkaoui et al. (2023); Hu et al. (2022). Figure 1 demonstrates how warning signals (orange-red  
 045 regions) disrupt normal shipping patterns, with the Nagoya-Tokyo route experiencing a 70% flow  
 046 reduction during the warning period. Understanding and predicting these cascading disruptions is  
 047 critical for maintaining supply chain resilience Li et al. (2023); Zhang et al. (2019), yet remains a  
 048 significant scientific challenge Su et al. (2020); Xu & Zhang (2022); Zhang & Li (2022).

049 Existing approaches to maritime traffic prediction face inherent limitations when confronting  
 050 warning-induced disruptions. Traditional methods, including time series models Williams (1999);  
 051 Zhang et al. (2011) and graph neural networks Wu et al. (2019; 2020); Veličković et al. (2017),



rely primarily on historical correlations and perform adequately under normal conditions. However, they fail during anomalous events because they cannot distinguish between spurious correlations and genuine causal relationships Pearl et al. (2000); Glymour et al. (2016). Warning impacts exhibit pronounced spatio-temporal heterogeneity, where identical warnings produce vastly different effects across regions and time periods Zheng et al. (2020); Guo et al. (2019). This fundamental mismatch between correlation-based learning and causal propagation mechanisms results in substantial prediction degradation during critical warning scenarios Zhang & Li (2022); Zhou et al. (2022).

To address these limitations, we propose RippleNet (Causal Spatio-Temporal Transformer), a novel framework that explicitly models causal relationships in maritime warning propagation. Our approach represents inter-port dynamics as continuous-time systems governed by discovered causal structures Yang et al. (2022); Zheng et al. (2021); Fang et al. (2021); Ji et al. (2022). The main contributions of this work are summarized as follows:

- We propose a causally-informed deep learning framework for maritime flow prediction that integrates warning information through a neural deconfounder and continuous-time propagation dynamics.
- We develop an ODE-based ripple propagation module that captures both immediate and persistent disruption effects through adaptive decay mechanisms tailored to maritime operational constraints.
- We demonstrate substantial improvements over state-of-the-art baselines on two real-world maritime flow networks, with ablations verifying each component’s contribution and case studies examining typhoon-driven ripple effects.

## 2 RELATED WORK

**Maritime Traffic Forecasting.** Maritime traffic prediction traditionally relies on statistical approaches like ARIMA Zhang et al. (2011), Kalman filtering He et al. (2019), and grey models Xiao & Duan (2020). Recent advances employ machine learning techniques, including PSO-BP networks Zhang et al. (2019) and deep learning Zhou et al. (2020); Li et al. (2023), showing improved accuracy. However, these methods primarily address normal operating conditions and fail to adequately model the impacts of maritime warnings or the cascading effects within port networks Su



Figure 2: Architecture of our RippleNet framework. The model processes route signals and warning vectors through spatial-temporal embedding and attention mechanisms, decomposes causal relationships via learned deconfounder, and integrates ODE-based ripple effect propagation with decay functions to predict warning impacts across the maritime route network.

et al. (2020); Xu & Zhang (2022). Although some studies have attempted to incorporate weather data Hu et al. (2022), they do not effectively capture the complex causal mechanisms underlying ripple effects in maritime networks.

**Spatial-Temporal Graph Neural Networks.** STGNNs effectively model network dynamics Wu et al. (2019; 2020); Jin et al. (2023). Foundational works like STGCN Yu et al. (2018), Graph WaveNet Wu et al. (2019), and GMAN Zheng et al. (2020) capture spatio-temporal dependencies through graph convolutions, dilated convolutions, and attention mechanisms. Recent advances explore adaptive graph learning Bai et al. (2020), continuous-time modeling Fang et al. (2021); Choi et al. (2022), and multi-faceted spatial modeling Han et al. (2021). Despite success in road traffic forecasting Jiang et al. (2021), these correlation-based models struggle with anomalous events and warning scenarios Wang et al. (2021); Zhang et al. (2020).

**Causal Modeling for Complex Systems.** Correlation-based limitations have driven interest in causal inference for network data Pearl et al. (2000); Glymour et al. (2016). Recent integration of causal reasoning with deep learning includes causal attention Sui et al. (2022), deconfounding techniques Wu et al. (2022), and out-of-distribution frameworks Yang et al. (2022); Li et al. (2022); Zhou et al. (2022). While promising for robustness and interpretability, maritime applications remain unexplored. Our work introduces a causal-enhanced framework targeting ripple effect prediction following maritime warnings, incorporating higher-order topological structures Edelsbrunner et al. (2000); Huang et al. (2023) and causal discoveries to capture complex propagation patterns.

### 3 PRELIMINARIES

**Definition 1** (Maritime Network). *We represent the maritime network as a directed weighted time-varying graph  $\mathcal{G}_t = (\mathcal{R}, \mathcal{E})$ , where  $\mathcal{R} = \{r_1, r_2, \dots, r_N\}$  denotes the set of shipping routes, and  $\mathcal{E} \subseteq \mathcal{R} \times \mathcal{R}$  represents the set of directed adjacency relationships between routes.*

**Definition 2** (Maritime Events). *Maritime events are defined as warnings or disruptions affecting shipping routes at specific times. Let  $a_t^{r_i}$  denote an event affecting shipping route  $r_i$  at time  $t$ . The system-wide event state is denoted by vector  $A_t = [a_t^{r_1}, a_t^{r_2}, \dots, a_t^{r_N}]^T$ . We then obtain the*

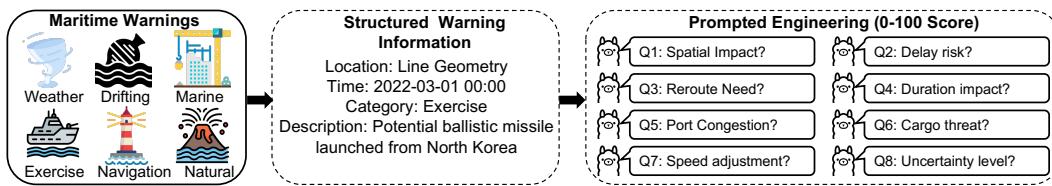


Figure 3: **Prompt-based generation process of warning vector.** Maritime warnings are structured into location, time, category, and description, then processed by LLMs to generate quantitative impact scores (0-100) across eight dimensions.

corresponding binary warning impact score  $B_t$  via the Large Language Model (LLM), based on the input of maritime events  $A_t$ .

**Definition 3** (Problem Formulation). *Given a maritime network represented as a time-varying graph  $\mathcal{G}_t = (\mathcal{R}, \mathcal{E})$ , where  $\mathcal{R}$  denotes shipping routes and  $\mathcal{E}$  represents directed route connections, our objective is to predict the ripple effects of maritime warnings on vessel flow patterns. We incorporate spatial-temporal embeddings  $\mathbf{E}_t$  to capture node-specific contextual information. Formally, we learn a mapping:*

$$f : (\mathbf{X}_{t-T:t}, B_{t-T:t}, \mathbf{A}_{adj}, \mathbf{E}_{t-T:t}) \rightarrow \mathbf{Y}_{t+1:t+T'}$$

where  $\mathbf{X}_t \in \mathbb{R}^{N \times d_f}$  represents traffic flow features,  $B_t \in \{0, 1\}^8$  indicates binary warning impact scores,  $\mathbf{A}_{adj} \in \{0, 1\}^{N \times N}$  is the adjacency matrix encoding route connections,  $\mathbf{E}_t \in \mathbb{R}^{N \times d_e}$  denotes spatial-temporal node embeddings, and  $T, T'$  denote historical and prediction horizons respectively, with  $N = |\mathcal{R}|$  being the number of shipping routes.

## 4 METHODOLOGY

Building on the causal foundations established in our problem formulation, we present RippleNet, a deep learning framework that operationalizes causal inference principles for maritime network prediction. As illustrated in Figure 2, our approach processes route signals and warning vectors through spatial-temporal embedding, applies a learned deconfounder for causal decomposition, and employs ODE-based ripple propagation to predict warning impacts across maritime networks. **Throughout this section we explicitly treat the LLM-derived warning vector  $B$  as the operational treatment variable and design the architecture to estimate  $P(\mathbf{Y}_{t+1:t+T'} | do(B))$  while adjusting for pre-treatment contextual covariates ( $\mathbf{X}, \mathbf{V}, \mathbf{E}$ ).** The framework addresses a critical limitation in existing methods: their dependence on correlations rather than causal mechanisms when modeling warning-induced disruptions Pearl et al. (2000); Yang et al. (2022).

**Warning Vector Generation.** Maritime warnings arrive in heterogeneous, unstructured formats—from meteorological bulletins describing typhoon trajectories to security advisories detailing piracy threats. This diversity creates challenges for neural networks requiring structured numerical inputs. We address this through large language model-based quantification using domain-specific prompts, as is shown in Figure 3.

Raw warning event  $A_t$  is transformed into structured 8-dimensional impact scores  $\mathbf{q}_t = [q_1^t, q_2^t, \dots, q_8^t]^\top \in [0, 100]^8$ , where each dimension captures distinct operational impacts: spatial coverage ( $q_1$ ), delay risk ( $q_2$ ), rerouting necessity ( $q_3$ ), duration impact ( $q_4$ ), route congestion ( $q_5$ ), speed adjustments ( $q_6$ ), cargo threats ( $q_7$ ), and uncertainty levels ( $q_8$ ). For integration into our causal

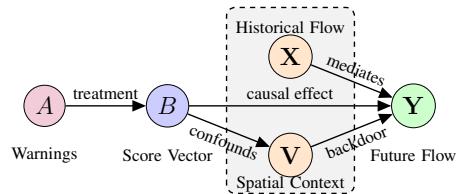


Figure 4: **Causal diagram illustrating the back-door adjustment** paths from warning signal ( $B$ ) to future flow ( $Y$ ) through key mediating mechanisms: historical flow patterns ( $X$ ) and adjacency relationships ( $V$ ), with maritime warning events ( $A$ ) as the initial causal input.

modeling framework, these continuous scores are then discretized into binary warning indicators:  $B_t = [b_1^t, b_2^t, \dots, b_8^t]^\top \in \{0, 1\}^8$ , where  $b_i^t = \mathbb{I}\{q_i^t > \tau_i\}$ , with threshold  $\tau_i$  determined empirically for each dimension. This binary representation enables our neural modules to reason about warning impacts as discrete treatment variables suitable for causal inference. In our design, we view  $B_t$  as the actionable “knob” that operators can adjust (e.g., severity, duration, spatial extent), whereas  $A_t$  is raw, unstructured text used only to construct  $B_t$ ; all counterfactual questions in this work therefore take the form “what if the warning characteristics had been different?” and are formalized as interventions  $do(B_t)$ . The thresholds  $\{\tau_i\}$  are chosen by combining domain guidelines with small validation sweeps, and we empirically observe that model performance is stable over a broad range of  $\tau_i$  values; detailed robustness results are reported in Appendix A.3.

**Spatial-Temporal Embedding.** To capture node-specific contextual information, we incorporate spatial-temporal embeddings that encode both geographical characteristics and temporal patterns. The spatial component captures route coordinates and network topology:

$$\mathbf{E}_i^{(s)} = f_\phi([\mathbf{p}_i, \mathbf{c}_i]) \in \mathbb{R}^{d_s} \quad (1)$$

where  $\mathbf{p}_i$  represents geographical coordinates and  $\mathbf{c}_i$  contains connectivity features. The temporal component encodes cyclical patterns:

$$\mathbf{E}_t^{(t)} = f_\psi([\mathbf{h}_{\text{hour}}, \mathbf{d}_{\text{day}}, \mathbf{m}_{\text{month}}]) \in \mathbb{R}^{d_t} \quad (2)$$

The final embedding combines both components:  $\mathbf{E}_{i,t} = f_\xi([\mathbf{E}_i^{(s)}, \mathbf{E}_t^{(t)}]) \in \mathbb{R}^{d_e}$ . Because these embeddings are constructed entirely from information available *before* a warning is issued, they act as additional pre-treatment covariates in our causal adjustment set together with historical flows  $\mathbf{X}$  and network structure  $\mathbf{V}$ .

**Causal Deconfounder Block.** Predicting maritime warning impacts requires distinguishing genuine effects from spurious correlations—a fundamental challenge for traditional forecasting methods Pearl et al. (2000); Glymour et al. (2016). During Typhoon Nanmadol in September 2022, correlation-based models incorrectly attributed Busan port congestion to local warnings, missing the true cause—vessel diversions from Japanese ports creating cascading effects Wang et al. (2021).

Our Deconfounder Block implements a neural approximation of causal adjustment to address this limitation. We adopt the following causal semantics: (i)  $A$  denotes the raw warning text (unstructured, non-manipulable), (ii)  $B$  is its structured, quantitative representation (our operational treatment), and (iii)  $(\mathbf{X}, \mathbf{V}, \mathbf{E})$  are genuinely pre-treatment contextual covariates/confounders that affect both warning impacts and future flows. Given the causal structure in Figure 4, where warning events  $A$  generate impact scores  $B \in \{0, 1\}^8$  that influence future flows  $\mathbf{Y}_{t+1:t+T'} \in \mathbb{R}^{N \times T'}$  through pre-treatment contextual covariates/confounders  $\mathbf{M} = \{\mathbf{X}, \mathbf{V}\}$  and spatial-temporal embeddings  $\mathbf{E}$ , where  $\mathbf{X}$  represents historical flow patterns and  $\mathbf{V}$  captures spatial context, we implement a neural back-door adjustment strategy to control for confounding:

$$P(\mathbf{Y} | do(B)) = \sum_{\mathbf{m}, \mathbf{e}} P(\mathbf{Y} | B, \mathbf{M} = \mathbf{m}, \mathbf{E} = \mathbf{e}) \cdot P(\mathbf{M} = \mathbf{m}, \mathbf{E} = \mathbf{e}) \quad (3)$$

This back-door adjustment controls for confounding by conditioning on the sufficient set of pre-treatment covariates  $\mathbf{M} = \{\mathbf{X}, \mathbf{V}\}$  and spatial-temporal embeddings  $\mathbf{E}$ , then marginalizing over their joint distribution, following Pearl’s causal hierarchy. Intuitively,  $P(\mathbf{Y} | do(B))$  answers policy-relevant questions such as “what if the same maritime context  $(\mathbf{X}, \mathbf{V}, \mathbf{E})$  had been exposed to a more/less severe or spatially extensive warning  $B$ ?", while  $A$  merely serves as a noisy text source from which  $B$  is constructed.

The warning encoder processes impact scores:  $\mathbf{h}_B = f_\theta^{(B)}(B_t) \in \mathbb{R}^{d_h}$ , where  $f_\theta^{(B)} : \{0, 1\}^8 \rightarrow \mathbb{R}^{d_h}$  is a multi-layer perceptron. The pre-treatment covariates  $\mathbf{M}$  are modeled through dedicated encoders:

$$\mathbf{H}_\mathbf{X} = f_\phi^{(X)}(\mathbf{X}_{t-T:t}), \quad \mathbf{H}_\mathbf{V} = f_\psi^{(V)}(\mathbf{A}_{adj}, \mathbf{X}_t), \quad \mathbf{H}_\mathbf{E} = f_\omega^{(E)}(\mathbf{E}_{t-T:t}) \in \mathbb{R}^{N \times d_h} \quad (4)$$

where  $f_\phi^{(X)}$  captures historical flow patterns,  $f_\psi^{(V)}$  models spatial context through network adjacency  $\mathbf{A}_{adj} \in \{0, 1\}^{N \times N}$ , and  $f_\omega^{(E)}$  encodes spatial-temporal embedding features. The deconfounder learns to weight the influence of confounding mediators conditional on warning signals.

270 We broadcast the warning representation:  $\mathbf{H}_B = \mathbf{1}_N \otimes \mathbf{h}_B \in \mathbb{R}^{N \times d_h}$  and compute interaction  
271 terms:

272  $\mathbf{C}_{BX} = \sigma(\mathbf{W}_{BX}[\mathbf{H}_B, \mathbf{H}_X]), \quad \mathbf{C}_{BV} = \sigma(\mathbf{W}_{BV}[\mathbf{H}_B, \mathbf{H}_V]), \quad \mathbf{C}_{BE} = \sigma(\mathbf{W}_{BE}[\mathbf{H}_B, \mathbf{H}_E])$

274 where  $[\cdot, \cdot]$  denotes concatenation, and  $\{\mathbf{W}_{BX}, \mathbf{W}_{BV}, \mathbf{W}_{BE}\} \subset \mathbb{R}^{d_h \times 2d_h}$  are learnable transformation  
275 matrices. The final deconfounded representation combines these weighted interactions:

276 
$$\mathbf{Z}_{\text{causal}} = \mathbf{C}_{BX} \odot \mathbf{H}_X + \mathbf{C}_{BV} \odot \mathbf{H}_V + \mathbf{C}_{BE} \odot \mathbf{H}_E \quad (5)$$

278 where  $\odot$  denotes element-wise multiplication. This yields a neural analogue of back-door adjustment:  
279 the interaction gates ( $\mathbf{C}_{BX}, \mathbf{C}_{BV}, \mathbf{C}_{BE}$ ) down-weight spurious correlations between  $B$  and  
280  $\mathbf{Y}$  that are explainable by ( $\mathbf{X}, \mathbf{V}, \mathbf{E}$ ), while preserving components that correspond to genuine treatment  
281 effects.

282 **ODE-Based Ripple Propagation.** Maritime warnings exhibit propagation patterns resembling  
283 physical diffusion processes, yet with domain-specific constraints unique to shipping operations.  
284 We model warning propagation as a continuous-time dynamical system governed by neural ordinary  
285 differential equations. The temporal evolution of route state vectors follows a coupled system:

286 
$$\frac{d\mathbf{x}_i(t)}{dt} = \underbrace{-\sigma_i(t)\mathbf{x}_i(t)}_{\text{Local decay}} + \underbrace{\sum_{j \in \mathcal{N}(i)} \rho_{ij}(t)\mathbf{R}_{ij}(t)g(\mathbf{x}_j(t), \Delta_{ij})}_{\text{Network coupling}} \quad (6)$$

291 where  $\mathbf{x}_i(t) \in \mathbb{R}^{d_s}$  represents the state vector of route  $i$ ,  $\mathcal{N}(i) = \{j : \mathbf{A}_{adj}[i, j] = 1\}$  denotes the  
292 neighborhood, and  $d_s$  is the state dimension. The system is initialized using the causal representation:  
293  $\mathbf{x}_i(0) = g_\xi([\mathbf{Z}_{\text{causal}}[i], \mathbf{e}_i]) \in \mathbb{R}^{d_s}$ , where  $g_\xi : \mathbb{R}^{d_h+d_e} \rightarrow \mathbb{R}^{d_s}$  is an MLP,  $\mathbf{e}_i \in \mathbb{R}^{d_e}$  represents  
294 learnable route embeddings, and  $[\cdot, \cdot]$  denotes concatenation.

295 The coupling matrix incorporates both geographical and topological distances:

296 
$$\mathbf{R}_{ij}(t) = \exp\left(-\frac{\|\mathbf{p}_i - \mathbf{p}_j\|_2^2}{2\sigma_d^2}\right) \exp(-\lambda h_{ij}) \mathbf{I}_{d_s} \quad (7)$$

299 where  $\mathbf{p}_i \in \mathbb{R}^2$  are geographical coordinates,  $h_{ij}$  is the shortest path length,  $\sigma_d > 0$  controls spatial  
300 decay,  $\lambda > 0$  is the network decay parameter, and  $\mathbf{I}_{d_s}$  is the identity matrix. Note that  $\mathbf{R}_{ij}(t)$   
301 and  $\rho_{ij}(t)$  play distinct roles:  $\mathbf{R}_{ij}(t)$  provides a fixed geometric-topological prior specifying where  
302 propagation can occur and its baseline strength, whereas  $\rho_{ij}(t)$  provides a dynamic, data-driven  
303 scaling that determines how strongly it propagates under current conditions.

304 The local decay rate adapts to operational conditions:  $\sigma_i(t) = \sigma_0 + \sum_{k=1}^K \sigma_k \phi_k(\mathbf{s}_i(t))$ , where  
305  $\sigma_0 > 0$  is the baseline rate,  $\{\sigma_k\}_{k=1}^K$  are learnable coefficients, and  $\phi_k(\mathbf{s}_i(t))$  are feature functions  
306 of operational state  $\mathbf{s}_i(t) \in \mathbb{R}^{d_{\text{op}}}$  including capacity utilization and weather conditions.

308 The propagation rate depends on network properties:  $\rho_{ij}(t) = \rho_0 + \rho_1 \mathbf{A}_{adj}[i, j] + \rho_2 F_{ij}(t-1)$ ,  
309 where  $\{\rho_0, \rho_1, \rho_2\} \subset \mathbb{R}^+$  are learnable parameters and  $F_{ij}(t-1) \geq 0$  captures historical flow  
310 intensity.

311 Maritime operations exhibit persistent effects due to scheduling constraints. We model this through  
312 a dual-exponential decay kernel:

313 
$$g(\mathbf{x}_j, \Delta_{ij}) = \mathbf{x}_j \odot \left[ \alpha e^{-\beta \Delta_{ij}} + (1 - \alpha) e^{-\gamma \Delta_{ij}^2} \right] \quad (8)$$

315 where  $\alpha \in [0, 1]$  balances immediate versus persistent effects,  $\{\beta, \gamma\} \subset \mathbb{R}^+$  control decay rates,  
316 and  $\Delta_{ij} = \|\mathbf{p}_i - \mathbf{p}_j\|_2/v_{\text{avg}}$  represents transit time with average vessel speed  $v_{\text{avg}}$ . The ODE  
317 system is solved using adaptive Runge-Kutta methods over interval  $[0, T_{\text{int}}]$  where  $T_{\text{int}} = T' \cdot \Delta t$ :  
318  $\mathbf{H}^{\text{ripple}}[i, :] = \mathbf{x}_i(T_{\text{int}})^T$  for  $i = 1, 2, \dots, N$  where  $\mathbf{H}^{\text{ripple}} \in \mathbb{R}^{N \times d_s}$ . In practice we instantiate  
319 this ODE with a Dormand-Prince RK45 solver (via `torchdiffeq`), which provides adaptive step  
320 sizes and a good accuracy-efficiency trade-off for heterogeneous maritime dynamics. From a causal  
321 perspective, this continuous-time propagation acts as an explicit interference model: a treatment  
322 applied on one route (through its contribution to  $\mathbf{Z}_{\text{causal}}$ ) can influence neighboring routes over time  
323 along the graph edges, with the decay terms controlling how far and how long warning-induced  
perturbations persist.

324 **Attention-Based Integration.** Following ODE-based ripple propagation, we employ multi-head  
 325 self-attention to capture strategic dependencies beyond physical diffusion patterns. Maritime opera-  
 326 tions involve coordinated decision-making that creates non-local interdependencies complementing  
 327 diffusion-based propagation. The attention mechanism operates on concatenated representations:  
 328  $\mathbf{H}_{\text{fused}} = h_{\zeta}([\mathbf{Z}_{\text{causal}}, \mathbf{H}^{\text{ripple}}]) \in \mathbb{R}^{N \times d_h}$ , where  $h_{\zeta} : \mathbb{R}^{N \times (d_h + d_s)} \rightarrow \mathbb{R}^{N \times d_h}$  is a projection net-  
 329 work. Multi-head attention captures diverse dependency patterns:

$$\mathbf{H}_{\text{attn}} = \text{MultiHead}(\mathbf{H}_{\text{fused}}, \mathbf{H}_{\text{fused}}, \mathbf{H}_{\text{fused}}) \in \mathbb{R}^{N \times d_h}.$$

330 Final predictions are generated through temporal projection:  $\mathbf{Y}_{t+1:t+T'} = f_{\text{out}}(\mathbf{H}_{\text{attn}}) \in \mathbb{R}^{N \times T'}$ ,  
 331 where  $f_{\text{out}} : \mathbb{R}^{N \times d_h} \rightarrow \mathbb{R}^{N \times T'}$  maps representations to future flows. The model is trained using  
 332 regularized mean squared error:

$$\mathcal{L}(\Theta) = \frac{1}{2NT'} \left\| \mathbf{Y}_{t+1:t+T'} - \hat{\mathbf{Y}}_{t+1:t+T'} \right\|_F^2 + \frac{\lambda}{2} \|\Theta\|_2^2 \quad (9)$$

333 where  $\Theta$  represents all learnable parameters and  $\lambda > 0$  is the regularization coefficient.

## 339 5 EXPERIMENTS

### 341 5.1 DATASETS & EXPERIMENTAL SETTINGS

343 We conduct experiments on two of the most active maritime regions to evaluate the effectiveness of  
 344 our proposed method: the East Asia and Northwest Europe maritime flow networks. Both networks  
 345 are constructed using Spire AIS data from 2022 and port information from Lloyd’s List Intelli-  
 346 gence. Specifically, we perform port-to-port trajectory segmentation and aggregate departure–arrival  
 347 records into 12-hour intervals (two frames per day) over a full year, ensuring both temporal granu-  
 348 larity and seasonal coverage. In addition, we collect public weather data from the Global Forecast  
 349 System (GFS) and a publicly available maritime warning dataset. Both are used to generate warn-  
 350 ing score vectors through a prompt-based large language model (LLM) approach. Specifically, we  
 351 employ the OpenAI ChatGPT-4o API to transform maritime event sequences into structured and  
 352 multi-dimensional warning vectors.

353 Our flow forecasting task is defined as predicting the next 4 time steps based on the preceding 8.  
 354 We compare our method against one classical statistical baseline (Historical Average) and eight  
 355 state-of-the-art spatio-temporal graph neural networks: STGCN Yu et al. (2018), MTGNN Wu et al.  
 356 (2020), GMAN Zheng et al. (2020), GraphWaveNet Wu et al. (2019), AGCRN Bai et al. (2020),  
 357 PDFFormer Jiang et al. (2023), STAEformer Liu et al. (2023), and CaST Xia et al. (2023). To assess  
 358 the contributions of individual components, we conduct an ablation study with three variants of our  
 359 framework: (1) RippleNet-DEF, which removes the neural back-door adjustment block, thereby dis-  
 360 abling the causal disentanglement mechanism; (2) RippleNet-ODE, which omits the ODE-based rip-  
 361 ple propagation module, thus disabling continuous-time dynamics modeling; (3) RippleNet-LLM,  
 362 which replaces the LLM-generated warning vectors with one-dimensional binary indicators to rep-  
 363 resent the warning event status (i.e., 0 = no event; 1 = event). Model performance is evaluated  
 364 using Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE). More details about the  
 365 datasets and experiments of our model are provided in Appendix A.1.

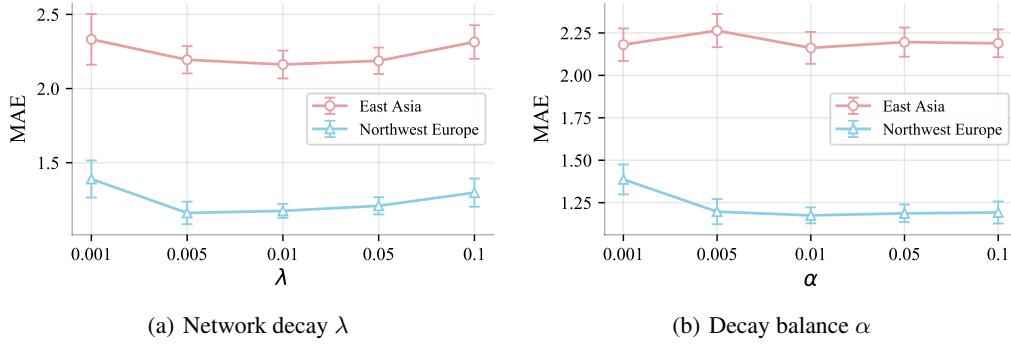
### 366 5.2 EXPERIMENTAL RESULTS

367 **Overall Performance.** As shown in Table 1, our experiments validate the core hypothesis: tradi-  
 368 tional correlation-based methods fail under warning-induced cascading effects, while our RippleNet  
 369 achieves superior performance across both maritime regions. In East Asia, RippleNet outperforms  
 370 the best baseline PDFFormer by 9.5% MAE and 2.5% RMSE at 12-hour predictions, maintaining  
 371 consistent advantages even at 48-hour horizons (6.9% and 1.3% improvements respectively). This  
 372 validates our assertion that warning impacts exhibit persistent propagation requiring causal mech-  
 373 anisms for accurate modeling. Northwest Europe results are more striking, with RippleNet achieving  
 374 19.6% MAE and 7.4% RMSE improvements over MTGNN. This substantial gap reflects the chal-  
 375 lenge of modeling long-range causal propagation in sparse networks, where our ODE-based rip-  
 376 ple module effectively captures cross-regional influences that traditional methods miss. Crucially,  
 377 all deep learning baselines exhibit limitations under warning scenarios. Despite strong normal-  
 378 condition performance, methods like PDFFormer and STAEformer rely on historical correlations and

378

379  
380  
381  
Table 1: 5-run average flow prediction performance comparison on East Asia and Northwest Europe  
maritime transportation networks on different time horizons. **Bold** (red) denotes the best overall  
result, and underline (orange) denotes the best baseline excluding our proposed RippleNet.

| Dataset   | Metric   | HA          | STGCN          | MTGNN          | AGCRN                        | GMAN           | GraphWaveNet   | PDFormer                              | STAEFormer                            | CaST           | RippleNet                    | Improve                         |                                  |
|-----------|----------|-------------|----------------|----------------|------------------------------|----------------|----------------|---------------------------------------|---------------------------------------|----------------|------------------------------|---------------------------------|----------------------------------|
| East Asia | 12 hours | MAE<br>RMSE | 2.819<br>6.915 | 2.370<br>6.333 | 2.444<br>6.511               | 2.475<br>6.383 | 2.337<br>6.343 | 2.325<br><u>2.144</u><br><u>6.020</u> | 2.196<br>6.242                        | 2.232<br>6.287 | <b>1.940</b><br><b>5.872</b> | <b>9.5% ↑</b><br><b>2.5% ↑</b>  |                                  |
|           | 24 hours | MAE<br>RMSE | 2.818<br>6.915 | 2.469<br>6.350 | 2.564<br>6.528               | 2.524<br>6.689 | 2.434<br>6.417 | 2.429<br><u>2.230</u><br><u>6.197</u> | 2.283<br>6.227                        | 2.306<br>6.290 | <b>2.027</b><br><b>5.988</b> | <b>9.1% ↑</b><br><b>3.4% ↑</b>  |                                  |
|           | 36 hours | MAE<br>RMSE | 2.819<br>6.912 | 2.654<br>6.504 | 2.665<br>6.502               | 2.588<br>6.432 | 2.590<br>6.436 | 2.563<br>6.418                        | 2.300<br><u>2.247</u><br><u>6.247</u> | 2.383<br>6.315 | 2.412<br>6.329               | <b>2.137</b><br><b>6.035</b>    | <b>7.1% ↑</b><br><b>3.4% ↑</b>   |
|           | 48 hours | MAE<br>RMSE | 2.818<br>6.910 | 2.694<br>6.724 | 2.664<br>6.703               | 2.593<br>6.447 | 2.624<br>6.503 | 2.607<br>6.448                        | <b>2.321</b><br><u>2.270</u>          | 2.400<br>6.365 | 2.404<br>6.368               | <b>2.162</b><br><b>6.186</b>    | <b>6.9% ↑</b><br><b>1.3% ↑</b>   |
|           | 12 hours | MAE<br>RMSE | 1.658<br>3.185 | 1.259<br>2.741 | <u>1.228</u><br><u>2.741</u> | 1.323<br>2.860 | 1.338<br>2.851 | 1.316<br><u>2.148</u><br><u>2.715</u> | 1.302<br>2.812                        | 1.265<br>2.738 | <b>0.987</b><br><b>2.513</b> | <b>19.6% ↑</b><br><b>7.4% ↑</b> |                                  |
|           | 24 hours | MAE<br>RMSE | 1.656<br>3.181 | 1.350<br>2.957 | <u>1.257</u><br><u>2.762</u> | 1.329<br>2.868 | 1.355<br>2.932 | 1.330<br>2.875                        | 1.286<br>2.820                        | 1.337<br>2.937 | 1.314<br>2.894               | <b>1.014</b><br><b>2.529</b>    | <b>19.3% ↑</b><br><b>8.4% ↑</b>  |
|           | 36 hours | MAE<br>RMSE | 1.658<br>3.189 | 1.460<br>3.123 | <u>1.288</u><br><u>2.884</u> | 1.364<br>2.939 | 1.378<br>2.950 | 1.369<br>2.946                        | 1.326<br>2.890                        | 1.392<br>3.061 | 1.350<br>3.027               | <b>1.050</b><br><b>2.581</b>    | <b>18.5% ↑</b><br><b>10.5% ↑</b> |
|           | 48 hours | MAE<br>RMSE | 1.665<br>3.205 | 1.488<br>3.142 | <u>1.304</u><br><u>2.886</u> | 1.385<br>2.967 | 1.387<br>2.974 | 1.383<br>2.969                        | 1.334<br>2.940                        | 1.404<br>3.069 | 1.392<br>3.053               | <b>1.175</b><br><b>2.798</b>    | <b>9.9% ↑</b><br><b>3.0% ↓</b>   |

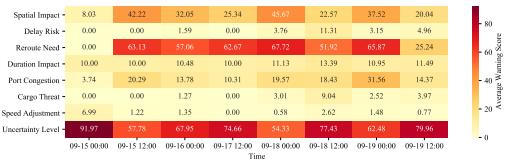
405  
406  
407  
408  
Figure 5: Hyper-parameter analysis (mean  $\pm$  std) for 48-hour prediction horizon.409  
410  
411  
cannot adapt to causal structure changes. RippleNet’s learned deconfounder explicitly disentangles  
genuine causal effects from spurious correlations, maintaining stability during anomalous events  
and demonstrating the necessity of causal reasoning for robust maritime prediction systems.412  
413  
414  
415  
416  
417  
418  
419  
420  
421  
422  
423  
424  
425  
426  
427  
428  
429  
430  
431  
**Ablation Study.** Table 2 demonstrates each  
component’s critical contribution through sys-  
tematic removal. Eliminating the neural back-  
door adjustment (RippleNet-DEF) increases  
MAE by 10.7%/18.7% across regions, val-  
idating that explicit causal disentanglement  
is essential for distinguishing genuine ef-  
fects from confounding factors during warn-  
ing events. Removing ODE-based ripple prop-  
agation (RippleNet-ODE) causes more severe  
degradation with 16.4%/29.5% MAE increases,  
confirming that continuous-time dynamics are  
fundamental for modeling warning propagation through maritime networks. The LLM-generated  
warning vectors exhibit moderate yet consistent importance compared to RippleNet-LLM, with  
7.8% and 3.7% performance improvements, underscoring the value of structured warning quan-  
tification over event treatment representation.432  
433  
434  
**Hyper-parameter Analysis.** Figure 5 examines sensitivity to key hyperparameters. The network  
decay parameter  $\lambda$  achieves optimal performance around 0.01, balancing propagation reach with  
noise reduction. Lower values cause excessive propagation, while higher values limit long-range  
dependency capture. The decay balance parameter  $\alpha$  also performs best at 0.01, indicating maritime500  
501  
502  
503  
Table 2: Ablation study on MAE comparison over  
both maritime transportation networks.

| DEF                                | ODE                                | LLM                                | Datasets                      | Time Horizon                 |                              |                              |                              |
|------------------------------------|------------------------------------|------------------------------------|-------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
|                                    |                                    |                                    |                               | 12 hours                     | 24 hours                     | 36 hours                     | 48 hours                     |
| <span style="color:red">✗</span>   | <span style="color:green">✓</span> | <span style="color:green">✓</span> | East Asia<br>Northwest Europe | 2.147<br>1.172               | 2.325<br>1.261               | 2.348<br>1.336               | 2.354<br>1.245               |
| <span style="color:green">✓</span> | <span style="color:red">✗</span>   | <span style="color:green">✓</span> |                               | 2.258<br>1.278               | 2.396<br>1.316               | 2.393<br>1.344               | 2.407<br>1.390               |
| <span style="color:green">✓</span> | <span style="color:green">✓</span> | <span style="color:red">✗</span>   | East Asia<br>Northwest Europe | 2.092<br>1.024               | 2.156<br>1.043               | 2.249<br>1.065               | 2.278<br>1.194               |
| <span style="color:green">✓</span> | <span style="color:green">✓</span> | <span style="color:green">✓</span> |                               | <b>1.940</b><br><b>0.987</b> | <b>2.027</b><br><b>1.014</b> | <b>2.137</b><br><b>1.050</b> | <b>2.162</b><br><b>1.175</b> |

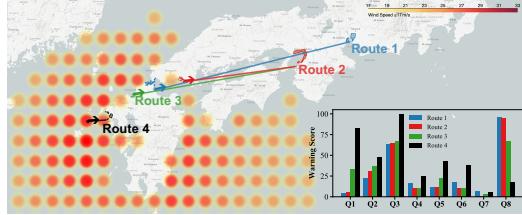
432 warnings exhibit combined immediate and persistent effects. This validates our dual-exponential  
 433 formulation for modeling complex temporal dynamics in warning propagation.  
 434

### 436 5.3 CASE STUDY

437  
 438 To further examine RippleNet’s interpretability  
 439 in capturing warning-induced causal impacts,  
 440 we present two case studies focused on the  
 441 ripple effects triggered by Typhoon Nanmadol  
 442 in September 2022. Figure 6(a) first shows  
 443 the temporal dynamics of LLM-derived warn-  
 444 ing vectors averaged over affected routes, with  
 445 spatial impact (Q1) and rerouting need (Q3)  
 446 peaking around typhoon landfall. Delay risk  
 447 (Q2) and cargo threat (Q6) remain low except  
 448 during peak disruption, reflecting route-level  
 449 resilience. Figure 6(b) maps average scores  
 450 across four routes at varying distances from the  
 451 typhoon’s center; closer routes exhibit higher  
 452 spatial impact, congestion risk, and rerouting  
 453 need, while even distant ones show moderate  
 454 uncertainty (Q8) and duration impact (Q4), in-  
 455 dicating indirect ripple effects. In addition, Fig-  
 456 ure 6(a) shows a clear lead and lag pattern: Q1  
 457 and Q3 rise first, port congestion (Q5) responds  
 458 later, and duration (Q4) remains flat, while Fig-  
 459 ure 6(b) reveals a monotonic distance gradient  
 460 in which distant routes retain elevated Q8 and  
 461 Q4, indicating spillovers mediated by the network.  
 462



(a) Temporal evolution of average warning scores over time across eight dimensions (Q1–Q8) during Typhoon Nanmadol (September 15–19, 2022).



(b) Spatial comparison of warning scores across four routes at varying distances from the typhoon center.

Figure 6: LLM-based warning score analysis. These results demonstrate that RippleNet’s warning scoring yields semantically meaningful signals that adapt to both spatial and operational contexts, supporting robust causal modeling.

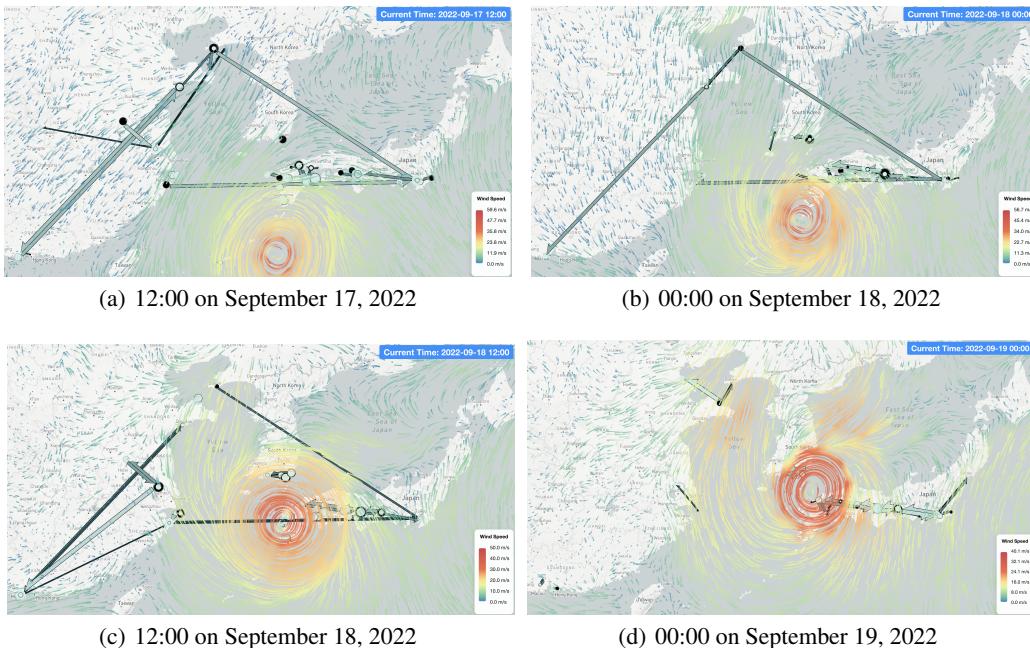


Figure 7: Top-50 Negative Causal Effects at each time step during Typhoon Nanmadol.

486 Moreover, to interpret the temporal suppression of maritime flow by warning signals, we visualize  
 487 the top 50 strongest negative causal effects at each time step during Typhoon Nanmadol, as identified  
 488 by RippleNet. At 12:00 on September 17 (Figure 7(a)), suppressive effects concentrate along Japan’s  
 489 southern coast, where initial warnings emerge. As the typhoon progresses, these effects intensify and  
 490 shift northeastward, peaking around 00:00 on September 18 (Figure 7(b)). By 12:00 on September  
 491 18 (Figure 7(c)), they reach the East China Sea and Korean waters despite mild local weather, indi-  
 492 cating long-range propagation driven by operational and topological factors. At 00:00 on September  
 493 19 (Figure 7(d)), the vortex is more compact and the wind field more coherent, and routes within  
 494 the warning envelope appear more clustered and visibly constrained along the Japanese coastline,  
 495 indicating a localized consolidation of suppressive effects rather than further network-wide spread.  
 496 Unlike correlation-based attention, our model offers interpretable and magnitude-aware representa-  
 497 tions of ripple effects, enhancing maritime decision-making under warning conditions.  
 498

## 499 6 CONCLUSION

500 We presented RippleNet, a novel framework that bridges causal inference with spatio-temporal  
 501 prediction for maritime networks under warnings. By incorporating learned deconfounder  
 502 and continuous-time dynamics, our approach successfully disentangles causal effects from  
 503 correlations—a fundamental limitation of existing methods. The ODE-based ripple propagation  
 504 module captures both immediate and lingering effects through adaptive decay functions, while  
 505 LLM-generated warning vectors enable systematic quantification of heterogeneous disruptions. Em-  
 506 pirical results validate our theoretical insights: causal-aware architectures significantly outperform  
 507 correlation-based models when historical patterns are violated by anomalous events. Future work in-  
 508 cludes extending to multi-modal transportation networks and developing uncertainty quantification  
 509 methods for operational deployment.

## 511 REFERENCES

513 Lei Bai, Lina Yao, Can Li, Xianzhi Wang, and Can Wang. Adaptive graph convolutional recurrent  
 514 network for traffic forecasting. *Advances in neural information processing systems*, 33:17804–  
 515 17815, 2020.

517 Jeongwhan Choi, Hwangyong Choi, Jeehyun Hwang, and Noseong Park. Graph neural controlled  
 518 differential equations for traffic forecasting. In *Proceedings of the AAAI Conference on Artificial  
 519 Intelligence*, volume 36, pp. 6367–6374, 2022.

520 Herbert Edelsbrunner, David Letscher, and Afra Zomorodian. Topological persistence and simplifi-  
 521 cation. In *Proceedings 41st annual symposium on foundations of computer science*, pp. 454–463.  
 522 IEEE, 2000.

524 S. El Mekkaoui, L. Benabbou, S. Caron, and A. Berrado. Deep learning-based ship speed prediction  
 525 for intelligent maritime traffic management. *Journal of Marine Science and Engineering*, 11:191,  
 526 2023. doi: 10.3390/jmse11010191.

528 Zheng Fang, Qingqing Long, Guojie Song, and Kunqing Xie. Spatial-temporal graph ode networks  
 529 for traffic flow forecasting. In *Proceedings of the 27th ACM SIGKDD conference on knowledge  
 530 discovery & data mining*, pp. 364–373, 2021.

531 Madelyn Glymour, Judea Pearl, and Nicholas P Jewell. *Causal inference in statistics: A primer*.  
 532 John Wiley & Sons, 2016.

534 Shengnan Guo, Youfang Lin, Ning Feng, Chao Song, and Huaiyu Wan. Attention based spatial-  
 535 temporal graph convolutional networks for traffic flow forecasting. In *Proceedings of the AAAI  
 536 conference on artificial intelligence*, volume 33, pp. 922–929, 2019.

538 Liangzhe Han, Bowen Du, Leilei Sun, Yanjie Fu, Yisheng Lv, and Hui Xiong. Dynamic and multi-  
 539 faceted spatio-temporal deep learning for traffic speed forecasting. In *Proceedings of the 27th  
 540 ACM SIGKDD conference on knowledge discovery & data mining*, pp. 547–555, 2021.

540 W. He, C. Zhong, M.A. Sotelo, X. Chu, X. Liu, and Z. Li. Short-term vessel traffic flow forecasting  
 541 by using an improved kalman model. *Cluster Computing*, 22:7907–7916, 2019. doi: 10.1007/  
 542 s10586-018-2416-4.

543

544 X. Hu, Z. Yan, and Z. Hao. Predict vessel traffic with weather conditions based on multimodal deep  
 545 learning. *Journal of Marine Science and Engineering*, 11:39, 2022. doi: 10.3390/jmse11010039.

546 Jinghan Huang, Moo K Chung, and Anqi Qiu. Heterogeneous graph convolutional neural network  
 547 via hodge-laplacian for brain functional data. *arXiv preprint arXiv:2302.09323*, 2023.

548

549 Jiahao Ji, Jingyuan Wang, Zhe Jiang, Jiawei Jiang, and Hu Zhang. Stdnet: Towards physics-guided  
 550 neural networks for traffic flow prediction. In *AAAI*, volume 36, pp. 4048–4056, 2022.

551 Jiawei Jiang, Chengkai Han, Wayne Xin Zhao, and Jingyuan Wang. Pdformer: Propagation delay-  
 552 aware dynamic long-range transformer for traffic flow prediction. In *Proceedings of the AAAI*  
 553 conference on artificial intelligence, volume 37, pp. 4365–4373, 2023.

554

555 Renhe Jiang, Du Yin, Zhaonan Wang, Yizhuo Wang, Jiewen Deng, Hangchen Liu, Zekun Cai, Jin-  
 556 liang Deng, Xuan Song, and Ryosuke Shibasaki. Dl-traff: Survey and benchmark of deep learning  
 557 models for urban traffic prediction. In *Proceedings of the 30th ACM international conference on*  
 558 *information & knowledge management*, pp. 4515–4525, 2021.

559

560 Guangyin Jin, Yuxuan Liang, Yuchen Fang, Jincai Huang, Junbo Zhang, and Yu Zheng. Spatio-  
 561 temporal graph neural networks for predictive learning in urban computing: A survey. *arXiv*  
 562 preprint *arXiv:2303.14483*, 2023.

563

564 Haoyang Li, Xin Wang, Ziwei Zhang, and Wenwu Zhu. Ood-gnn: Out-of-distribution generalized  
 565 graph neural network. *IEEE Transactions on Knowledge and Data Engineering*, 2022.

566

567 Y. Li, M. Liang, H. Li, Z. Yang, L. Du, and Z. Chen. Deep learning-powered vessel traffic flow  
 568 prediction with spatial-temporal attributes and similarity grouping. *Engineering Applications of*  
 569 *Artificial Intelligence*, 126:107012, 2023. doi: 10.1016/j.engappai.2023.107012.

570

571 Hangchen Liu, Zheng Dong, Renhe Jiang, Jiewen Deng, Jinliang Deng, Quanjun Chen, and Xuan  
 572 Song. Spatio-temporal adaptive embedding makes vanilla transformer sota for traffic forecasting.  
 573 In *Proceedings of the 32nd ACM international conference on information and knowledge*  
 574 *management*, pp. 4125–4129, 2023.

575

576 Judea Pearl et al. Models, reasoning and inference. *Cambridge, UK: Cambridge University Press*,  
 577 19(2), 2000.

578

579 G. Su, T. Liang, and M. Wang. Prediction of vessel traffic volume in ports based on improved fuzzy  
 580 neural network. *IEEE Access*, 8:71199–71205, 2020. doi: 10.1109/ACCESS.2020.2987100.

581

582 Yongduo Sui, Xiang Wang, Jiancan Wu, Min Lin, Xiangnan He, and Tat-Seng Chua. Causal at-  
 583 tention for interpretable and generalizable graph classification. In *Proceedings of the 28th ACM*  
 584 *SIGKDD Conference on Knowledge Discovery and Data Mining*, pp. 1696–1705, 2022.

585

586 Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua  
 587 Bengio. Graph attention networks. *arXiv preprint arXiv:1710.10903*, 2017.

588

589 Chunyang Wang, Yanmin Zhu, Tianzi Zang, Haobing Liu, and Jiadi Yu. Modeling inter-station  
 590 relationships with attentive temporal graph convolutional network for air quality prediction. In  
 591 *WSDM*, pp. 616–634, 2021.

592

593 B.M. Williams. *Modeling and Forecasting Vehicular Traffic Flow as a Seasonal Stochastic Time*  
 594 *Series Process*. PhD thesis, University of Virginia, Charlottesville, VA, USA, 1999.

595

596 Ying-Xin Wu, Xiang Wang, An Zhang, Xia Hu, Fuli Feng, Xiangnan He, and Tat-Seng  
 597 Chua. Deconfounding to explanation evaluation in graph neural networks. *arXiv preprint*  
 598 *arXiv:2201.08802*, 2022.

599

600 Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, and Chengqi Zhang. Graph wavenet for deep  
 601 spatial-temporal graph modeling. In *IJCAI*, pp. 1907–1913, 2019.

594 Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, Xiaojun Chang, and Chengqi Zhang. Connecting  
 595 the dots: Multivariate time series forecasting with graph neural networks. In *Proceedings*  
 596 of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,  
 597 pp. 753–763, 2020.

598 Yutong Xia, Yuxuan Liang, Haomin Wen, Xu Liu, Kun Wang, Zhengyang Zhou, and Roger Zim-  
 599 mermann. Deciphering spatio-temporal graph forecasting: A causal lens and treatment. *Advances*  
 600 in *Neural Information Processing Systems*, 36:37068–37088, 2023.

602 X. Xiao and H. Duan. A new grey model for traffic flow mechanics. *Engineering Applications of*  
 603 *Artificial Intelligence*, 88:103350, 2020. doi: 10.1016/j.engappai.2019.103350.

604 T. Xu and Q. Zhang. Ship traffic flow prediction in wind farms water area based on spa-  
 605 tiotemporal dependence. *Journal of Marine Science and Engineering*, 10:295, 2022. doi:  
 606 10.3390/jmse10020295.

608 Chenxiao Yang, Qitian Wu, Qingsong Wen, Zhiqiang Zhou, Liang Sun, and Junchi Yan. To-  
 609 wards out-of-distribution sequential event prediction: A causal treatment. *arXiv preprint*  
 610 *arXiv:2210.13005*, 2022.

611 Bing Yu, Haoteng Yin, and Zhanxing Zhu. Spatio-temporal graph convolutional networks: A deep  
 612 learning framework for traffic forecasting. In *IJCAI*, 2018.

614 Dong Zhang, Hanwang Zhang, Jinhui Tang, Xian-Sheng Hua, and Qianru Sun. Causal interven-  
 615 tion for weakly-supervised semantic segmentation. *Advances in Neural Information Processing*  
 616 *Systems*, 33:655–664, 2020.

617 N. Zhang, Y. Zhang, and H. Lu. Seasonal autoregressive integrated moving average and support vec-  
 618 tor machine models: Prediction of short-term traffic flow on freeways. *Transportation Research*  
 619 *Record*, 2215:85–92, 2011. doi: 10.3141/2215-09.

621 Y. Zhang and W. Li. Dynamic maritime traffic pattern recognition with online cleaning, compres-  
 622 sion, partition, and clustering of ais data. *Sensors*, 22:6307, 2022. doi: 10.3390/s22166307.

623 Z. Zhang, J. Yin, N. Wang, and Z. Hui. Vessel traffic flow analysis and prediction by an im-  
 624 proved pso-bp mechanism based on ais data. *Evolving Systems*, 10:397–407, 2019. doi:  
 625 10.1007/s12530-018-9247-8.

627 Chuanpan Zheng, Xiaoliang Fan, Cheng Wang, and Jianzhong Qi. Gman: A graph multi-attention  
 628 network for traffic prediction. In *Proceedings of the AAAI conference on artificial intelligence*,  
 629 volume 34, pp. 1234–1241, 2020.

630 Yu Zheng, Chen Gao, Xiang Li, Xiangnan He, Yong Li, and Depeng Jin. Disentangling user in-  
 631 terest and conformity for recommendation with causal embedding. In *Proceedings of the Web*  
 632 *Conference 2021*, pp. 2980–2991, 2021.

633 X. Zhou, Z. Liu, F. Wang, Y. Xie, and X. Zhang. Using deep learning to forecast maritime vessel  
 634 flows. *Sensors*, 20:1761, 2020. doi: 10.3390/s20061761.

636 Yangze Zhou, Gitta Kutyniok, and Bruno Ribeiro. Ood link prediction generalization capabilities of  
 637 message-passing gnns in larger test graphs. *Advances in Neural Information Processing Systems*,  
 638 35:20257–20272, 2022.

639  
 640  
 641  
 642  
 643  
 644  
 645  
 646  
 647

648  
649  

## A APPENDIX

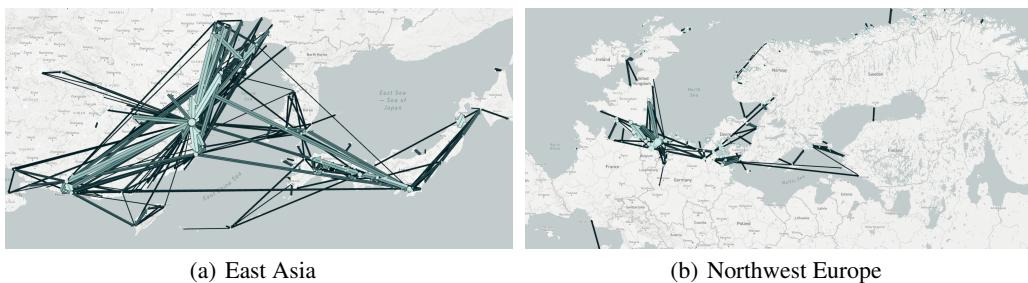
650  
651  

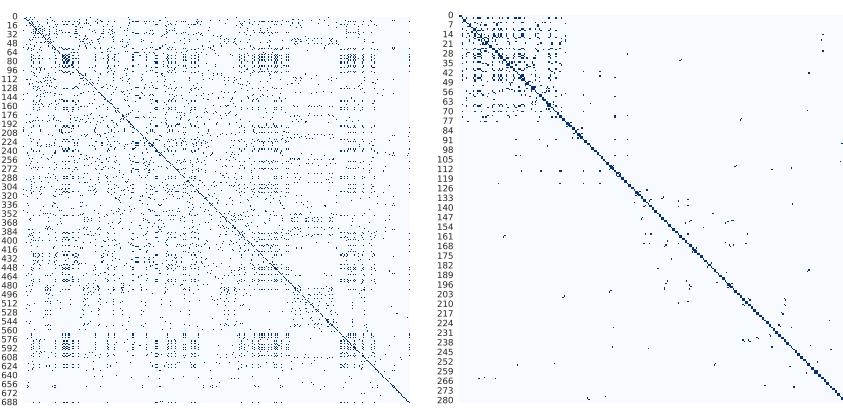
### A.1 DATASETS AND EXPERIMENTAL SETTINGS

652  
653  
Table 1: Statistics of datasets.

| 654<br>Dataset          | 655<br>Num of Ports | 656<br>Num of Port Clusters | 657<br>Num of Ship Routes |
|-------------------------|---------------------|-----------------------------|---------------------------|
| 655<br>East Asia        | 656<br>555          | 656<br>196                  | 657<br>689                |
| 656<br>Northwest Europe | 657<br>812          | 657<br>264                  | 658<br>395                |

659  
660  
**Data Preparation.** We conduct experiments on two of the most active maritime regions to eval-  
661  
662  
uate the effectiveness of our proposed method: the East Asia and Northwest Europe maritime flow  
663  
664  
networks. The East Asia network includes Japan, the Republic of Korea, and China, while the  
665  
666  
Northwest Europe network covers the Netherlands, the United Kingdom of Great Britain and North-  
667  
668  
ern Ireland, Belgium, Denmark, Germany, France, Norway, Sweden, and Finland. Both maritime  
669  
670  
transportation networks are constructed using 2022 AIS data from Spire<sup>1</sup>, which includes cargo,  
671  
672  
tanker, and passenger vessels, as well as port location data from Lloyd’s List Intelligence<sup>2</sup>. Tra-  
673  
674  
jectory segmentation is first performed based on zero-speed thresholds and spatial constraints that  
675  
676  
determine whether a vessel is located within a port boundary. To reduce the impact of short-range  
677  
678  
trajectory noise, port locations are clustered using a 0.05-degree threshold during flow aggregation.  
679  
680  
To capture inter-port connectivity, we construct directed adjacency graphs in which each edge repre-  
681  
682  
sents a flow from a departure port to an arrival port within a 12-hour temporal aggregation window  
(i.e., two frames per day) over the full year of 2022. This directed graph formulation reflects the  
683  
684  
inherent asymmetry of real-world maritime flows, where traffic between port pairs may vary signif-  
685  
686  
icantly in volume and direction. Table 1 summarizes key network statistics, and Figure 1 provides a  
687  
688  
global visualization of the resulting maritime flow structure. As shown in Figure 2, the Northwest  
689  
690  
Europe network exhibits relatively sparse connectivity, with many directed links connecting only  
691  
692  
isolated port pairs, suggesting a more fragmented or specialized shipping structure compared to the  
693  
694  
denser and more interconnected network observed in East Asia. In addition, we incorporate public  
695  
696  
weather data from the Global Forecast System (GFS) and maritime warning bulletins from the Japan  
697  
698  
Coast Guard<sup>3</sup> for East Asia and from the NAVAREA I, II, and XIX coordinators (UK Hydrographic  
699  
700  
Office, SHOM, and the Norwegian Coastal Administration)<sup>4</sup> for Northwest Europe, all of which  
701  
702  
are transformed into structured warning score vectors using our prompt-based method. The weather  
703  
704  
variable considered in this study is wind speed, with a spatial resolution of 0.5 degrees and the same  
705  
706  
12-hour temporal granularity as the flow data. Strong wind events—defined as those with speeds  
707  
708  
exceeding 17 m/s—are extracted and converted into structured warning indicators, as illustrated in  
709  
710  
Figure 3 in the main text. The second warning dataset is processed in a similar fashion to ensure  
711  
712  
consistency across all warning inputs.

696  
697  
Figure 1: Maritime transportation network for both two target areas.698  
699  
<sup>1</sup><https://spire.com/maritime/>700  
701  
<sup>2</sup><https://www.lloydmaritime.com/en/module/port-management><sup>3</sup>[https://www1.kaiho.mlit.go.jp/TUHO/weekly/weekly\\_en.html](https://www1.kaiho.mlit.go.jp/TUHO/weekly/weekly_en.html)<sup>4</sup>See the official MSI services of the UK Hydrographic Office (NAVAREA I), SHOM (NAVAREA II), and the Norwegian Coastal Administration (NAVAREA XIX).

702  
703  
704  
705  
706  
707  
708  
709  
710  
711  
712  
713  
714  
715

(a) East Asia

(b) Northwest Europe

716

Figure 2: The heatmap of the adjacency matrix.

717

718 **Code Reproducibility.** Our code is publicly available in the anonymous supplementary material.

719

720 **Baseline Methods.** We compare our approach against one classical statistical method and eight  
721 recent spatio-temporal graph neural networks as baselines for the task of maritime flow prediction:

722

- **Historical Average (HA):** A conventional time-series baseline that predicts future values by averaging historical observations at corresponding time-of-day and day-of-week slots.
- **STGCN Yu et al. (2018):** This model applies alternating gated temporal convolutional blocks and spatial graph convolution layers to jointly capture temporal dynamics and spatial structure in graph data.
- **MTGNN Wu et al. (2020):** A model designed for multivariate time-series forecasting, it learns a directed graph structure via a graph-learning layer, then applies graph convolution combined with dilated temporal convolution to model adaptive spatial and long-range temporal dependencies in an end-to-end framework.
- **AGCRN Bai et al. (2020):** This model embeds node-specific adaptive graph convolution inside gated recurrent units to model heterogeneous node dynamics and long-term temporal dependencies in spatio-temporal traffic data.
- **GMAN Zheng et al. (2020):** This encoder-decoder graph model stacks spatio-temporal attention blocks and uses a transform-attention bridge to align past and future steps for stable multi-horizon forecasts.
- **GraphWaveNet Wu et al. (2019):** This model learns an adaptive adjacency and applies dilated causal convolutions to capture hidden spatial links and long-range temporal patterns.
- **PDFormer Jiang et al. (2023):** A transformer-based architecture that integrates progressive trend-seasonal decomposition with spatial attention, designed to enhance representation of both local and global spatio-temporal patterns.
- **STAEformer Liu et al. (2023):** A hybrid encoder-decoder transformer that jointly leverages spatial self-attention and temporal modeling at multiple scales, aiming to capture complex interactions in spatio-temporal graphs.
- **CaST Xia et al. (2023):** A causal spatio-temporal transformer framework that separates spatial and temporal convolution paths based on causal structure, improving interpretability and forecasting accuracy in dynamic settings.

752

753

754

755

**Implementation Details.** We implement RippleNet using PyTorch 2.2.1 and train all models on an NVIDIA RTX 4090D GPU. The model architecture consists of the following components: (i) an input projection layer mapping 4-dimensional raw features to a 24-dimensional hidden space; (ii) temporal embeddings encoding time-of-day and day-of-week information, each projected to a

756

757 Table 2: Training speed and GPU memory usage among baselines and our proposed method. Here,  
758 efficiency values are reported as East Asia / Northwest Europe.

| Metric \ Model     | STGCN       | MTGNN       | AGCRN       | GMAN        | GraphWaveNet | PDFormer    | STAEformer      | CaST        | RippleNet    |
|--------------------|-------------|-------------|-------------|-------------|--------------|-------------|-----------------|-------------|--------------|
| Time per epoch (s) | 0.84 / 0.59 | 1.82 / 1.62 | 3.36 / 3.18 | 5.39 / 2.49 | 3.51 / 1.64  | 8.36 / 3.80 | 246.61 / 115.23 | 5.97 / 2.83 | 13.85 / 7.79 |
| GPU memory (GB)    | 0.11 / 0.07 | 0.32 / 0.19 | 2.17 / 1.21 | 2.83 / 1.68 | 1.58 / 0.94  | 4.17 / 2.50 | 15.51 / 9.08    | 3.56 / 2.39 | 7.15 / 4.74  |

761

762

763 24-dimensional space; (iii) adaptive warning embeddings of shape  $(8, 178, 24)$  to capture localized  
 764 causal signals; (iv) a back-door causal module with a hidden dimension of 16; and (v) a 3-layer  
 765 causal attention mechanism with 4 heads per layer. In addition, the ODE-based causal dynamics  
 766 module uses adaptive Runge–Kutta solvers with 5 causal state variables. To support structured inter-  
 767 vention modeling, we binarize each warning vector  $[Q_1, \dots, Q_8] \in [0, 100]^8$  into  $B \in \{0, 1\}^8$  using  
 768 dimension-specific thresholds  $\tau_i$ . The threshold values are set as  $\tau_i = [30, 40, 40, 40, 60, 60, 30, 70]$ ,  
 769 based on empirical percentiles and domain knowledge. **For both maritime transportation networks,**  
 770 **we split the data strictly in chronological order: the first 60% of timestamps are used for training, the**  
 771 **next 10% for validation, and the final 30% are held out for testing.** Training is performed using the  
 772 Adam optimizer with a learning rate of  $10^{-3}$ , a batch size of 8, and weight decay set to  $1.5 \times 10^{-3}$ . A  
 773 multi-step learning rate scheduler reduces the learning rate by a factor of 0.1 at epochs  $\{25, 45, 65\}$ .  
 774 Early stopping with a patience of 10 epochs is applied to prevent overfitting. **For all baseline models,**  
 775 **we start from the authors’ recommended configurations and perform small hyperparameter sweeps**  
 776 **on the validation set (e.g., hidden dimension and dropout), selecting the configuration with the best**  
 777 **validation MAE and reporting test performance under that setting.** All experiments are conducted  
 778 with fixed random seeds to ensure reproducibility.

779

780 **Computational Efficiency.** To quantify computational efficiency, we report both the average wall-  
 781 clock training time per epoch and peak GPU memory usage for all baselines and our proposed Ripple-  
 782 Net on the East Asia and Northwest Europe networks in Table 2: classical GNN-based models  
 783 such as STGCN and GraphWaveNet are the fastest and most lightweight, while transformer-based  
 784 architectures (PDFormer, STAEformer, CaST) incur noticeably higher computational costs. RippleNet  
 785 lies in a moderate regime: it is slower and more memory-consuming than the simplest graph  
 786 convolutional baselines due to the causal deconfounder and ODE modules, but remains substantially  
 787 more efficient than STAEformer and comparable to other transformer-style models, with per-epoch  
 788 training time below 14 seconds and peak memory usage under 8 GB on East Asia.

789

790 **Causal Semantics and Deconfounder Implementation.** For completeness, we summarize here  
 791 the causal semantics adopted in the main text and how they are instantiated in our implemen-  
 792 tation. We distinguish between: (i) the raw warning text  $A$  (e.g., meteorological bulletins or secu-  
 793 rity advisories), which is high-dimensional and non-manipulable; (ii) the structured warning vector  
 794  $B \in \{0, 1\}^8$ , which encodes operationally meaningful warning attributes (spatial extent, delay  
 795 risk, rerouting need, etc.) and serves as our treatment variable; and (iii) the contextual covariates  
 796 ( $\mathbf{X}, \mathbf{V}, \mathbf{E}$ ), which are genuinely pre-treatment and capture historical flows, network structure, and  
 797 spatial-temporal embeddings, respectively. In all causal statements, when we write  $P(\mathbf{Y} \mid \text{do}(B))$   
 798 we are asking “what would future flows have looked like under a counterfactual warning profile  $B$   
 799 in the same maritime context  $(\mathbf{X}, \mathbf{V}, \mathbf{E})$ ?”; while  $A$  is only used to construct  $B$  via the LLM-based  
 800 scoring pipeline.

801 The neural deconfounder block operationalizes the back-door adjustment  $P(\mathbf{Y} \mid \text{do}(B)) =$   
 802  $\sum_{\mathbf{m}, \mathbf{e}} P(\mathbf{Y} \mid B, \mathbf{M} = \mathbf{m}, \mathbf{E} = \mathbf{e})P(\mathbf{M} = \mathbf{m}, \mathbf{E} = \mathbf{e})$  in a representation-learning manner. Con-  
 803 cretely, we encode  $B$  into a warning representation  $\mathbf{h}_B$ , and  $(\mathbf{X}, \mathbf{V}, \mathbf{E})$  into  $\mathbf{H}_X, \mathbf{H}_V, \mathbf{H}_E$ , then  
 804 learn interaction gates ( $C_{BX}, C_{BV}, C_{BE}$ ) that modulate how much of each contextual signal re-  
 805 mains associated with  $B$  after adjustment. The resulting deconfounded representation  $\mathbf{Z}_{\text{causal}}$  thus  
 806 down-weights components of the association between  $B$  and  $\mathbf{Y}$  that are fully explained by pre-  
 807 treatment context, while preserving residual variation attributable to genuine warning effects. This  
 808 matches the causal semantics of our method and avoids misinterpreting  $B$  as a mediator of some  
 809 upstream “true” treatment.

810 For the ODE-based ripple propagation module, we instantiate the continuous-time dynamics with a  
 811 Dormand–Prince RK45 solver implemented via `torchdiffeq`, using adaptive step sizes to bal-  
 812 ance accuracy and efficiency. From a causal perspective, this ODE layer provides an explicit inter-

Table 3: 5-run average flow prediction performance comparison (mean  $\pm$  std) on both maritime transportation networks.

| Dataset          | Metric | STGCN             | MTGNN             | AGCRN             | GMAN              | GraphWaveNet      | PDFormer          | STAEformer        | CaST              | RippleNet                           |
|------------------|--------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------------------------|
| East Asia        | MAE    | 2.694 $\pm$ 0.031 | 2.664 $\pm$ 0.039 | 2.593 $\pm$ 0.056 | 2.624 $\pm$ 0.075 | 2.607 $\pm$ 0.082 | 2.321 $\pm$ 0.035 | 2.400 $\pm$ 0.118 | 2.404 $\pm$ 0.193 | <b>2.162 <math>\pm</math> 0.096</b> |
|                  | RMSE   | 6.724 $\pm$ 0.085 | 6.703 $\pm$ 0.096 | 6.447 $\pm$ 0.143 | 6.503 $\pm$ 0.186 | 6.448 $\pm$ 0.205 | 6.270 $\pm$ 0.094 | 6.365 $\pm$ 0.298 | 6.368 $\pm$ 0.373 | <b>6.186 <math>\pm</math> 0.255</b> |
| Northwest Europe | MAE    | 1.488 $\pm$ 0.014 | 1.304 $\pm$ 0.018 | 1.385 $\pm$ 0.037 | 1.387 $\pm$ 0.048 | 1.383 $\pm$ 0.059 | 1.334 $\pm$ 0.020 | 1.404 $\pm$ 0.061 | 1.392 $\pm$ 0.095 | <b>1.175 <math>\pm</math> 0.047</b> |
|                  | RMSE   | 3.142 $\pm$ 0.037 | 2.886 $\pm$ 0.024 | 2.967 $\pm$ 0.090 | 2.974 $\pm$ 0.119 | 2.969 $\pm$ 0.136 | 2.940 $\pm$ 0.054 | 3.069 $\pm$ 0.174 | 3.053 $\pm$ 0.128 | <b>2.798 <math>\pm</math> 0.093</b> |

ference model: a change in the treatment profile  $B$  on one route first alters its local causal representation  $\mathbf{Z}_{\text{causal}}$ , and then propagates along graph edges over continuous time, with spatial decay and dual-exponential temporal kernels controlling how far and how long these warning-induced perturbations influence other routes. This makes the implied interference pattern transparent and separates it from purely correlation-based attention mechanisms.

## A.2 ADDITIONAL QUANTITATIVE EXPERIMENTAL RESULTS

To further validate the effectiveness and robustness of RippleNet, we report additional quantitative results in this section, including 5-run mean  $\pm$  standard deviation comparisons with baseline models, analyses of causal baselines and treatment variants, and cross-region transfer learning experiments under the 48-hour prediction horizon setting.

**Performance Comparison with Uncertainty.** Table 3 reports the 5-run average performance (mean  $\pm$  standard deviation) of all baselines and RippleNet. Using MAE as the primary evaluation metric, paired Student’s t-tests over the 5 runs indicate that RippleNet significantly outperforms all baselines on both datasets ( $p < 0.01$ ). The RMSE results follow the same ranking and further reinforce this advantage, confirming that the performance gains are consistent across error metrics rather than an artifact of a particular loss function.

**Causal Baselines and Treatment Variants.** To further isolate the effect of explicit treatment modeling, we compare our proposed RippleNet against two canonical counterfactual baselines—CFR and TarNet—as well as the causal spatio-temporal transformer CaST and two treatment variants of RippleNet. CFR and TarNet are non-graph causal representation models that learn balanced latent spaces for treated and control samples, while CaST is a causal GNN that explicitly separates spatial and temporal paths. In our RippleNet, the treatment is encoded as an 8-dimensional *binary* warning vector with *dimension-specific thresholds* derived from maritime domain knowledge; RippleNet-CT instead feeds the continuous LLM warning scores directly as treatments, and RippleNet-Event collapses all warning information into a single binary event flag (0/1). Table 4 shows that all *causal + treatment-aware* models outperform purely correlation-based GNN baselines. Among the causal baselines, CaST already improves over CFR and TarNet by leveraging graph structure and spatio-temporal reasoning. Our proposed RippleNet further achieves the best performance on both regions: our binary and thresholded 8-dimensional treatment vector provides a clean, intervention-ready representation that filters out noisy low-confidence scores while preserving heterogeneous warning dimensions, whereas RippleNet-CT can be more sensitive to LLM score calibration, and RippleNet-Event discards most of the structured warning semantics by compressing them into a single scalar.

Table 4: Performance comparison of causal baselines and different treatment variants of our method on both maritime transportation networks.

| Dataset          | Metric | CFR   | TarNet | CaST  | RippleNet    | RippleNet-CT | RippleNet-Event |
|------------------|--------|-------|--------|-------|--------------|--------------|-----------------|
| East Asia        | MAE    | 2.654 | 2.727  | 2.404 | <b>2.162</b> | 2.174        | 2.278           |
|                  | RMSE   | 6.630 | 6.845  | 6.368 | <b>6.186</b> | 6.203        | 6.229           |
| Northwest Europe | MAE    | 1.476 | 1.502  | 1.392 | <b>1.175</b> | 1.178        | 1.194           |
|                  | RMSE   | 2.991 | 3.152  | 3.053 | <b>2.798</b> | 2.805        | 2.861           |

**Region Transfer Test.** To address the question of whether our framework can generalize to additional regions, we design a cross-region transfer experiment using CaST and our RippleNet. We

864 consider both directions: (i) East Asia → Northwest Europe and (ii) Northwest Europe → East Asia,  
 865 which differ markedly in network density, route structure, and warning patterns. For each direction,  
 866 we first train CaST and RippleNet on the source-domain training split. We then fine-tune all pa-  
 867 rameters on a small labeled adaptation subset of the target-domain training period, corresponding to  
 868 the earliest 20% of target-domain timestamps. The best checkpoint is selected based on the target-  
 869 domain validation set, and the held-out target test split (last 30% of timestamps) is used exclusively  
 870 for evaluation. Table 5 summarizes the 5-run average transfer performance (mean  $\pm$  std). In both  
 871 directions, RippleNet achieves lower MAE and RMSE than CaST, with noticeably smaller variance  
 872 across runs. This suggests that explicitly modeling warning-induced ripple effects in continuous  
 873 time not only improves in-domain accuracy, but also enhances robustness and generalization when  
 874 transferring between structurally different maritime regions.

875  
 876 **Table 5: Transfer learning performance of CaST and RippleNet between the East Asia and North-  
 877 west Europe maritime transportation networks (5-run mean  $\pm$  std).**

| Source Dataset   | Target Dataset   | Metric | CaST              | RippleNet                           |
|------------------|------------------|--------|-------------------|-------------------------------------|
| East Asia        | Northwest Europe | MAE    | $1.528 \pm 0.254$ | <b><math>1.427 \pm 0.143</math></b> |
|                  |                  | RMSE   | $3.350 \pm 0.592$ | <b><math>3.169 \pm 0.353</math></b> |
| Northwest Europe | East Asia        | MAE    | $2.796 \pm 0.248$ | <b><math>2.649 \pm 0.191</math></b> |
|                  |                  | RMSE   | $6.854 \pm 0.480$ | <b><math>6.518 \pm 0.416</math></b> |

### 886 A.3 PROMPT-BASED WARNING VECTORS

887  
 888 **Prompt Designs.** Here, we present a collection of prompts designed to infer warning score vec-  
 889 tors from structured maritime warning information. These score vectors are subsequently used as  
 890 treatment variables within our modeling framework—RippleNet.

#### 892 Prompt-based Maritime Warning Vector Generation

893 You are an AI assistant specialized in maritime operations. Given structured maritime warn-  
 894 ing information and a set of candidate shipping routes, your task is to:

895 1. Identify which shipping routes are possibly affected by the warning.

896 2. For each affected route, score the level of impact for the following 8 aspects on a scale  
 897 from 0 to 100 (higher values indicate stronger and more certain impact). The scoring should  
 898 reflect the **impact of the warning on the route**.

899 Please score based on the following criteria:

900 **Q1. Spatial Impact** — The geographical extent to which the warning affects this route,  
 901 including both direct coverage and surrounding influence.

902 **Q2. Delay Risk** — The level of schedule disruption this warning is likely to cause for vessels  
 903 on this route.

904 **Q3. Reroute Need** — The degree to which this warning creates a need to reroute or avoid  
 905 this route due to operational or safety concerns.

906 **Q4. Duration Impact** — The expected increase in overall travel or operation time for this  
 907 route caused by the warning.

908 **Q5. Port Congestion** — The extent to which the warning contributes to congestion or reduced  
 909 throughput at ports along this route.

910 **Q6. Cargo Threat** — The severity of risk posed by the warning to cargo safety, security, or  
 911 condition on this route.

912 **Q7. Speed Adjustment** — The level of speed alteration expected on this route (e.g., slow  
 913 steaming or acceleration) due to the warning.

914 **Q8. Uncertainty Level** — The degree of ambiguity or lack of reliable information in the  
 915 warning's implications for this route.

916  
 917 **Rationality Analysis.** To assess the reliability of the warning scores generated by the large lan-  
 918 guage model (LLM), we conduct a rationality analysis based on the temporal patterns shown in

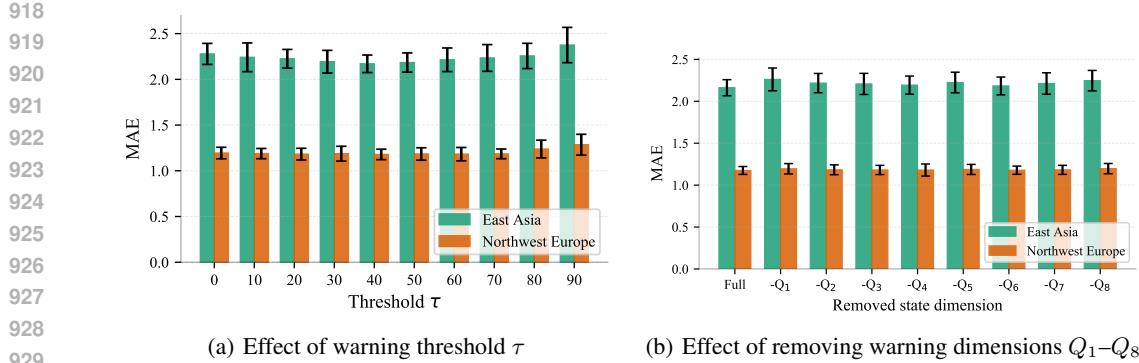
Figure 3: Robustness analysis (mean  $\pm$  std) of Prompt-based warning vectors.

Figure 6(a) in the main text. This analysis aims to evaluate whether the LLM-derived warning scores are consistent with real-world typhoon dynamics and maritime operational responses.

**Q1:** The first peak occurs at 09-15 12:00 ( $\approx 42\%$ ), corresponding to Typhoon Nanmadol’s initial approach to the route area. A second peak appears at 09-18 00:00 ( $\approx 45\%$ ), aligning with the typhoon’s closest proximity, both reflecting realistic threat escalation patterns.

**Q2 & Q6:** Delay risk and cargo threat risk exhibit only mild increases near the storm’s core (09-16 00:00 and 09-18 00:00), with values close to zero at other times. This reflects limited exposure to direct impact for most routes, which are primarily influenced by peripheral winds—an expected outcome.

**Q3:** The reroute demand score rises sharply to approximately 60% starting from 09-15 12:00, indicating that once spatial impact levels (Q1) exceed a certain threshold, rerouting behavior is activated accordingly. This aligns with practical ripple-effect strategies in maritime logistics.

**Q4:** Duration impact remains relatively stable at 10–11%, primarily driven by the assumed 10% detour increase in our simulation setup. This matches theoretical expectations under moderate rerouting conditions.

**Q5:** Port congestion scores increase to around 20% during high-impact periods (09-15 12:00 and 09-18 00:00), reflecting secondary congestion effects caused by flow disruptions—a network-level amplification effect consistent with congestion theory.

**Q7:** Most of the time, values remain below 2%, indicating minimal gust impact and stable wind fields. This is consistent with computed wind speed gradients along midpoints of typical routes.

**Q8:** As a complementary indicator to Q1, the uncertainty score is high (above 75%) when the typhoon is still distant, and peaks around 55% during periods of greatest forecast ambiguity. This behavior logically follows expected uncertainty patterns in early-stage cyclone evolution.

**Robustness of Prompt-based Warning Vectors.** To further validate the reliability of the LLM-derived warning vectors, we conduct two robustness experiments for the 48-hour prediction horizon on both maritime transportation networks.

**(a) Sensitivity to different binarization thresholds.** Recall that each continuous warning score  $[Q_1, \dots, Q_8] \in [0, 100]^8$  is converted to a binary treatment vector  $B_t \in \{0, 1\}^8$  via  $b_i^t = \mathbb{I}\{q_i^t > \tau\}$ . In Figure 3(a), we vary a global threshold  $\tau \in \{0, 10, 20, \dots, 90\}$  and re-train RippleNet. The case  $\tau = 0$  corresponds to an event-only setting in which all non-zero scores are treated as active warnings. As  $\tau$  increases from 0 to a moderate range (around 30–60), the MAE decreases and then stabilizes, indicating that filtering out low-confidence scores removes spurious treatments while preserving informative warning signals. Extremely large thresholds ( $\tau \geq 70$ ) lead to a mild degradation, as most warnings are discarded and the model behaves closer to a “no-warning” regime. The broad performance plateau in the mid-range suggests that the LLM-derived warning vectors provide a robust treatment representation.

972     **(b) Ablation on warning-state dimensions ( $Q_1$ – $Q_8$ ).** We also quantify the contribution of each  
973     warning dimension. Starting from the full 8-dimensional warning vector, we construct eight *leave-*  
974     *one-dimension-out* variants:  $-Q_k$  removes the  $k$ -th dimension before binarization, while keeping  
975     all other components and training settings unchanged. Figure 3(b) reports the 5-run average MAE  
976     (mean  $\pm$  std) for the full model and all  $-Q_k$  variants. Removing any single dimension leads to a no-  
977     ticeable degradation, confirming that all eight questions carry useful causal information. The largest  
978     MAE increases occur when  $Q_1$  (spatial impact),  $Q_3$  (reroute need), or  $Q_5$  (port congestion) are re-  
979     moved, especially in the denser East Asia network, which matches operational intuition about the  
980     importance of these factors in warning-induced ripple effects. In contrast, dropping  $Q_2$  (delay risk),  
981      $Q_6$  (speed adjustment),  $Q_7$  (cargo threat), or  $Q_8$  (uncertainty level) yields smaller but still consistent  
982     performance losses, indicating that they play complementary roles rather than being redundant.

983  
984  
985  
986  
987  
988  
989  
990  
991  
992  
993  
994  
995  
996  
997  
998  
999  
1000  
1001  
1002  
1003  
1004  
1005  
1006  
1007  
1008  
1009  
1010  
1011  
1012  
1013  
1014  
1015  
1016  
1017  
1018  
1019  
1020  
1021  
1022  
1023  
1024  
1025