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ABSTRACT

Maritime transportation networks, including cargo vessels, tankers, and passen-
ger ships, are critical to global trade but remain highly vulnerable to disruptions
such as extreme weather or security alerts. These events often trigger ripple ef-
fects, with cascading impacts extending far beyond the initial warning zones. Tra-
ditional spatio-temporal forecasting methods struggle to capture these dynamics
due to their reliance on correlations rather than causal reasoning, particularly in
maritime contexts. To address this challenge, we propose RippleNet, a novel
causal spatio-temporal framework that explicitly models causal dependencies to
predict port-to-port flow disruptions under warning-induced ripple effects. Rip-
pleNet comprises three key components: (i) a neural deconfounding module that
employs causal adjustment techniques to disentangle genuine causal effects from
spurious correlations, addressing confounding factors that arise when warnings
simultaneously affect multiple maritime operational aspects, (ii) a continuous-
time ODE module that simulates the propagation of disruptions across vessel
networks, and (iii) LLM-generated warning vectors that quantify the multidimen-
sional operational impacts of various warning types. Experiments on maritime
flow datasets from East Asia and Northwest Europe show that RippleNet sig-
nificantly outperforms state-of-the-art baselines under warning scenarios, while
offering interpretable causal insights into heterogeneous vessel flow behavior.

1 INTRODUCTION

Maritime transportation networks form the backbone of global trade and mobility, with cargo vessels
carrying over 90% of international freight, tankers transporting essential energy resources, and pas-
senger ships facilitating human mobility across oceans He et al. (2019); Zhou et al. (2020). However,
these diverse vessel networks exhibit remarkable vulnerability to disruptions, where localized warn-
ings can trigger cascading effects across the entire system, affecting all vessel types simultaneously.
The September 2022 typhoon “Nanmadol” exemplified this phenomenon: while primarily affect-
ing Japanese waters, the resulting warnings caused vessel traffic reductions of 70% across cargo,
tanker, and passenger operations in Tokyo Bay, 72-hour delays for container ships in Shanghai, oil
tanker rerouting through alternative channels, passenger ferry cancellations affecting thousands of
travelers, and unexpectedly, 15% throughput drops in Singapore—located 3,000 kilometers from the
typhoon’s path—impacting all three vessel categories.

This “ripple effect” reveals a fundamental challenge in maritime operations: warning impacts
propagate through complex causal mechanisms that extend far beyond geographical proximity
El Mekkaoui et al. (2023); Hu et al. (2022). Figure 1 demonstrates how warning signals (orange-red
regions) disrupt normal shipping patterns, with the Nagoya-Tokyo route experiencing a 70% flow
reduction during the warning period. Understanding and predicting these cascading disruptions is
critical for maintaining supply chain resilience Li et al. (2023); Zhang et al. (2019), yet remains a
significant scientific challenge Su et al. (2020); Xu & Zhang (2022); Zhang & Li (2022).

Existing approaches to maritime traffic prediction face inherent limitations when confronting
warning-induced disruptions. Traditional methods, including time series models Williams (1999);
Zhang et al. (2011) and graph neural networks Wu et al. (2019; 2020); Veličković et al. (2017),
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Without Warnings Warning Events of Typhoon Nanmadol, 2022

(a) Graphical illustration of the ripple effect in the maritime flow network. The left panel shows normal shipping
patterns, while the right panel displays the network disruption during Typhoon Nanmadol, 2022. The orange-red
heat map indicates warning intensity and demonstrates how warnings propagate through the network. The blue
dashed box highlights the Nagoya-Tokyo shipping route.
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(b) Flow volume between the ports of Nagoya and Tokyo.

Figure 1: Motivation of our proposed framework.

rely primarily on historical correlations and perform adequately under normal conditions. However,
they fail during anomalous events because they cannot distinguish between spurious correlations
and genuine causal relationships Pearl et al. (2000); Glymour et al. (2016). Warning impacts ex-
hibit pronounced spatio-temporal heterogeneity, where identical warnings produce vastly different
effects across regions and time periods Zheng et al. (2020); Guo et al. (2019). This fundamental mis-
match between correlation-based learning and causal propagation mechanisms results in substantial
prediction degradation during critical warning scenarios Zhang & Li (2022); Zhou et al. (2022).

To address these limitations, we propose RippleNet (Causal Spatio-Temporal Transformer), a novel
framework that explicitly models causal relationships in maritime warning propagation. Our ap-
proach represents inter-port dynamics as continuous-time systems governed by discovered causal
structures Yang et al. (2022); Zheng et al. (2021); Fang et al. (2021); Ji et al. (2022). The main
contributions of this work are summarized as follows:

• We propose a causally-informed deep learning framework for maritime flow prediction that in-
tegrates warning information through a neural deconfounder and continuous-time propagation
dynamics.

• We develop an ODE-based ripple propagation module that captures both immediate and persistent
disruption effects through adaptive decay mechanisms tailored to maritime operational constraints.

• We demonstrate substantial improvements over state-of-the-art baselines on two real-world mar-
itime flow networks, with ablations verifying each component’s contribution and case studies
examining typhoon-driven ripple effects.

2 RELATED WORK

Maritime Traffic Forecasting. Maritime traffic prediction traditionally relies on statistical ap-
proaches like ARIMA Zhang et al. (2011), Kalman filtering He et al. (2019), and grey models Xiao
& Duan (2020). Recent advances employ machine learning techniques, including PSO-BP net-
works Zhang et al. (2019) and deep learning Zhou et al. (2020); Li et al. (2023), showing improved
accuracy. However, these methods primarily address normal operating conditions and fail to ade-
quately model the impacts of maritime warnings or the cascading effects within port networks Su
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Figure 2: Architecture of our RippleNet framework. The model processes route signals and warning
vectors through spatial-temporal embedding and attention mechanisms, decomposes causal rela-
tionships via learned deconfounder, and integrates ODE-based ripple effect propagation with decay
functions to predict warning impacts across the maritime route network.

et al. (2020); Xu & Zhang (2022). Although some studies have attempted to incorporate weather
data Hu et al. (2022), they do not effectively capture the complex causal mechanisms underlying
ripple effects in maritime networks.

Spatial-Temporal Graph Neural Networks. STGNNs effectively model network dynamics Wu
et al. (2019; 2020); Jin et al. (2023). Foundational works like STGCN Yu et al. (2018), Graph
WaveNet Wu et al. (2019), and GMAN Zheng et al. (2020) capture spatio-temporal dependencies
through graph convolutions, dilated convolutions, and attention mechanisms. Recent advances ex-
plore adaptive graph learning Bai et al. (2020), continuous-time modeling Fang et al. (2021); Choi
et al. (2022), and multi-faceted spatial modeling Han et al. (2021). Despite success in road traffic
forecasting Jiang et al. (2021), these correlation-based models struggle with anomalous events and
warning scenarios Wang et al. (2021); Zhang et al. (2020).

Causal Modeling for Complex Systems. Correlation-based limitations have driven interest in
causal inference for network data Pearl et al. (2000); Glymour et al. (2016). Recent integration
of causal reasoning with deep learning includes causal attention Sui et al. (2022), deconfounding
techniques Wu et al. (2022), and out-of-distribution frameworks Yang et al. (2022); Li et al. (2022);
Zhou et al. (2022). While promising for robustness and interpretability, maritime applications re-
main unexplored. Our work introduces a causal-enhanced framework targeting ripple effect predic-
tion following maritime warnings, incorporating higher-order topological structures Edelsbrunner
et al. (2000); Huang et al. (2023) and causal discoveries to capture complex propagation patterns.

3 PRELIMINARIES

Definition 1 (Maritime Network). We represent the maritime network as a directed weighted time-
varying graph Gt = (R, E), where R = {r1, r2, . . . , rN} denotes the set of shipping routes, and
E ⊆ R×R represents the set of directed adjacency relationships between routes.

Definition 2 (Maritime Events). Maritime events are defined as warnings or disruptions affecting
shipping routes at specific times. Let arit denote an event affecting shipping route ri at time t.
The system-wide event state is denoted by vector At = [ar1t , ar2t , . . . , arNt ]T . We then obtain the

3
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Location: Line Geometry
Time: 2022-03-01 00:00

Category: Exercise 
Description: Potential ballistic missile 

launched from North Korea

Structured Warning
Information

Weather   Drifting    Marine

Exercise Navigation  Natural

Prompted Engineering (0-100 Score)Maritime Warnings

Q1: Spatial Impact?

Q3: Reroute Need?

Q5: Port Congestion?

Q7: Speed adjustment?

Q2: Delay risk?

Q4: Duration impact?

Q6: Cargo threat?

Q8: Uncertainty level?

Figure 3: Prompt-based generation process of warning vector. Maritime warnings are structured
into location, time, category, and description, then processed by LLMs to generate quantitative
impact scores (0-100) across eight dimensions.

corresponding binary warning impact score Bt via the Large Language Model (LLM), based on the
input of maritime events At.

Definition 3 (Problem Formulation). Given a maritime network represented as a time-varying graph
Gt = (R, E), where R denotes shipping routes and E represents directed route connections, our
objective is to predict the ripple effects of maritime warnings on vessel flow patterns. We incorpo-
rate spatial-temporal embeddings Et to capture node-specific contextual information. Formally, we
learn a mapping:

f : (Xt−T :t, Bt−T :t,Aadj ,Et−T :t) → Yt+1:t+T ′

where Xt ∈ RN×df represents traffic flow features, Bt ∈ {0, 1}8 indicates binary warning impact
scores, Aadj ∈ {0, 1}N×N is the adjacency matrix encoding route connections, Et ∈ RN×de

denotes spatial-temporal node embeddings, and T, T ′ denote historical and prediction horizons
respectively, with N = |R| being the number of shipping routes.

4 METHODOLOGY

B

X

V

YA

Score Vector

Historical Flow

Spatial Context

Future FlowWarnings

treatment causal effect

confounds

mediates

backdoor

Figure 4: Causal diagram illustrating the back-
door adjustment paths from warning signal (B)
to future flow (Y) through key mediating mecha-
nisms: historical flow patterns (X) and adjacency
relationships (V), with maritime warning events
(A) as the initial causal input.

Building on the causal foundations established
in our problem formulation, we present Rip-
pleNet, a deep learning framework that oper-
ationalizes causal inference principles for mar-
itime network prediction. As illustrated in Fig-
ure 2, our approach processes route signals
and warning vectors through spatial-temporal
embedding, applies a learned deconfounder
for causal decomposition, and employs ODE-
based ripple propagation to predict warning im-
pacts across maritime networks. Throughout
this section we explicitly treat the LLM-derived
warning vector B as the operational treatment
variable and design the architecture to estimate
P (Yt+1:t+T ′ | do(B)) while adjusting for pre-
treatment contextual covariates (X,V,E). The
framework addresses a critical limitation in existing methods: their dependence on correlations
rather than causal mechanisms when modeling warning-induced disruptions Pearl et al. (2000); Yang
et al. (2022).

Warning Vector Generation. Maritime warnings arrive in heterogeneous, unstructured for-
mats—from meteorological bulletins describing typhoon trajectories to security advisories detailing
piracy threats. This diversity creates challenges for neural networks requiring structured numerical
inputs. We address this through large language model-based quantification using domain-specific
prompts, as is shown in Figure 3.

Raw warning event At is transformed into structured 8-dimensional impact scores qt =
[qt1, q

t
2, . . . , q

t
8]

⊤ ∈ [0, 100]8, where each dimension captures distinct operational impacts: spatial
coverage (q1), delay risk (q2), rerouting necessity (q3), duration impact (q4), route congestion (q5),
speed adjustments (q6), cargo threats (q7), and uncertainty levels (q8). For integration into our causal

4
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modeling framework, these continuous scores are then discretized into binary warning indicators:
Bt = [bt1, b

t
2, . . . , b

t
8]

⊤ ∈ {0, 1}8, where bti = I{qti > τi}, with threshold τi determined empirically
for each dimension. This binary representation enables our neural modules to reason about warning
impacts as discrete treatment variables suitable for causal inference. In our design, we view Bt as
the actionable “knob” that operators can adjust (e.g., severity, duration, spatial extent), whereas At
is raw, unstructured text used only to construct Bt; all counterfactual questions in this work there-
fore take the form “what if the warning characteristics had been different?” and are formalized as
interventions do(Bt). The thresholds {τi} are chosen by combining domain guidelines with small
validation sweeps, and we empirically observe that model performance is stable over a broad range
of τi values; detailed robustness results are reported in Appendix A.3.

Spatial-Temporal Embedding. To capture node-specific contextual information, we incorporate
spatial-temporal embeddings that encode both geographical characteristics and temporal patterns.
The spatial component captures route coordinates and network topology:

E
(s)
i = fϕ([pi, ci]) ∈ Rds (1)

where pi represents geographical coordinates and ci contains connectivity features. The temporal
component encodes cyclical patterns:

E
(t)
t = fψ([hhour,dday,mmonth]) ∈ Rdt (2)

The final embedding combines both components: Ei,t = fξ([E
(s)
i ,E

(t)
t ]) ∈ Rde . Because these

embeddings are constructed entirely from information available before a warning is issued, they act
as additional pre-treatment covariates in our causal adjustment set together with historical flows X
and network structure V.

Causal Deconfounder Block. Predicting maritime warning impacts requires distinguishing gen-
uine effects from spurious correlations—a fundamental challenge for traditional forecasting meth-
ods Pearl et al. (2000); Glymour et al. (2016). During Typhoon Nanmadol in September 2022,
correlation-based models incorrectly attributed Busan port congestion to local warnings, missing
the true cause—vessel diversions from Japanese ports creating cascading effects Wang et al. (2021).

Our Deconfounder Block implements a neural approximation of causal adjustment to address this
limitation. We adopt the following causal semantics: (i) A denotes the raw warning text (unstruc-
tured, non-manipulable), (ii) B is its structured, quantitative representation (our operational treat-
ment), and (iii) (X,V,E) are genuinely pre-treatment contextual covariates/confounders that affect
both warning impacts and future flows. Given the causal structure in Figure 4, where warning events
A generate impact scores B ∈ {0, 1}8 that influence future flows Yt+1:t+T ′ ∈ RN×T ′

through pre-
treatment contextual covariates/confounders M = {X,V} and spatial-temporal embeddings E,
where X represents historical flow patterns and V captures spatial context, we implement a neural
back-door adjustment strategy to control for confounding:

P (Y | do(B)) =
∑
m,e

P (Y | B,M = m,E = e) · P (M = m,E = e) (3)

This back-door adjustment controls for confounding by conditioning on the sufficient set of pre-
treatment covariates M = {X,V} and spatial-temporal embeddings E, then marginalizing over
their joint distribution, following Pearl’s causal hierarchy. Intuitively, P (Y | do(B)) answers
policy-relevant questions such as “what if the same maritime context (X,V,E) had been exposed to
a more/less severe or spatially extensive warning B?”, while A merely serves as a noisy text source
from which B is constructed.

The warning encoder processes impact scores: hB = f
(B)
θ (Bt) ∈ Rdh , where f

(B)
θ : {0, 1}8 →

Rdh is a multi-layer perceptron. The pre-treatment covariates M are modeled through dedicated
encoders:

HX = f
(X)
ϕ (Xt−T :t), HV = f

(V )
ψ (Aadj ,Xt), HE = f (E)

ω (Et−T :t) ∈ RN×dh (4)

where f
(X)
ϕ captures historical flow patterns, f (V )

ψ models spatial context through network adja-

cency Aadj ∈ {0, 1}N×N , and f
(E)
ω encodes spatial-temporal embedding features. The decon-

founder learns to weight the influence of confounding mediators conditional on warning signals.

5
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We broadcast the warning representation: HB = 1N ⊗ hB ∈ RN×dh and compute interaction
terms:

CBX = σ(WBX [HB ,HX]), CBV = σ(WBV [HB ,HV]), CBE = σ(WBE [HB ,HE])

where [·, ·] denotes concatenation, and {WBX ,WBV ,WBE} ⊂ Rdh×2dh are learnable transfor-
mation matrices. The final deconfounded representation combines these weighted interactions:

Zcausal = CBX ⊙HX +CBV ⊙HV +CBE ⊙HE (5)

where ⊙ denotes element-wise multiplication. This yields a neural analogue of back-door adjust-
ment: the interaction gates (CBX ,CBV ,CBE) down-weight spurious correlations between B and
Y that are explainable by (X,V,E), while preserving components that correspond to genuine treat-
ment effects.

ODE-Based Ripple Propagation. Maritime warnings exhibit propagation patterns resembling
physical diffusion processes, yet with domain-specific constraints unique to shipping operations.
We model warning propagation as a continuous-time dynamical system governed by neural ordi-
nary differential equations. The temporal evolution of route state vectors follows a coupled system:

dxi(t)

dt
= −σi(t)xi(t)︸ ︷︷ ︸

Local decay

+
∑

j∈N (i)

ρij(t)Rij(t)g(xj(t),∆ij)︸ ︷︷ ︸
Network coupling

(6)

where xi(t) ∈ Rds represents the state vector of route i, N (i) = {j : Aadj [i, j] = 1} denotes the
neighborhood, and ds is the state dimension. The system is initialized using the causal representa-
tion: xi(0) = gξ([Zcausal[i], ei]) ∈ Rds , where gξ : Rdh+de → Rds is an MLP, ei ∈ Rde represents
learnable route embeddings, and [·, ·] denotes concatenation.

The coupling matrix incorporates both geographical and topological distances:

Rij(t) = exp

(
−∥pi − pj∥22

2σ2
d

)
exp(−λhij)Ids (7)

where pi ∈ R2 are geographical coordinates, hij is the shortest path length, σd > 0 controls spatial
decay, λ > 0 is the network decay parameter, and Ids is the identity matrix. Note that Rij(t)
and ρij(t) play distinct roles: Rij(t) provides a fixed geometric–topological prior specifying where
propagation can occur and its baseline strength, whereas ρij(t) provides a dynamic, data-driven
scaling that determines how strongly it propagates under current conditions.

The local decay rate adapts to operational conditions: σi(t) = σ0 +
∑K
k=1 σkϕk(si(t)), where

σ0 > 0 is the baseline rate, {σk}Kk=1 are learnable coefficients, and ϕk(si(t)) are feature functions
of operational state si(t) ∈ Rdop including capacity utilization and weather conditions.

The propagation rate depends on network properties: ρij(t) = ρ0 + ρ1Aadj [i, j] + ρ2Fij(t − 1),
where {ρ0, ρ1, ρ2} ⊂ R+ are learnable parameters and Fij(t − 1) ≥ 0 captures historical flow
intensity.

Maritime operations exhibit persistent effects due to scheduling constraints. We model this through
a dual-exponential decay kernel:

g(xj ,∆ij) = xj ⊙
[
αe−β∆ij + (1− α)e−γ∆

2
ij

]
(8)

where α ∈ [0, 1] balances immediate versus persistent effects, {β, γ} ⊂ R+ control decay rates,
and ∆ij = ∥pi − pj∥2/vavg represents transit time with average vessel speed vavg. The ODE
system is solved using adaptive Runge-Kutta methods over interval [0, Tint] where Tint = T ′ · ∆t:
Hripple[i, :] = xi(Tint)

T for i = 1, 2, . . . , N where Hripple ∈ RN×ds . In practice we instantiate
this ODE with a Dormand–Prince RK45 solver (via torchdiffeq), which provides adaptive step
sizes and a good accuracy–efficiency trade-off for heterogeneous maritime dynamics. From a causal
perspective, this continuous-time propagation acts as an explicit interference model: a treatment
applied on one route (through its contribution to Zcausal) can influence neighboring routes over time
along the graph edges, with the decay terms controlling how far and how long warning-induced
perturbations persist.

6
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Attention-Based Integration. Following ODE-based ripple propagation, we employ multi-head
self-attention to capture strategic dependencies beyond physical diffusion patterns. Maritime opera-
tions involve coordinated decision-making that creates non-local interdependencies complementing
diffusion-based propagation. The attention mechanism operates on concatenated representations:
Hfused = hζ([Zcausal,H

ripple]) ∈ RN×dh , where hζ : RN×(dh+ds) → RN×dh is a projection net-
work. Multi-head attention captures diverse dependency patterns:

Hattn = MultiHead(Hfused,Hfused,Hfused) ∈ RN×dh .

Final predictions are generated through temporal projection: Yt+1:t+T ′ = fout(Hattn) ∈ RN×T ′
,

where fout : RN×dh → RN×T ′
maps representations to future flows. The model is trained using

regularized mean squared error:

L(Θ) =
1

2NT ′

∥∥∥Yt+1:t+T ′ − Ŷt+1:t+T ′

∥∥∥2
F
+

λ

2
∥Θ∥22 (9)

where Θ represents all learnable parameters and λ > 0 is the regularization coefficient.

5 EXPERIMENTS

5.1 DATASETS & EXPERIMENTAL SETTINGS

We conduct experiments on two of the most active maritime regions to evaluate the effectiveness of
our proposed method: the East Asia and Northwest Europe maritime flow networks. Both networks
are constructed using Spire AIS data from 2022 and port information from Lloyd’s List Intelli-
gence. Specifically, we perform port-to-port trajectory segmentation and aggregate departure–arrival
records into 12-hour intervals (two frames per day) over a full year, ensuring both temporal granu-
larity and seasonal coverage. In addition, we collect public weather data from the Global Forecast
System (GFS) and a publicly available maritime warning dataset. Both are used to generate warn-
ing score vectors through a prompt-based large language model (LLM) approach. Specifically, we
employ the OpenAI ChatGPT-4o API to transform maritime event sequences into structured and
multi-dimensional warning vectors.

Our flow forecasting task is defined as predicting the next 4 time steps based on the preceding 8.
We compare our method against one classical statistical baseline (Historical Average) and eight
state-of-the-art spatio-temporal graph neural networks: STGCN Yu et al. (2018), MTGNN Wu et al.
(2020), GMAN Zheng et al. (2020), GraphWaveNet Wu et al. (2019), AGCRN Bai et al. (2020),
PDFormer Jiang et al. (2023), STAEformer Liu et al. (2023), and CaST Xia et al. (2023). To assess
the contributions of individual components, we conduct an ablation study with three variants of our
framework: (1) RippleNet-DEF, which removes the neural back-door adjustment block, thereby dis-
abling the causal disentanglement mechanism; (2) RippleNet-ODE, which omits the ODE-based rip-
ple propagation module, thus disabling continuous-time dynamics modeling; (3) RippleNet-LLM,
which replaces the LLM-generated warning vectors with one-dimensional binary indicators to rep-
resent the warning event status (i.e., 0 = no event; 1 = event). Model performance is evaluated
using Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE). More details about the
datasets and experiments of our model are provided in Appendix A.1.

5.2 EXPERIMENTAL RESULTS

Overall Performance. As shown in Table 1, our experiments validate the core hypothesis: tradi-
tional correlation-based methods fail under warning-induced cascading effects, while our RippleNet
achieves superior performance across both maritime regions. In East Asia, RippleNet outperforms
the best baseline PDFormer by 9.5% MAE and 2.5% RMSE at 12-hour predictions, maintaining
consistent advantages even at 48-hour horizons (6.9% and 1.3% improvements respectively). This
validates our assertion that warning impacts exhibit persistent propagation requiring causal mecha-
nisms for accurate modeling. Northwest Europe results are more striking, with RippleNet achieving
19.6% MAE and 7.4% RMSE improvements over MTGNN. This substantial gap reflects the chal-
lenge of modeling long-range causal propagation in sparse networks, where our ODE-based rip-
ple module effectively captures cross-regional influences that traditional methods miss. Crucially,
all deep learning baselines exhibit limitations under warning scenarios. Despite strong normal-
condition performance, methods like PDFormer and STAEformer rely on historical correlations and
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Table 1: 5-run average flow prediction performance comparison on East Asia and Northwest Europe
maritime transportation networks on different time horizons. Bold (red) denotes the best overall
result, and underline (orange) denotes the best baseline excluding our proposed RippleNet.

Dataset Metric HA STGCN MTGNN AGCRN GMAN GraphWaveNet PDFormer STAEformer CaST RippleNet Improve

E
as

tA
si

a

12 hours
MAE 2.819 2.370 2.444 2.475 2.337 2.325 2.144 2.196 2.232 1.940 9.5% ↑

RMSE 6.915 6.333 6.511 6.383 6.371 6.343 6.020 6.242 6.287 5.872 2.5% ↑

24 hours
MAE 2.818 2.469 2.564 2.524 2.434 2.429 2.230 2.283 2.306 2.027 9.1% ↑

RMSE 6.915 6.350 6.528 6.689 6.417 6.412 6.197 6.227 6.290 5.988 3.4% ↑

36 hours
MAE 2.819 2.654 2.665 2.588 2.590 2.563 2.300 2.383 2.412 2.137 7.1% ↑

RMSE 6.912 6.504 6.502 6.432 6.436 6.418 6.247 6.315 6.329 6.035 3.4% ↑

48 hours
MAE 2.818 2.694 2.664 2.593 2.624 2.607 2.321 2.400 2.404 2.162 6.9% ↑

RMSE 6.910 6.724 6.703 6.447 6.503 6.448 6.270 6.365 6.368 6.186 1.3% ↑

N
or

th
w

es
tE

ur
op

e

12 hours
MAE 1.658 1.259 1.228 1.323 1.338 1.316 1.248 1.302 1.265 0.987 19.6% ↑

RMSE 3.185 2.743 2.741 2.860 2.879 2.851 2.715 2.812 2.738 2.513 7.4% ↑

24 hours
MAE 1.656 1.350 1.257 1.329 1.355 1.330 1.286 1.337 1.314 1.014 19.3% ↑

RMSE 3.181 2.957 2.762 2.868 2.932 2.875 2.820 2.937 2.894 2.529 8.4% ↑

36 hours
MAE 1.658 1.460 1.288 1.364 1.378 1.369 1.326 1.392 1.350 1.050 18.5% ↑

RMSE 3.189 3.123 2.884 2.939 2.950 2.946 2.890 3.061 3.027 2.581 10.5% ↑

48 hours
MAE 1.665 1.488 1.304 1.385 1.387 1.383 1.334 1.404 1.392 1.175 9.9% ↑

RMSE 3.205 3.142 2.886 2.967 2.974 2.969 2.940 3.069 3.053 2.798 3.0% ↑
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Figure 5: Hyper-parameter analysis (mean ± std) for 48-hour prediction horizon.

cannot adapt to causal structure changes. RippleNet’s learned deconfounder explicitly disentangles
genuine causal effects from spurious correlations, maintaining stability during anomalous events
and demonstrating the necessity of causal reasoning for robust maritime prediction systems.

Table 2: Ablation study on MAE comparison over
both maritime transportation networks.

DEF ODE LLM Datasets Time Horizon

12 hours 24 hours 36 hours 48 hours

✗ ✓ ✓
East Asia 2.147 2.325 2.348 2.354

Northwest Europe 1.172 1.261 1.336 1.245

✓ ✗ ✓
East Asia 2.258 2.396 2.393 2.407

Northwest Europe 1.278 1.316 1.344 1.390

✓ ✓ ✗
East Asia 2.092 2.156 2.249 2.278

Northwest Europe 1.024 1.043 1.065 1.194

✓ ✓ ✓
East Asia 1.940 2.027 2.137 2.162

Northwest Europe 0.987 1.014 1.050 1.175

Ablation Study. Table 2 demonstrates each
component’s critical contribution through sys-
tematic removal. Eliminating the neural back-
door adjustment (RippleNet-DEF) increases
MAE by 10.7%/18.7% across regions, val-
idating that explicit causal disentanglement
is essential for distinguishing genuine ef-
fects from confounding factors during warn-
ing events. Removing ODE-based ripple prop-
agation (RippleNet-ODE) causes more severe
degradation with 16.4%/29.5% MAE increases,
confirming that continuous-time dynamics are
fundamental for modeling warning propagation through maritime networks. The LLM-generated
warning vectors exhibit moderate yet consistent importance compared to RippleNet-LLM, with
7.8% and 3.7% performance improvements, underscoring the value of structured warning quan-
tification over event treatment representation.

Hyper-parameter Analysis. Figure 5 examines sensitivity to key hyperparameters. The network
decay parameter λ achieves optimal performance around 0.01, balancing propagation reach with
noise reduction. Lower values cause excessive propagation, while higher values limit long-range
dependency capture. The decay balance parameter α also performs best at 0.01, indicating maritime
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warnings exhibit combined immediate and persistent effects. This validates our dual-exponential
formulation for modeling complex temporal dynamics in warning propagation.

5.3 CASE STUDY

09-15 00:00 09-15 12:00 09-16 00:00 09-17 12:00 09-18 00:00 09-18 12:00 09-19 00:00 09-19 12:00
Time

Spatial Impact

Delay Risk

Reroute Need

Duration Impact

Port Congestion

Cargo Threat

Speed Adjustment

Uncertainty Level

Q
1

Q
8

8.03 42.22 32.05 25.34 45.67 22.57 37.52 20.04

0.00 0.00 1.59 0.00 3.76 11.31 3.15 4.96

0.00 63.13 57.06 62.67 67.72 51.92 65.87 25.24

10.00 10.00 10.48 10.00 11.13 13.39 10.95 11.49

3.74 20.29 13.78 10.31 19.57 18.43 31.56 14.37

0.00 0.00 1.27 0.00 3.01 9.04 2.52 3.97

6.99 1.22 1.35 0.00 0.58 2.62 1.48 0.77

91.97 57.78 67.95 74.66 54.33 77.43 62.48 79.96
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(a) Temporal evolution of average warning scores over
time across eight dimensions (Q1–Q8) during Typhoon
Nanmadol (September 15–19, 2022).

Route 1
Route 2

Route 3

Route 4

(b) Spatial comparison of warning scores across four
routes at varying distances from the typhoon center.

Figure 6: LLM-based warning score analysis.

To further examine RippleNet’s interpretability
in capturing warning-induced causal impacts,
we present two case studies focused on the
ripple effects triggered by Typhoon Nanmadol
in September 2022. Figure 6(a) first shows
the temporal dynamics of LLM-derived warn-
ing vectors averaged over affected routes, with
spatial impact (Q1) and rerouting need (Q3)
peaking around typhoon landfall. Delay risk
(Q2) and cargo threat (Q6) remain low except
during peak disruption, reflecting route-level
resilience. Figure 6(b) maps average scores
across four routes at varying distances from the
typhoon’s center; closer routes exhibit higher
spatial impact, congestion risk, and rerouting
need, while even distant ones show moderate
uncertainty (Q8) and duration impact (Q4), in-
dicating indirect ripple effects. In addition, Fig-
ure 6(a) shows a clear lead and lag pattern: Q1
and Q3 rise first, port congestion (Q5) responds
later, and duration (Q4) remains flat, while Fig-
ure 6(b) reveals a monotonic distance gradient
in which distant routes retain elevated Q8 and
Q4, indicating spillovers mediated by the network. These results demonstrate that RippleNet’s
warning scoring yields semantically meaningful signals that adapt to both spatial and operational
contexts, supporting robust causal modeling.

(a) 12:00 on September 17, 2022 (b) 00:00 on September 18, 2022

(c) 12:00 on September 18, 2022 (d) 00:00 on September 19, 2022

Figure 7: Top-50 Negative Causal Effects at each time step during Typhoon Nanmadol.
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Moreover, to interpret the temporal suppression of maritime flow by warning signals, we visualize
the top 50 strongest negative causal effects at each time step during Typhoon Nanmadol, as identified
by RippleNet. At 12:00 on September 17 (Figure 7(a)), suppressive effects concentrate along Japan’s
southern coast, where initial warnings emerge. As the typhoon progresses, these effects intensify and
shift northeastward, peaking around 00:00 on September 18 (Figure 7(b)). By 12:00 on September
18 (Figure 7(c)), they reach the East China Sea and Korean waters despite mild local weather, indi-
cating long-range propagation driven by operational and topological factors. At 00:00 on September
19 (Figure 7(d)), the vortex is more compact and the wind field more coherent, and routes within
the warning envelope appear more clustered and visibly constrained along the Japanese coastline,
indicating a localized consolidation of suppressive effects rather than further network-wide spread.
Unlike correlation-based attention, our model offers interpretable and magnitude-aware representa-
tions of ripple effects, enhancing maritime decision-making under warning conditions.

6 CONCLUSION

We presented RippleNet, a novel framework that bridges causal inference with spatio-temporal
prediction for maritime networks under warnings. By incorporating learned deconfounder
and continuous-time dynamics, our approach successfully disentangles causal effects from
correlations—a fundamental limitation of existing methods. The ODE-based ripple propagation
module captures both immediate and lingering effects through adaptive decay functions, while
LLM-generated warning vectors enable systematic quantification of heterogeneous disruptions. Em-
pirical results validate our theoretical insights: causal-aware architectures significantly outperform
correlation-based models when historical patterns are violated by anomalous events. Future work in-
cludes extending to multi-modal transportation networks and developing uncertainty quantification
methods for operational deployment.
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A APPENDIX

A.1 DATASETS AND EXPERIMENTAL SETTINGS

Table 1: Statistics of datasets.
Dataset Num of Ports Num of Port Clusters Num of Ship Routes
East Asia 555 196 689
Northwest Europe 812 264 395

Data Preparation. We conduct experiments on two of the most active maritime regions to eval-
uate the effectiveness of our proposed method: the East Asia and Northwest Europe maritime flow
networks. The East Asia network includes Japan, the Republic of Korea, and China, while the
Northwest Europe network covers the Netherlands, the United Kingdom of Great Britain and North-
ern Ireland, Belgium, Denmark, Germany, France, Norway, Sweden, and Finland. Both maritime
transportation networks are constructed using 2022 AIS data from Spire1, which includes cargo,
tanker, and passenger vessels, as well as port location data from Lloyd’s List Intelligence2. Tra-
jectory segmentation is first performed based on zero-speed thresholds and spatial constraints that
determine whether a vessel is located within a port boundary. To reduce the impact of short-range
trajectory noise, port locations are clustered using a 0.05-degree threshold during flow aggregation.
To capture inter-port connectivity, we construct directed adjacency graphs in which each edge repre-
sents a flow from a departure port to an arrival port within a 12-hour temporal aggregation window
(i.e., two frames per day) over the full year of 2022. This directed graph formulation reflects the
inherent asymmetry of real-world maritime flows, where traffic between port pairs may vary signif-
icantly in volume and direction. Table 1 summarizes key network statistics, and Figure 1 provides a
global visualization of the resulting maritime flow structure. As shown in Figure 2, the Northwest
Europe network exhibits relatively sparse connectivity, with many directed links connecting only
isolated port pairs, suggesting a more fragmented or specialized shipping structure compared to the
denser and more interconnected network observed in East Asia. In addition, we incorporate public
weather data from the Global Forecast System (GFS) and maritime warning bulletins from the Japan
Coast Guard3 for East Asia and from the NAVAREA I, II, and XIX coordinators (UK Hydrographic
Office, SHOM, and the Norwegian Coastal Administration)4 for Northwest Europe, all of which
are transformed into structured warning score vectors using our prompt-based method. The weather
variable considered in this study is wind speed, with a spatial resolution of 0.5 degrees and the same
12-hour temporal granularity as the flow data. Strong wind events—defined as those with speeds
exceeding 17 m/s—are extracted and converted into structured warning indicators, as illustrated in
Figure 3 in the main text. The second warning dataset is processed in a similar fashion to ensure
consistency across all warning inputs.

(a) East Asia (b) Northwest Europe

Figure 1: Maritime transportation network for both two target areas.

1https://spire.com/maritime/
2https://www.lloydmaritime.com/en/module/port-management
3https://www1.kaiho.mlit.go.jp/TUHO/weekly/weekly_en.html
4See the official MSI services of the UK Hydrographic Office (NAVAREA I), SHOM (NAVAREA II), and

the Norwegian Coastal Administration (NAVAREA XIX).
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Figure 2: The heatmap of the adjacency matrix.

Code Reproducibility. Our code is publicly available in the anonymous supplementary material.

Baseline Methods. We compare our approach against one classical statistical method and eight
recent spatio-temporal graph neural networks as baselines for the task of maritime flow prediction:

• Historical Average (HA): A conventional time-series baseline that predicts future values by av-
eraging historical observations at corresponding time-of-day and day-of-week slots.

• STGCN Yu et al. (2018): This model applies alternating gated temporal convolutional blocks
and spatial graph convolution layers to jointly capture temporal dynamics and spatial structure in
graph data.

• MTGNN Wu et al. (2020): A model designed for multivariate time-series forecasting, it learns a
directed graph structure via a graph-learning layer, then applies graph convolution combined with
dilated temporal convolution to model adaptive spatial and long-range temporal dependencies in
an end-to-end framework.

• AGCRN Bai et al. (2020): This model embeds node-specific adaptive graph convolution inside
gated recurrent units to model heterogeneous node dynamics and long-term temporal dependen-
cies in spatio-temporal traffic data.

• GMAN Zheng et al. (2020): This encoder–decoder graph model stacks spatio-temporal attention
blocks and uses a transform-attention bridge to align past and future steps for stable multi-horizon
forecasts.

• GraphWaveNet Wu et al. (2019): This model learns an adaptive adjacency and applies dilated
causal convolutions to capture hidden spatial links and long-range temporal patterns.

• PDFormer Jiang et al. (2023): A transformer-based architecture that integrates progressive trend-
seasonal decomposition with spatial attention, designed to enhance representation of both local
and global spatio-temporal patterns.

• STAEformer Liu et al. (2023): A hybrid encoder–decoder transformer that jointly leverages spa-
tial self-attention and temporal modeling at multiple scales, aiming to capture complex interac-
tions in spatio-temporal graphs.

• CaST Xia et al. (2023): A causal spatio-temporal transformer framework that separates spatial and
temporal convolution paths based on causal structure, improving interpretability and forecasting
accuracy in dynamic settings.

Implementation Details. We implement RippleNet using PyTorch 2.2.1 and train all models on
an NVIDIA RTX 4090D GPU. The model architecture consists of the following components: (i)
an input projection layer mapping 4-dimensional raw features to a 24-dimensional hidden space;
(ii) temporal embeddings encoding time-of-day and day-of-week information, each projected to a
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Table 2: Training speed and GPU memory usage among baselines and our proposed method. Here,
efficiency values are reported as East Asia / Northwest Europe.

Metric \ Model STGCN MTGNN AGCRN GMAN GraphWaveNet PDFormer STAEformer CaST RippleNet

Time per epoch (s) 0.84 / 0.59 1.82 / 1.62 3.36 / 3.18 5.39 / 2.49 3.51 / 1.64 8.36 / 3.80 246.61 / 115.23 5.97 / 2.83 13.85 / 7.79
GPU memory (GB) 0.11 / 0.07 0.32 / 0.19 2.17 / 1.21 2.83 / 1.68 1.58 / 0.94 4.17 / 2.50 15.51 / 9.08 3.56 / 2.39 7.15 / 4.74

24-dimensional space; (iii) adaptive warning embeddings of shape (8, 178, 24) to capture localized
causal signals; (iv) a back-door causal module with a hidden dimension of 16; and (v) a 3-layer
causal attention mechanism with 4 heads per layer. In addition, the ODE-based causal dynamics
module uses adaptive Runge–Kutta solvers with 5 causal state variables. To support structured inter-
vention modeling, we binarize each warning vector [Q1, . . . , Q8] ∈ [0, 100]8 into B ∈ {0, 1}8 using
dimension-specific thresholds τi. The threshold values are set as τi = [30, 40, 40, 40, 60, 60, 30, 70],
based on empirical percentiles and domain knowledge. For both maritime transportation networks,
we split the data strictly in chronological order: the first 60% of timestamps are used for training, the
next 10% for validation, and the final 30% are held out for testing. Training is performed using the
Adam optimizer with a learning rate of 10−3, a batch size of 8, and weight decay set to 1.5×10−3. A
multi-step learning rate scheduler reduces the learning rate by a factor of 0.1 at epochs {25, 45, 65}.
Early stopping with a patience of 10 epochs is applied to prevent overfitting. For all baseline models,
we start from the authors’ recommended configurations and perform small hyperparameter sweeps
on the validation set (e.g., hidden dimension and dropout), selecting the configuration with the best
validation MAE and reporting test performance under that setting. All experiments are conducted
with fixed random seeds to ensure reproducibility.

Computational Efficiency. To quantify computational efficiency, we report both the average wall-
clock training time per epoch and peak GPU memory usage for all baselines and our proposed Rip-
pleNet on the East Asia and Northwest Europe networks in Table 2: classical GNN-based models
such as STGCN and GraphWaveNet are the fastest and most lightweight, while transformer-based
architectures (PDFormer, STAEformer, CaST) incur noticeably higher computational costs. Rip-
pleNet lies in a moderate regime: it is slower and more memory-consuming than the simplest graph
convolutional baselines due to the causal deconfounder and ODE modules, but remains substantially
more efficient than STAEformer and comparable to other transformer-style models, with per-epoch
training time below 14 seconds and peak memory usage under 8 GB on East Asia.

Causal Semantics and Deconfounder Implementation. For completeness, we summarize here
the causal semantics adopted in the main text and how they are instantiated in our implementa-
tion. We distinguish between: (i) the raw warning text A (e.g., meteorological bulletins or secu-
rity advisories), which is high-dimensional and non-manipulable; (ii) the structured warning vec-
tor B ∈ {0, 1}8, which encodes operationally meaningful warning attributes (spatial extent, delay
risk, rerouting need, etc.) and serves as our treatment variable; and (iii) the contextual covariates
(X,V,E), which are genuinely pre-treatment and capture historical flows, network structure, and
spatial–temporal embeddings, respectively. In all causal statements, when we write P (Y | do(B))
we are asking “what would future flows have looked like under a counterfactual warning profile B
in the same maritime context (X,V,E)?”, while A is only used to construct B via the LLM-based
scoring pipeline.

The neural deconfounder block operationalizes the back-door adjustment P (Y | do(B)) =∑
m,e P (Y | B,M = m,E = e)P (M = m,E = e) in a representation-learning manner. Con-

cretely, we encode B into a warning representation hB , and (X,V,E) into HX,HV,HE, then
learn interaction gates (CBX ,CBV ,CBE) that modulate how much of each contextual signal re-
mains associated with B after adjustment. The resulting deconfounded representation Zcausal thus
down-weights components of the association between B and Y that are fully explained by pre-
treatment context, while preserving residual variation attributable to genuine warning effects. This
matches the causal semantics of our method and avoids misinterpreting B as a mediator of some
upstream “true” treatment.

For the ODE-based ripple propagation module, we instantiate the continuous-time dynamics with a
Dormand–Prince RK45 solver implemented via torchdiffeq, using adaptive step sizes to bal-
ance accuracy and efficiency. From a causal perspective, this ODE layer provides an explicit inter-
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Table 3: 5-run average flow prediction performance comparison (mean ± std) on both maritime
transportation networks.

Dataset Metric STGCN MTGNN AGCRN GMAN GraphWaveNet PDFormer STAEformer CaST RippleNet

East Asia MAE 2.694 ± 0.031 2.664 ± 0.039 2.593 ± 0.056 2.624 ± 0.075 2.607 ± 0.082 2.321 ± 0.035 2.400 ± 0.118 2.404 ± 0.193 2.162 ± 0.096
RMSE 6.724 ± 0.085 6.703 ± 0.096 6.447 ± 0.143 6.503 ± 0.186 6.448 ± 0.205 6.270 ± 0.094 6.365 ± 0.298 6.368 ± 0.373 6.186 ± 0.255

Northwest Europe MAE 1.488 ± 0.014 1.304 ± 0.018 1.385 ± 0.037 1.387 ± 0.048 1.383 ± 0.059 1.334 ± 0.020 1.404 ± 0.061 1.392 ± 0.095 1.175 ± 0.047
RMSE 3.142 ± 0.037 2.886 ± 0.024 2.967 ± 0.090 2.974 ± 0.119 2.969 ± 0.136 2.940 ± 0.054 3.069 ± 0.174 3.053 ± 0.128 2.798 ± 0.093

ference model: a change in the treatment profile B on one route first alters its local causal represen-
tation Zcausal, and then propagates along graph edges over continuous time, with spatial decay and
dual-exponential temporal kernels controlling how far and how long these warning-induced pertur-
bations influence other routes. This makes the implied interference pattern transparent and separates
it from purely correlation-based attention mechanisms.

A.2 ADDITIONAL QUANTITATIVE EXPERIMENTAL RESULTS

To further validate the effectiveness and robustness of RippleNet, we report additional quanti-
tative results in this section, including 5-run mean ± standard deviation comparisons with baseline
models, analyses of causal baselines and treatment variants, and cross-region transfer learning ex-
periments under the 48-hour prediction horizon setting.

Performance Comparison with Uncertainty. Table 3 reports the 5-run average performance
(mean ± standard deviation) of all baselines and RippleNet. Using MAE as the primary evalua-
tion metric, paired Student’s t-tests over the 5 runs indicate that RippleNet significantly outperforms
all baselines on both datasets (p < 0.01). The RMSE results follow the same ranking and further
reinforce this advantage, confirming that the performance gains are consistent across error metrics
rather than an artifact of a particular loss function.

Causal Baselines and Treatment Variants. To further isolate the effect of explicit treatment mod-
eling, we compare our proposed RippleNet against two canonical counterfactual baselines—CFR
and TarNet—as well as the causal spatio-temporal transformer CaST and two treatment variants of
RippleNet. CFR and TarNet are non-graph causal representation models that learn balanced latent
spaces for treated and control samples, while CaST is a causal GNN that explicitly separates spatial
and temporal paths. In our RippleNet, the treatment is encoded as an 8-dimensional binary warning
vector with dimension-specific thresholds derived from maritime domain knowledge; RippleNet-CT
instead feeds the continuous LLM warning scores directly as treatments, and RippleNet-Event col-
lapses all warning information into a single binary event flag (0/1). Table 4 shows that all causal
+ treatment-aware models outperform purely correlation-based GNN baselines. Among the causal
baselines, CaST already improves over CFR and TarNet by leveraging graph structure and spatio-
temporal reasoning. Our proposed RippleNet further achieves the best performance on both regions:
our binary and thresholded 8-dimensional treatment vector provides a clean, intervention-ready rep-
resentation that filters out noisy low-confidence scores while preserving heterogeneous warning di-
mensions, whereas RippleNet-CT can be more sensitive to LLM score calibration, and RippleNet-
Event discards most of the structured warning semantics by compressing them into a single scalar.

Table 4: Performance comparison of causal baselines and different treatment variants of our method
on both maritime transportation networks.

Dataset Metric CFR TarNet CaST RippleNet RippleNet-CT RippleNet-Event

East Asia MAE 2.654 2.727 2.404 2.162 2.174 2.278
RMSE 6.630 6.845 6.368 6.186 6.203 6.229

Northwest Europe MAE 1.476 1.502 1.392 1.175 1.178 1.194
RMSE 2.991 3.152 3.053 2.798 2.805 2.861

Region Transfer Test. To address the question of whether our framework can generalize to ad-
ditional regions, we design a cross-region transfer experiment using CaST and our RippleNet. We
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consider both directions: (i) East Asia → Northwest Europe and (ii) Northwest Europe → East Asia,
which differ markedly in network density, route structure, and warning patterns. For each direction,
we first train CaST and RippleNet on the source-domain training split. We then fine-tune all pa-
rameters on a small labeled adaptation subset of the target-domain training period, corresponding to
the earliest 20% of target-domain timestamps. The best checkpoint is selected based on the target-
domain validation set, and the held-out target test split (last 30% of timestamps) is used exclusively
for evaluation. Table 5 summarizes the 5-run average transfer performance (mean ± std). In both
directions, RippleNet achieves lower MAE and RMSE than CaST, with noticeably smaller variance
across runs. This suggests that explicitly modeling warning-induced ripple effects in continuous
time not only improves in-domain accuracy, but also enhances robustness and generalization when
transferring between structurally different maritime regions.

Table 5: Transfer learning performance of CaST and RippleNet between the East Asia and North-
west Europe maritime transportation networks (5-run mean ± std).

Source Dataset Target Dataset Metric CaST RippleNet

East Asia Northwest Europe MAE 1.528 ± 0.254 1.427 ± 0.143
RMSE 3.350 ± 0.592 3.169 ± 0.353

Northwest Europe East Asia MAE 2.796 ± 0.248 2.649 ± 0.191
RMSE 6.854 ± 0.480 6.518 ± 0.416

A.3 PROMPT-BASED WARNING VECTORS

Prompt Designs. Here, we present a collection of prompts designed to infer warning score vec-
tors from structured maritime warning information. These score vectors are subsequently used as
treatment variables within our modeling framework—RippleNet.

Prompt-based Maritime Warning Vector Generation

You are an AI assistant specialized in maritime operations. Given structured maritime warn-
ing information and a set of candidate shipping routes, your task is to:
1. Identify which shipping routes are possibly affected by the warning.
2. For each affected route, score the level of impact for the following 8 aspects on a scale
from 0 to 100 (higher values indicate stronger and more certain impact). The scoring should
reflect the impact of the warning on the route.
Please score based on the following criteria:
Q1. Spatial Impact — The geographical extent to which the warning affects this route,
including both direct coverage and surrounding influence.
Q2. Delay Risk — The level of schedule disruption this warning is likely to cause for vessels
on this route.
Q3. Reroute Need — The degree to which this warning creates a need to reroute or avoid
this route due to operational or safety concerns.
Q4. Duration Impact — The expected increase in overall travel or operation time for this
route caused by the warning.
Q5. Port Congestion — The extent to which the warning contributes to congestion or reduced
throughput at ports along this route.
Q6. Cargo Threat — The severity of risk posed by the warning to cargo safety, security, or
condition on this route.
Q7. Speed Adjustment — The level of speed alteration expected on this route (e.g., slow
steaming or acceleration) due to the warning.
Q8. Uncertainty Level — The degree of ambiguity or lack of reliable information in the
warning’s implications for this route.

Rationality Analysis. To assess the reliability of the warning scores generated by the large lan-
guage model (LLM), we conduct a rationality analysis based on the temporal patterns shown in
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Figure 3: Robustness analysis (mean ± std) of Prompt-based warning vectors.

Figure 6(a) in the main text. This analysis aims to evaluate whether the LLM-derived warning
scores are consistent with real-world typhoon dynamics and maritime operational responses.

Q1: The first peak occurs at 09-15 12:00 (≈42%), corresponding to Typhoon Nanmadol’s initial ap-
proach to the route area. A second peak appears at 09-18 00:00 (≈45%), aligning with the typhoon’s
closest proximity, both reflecting realistic threat escalation patterns.

Q2 & Q6: Delay risk and cargo threat risk exhibit only mild increases near the storm’s core (09-16
00:00 and 09-18 00:00), with values close to zero at other times. This reflects limited exposure
to direct impact for most routes, which are primarily influenced by peripheral winds—an expected
outcome.

Q3: The reroute demand score rises sharply to approximately 60% starting from 09-15 12:00, indi-
cating that once spatial impact levels (Q1) exceed a certain threshold, rerouting behavior is activated
accordingly. This aligns with practical ripple-effect strategies in maritime logistics.

Q4: Duration impact remains relatively stable at 10–11%, primarily driven by the assumed 10% de-
tour increase in our simulation setup. This matches theoretical expectations under moderate rerout-
ing conditions.

Q5: Port congestion scores increase to around 20% during high-impact periods (09-15 12:00 and
09-18 00:00), reflecting secondary congestion effects caused by flow disruptions—a network-level
amplification effect consistent with congestion theory.

Q7: Most of the time, values remain below 2%, indicating minimal gust impact and stable wind
fields. This is consistent with computed wind speed gradients along midpoints of typical routes.

Q8: As a complementary indicator to Q1, the uncertainty score is high (above 75%) when the
typhoon is still distant, and peaks around 55% during periods of greatest forecast ambiguity. This
behavior logically follows expected uncertainty patterns in early-stage cyclone evolution.

Robustness of Prompt-based Warning Vectors. To further validate the reliability of the LLM-
derived warning vectors, we conduct two robustness experiments for the 48-hour prediction horizon
on both maritime transportation networks.

(a) Sensitivity to different binarization thresholds. Recall that each continuous warning score
[Q1, . . . , Q8] ∈ [0, 100]8 is converted to a binary treatment vector Bt ∈ {0, 1}8 via bti = I{qti >
τ}. In Figure 3(a), we vary a global threshold τ ∈ {0, 10, 20, . . . , 90} and re-train RippleNet.
The case τ = 0 corresponds to an event-only setting in which all non-zero scores are treated as
active warnings. As τ increases from 0 to a moderate range (around 30–60), the MAE decreases
and then stabilizes, indicating that filtering out low-confidence scores removes spurious treatments
while preserving informative warning signals. Extremely large thresholds (τ ≥ 70) lead to a mild
degradation, as most warnings are discarded and the model behaves closer to a “no-warning” regime.
The broad performance plateau in the mid-range suggests that the LLM-derived warning vectors
provide a robust treatment representation.
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(b) Ablation on warning-state dimensions (Q1–Q8). We also quantify the contribution of each
warning dimension. Starting from the full 8-dimensional warning vector, we construct eight leave-
one-dimension-out variants: −Qk removes the k-th dimension before binarization, while keeping
all other components and training settings unchanged. Figure 3(b) reports the 5-run average MAE
(mean ± std) for the full model and all −Qk variants. Removing any single dimension leads to a no-
ticeable degradation, confirming that all eight questions carry useful causal information. The largest
MAE increases occur when Q1 (spatial impact), Q3 (reroute need), or Q5 (port congestion) are re-
moved, especially in the denser East Asia network, which matches operational intuition about the
importance of these factors in warning-induced ripple effects. In contrast, dropping Q2 (delay risk),
Q6 (speed adjustment), Q7 (cargo threat), or Q8 (uncertainty level) yields smaller but still consistent
performance losses, indicating that they play complementary roles rather than being redundant.
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