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ABSTRACT

The option framework, one of the most promising Hierarchical Reinforcement
Learning (HRL) frameworks, is developed based on the Semi-Markov Decision
Problem (SMDP) and employs a triple formulation of the option (i.e., an action
policy, a termination probability, and an initiation set). These design choices,
however, mean that the option framework: 1) has low sample efficiency, 2) cannot
use more stable Markov Decision Problem (MDP) based learning algorithms, 3)
represents abstract actions implicitly, and 4) is expensive to scale up. To overcome
these problems, here we propose a simple yet effective MDP implementation of
the option framework: the Skill-Action (SA) architecture. Derived from a novel
discovery that the SMDP option framework has an MDP equivalence, SA hierar-
chically extracts skills (abstract actions) from primary actions and explicitly en-
codes these knowledge into skill context vectors (embedding vectors). Although
SA is MDP formulated, skills can still be temporally extended by applying the
attention mechanism to skill context vectors. Unlike the option framework, which
requires M action policies for M skills, SA’s action policy only needs one de-
coder to decode skill context vectors into primary actions. Under this formulation,
SA can be optimized with any MDP based policy gradient algorithm. Moreover,
it is sample efficient, cheap to scale up, and theoretically proven to have lower
variance. Our empirical studies on challenging infinite horizon robot simulation
environments demonstrate that SA not only outperforms all baselines by a large
margin, but also exhibits smaller variance, faster convergence, and good inter-
pretability. On transfer learning tasks, SA also outperforms the other models and
shows its advantage on reusing knowledge across tasks. A potential impact of SA
is to pave the way for a large scale pre-training architecture in the reinforcement
learning area.

1 INTRODUCTION

Reinforcement Learning (RL) is a paradigm for imitating human’s trial-and-error learning process:
RL trains an agent to maximise rewards by taking actions in and receiving feedback from an environ-
ment. RL has achieved human-level performance in playing video and board environments (Mnih
et al., 2015; Silver et al., 2016). However, while humans can abstract the hierarchical complexity of
actions through interactions with the environment and make decisions at both macro and micro time
scales, conventional RL agents have limited abilities to solve complex tasks (Daniel et al., 2016):
they only learn the most primitive actions and makes decisions at the smallest time scale. Hier-
archical Reinforcement Learning (HRL) attempts to resolve this gap between humans and RL by
decomposing complex tasks into a hierarchy of abstracted actions at multiple time scales.

An HRL agent typically learns abstractions of actions on two levels: skills and primary actions.
Skills are higher-level abstracted actions. Their executions are temporally extended to a variable
amount of time. Primary actions are lower-level actions defined by the environment. They are
executed at every time step. For example, for a humanoid robot, walking and jumping are two
abstract skills, while movements of each joint are primary actions. One of the most promising HRL
frameworks is the option framework (Sutton et al., 1999). The option framework has achieved great
success in representing actions at different time scales (Bacon et al., 2017), speeding and scaling
up learning (Bacon, 2018), improving exploration (Harb et al., 2018) and and facilitating transfer
learning (Zhang & Whiteson, 2019).
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In the option framework, an option is a primary action level sub-policy consisting of an action pol-
icy, a termination probability, and an initiation set. A master policy (Zhang & Whiteson, 2019) (aka.
policy-over-options (Sutton et al., 1999)) is used to compose those options and thus is a skill-level
policy. The option framework is formulated as a Semi-Markov Decision Problem (SMDP) (Put-
erman, 1994): an option sampled from a master policy is executed through a variable amount of
time (until its termination function determines to stop). As highlighted in the literature, the SMDP
formulation has the following limitations:

1. Sample inefficiency (Zhang & Whiteson, 2019): a) For policy gradient based algorithms,
the master policy cannot be updated until stop. As a result, one update consumes various
time steps of samples. b) At each time step, only one (the executed) option’s policies can
be updated.

2. Large variance (Bacon, 2018; Zhang & Whiteson, 2019; Haarnoja et al., 2018): SMDP
algorithms are notoriously hyperparameters sensitive. Due to the SMDP formulation, more
stable Markov Decision Process (MDP) policy gradient algorithms cannot be used.

3. Expensive to scale up (Riemer et al., 2018): for M options, there are 2M action and termi-
nation policies. Each policy is a neural network that could have millions of parameters to
train.

To address these problems, we propose a simple yet effective MDP implementation of the option
framework, the Skill-Action (SA) architecture. The idea behind SA originates from a new discov-
ery that the SMDP option framework has an MDP equivalence, which is achieved by adding extra
dependencies into the master policy. However, those extra dependencies still prevent the master
policy from being updated at every time step. Based on this equivalence, a “skill policy” which
marginalizes those dependencies away is derived and hence can be updated at each time step.

In SA, knowledge of a skill is explicitly represented as a skill context vector (similar to an embed-
ding vector (Vaswani et al., 2017) in Natural Language Processing (NLP) or capsule (Sabour et al.,
2017) in Computer Vision (CV)): each dimension encodes a particular property of the skill1. The
skill policy is similar to a compatibility function: it is used to replace the master policy and termina-
tion function while improving their functionalities by employing the attention mechanism (Vaswani
et al., 2017). At each time step, the skill policy measures the compatibility (suitability) of all skills
with the current state and the executed skill from the last step. If the previous skill still fits the
current situation, then the skill policy tends to continue with it; otherwise, a new skill with better
compatibility will be sampled. Unlike the option framework, which requires M action policies for
M skills, SA’s action policy only needs one decoder to decode any skill context vector into primary
actions. With this formulation, the entire framework is MDP-based while the skill can still be tempo-
rally extended, and its scalability, as well as stability, are significantly improved. All of these design
choices have precursors in the existing literature (HRL (Sutton et al., 1999; Bacon, 2018; Zhang
& Whiteson, 2019); CV (Kosiorek et al., 2019); NLP (Vaswani et al., 2017)). Our contribution is
establishing them in reinforcement learning settings.

Compared to the SMDP option framework, SA has following advantages:

1. Sample efficiency: a) SA is MDP formulated, thus sample at each time step can be used
to update the skill policy. b) Only one action policy decoder is needed. It learns to decode
each dimension of the skill context vector at each time step whichever skill is activated.

2. Small variance: a) The skill value upon arrival function (Eq. (5)) is theoretically and em-
pirically proven to have smaller variance than the conventional value function. b) SA only
needs to train two (skill and action) policy networks. c) SA can employ more stable MDP
based policy gradient algorithms (e.g. PPO (Schulman et al., 2017)).

3. Scalability: a) Regardless of the number of skills, only two policies needs to be trained. b)
Adding one more skill is as cheap as adding a context vector.

4. Transfer Learning: SA outperforms the other models in 5 out of 6 environments and shows
its advantage on reusing knowledge across tasks.

1For example, the first dimension may encode the orientation of a primary action. A jump skill context
vector may have a large first dimension value which instructs the robot to emit primary actions vertically. A
walk skill may have a small value and emit actions horizontally.

2



Under review as a conference paper at ICLR 2021

5. Improved interpretability and exploration: a) Unlike the option framework encodes ab-
stract knowledge implicitly in action policies, knowledge of a skill is explicitly encoded
in each dimension of the skill context vector. b) As shown in experiments, SA has better
exploration than the other option formulations.

2 RELATED WORKS

To discover options automatically, Sutton et al. (1999) proposed Intra-option Q-learning to update
the master Q value function at every time step. However, all policies under this formulation are
approximated implicitly using the Q-learning method. Levy & Shimkin (2011) proposed to unify
the Semi-Markov process into an augmented Markov process and explicitly learn an “overall policy”
by applying MDP-based policy gradient algorithms. However, their method for updating the master
policy is still SMDP-style thus sample inefficient. Bacon et al. (2017) proposed a policy gradient
based Option Critic (OC) framework for explicitly learning intra-option policies and termination
functions in an intra-option manner. However, for the master policy’s policy gradient learning,
OC still remains SMDP-style. Klissarov et al. (2017) attempted to combine OC with PPO in an
intra-option learning manner (PPOC). However, as we show in Appendix A.4.2, due to the SMDP
formulation, gradients they use for updating master policy are inconsistent. Zhang & Whiteson
(2019) reformulated the option framework into two augmented MDPs. Under this formulation all
policies can be modeled explicitly and learned in MDP-style. However, their model is still expensive
to scale up. On single task environments, DAC has no significant advantages over other baselines.

We must appreciate that Bacon ((Bacon, 2018); Chapter 3.6) conceptually discussed a vectorized
option representation and directly approximated the marginalized master policy. However, no con-
crete formulations and policy gradients theorems were developed in their work. Daniel et al. (2016)
proposed an MDP-formulated PGM similar to ours in Appendix A.4. However, unlike in this work,
they did not prove the equivalence between the MDP-formulation and SMDP by employing con-
ditional independencies. Furthermore, their learning algorithm is EM based while ours is policy
gradient based. Our work is motivated by capsule networks Kosiorek et al. (2019) (more details in
Appendix A.1) and is developed independently from literatures above.

With respect to optimization, Zhang & Whiteson (2019) pointed out that a large margin of perfor-
mance boost of DAC comes from Proximal Policy Optimization (Schulman et al., 2017) (PPO).
Since SA is MDP-based, it can be optimized directly with the PPO objective. Recent works show
that off-policy methods have large advantages over on-policy methods on sample efficiency and
performance(Haarnoja et al., 2018; Wulfmeier et al., 2020). SA is a general purpose framework
and also compatible with off-policy algorithms. For a fair comparison with previous works (Zhang
& Whiteson, 2019) we only employs on-policy algorithms. Learning with off-policy algorithms
remains for future work.

This paper devises SA as a candidate for a general large-scale pre-training framework in reinforce-
ment learning. Main efforts are spent on proving the equivalence between MDP and SMDP, ex-
tending the conventional value function to “skill value upon arrival function”, and deriving policy
gradient theorems. Our extensive experiments show that SA achieves significant sample efficiency
improvements on infinite horizon single task environments and shows obvious performance advan-
tages on transfer learning tasks. Although SA empirically shares two innate limitations with the
conventional option framework (Levy & Shimkin, 2011; Klissarov et al., 2017; Smith et al., 2018;
Harb et al., 2018; Zhang & Whiteson, 2019): (1) failure to improve the performance and the sample
efficiency on finite horizon environments (section 4.1); (2) “the dominant skill problem” (Zhang &
Whiteson, 2019) (section 4.2), in Appendix A.1 we conceptually show that SA-style wide (higher-
order dependencies) value functions could be a solution to both limitations. This is mainly because
these limitations are caused by the insufficiency of the conventional value functions in approximat-
ing values have temporal latent variables dependencies. Please refer to Appendix A.1 for detailed
explanation.

3 THE SKILL-ACTION ARCHITECTURE

In this section, we propose a simple MDP (Puterman, 1994) implementation of the option frame-
work: the Skill-Action (SA) architecture. To overcome limitations of the SMDP option framework,
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we first prove an MDP equivalence to the SMDP. Briefly, we propose a novel MDP “mixture mas-
ter policy” (Appendix A.4.2). Unlike the conventional SMDP master policy only depends on the
current state, the mixture master policy has extra dependencies on the termination function and the
previously activated option. We then prove that the MDP has identical optimal properties with the
SMDP option framework (Sutton et al., 1999) and identical policy gradients with the option-critic
architecture (Bacon et al., 2017). Due to page limitations, we provide detailed theorems and proofs
in Appendix A.4.
Theorem 3.1. The SMDP formulated option framework, which employs Markovian options, has an
underlying MDP equivalence.

Proposition 3.2. The MDP formulation has identical value functions with the SMDP option frame-
work (Sutton et al., 1999).

Proposition 3.3. The MDP formulation has identical policy gradients with the option-critic archi-
tecture (Bacon et al., 2017).

Although the mixture master policy (Eq. 18) is MDP formulated, the master policy’s (Eq. 17) gra-
dients are still blocked by its dependency on the termination function. To overcome this, we present
a marginalized derivation of the equivalence: the Skill-Action (SA) architecture. SA marginalizes
the termination function away and models the marginalized policy (Eq. 21) directly with a “skill
policy” (Eq. 2), which is used to replace both of the master policy and termination function while
implements their functionalities with the attention mechanism (Vaswani et al., 2017). Section 3.1
describes the dynamics (Markov process) of SA. Section 3.2 defines value functions on top of the
dynamics, thus formulates the MDP. Policy gradient theorems are then derived. Section 3.3 imple-
ments SA by employing neural networks and the Multi-Head Attention mechanism (Vaswani et al.,
2017), which enables SA to temporally extend skills in the absence of the termination function.

3.1 DYNAMICS OF THE SKILL-ACTION ARCHITECTURE

(a) PGM of SA (b) Network Architecture of SA

Figure 1: The Skill-Action (SA) Architecture

In this section, we define the dynamics (Markov process) of SA. We first introduce MDP notations.
A Markov decision process M = {S,A, r, P, γ} consists of a state space S, an action space A, a
state transition function P (st+1|st) : S→ S, a reward function r(s,a) : S×A→ R, and a discount
factor γ ∈ R. A policy π = P (a|s) : S → A is a probability distribution defined over actions
conditioning on states. An expected discounted return is defined as Gt =

∑N
k γ

kRt+k+1, where
R ∈ R is the actual reward received from the environment. The value function V [st] = Eπ[Gt|st] is
the expected return starting at state st and following policy π thereafter. The action-value function
is defined as Q[st,at] = Eτπ [Gt|st,at]. An Markov decision process together with value functions
defined on it are referred to as an MDP (Puterman, 1994).

Having defined notations of MDP, we propose the dynamics of SA. Specifically, a skill index vector
o ∈ ZM2 is an M -dimensional one-hot vector, where M denotes the total number of skills to learn.
Each entry o ∈ {0, 1} is a binary random variable. oi = 1 means that the i-th skill is activated. A
skill context matrix (Kosiorek et al., 2019) WS ∈ RM×E is a learnable parameter containing M
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rows of E dimensional real vectors, the i-th row of WS corresponds to the i-th skill oi, and different
columns encode different properties of a skill. A skill context vector ôt is defined as:

ôt = W T
S · ot, ôt ∈ RE . (1)

The skill policy is defined as:

P (ôt|st, ôt−1;Ws) : S× RE → RE , (2)

which is a probability distribution over skill context vector ôt conditioned on state st and previous
sampled skill context vector ôt−1, with WS as its learnable parameters.

The action policy is defined as:

P (at|st, ôt) : S× RE → A, (3)

which is a probability distribution over the action random variable at ∈ A conditioned on the skill
context vector ôt and state st, and decodes them into primary actions.

With both skill and action policies in hand, the dynamics of the SA are defined as a Probabilistic
Graphical Model (PGM) (Koller & Friedman, 2009) (Figure 1 (a)):

P (τ) =P (s0)P (ô0)P (a0|s0, ô0)
∞∏
t=1

P (st|st−1,at−1)P (ôt|st, ôt−1)P (at|st, ôt), (4)

where P (τ) = P (s0, ô0,a0, s1, ô1,a1, . . .) denotes the joint distribution of the PGM. Note that
under this formulation, P (τ) is actually an Hidden Markov Model (HMM) with st, at as observable
random variables and ôt as latent variables.

3.2 MDP OF THE SKILL-ACTION ARCHITECTURE

With SA’s dynamics in hand, in this section, we first propose a novel “skill value upon arrival
function” and theoretically prove that it has a smaller variance than the conventional value function.
This property is empirically justified in Section 4.1 and further discussed in Appendix A.1. Then,
we derive the recursive formulation of value functions and formulate the MDP. Based on the MDP,
skill and action policies’ gradients theorems are finally derived.

Rather than use the conventional value function V [st], we define the skill value upon arrival func-
tion V [st, ôt−1] (derivations in Appendix A.5) as:

V [st, ôt−1] = E[Gt|st, ôt−1] =
∑
ôt

P (ôt|st, ôt−1)QO[st, ôt]. (5)

Proposition 3.4. V [st, ôt−1] is an unbiased estimation of V [st].

Proposition 3.5. The variance of V [st, ôt−1] is less than or equal to V [st].

Proof. See Appendix A.5

Eq. (5) states that the skill value function upon arrival is an expectation over skill value function
QO[st, ôt] conditioned on previous skill ôt−1. The skill value function QO[st, ôt] is defined as:

QO[st, ôt] = E[Gt|st, ôt] =
∑
at

P (at|st, ôt)QA[st, ôt,at], (6)

and the skill-action value function QA[st, ôt,at] is defined as (derivations in Appendix A.5):

QA[st, ôt,at] = E[Gt|st, ôt,at] = r(s, a) + γ
∑
st+1

P (st+1|st,at)V [st+1, ôt], (7)

where γ ∈ R is a discounting factor. Expanding (Eq. 7) with (Eq. 5) gives us a recursion formu-
lation from which Bellman equations and policy gradient theorems are derived. To keep notations
uncluttered, we use θo to denote skill policy’s parameters (Eq. 2) and θa to denote action policy’s
parameters (Eq. 3). The skill and action policies’ gradient theorems are:
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Theorem 3.6. Skill Policy Gradient Theorem: Given a stochastic skill policy differentiable in its
parameter vector θo, the gradient of the expected discounted return with respect to θo is:

∂V [st, ôt−1]

∂θo
= E[

∂P (ô′|s′, ô)
∂θo

QO[s
′, ô′] | st, ôt−1], (8)

where ô′ is one time step later than ô.
Theorem 3.7. Action Policy Gradient Theorem: Given a stochastic action policy differentiable
in its parameter vector θa, the gradient of the expected discounted return with respect to θa is:

∂QO[st, ôt]

∂θa
= E[

∂P (a|s, ô)
∂θa

QA[s, ô,a] | st, ôt]. (9)

Proof. See Appendix A.6.2

Compared to MDP formulated algorithms, SMDP option frameworks are sample inefficient and
notoriously unstable to hyperparameters (Zhang & Whiteson, 2019). The Skill and Action policies’
gradient theorems enable SA to be compatible with any MDP policy gradient algorithms, and thus
has much better stability and convergence. Given the great success of PPO (Schulman et al., 2017),
in this paper we directly apply it to our learning algorithm (Algorithm 1 in Appendix A.7).

3.3 NETWORKS ARCHITECTURE

After deriving the MDP of SA, we present a simple neural network implementation of the Skill-
Action Architecture (Figure 1). Unlike the conventional SMDP option framework, which employs
a termination function and an SMDP master policy to temporally extend the execution of an op-
tion, SA implements the temporal extension functionality by employing the Multi-Head Attention
(MHA) mechanism (Vaswani et al., 2017) (due to page limitations, we briefly explain MHA in
Appendix A.9). At each time step, the skill policy P (ôt|st, ôt−1;Ws) attends to (measures the
compatibility of) all skill context vectors in Ws according to st and ôt−1. If ôt−1 still fits st, then
the skill policy assigns a larger attention weight to ôt−1, thus has a tendency to continue with it. Oth-
erwise, a new skill with better compatibility will be sampled. The action policy is as simple as one
decoder to decode ôt and st into primary actions at. The attention mechanism together with skill
context vectors enable SA to temporally extend skills even in the absence of termination functions.

Specifically, a skill policy (Eq. (2)) uses a concatenation of current state st and previous skill context
vector ôt−1 as the query for MHA. Both key and value matrices are the skill context matrix WS . In
this way, we have:

ŝt−1 = linear(Concat[st, ôt−1]), (10)

dOt = MHA(ŝt−1,WS ,WS), (11)

ot ∼ Categorical(ot|dOt ), (12)

where the linear layer simply projects the concatenated vector to E dimension. MHA is employed
to attend to (measures the compatibility of) all skills in Ws according to st and ôt−1. The skill
density vector dOt is then used as densities for a Categorical distribution P (ot|dOt ), from which
the new one-hot skill index vector ot is sampled from. We can retrieve the skill context vector by
ôt = W T

S ·ot. With the skill context vector ôt in hand, the action policy can be designed as simple
as a multi-layers Feed-Forward Networks (FFN) decoder:

dAt = FFN(st, ôt), (13)

at ∼ P (at|dAt ), (14)

where dAt is a density vector and P is an arbitrary probability distribution (works for both discrete
and continuous situations).

Similar to Zhang & Whiteson (2019), because of the skill value upon arrival function V (st, ôt−1),
(Eq. 5) is an expectation of the skill value functionQO[st, ôt] (Eq. 6). It is sufficient for us to model
only one critic function:

QO = FFN(st, ôt), (15)
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where QO is implemented as a multi-layer FFN. We summarize the detailed learning procedures in
Algorithm 1 in Appendix A.7.

Since ôt encodes all context of a skill, SA only needs one action policy decoder to decode the
activated skill context vectors ôt and current state st into primary actions at. This design choice
largely improves the scalability of SA: adding one more skill is as cheap as adding a skill context
vector. Moreover, unlike the option framework, in which only the activated option’s action policy
gets updated, the action policy learns to decode each dimension of skill context vectors at every time
step. This design choice largely improves sample efficiency and enables SA to converge faster than
the conventional option framework.

4 EXPERIMENTS

In this section, we design experiments to answer three questions: 1) Can SA outperform other
baselines (regarding episodic returns, stability, and scalability)? 2) Can SA temporally extend skills
without the termination function? 3) Can skill context vectors be easily interpreted?

Experiments are conducted on all OpenAI Gym MuJoCo environments (10 environments) (Brock-
man et al., 2016). We follow DAC (Zhang & Whiteson, 2019) and compare our algorithm with five
baselines, four of which are option implementations, i.e., DAC+PPO (Zhang & Whiteson, 2019),
AHP+PPO (Levy & Shimkin, 2011), PPOC (Klissarov et al., 2017) and OC (Bacon et al., 2017).
The last baseline is PPO (Schulman et al., 2017). All baselines’ parameters used in DAC2 remain
unchanged. The only difference is the maximum number of training steps: SA only needs 1 mil-
lion steps to converge rather than the 2 million used in DAC. For a fair comparison, we use four
skills for SA and four options for other option implementations. All experiments are run on an Intel
Core i9-9900X CPU @ 3.50GHz with a single thread and process. Our implementation details are
summarized in Appendix A.8.

4.1 PERFORMANCE

In Figure 2, we report episodic returns on infinite horizon and finite horizon3 environments sepa-
rately. For a fair comparison, we use exactly the same plotting script as used in DAC: curves are
averaged over 10 independent runs and smoothed by a sliding window of size 20. Shaded regions
indicate standard deviations. Performance of all ten environments is shown in Appendix (Figure 6).

(a) Infinite Horizon Environments

(b) Finite Horizon Environments
Figure 2: Episodic Returns. X-axis is time step. Y-axis is Episodic Return

It is extremely interesting that SA shows two completely different kinds of behaviors on infinite and
finite horizon environments. According to previous option framework implementations (Klissarov

2All implementations are from DAC’s open source repo https://github.com/ShangtongZhang/DeepRL/tree/DAC.
Note that the author list of this paper does not have any overlap with DAC. We have open sourced our imple-
mentation in supplementary materials.

3We refer environments with the environment-over condition to finite horizon environments, and infinite
vice versa.
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et al., 2017; Smith et al., 2018; Harb et al., 2018; Zhang & Whiteson, 2019), on single task environ-
ments, option-based algorithms do not have a distinguishable performance boost over hierarchy-free
algorithms. SA also has similar behavior and achieves comparable performance to the best baseline
algorithm on most finite horizon environments, as shown in Figure 2 (b). We conjecture that finite
horizon environments contain less significant temporal relationships than infinite horizon environ-
ments (Appendix A.1).

Figure 3: Skill Duration Patterns

On infinite horizon environments as shown in Figure 2 (a), SA’s performance significantly outper-
forms all baselines by a large margin in various aspects. For episodic return, e.g., HumanoidStandup,
all option implementations barely converge, while SA is 240% better than DAC and AHP4. For con-
vergence, SA has the fastest convergence speed. On the first two environments, which are also
reported in DAC, SA only takes 40% of time steps of DAC and AHP to reach similar episodic re-
turns. This acceleration is because: 1) SA is MDP formulated, the skill policy is updated at each
time step; 2) SA only has one action policy decoder; 3) the action decoder learns to decode skill
context vectors whichever skill is activated. For stability, all 10 runs of SA converges to a similar
level while the other have much larger standard deviations. This property is theoretically justified
by Proposition 3.5 and further discussed in Appendix A.1.

4.2 TEMPORAL EXTENSION

It is logical to ask whether SA is capable of temporal extension without the termination function. To
illustrate this, we plot the average duration of each skill during training episodes of the HalfCheetah
environment in Figure 3 (a) (more details are provided in Appendix A.3.2). At the start of training,
all skills’ durations are short, while Skill 2’s duration quickly grows and dominates the entire episode
during later stages. This growth of duration proves that SA can still temporally extend a skill.
Moreover, towards the end of the training, the dominant skill’s 5 duration starts to decrease while
the duration of a secondary skill (Skill 1) starts to increase. This means that during later training
stages, SA starts to coordinate different skills. To better explain how SA coordinates skills, we
provide a visualization of skill activation sequences in Figure 3 (b).

4.3 INTERPRETATION OF SKILL CONTEXT VECTORS

Explicit skill representations not only improve efficiency, scalability, and generalization, but also
benefit interpretation. We continue with the HalfCheetah example and demonstrate how easily skill
context matrix Ws (Figure 4 (a)) can be interpreted (more details are provided in Appendix A.3.3).
We first follow Sabour et al. (2017) and interpret what property is represented by a context vector’s
dimension by adding perturbations on to it, and inspecting perturbations’ affections on the action
policy decoder of generating primary actions a (Figure 4 (b)). Once each dimension is understood,
skills become straight forward to interpret by simply inspecting on which dimensions (property)
each skill ô in Figure 4 (a) has significant weights, and interpreting properties of those dimensions
((Figure 4 (c)). In this way, we can interpret that Skill 2 is a forward movement skill, since it focuses
on jumping and running forward, while Skill 1 is a landing skill. These interpretations can further
be used to explain skill activation patterns in Figure 3 (b): Skill 2 has the longest duration because
it is the major source of all forward movements. Skill 2 occasionally falls back to Skill 1 because,
after jumping or running, the HalfCheetah needs to land and balance itself.

4Even on Reacher, a simple environment on which most algorithms converge to a similar performance, SA
is still 38% better than the second best (AHP).

5The dominant skill phenomenon is also reported in other option implementations such as DAC, we give a
detailed explanation in Appendix A.1
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Figure 4: Interpretation of Skill Context Vectors

4.4 TRANSFER LEARNING

We follow DAC (Zhang & Whiteson, 2019) and run 6 pairs of transfer learning tasks constructed in
DAC based on DeepMind Control Suite (Tassa et al., 2020). Each pair contains two different tasks.
We train all models one million steps on the first task and switch to the second (SA’s skill context
matrix is subsequently frozen) to run another one million steps. Results are reported in Figure 5:

Figure 5: Performance on DAC transfer learning tasks

On the transfer learning (the second) task, SA’s performance ranks the first in 5 out of 6 environ-
ments. This shows SA’s advantages on reusing experience and knowledge across tasks. On the first
task, SA’s performance is also among the best algorithms in all environments. This further validates
SA’s advantage on single task as observed in section 4.1.

5 CONCLUSIONS

In this paper, we presented a novel MDP equivalence of the SMDP formulated option framework,
from which an MDP implementation of the option framework, i.e., the Skill-Action architecture,
was derived. We theoretically proved that SA has lower variance than conventional RL models and
provided policy gradient theorems for updating SA. Our empirical studies on challenging infinite
horizon robot simulation environments demonstrated that SA not only outperforms all baselines by
a large margin, but also exhibits smaller variance, faster convergence, and good interpretability. On
transfer learning, SA also outperforms the other models in 5 out of 6 environments and shows its
advantage on reusing experience and knowledge across tasks.

The final and most important contribution of SA is hierarchically learning of explicit abstract ac-
tions’ representations with “skill context vectors”. This design significantly improves the scalability
and interpretability of SA. It is straightforward to extend SA to deeper architectures, which paves
the way for a large-scale pre-training and transfer learning architecture in the reinforcement learning
area (Appendix A.1).
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A APPENDIX

A.1 LEARNING SKILLS AT MULTI-LEVELS OF GRANULARITY

Implementations of the option framework share some common limitations. When proposing the
option framework, Sutton et al. (1999) expected that learning at multi-level of temporal abstraction
should be in favor of faster convergence and better exploration. On the contrary, significant improve-
ments on single task environments have not been witnessed in most option implementations (Klis-
sarov et al., 2017; Smith et al., 2018; Harb et al., 2018; Zhang & Whiteson, 2019). To the best
of our knowledge, SA is the first option implementation in which these properties are significantly
witnessed but only on infinite horizon environments. In this section, we address this problem by
first giving a theoretical explanation of why the value function is the main reason for this deficiency
in section A.1.1 and how deep wide value functions could solve this problem. We then thoroughly
explain the motivations of SA, and why it is a promising candidate for a deep wide framework, in
section A.1.2. We also give a further explanation of how SA is connected to causality reinforcement
learning literature and how a temporal causal reward can be used in objective to further solve this
problem in section A.1.3.

A.1.1 PROBLEM STATEMENT AND EVIDENCES

The expectation of improvements of the option framework on single task environment builds on an
assumption that, by exploiting hierarchical action and state space, an agent’s searching space can
be greatly reduced thus accelerates learning and improving exploration. However, as reported in
section 4.2, most option frameworks including SA suffer from “the dominant skill problem” (Zhang
& Whiteson, 2019) which prevents option frameworks from effectively learning hierarchy in action
and state space as well as coordinating between skills.

One root reason for this problem is that conventional value functions V [St] and Q[St, Ot, At] make
values depend on temporal latent variables indistinguishable (i.e. Although different skills o1 and
o2 results to different values, such as V [St, Ot−1 = o1] = 10 and V [St, Ot−1 = o2] = −10.
Because they arrive at the same state St, they have identical values under conventional value func-
tion V [St] = 0). This deficiency makes option frameworks can only learn skills at very coarse
level thus fail to exploit hierarchical information. The solution is to use a deep wide value func-
tion: enabling the framework to learn fine-grained skills at mutli-levels of granularity (deep) and
making value functions depend on latent variables with longer dependencies (e.g. V [St, Ot−1] and
Q[St, Ot, At, Ot−1]) (wide).

To have a better understanding the importance of the deep wide value function, let us consider a
simple environment which can be easily solved by Q[st, at, at−1] but not Q[st, at].

Suppose we are training a robot which only has a camera sensor to cook thanksgiving turkey. In
this setting there are only two states: S = {Raw Turkey Image,Cooked Turkey Image}. The robot’s
action space only consists two actions A = {Stuff turkey,Roast turkey}. As for reward, if the robot
roast a stuffed turkey, then the reward is 10. However, if the robot roast an un-stuffed turkey, then
the reward is −10. The stuff turkey action receives 0 reward.

The difficulty in this environment is, since the robot only has a camera to capture an image of
the turkey, it can only observes either {Raw Turkey Image} or {Cooked Turkey Image}. There is
no way to look inside the turkey and see if the turkey is stuffed. Under this setting, a robot can
never learn to first stuff a turkey and then roast it because Q[Raw Turkey Image,Stuff Turkey] =
Q[Raw Turkey Image,Roast Turkey] = 0. Therefore, the robot can only randomly cook a turkey.
However, this problem can be easily solved by using a deep wide value function Q[St, At, At−1].

The core problem in this setting is, action has no affection on states, it only affects rewards. At first
glance this is a Partially Observed MDP (POMDP) problem since the state of whether the turkey is
stuffed is un-observed. This is true in all reinforcement learning settings without dependencies on
latent variables. However, it goes much deeper in HRL settings.

In HRL, a common formulation is to estimate a latent variable O to encode hierarchical information
and makes the policy depends on it P (At|St, Ot). Since O is a latent variable, it is highly likely that
at state St, different latent variable P (At|St, Ot = Ox) and P (At|St, Ot = Oy) emits the same
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action At = A1, and thus makes the conventional value function indistinguishable between Ox and
Oy .

This phenomenon is especially common around the switching time step of two skills: around switch-
ing point, states usually compatible with both old and new skills. Conventional value functions will
be especially confused at those moments. This is exactly what we observed in Figure 3: over-
all, skill 2 is executed consistently. However, there are some random switches to skill 1. And
the randomization is increased between around switching time steps. To explicitly show this, we
visualized “Run4” into a video: https://www.youtube.com/watch?v=QiLVZvI6NJU. The skill se-
lection is very random at the beginning of the episode as well as around the switching point (the
16th second). These are exactly the most confusing moments of conventional value functions.
This is not a cherry-pick result but a common problem. Similar patterns can also be observed here
https://youtu.be/xrfxbI3duBM?t=4 in a HumanoidStandUp environment.

Due to the insufficiency of conventional value functions, compatible states have to be different
enough to cause distinguishable values of value functions. Therefore, with conventional value func-
tions, SA is only able to learn very coarse skills. For example, as shown in Figure 4 and the video,
the HalfCheetah agent is only able learn two skills: one is to run forward, one is to stand up when
fall. However it is not able to learn more fine-grained skills such as jump forward and landing. This
problem is not limited to SA, but is a common problem in HRL. The solution is to use deep wide
value functions.

A.1.2 DEEP WIDE SKILL-ACTION ARCHITECTURE (DWSA)

SA is carefully designed to make the most out of deep wide value functions. Compared to other
HRL frameworks, SA has following advantages:

1. Stable and unbiased estimation: Thanks to proposition 3.4 and 3.5, the higher the order of
the MDPs, the smaller the variance will be. The deep wide value functions stays unbiased
estimations of conventional value functions no matter how many dependencies introduced.
The current solution in option framework is a biased estimation (Harb et al., 2018) and
adding hyper-parameters to the framework.

2. Easy to incorporate wide value functions: Incorporating a deep wide value function is
straightforward, SA’s skill value upon arrival function is already a wide function. The
skill value function and the skill-action value function can be easily extended to wide
function by adding a first-order dependency on Ôt−1.

3. Easy to incorporate deep value functions: SA is MDP formulated, extending SA to multiple
hierarchies is straightforward.

4. Scalability to long time dependencies: SA is MDP formulated, adding more time depen-
dencies is simply to change the 1st-order MDP to higher-order MDPs while both value
functions and gradient theorems stay unchanged; SA is attention based, SA can easily at-
tends to thousand time steps without adding any extra complexity to neither skill policy nor
action policy.

5. Scalability to multiple hierarchies of skills: SA is attention based and embedding based.
Adding skills is as simple as adding skill context matrix. In traditional option frameworks
(Riemer et al., 2018), the number of option (note that each option is a neural network)
grows at O(NL) complexity of levels (N is the number of options and L is the number of
levels).

6. Interpretability. As shown in section 4.3, skill context vectors learned under SA-based ar-
chitectures are straightforward to visualize and interpret. This property is especially useful
for investigating multi-level granularity skills.

A.1.3 CAUSALITY DISCOVERY REWARDS

Although theoretically a DWSA can learn multi-level granularity skills, on-policy optimization al-
gorithm is often insufficient for learning such models especially in sparse reward environments.
However, SA has a natural connection with causal reinforcement learning thus can exploits causal-
ity as a reward in objective function to further facilitate fine grained skill discovery. In this section
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we explain how skill embedding vectors learned by SA encodes temporal causality relationships and
how to use them to devise causal rewards.

In causal reinforcement learning area, Doshi-Velez & Konidaris (2016) proposed Hidden Parameters
MDP (Hi-MDP) in which a skill vector like hidden parameter vector is introduced to learn abstract
properties from environments. PEARL (Rakelly et al., 2019) utilizes meta-learning framework to
learn a skill representation that encodes abstract properties of a task and updates the framework
in an off-policy manner to improve sample efficiency in transfer learning. Killian et al. (2017)
extended Hi-MDP by including the hidden parameter vector into transition probability function.
Perez et al. (2020) further extended their work by proposing Generalized Hidden Parameter MDPs
(GHP-MDPs), a causality discovery framework by including hidden parameter vector into both
transition function and value function.

GHP-MDPs is a special case of SA with number of skills M = 1. When M > 1, SA not only
encodes causality relationships between environments and actions but also temporal causality be-
tween skills. Since the latent variable is modeled as a skill vector, the distance between different
trajectories is straightforward to be calculated and thus can be used as a causal reward to encourage
fine-grained and disentangled skills’ discovery. To the best of our knowledge, SA is the first RL
framework concerns causality in temporal abstraction sequences. We focus this paper on proposing
SA, the causality rewarded SA will be discussed in future works.

Another interesting understanding of SA is that, rather than an implementation of the option frame-
work, SA can also be seen as a novel capsule network Kosiorek et al. (2019) trained by policy
gradient theorems. In Stacked Capsule Auto-Encoders (SCAE) (Kosiorek et al., 2019), a “capsule”
vector encodes a different property (scale, orientation, etc.) of the visual object in each dimension.
Kosiorek et al. (2019) proposed to delegate the complexity of part objects detection and part-to-
whole objects aggregation by employing the attention mechanism (Lee et al., 2019) on which a
generative model is then built to further decode the whole-part relationships. This design choice
abstracts the complexity of inference away from the decoder and largely simplified the designation
of the generative model.

In this paper, we follow their motivations of learning better representations and utilizing the attention
mechanism to simplify the inference problem (sampling new skill without termination function).
Moreover, the skill context vector is analogously to a capsule and the skill-action relationship is
analogously to the whole-part relationship in the SCAE. Similar to SCAE utilizing the equi-variance
property of the whole-part relationship to achieve computing efficiency and better performance, it
will be very exciting to investigate potentially “equi-variance” or “invariance” properties existed
in skill-action relationships, which might give rise to a novel causal inference architecture in the
reinforcement learning area.

A.2 RELATED WORKERS IN RL

In main text we only discuss a subset of related works from the option framework community. In
this section we give a broader discussion of SA with other RL works.

It is worth to mention that, the novel formulation of SA establishes strong connections between
causal reinforcement learning, meta-reinforcement learning and transfer learning (Gupta et al., 2019;
Hausman et al., 2018). As discussed in section A.1.3, with number of skills M = 1, SA falls back
to GHP-MDPs (Perez et al., 2020), which introduces an extra latent parameter vector in policy to
encode causality between policy and environment properties. Similar settings are also employed by
Rakelly et al. (2019) in meta-learning and Tirumala et al. (2019) in imitation learning. However, all
these work only exploit skill context vectors without temporal dependencies.

Other than temporal level abstraction, the option framework also encodes action level abstraction.
RHPO (Wulfmeier et al., 2019) proposed a hierarchical policy by using Gaussian Mixture Model
(GMM) without temporal dependencies between latent variables. HO2 (Wulfmeier et al., 2020).
Wulfmeier et al. (2020) extends RHPO (Wulfmeier et al., 2019) to optimize the option framework by
employing a trust-region constrained off-policy algorithm. Their experiments prove that frameworks
learning both action and temporal abstraction outperforms action-only models by a large margin.
HO2 and SA complements each other under the option framework from different aspects: HO2
provides an efficient off-policy algorithm which significantly outperforms on-policy algorithms that
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SA suffers from. On the other hand, due to the SMDP formulation, HO2 has to introduce the
maximum number of switches as a hyper-parameter and marginalize over it to ensure temporal
consistency. With SA’s MDP formulation and attention mechanism, HO2 can improve temporal
consistency from a much more efficient and data-driven manner.

Unlike HO2 largely benefits from temporal abstraction, our experiments show that one limitation of
SA is that its improvements mainly comes from action abstraction rather than temporal. However,
as discussed in section A.1, SA gives rise to an elegant solution of exploiting temporal abstraction
and coordinating disentangled skills at multiple granularities. This topic is beyond the scope of this
paper and remains for future work.
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A.3 EXPERIMENTS RESULTS

A.3.1 PERFORMANCE

In this section we provide results for all ten OpenAI Gym Mujoco Environments. Those envi-
ronments can be classified into two categories: infinite horizon environments (i.e., HalfCheetah,
Swimmer, HumanoidStandup and Reacher) and finite horizon environments (the other).

Figure 6: Performance of Ten OpenAI Gym MuJoCo Environments.
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A.3.2 TEMPORAL EXTENSION

In Figure 7, we plot the average duration of each skill during 430 training episodes (each episode
contains a trajectory of 512 time steps) of the HalfCheetah environment. In this environment, the
agent learns to run half of a Cheetah by controlling 6 joints: back thigh, back shin, back foot,
front thigh, front shin, and front foot. The faster the Cheetah runs forward, the higher return it
gets from the environment. At the start of training, all skills’ durations are short. After the 100-
th episode, Skill 2’s duration quickly grows and dominates the entire episode. The dominant skill
phenomenon is also reported in other option implementations such as DAC. One explanation for
this domination phenomenon is that for some single task environments, primitive actions might
be enough to express the optimal policy, in which case extra levels of abstraction (skills) become
overhead. However, because the duration of dominant skill starts to fall at the end of training and
SA significantly outperforms PPO which only employs primary actions, these facts indicate that SA
has a better capability of automatically discovering abstract actions from primary actions as well as
coordinating between them.

Figure 7: Duration of 4 options during 430 training episodes of HalfCheetah.

To illustrate how SA coordinates skills, we take the HalfCheetah model trained after 1 million steps
and independently run it 4 times (4 episodes. each episode contains 512 time steps). Skill activation
sequences of 4 runs are then plotted in Figure 8. As we can see that there are some common patterns

Figure 8: Activated option sequences of 4 independent HalfCheetah runs.

between all 4 independent runs. For example, all runs start with Skill 0 and use Skill 1 at the early
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stage. After executing Skill 1 for a short period, they all switch to Skill 2 which has longest durations
in all 4 runs. From time to time they will fall back to Skill 1 for short periods and quickly switch
to Skill 2 again. This pattern of coordination indicates that Skill 1 and Skill 2 have completely
different functionality and SA has the capability of automatically discovering as well as leveraging
those skills.

A.3.3 INTERPRETATION OF SKILL CONTEXT VECTORS

In this section we continue with the HalfCheetah model used in Section A.3.2 and demonstrate how
to interpret skill context vectors as well as skill activation sequences (Figure 8). In HalfCheetah,
the agent learns to run half of a Cheetah by controlling 6 joints: back thigh, back shin, back foot,
front thigh, front shin, and front foot. The faster the Cheetah runs forward, the higher return it gets
from the environment. We interpret skill context vectors and activation patterns by first inspecting
what property each dimension of the skill context vector encodes (Figure 10). Once each dimension
is understood, skills (Figure 9) become straight forward to interpret by simply inspecting on which
dimension (property) they have the most significant weights (Figure 11). These interpretations can
further be taken to explain skill activation patterns in Figure 8.

Figure 9: Heatmap of all 4 skill context vectors

As the first step, we follow Sabour et al. (2017) to interpret what property each dimension of the
skill context vector in Figure 9 encodes by perturbing each dimension and decode perturbed skill
context vectors into primary actions. Specifically, we perturb one dimension by adding a range of
perturbations [−0.1, 0.09] by intervals of 0.01 onto it while keep the other dimensions fixed. After
perturbation, each skill context vector dimension has 20 perturbed vectors. We then use the action
policy decoder to decode all those vectors into primary actions and see how the perturbation affects
the primary action. As an illustration, we plot Dimension 0’s all 20 perturbed results in Figure 10.

Figure 10: Perturbation on the Dim 0

With visualization of perturbation results in hand, we can interpret what property each dimension
encode by inspecting relationships between perturbations and primary actions. In Figure 10, as an
example, it is clear that changes on Dim 0 has opposite effect on the back leg and front leg: a larger
value on Dim 0 will assign the back leg a larger torque while the front leg a smaller one, and vice
versa. This means Dim 0 is has a focus point property: it focuses torque on only one leg.
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Once we know how to interpret one dimension, we can move on to interpret the whole skill context
vector. Since Skill 1 and Skill 2 are two main skills employed in Figure 8, here we provide an
example of how to interpret them. Figure 9 shows that Skill 1 has significant values on dimension
11, 15 and 22. Skill 2 is significant on dimension 2, 5 and 36. We demonstrate these dimensions in
the same manner as Figure 10 below:

Figure 11: Interpretation of Skill 1 and Skill 2

Subfigures in Figure 11 can be interpreted in the same manner as Figure 10. As an example, from
Figure 9 we can see that Skill 1 has a significant small value on Dim 11. In Figure 11, it shows that
a smaller Dim 11 will twist the front leg forward and back foot forward while twist back thigh, back
shin backward. Composition of these movements is a back leg landing property. Similarly, we can
interpret that Dim 15 is a front leg landing property and Dim 22 is a balancing property. Therefore,
Skill 1 is focusing on landing from all positions.

Unlike other skill context vectors which have apparent focusing dimensions, Skill 2 has a rather
balanced skill context vector. It has no apparently dominant dimension. It only has slightly more
significant values on Dim 2, 5, 36, which are focusing on jumping and running properties. Therefore,
Skill 2 is more like an “all-weather” skill: it is a skill having very balanced properties with a slightly
demonstration on running and jumping.

Interpretations of Skill 1 and 2 above can then be taken to understand skill activation patterns in
Figure 8: as an all-weather skill, Skill 2 is the most frequently executed one and has the longest
duration. From time to time, when the Cheetah needs to land and balance itself, Skill 1 will be
executed. However, since landing skill does not provide power of moving forward and thus has
lower returns to continue, once the body is balanced the Cheetah will quickly stop Skill 1’s execution
and keep running with Skill 2.

A.4 MDP EQUIVALENCE TO THE SMDP OPTION FRAMEWORK

In this section, we show that the the conventional Semi-Markov Decision Problem (SMDP) option
framework which employs Markovian options actually has an MDP equivalence. We first follow
Bishop (2006)’s method and formulate the dynamics of the option framework as an Hidden Markov
Model (HMM) (Bishop, 2006) in section A.4.2. With Probability Graphical Model (PGM) (Bishop,
2006) and its conditional independence relationships (Chapter 8.2.1 (Bishop, 2006)) in hand, we
then move on to prove that MDP formulation has identical value functions (section A.4.3), bellman
equations as well as intra-option policy and termination policy gradients to SMDP formulation (sec-
tion A.4.4). To the best of our knowledge, this is the first work discovering the option framework’s
MDP equivalence and deriving the option framework from a PGM view.
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A.4.1 BACKGROUND: THE OPTION FRAMEWORK

Sutton et al. (1999) proposed the option framework to demonstrate the temporal abstraction problem.
A scalar o ∈ Z denotes the index of an option where O ⊆ {1, 2, . . . ,M} and M is the number of
options. An Markovian option is a triple (Io, Po(a|s), Po(b|s)) in which Io ⊆ S is an initiation
set where the option o can be initiated. Po(a|s) : S → A is the intra-option policy which maps
environment states s ∈ S to an action vector a ∈ A. Po(b|s) : S → Z2 is a termination function
where b is a binary random variable. It is used to determine whether to terminate (b = 1) the policy
Po(a|s) or not (b = 0). Conventionally, βo = Po(b = 1|s). Since an option’s execution may persist
over a variable period of time, a set of options’ execution together with its value functions constitutes
a Semi-Markov Decision Problem (SMDP) (Puterman, 1994). When an old option is terminated, a
new option will be sampled from the master policy (policy-over-options) o ∼ P (ot+1|st+1) : S →
O. Due to the SMDP formulation, an option can only be improved when the option terminates.

Figure 12: An Illustration of the SMDP Option Framework. An option ot−1 is selected by master
policy P (ot−1|st−1) at time step t − 1. At time step t, termination function βot−1(st) determines
to continue option ot−1. So that there is no random variable ot at time step t compared to there are
random variables o at every time step in MDP formulation (figure 13).

We refer this as the SMDP-style learning which is sample inefficient and prevents applying SOTA
MDP based algorithms such as the Proximal Policy Optimization (PPO) algorithm (Schulman et al.,
2017).

A.4.2 HMM DYNAMICS FOR THE OPTION FRAMEWORK

We follow Bishop (2006)’s formulation of mixture distribution and Probabilistic Graphical Models
(PGMs). By introducing option variables as latent variables and adding extra dependencies between
them, we show that the conventional SMDP version of the option framework (Bacon et al., 2017;
Sutton & Barto, 2018; Sutton et al., 1999; Harb et al., 2018; Zhang & Whiteson, 2019) has an MDP
equivalence. Following Bishop (2006)’s notation, we use bolded letter s ∈ S to denote a random
variable and normal letter s to denote its realization. Without special clarification, a random vector
can have either a vector of continuous or discrete entries. Vector o ∈ O is an M -dimensional one-
hot vector and each entry o ∈ {0, 1} is a binary random variable. P (ot|st) denotes the probability
distribution over one-hot vector o at time step t conditioned on state st. P (ot = ot|st) denotes a
probability entry (a scalar value) of the random variable ot with a realization at time step t where
ot = 1 and o ∈ ot/ot = 0.

In figure 13, s ∈ S, o ∈ OM , b ∈ BM and a ∈ A, denote the state, option, termination and ac-
tion random variable respectively. o is anM -dimensional one-hot vector and b is anM -dimensional
binary vector where each entry b ∈ {0, 1}. M is the number of options. Rt+1 is the actual reward re-
ceived from the environment after executing action at in state st. Gt = Rt+1+γRt+2+γ

2Rt+3 · · ·
is the discounted expected return where γ ∈ R is a discount factor.
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Figure 13: PGM of the MDP Option Framework

The termination policy distribution P (bt|st,ot−1) : S × O → B can be formulated as a mixture
distribution6 conditioned on option vector (the one-hot vector) ot−1 and state st.

P (bt|st,ot−1) =
∏

i∈ot−1

Pi(bt|st)i. (16)

Because each option has its own termination policy Po(b|s), with a slightly abuse of notation, in
equation (16) we use P (bt|st,ot−1) to denote the termination policy activated at time step t by
previous chosen option ot−1. To keep notation uncluttered, we use βt = P (bt = 1|st,ot−1) to
denote the probability of option ot−1 terminates at time step t and (1 − βt) = P (bt = 0|st,ot−1)
to denote the probability of continuation.

Conventionally, master policy (Zhang & Whiteson, 2019) (also called “policy-over-options” (Sutton
et al., 1999; Bacon et al., 2017))) is defined as:

P (ot|st). (17)

Similarly, we propose a novel mixture master policy as a mixture distribution7:

P (ot|st,bt,ot−1) = P (ot|st)btP (ot|ot−1)1−bt , (18)

where P (ot|ot−1) is a degenerated probability distribution (Puterman, 1994)

P (ot|ot−1) =
{
1 if ot = ot−1,

0 if ot 6= ot−1.
(19)

As shown in equation (18), the master policy only exists when bt = 1 the option terminates. There-
fore, PPOC (Klissarov et al., 2017) uses inaccurate gradients for updating the master policy during
an option’s execution.

According to the conditional dependency relationships in PGM (figure 13), the joint probability
distribution of ot and bt can be written as:

P (ot,bt|st,ot−1) = P (bt|st,ot−1)P (ot|st,bt,ot−1), (20)

6Different from conventional formulation which only depends on state st, our termination function has an
extra dependence on ot−1

7Different from conventional formulation which only depends on state st, our mixture master policy has
extra dependencies on ot−1 and bt
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and the marginal probability distribution can be written as:

P (ot|st,ot−1) =
∑
bt

P (bt|st,ot−1)P (ot|st,bt,ot−1) (21)

= P (bt = 0|st,ot−1)P (ot|ot−1) + P (bt = 1|st,ot−1)P (ot|st)
= (1− βt)P (ot|ot−1) + βtP (ot|st)
= (1− βt)1ot=ot−1

+ βtP (ot|st).

The intra-option (action) policy distribution can also be formulated as a mixture distribution

P (at|st,ot) =
∏
i∈ot

Pi(at|st)i. (22)

Therefore, the dynamics of the PGM in figure 13 can be written as:
P (τ) =P (s0)P (o0)P (a0|s0,o0)

∞∏
t=1

P (st|st−1,at−1)P (bt|st,ot−1)P (ot|bt, st,ot−1)P (at|st,ot), (23)

where P (τ) = P (s0,o0,a0, s1,b1,o1,a1, . . .) denotes the joint distribution of the PGM. Notice
that under this formulation, P (τ) is actually an HMM with st, at as observable random variables
and bt, ot as latent variables.

It is worth to mention that equation (19) is essentially the indicator function 1ot=ot−1
used in con-

ventional SMDP option framework papers and the last line in equation (21) is identical to transitional
probability distribution in their formulation. However, as we show in this section, by adding latent
variables ot−1 and introducing the dependency between ot and bt, our formulation is essentially
an HMM. It opens the door to introduce many well developed PGM algorithms such as message
passing (Forney, 1973) and variational inference (Hoffman et al., 2013) to the reinforcement learn-
ing framework. As we show below, the nice conditional independence relationships enjoyed by this
model also enable us to prove the equivalence between the option framework’s SMDP and MDP
formulation.

A.4.3 MDP FORMULATION FOR THE OPTION FRAMEWORK

With PGM in hand, we now prove that the HMM formulated MDP option framework has identical
value functions with the conventional SMDP option framework(Bacon et al., 2017; Sutton et al.,
1999). In this section, we first show that all value functions defined on our PGM are identical to the
SMDP formulation. We will prove that the gradients are also the same in next section.

We follow Sutton & Barto (2018)’s notation in this section and write value functions for MDP below:

V [st] = E[Gt|st] =
∑
Gt

Gt
∑
ot

P (Gt,ot|st)

=
∑
ot

P (ot|st)
∑
Gt

GtP (Gt|st,ot)

=
∑
ot

P (ot|st)E[Gt|ot, st]

=
∑
ot

P (ot|st)QO[ot, st], (24)

where V [st] is the state value function(Sutton & Barto, 2018) and QO[ot, st] is the option value
function(Bacon et al., 2017; Sutton et al., 1999). Note that in deriving equation (24) we only use
summation rule and production rule, the conditional dependency relationships in PGM (figure 13)
are not used. The option value function QO[ot, st] can be further expanded as:

QO[ot, st] = E[Gt|ot, st] =
∑
at

P (at|st,ot)E[Gt|ot, st,at]

=
∑
at

P (at|st,ot)QU [ot, st,at], (25)
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where QU [ot, st,at] is the option-action value function.

Proposition A.4.3.1. MDP formulation has identical state value function V [st] and option value
function QO[ot, st] to SMDP formulations

Proof. Note that in derivations above we only use summation and production rules. Both equa-
tion (24) and (25) are identical to the conventional SMDP option framework.

From now on, we will continue derivations with conditonal independence relationships encoded in
PGM (Chapter 8.2.1 (Bishop, 2006)). We have following conditional independence relationships
from PGM (figure 13):

{Rt+2, Gt+1} ⊥⊥ {bt+1} | {ot+1}, (26)
{Rt+2, Gt+1} ⊥⊥ {st} | {st+1,ot}, (27)
{Rt+2, Gt+1} ⊥⊥ {at} | {st+1}, (28)
{Rt+2, Gt+1} ⊥⊥ {ot} | {st+1,ot+1}, (29)

{Rt+1, Gt, st+1} ⊥⊥ {ot} | {at}. (30)

With above conditional independence relationships in hand, we now show that the MDP formulation
has identical value functions to the conventional SMDP formulation(Sutton et al., 1999; Bacon et al.,
2017).

Proposition A.4.3.2. MDP formulation has identical option-action value function QU [ot, st,at] to
SMDP formulations

QU [ot, st,at] = r(st,at) + γ
∑
st+1

P (st+1|st,at)U [st+1,ot]. (31)

Proof.

QU [ot, st,at] =E[Gt|ot, st,at]
=E[Rt+1 + γGt+1|ot, st,at] by definition of Gt
=E[Rt+1|st,at]+ use eq (30)

γ
∑
Gt+1

Gt+1

∑
st+1

P (st+1|st,ot,at)P (Gt+1|st+1,ot, st,at)

=r(st,at)+

γ
∑
Gt+1

Gt+1

∑
st+1

P (st+1|st,at)P (Gt+1|st+1,ot) use eq 27 28 and 30

=r(st,at) + γ
∑
st+1

P (st+1|st,at)E[Gt+1|st+1,ot]

=r(st,at) + γ
∑
st+1

P (st+1|st,at)U [st+1,ot].

Proposition A.4.3.3. MDP formulation has identical option-value function upon arrivalU [st+1,ot]
to SMDP formulations8

U [st+1,ot] =(1− βt+1)QO[ot+1 = ot, st+1] + βt+1V [st+1] (32)
=QO[ot+1 = ot, st+1]− βt+1A[ot+1 = ot, st+1]. (33)

8Both equations (32) and (33) is largely used in the conventional SMDP papers(Sutton et al., 1999; Bacon
et al., 2017).
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Proof.

U [st+1,ot] =E[Gt+1|st+1,ot]

=
∑
Gt+1

Gt+1∑
ot+1

∑
bt+1

P (bt+1|ot, st+1)P (ot+1|bt+1,ot, st+1)P (Gt+1|ot+1,bt+1,ot, st+1)

=
∑
ot+1

∑
bt+1

P (bt+1|ot, st+1)P (ot+1|bt+1,ot, st+1)
∑
Gt+1

Gt+1P (Gt+1|ot+1, st+1)

=
∑
ot+1

[
(1− βt+1)1ot+1=ot + βt+1P (ot+1|st+1)

]
QO[ot+1, st+1]

=(1− βt+1)QO[ot+1 = ot, st+1] + βt+1V [st+1]

=QO[ot+1 = ot, st+1]− βt+1A[ot+1 = ot, st+1].

from line 3 to line 4 use equation (26) and (29). From line 4 to line 5 use equation (21) and definition
of QO. The second last line use equation (24). The last line use the definition of advantage function
A.

Under our MDP formulation, we also propose proposition A.4.3.4. We derive our gradient theorems
based on equation (34) in section A.4.4. This important relationship largely simplify derivations
than the original paper (Bacon et al., 2017) as well as give rise to the SA.

Proposition A.4.3.4. The option-value function upon arrival U [st+1,ot] is an expectation over
option value function QO[ot+1, st+1] conditioned on previous option Ot

U [st+1,ot] =
∑
ot+1

P (ot+1|ot, st+1)QO[ot+1, st+1]. (34)

Proof. Following proof of proposition A.4.3.3,

U [st+1,ot] =
∑
ot+1

∑
bt+1

P (bt+1|ot, st+1)P (ot+1|bt+1,ot, st+1)
∑
Gt+1

Gt+1P (Gt+1|ot+1, st+1)

=
∑
ot+1

P (ot+1|ot, st+1)QO[ot+1, st+1].

A.4.4 GRADIENTS FOR THE MDP OPTION FRAMEWORK

In above sections, we formulate dynamics of the option framework using HMM and prove the MDP
build on it has identical value functions to SMDP formulation. In this section we will prove that
both MDP and SMDP formulations (Bacon et al., 2017) share same intra-option and termination
gradients. Our derivations is largely simplified by equation (34) compared to previous work.

Let θa denote parameter vector for intra-option policies P (at|st,ot; θa) and θb denote parameter
vector for termination policies P (bt|st,ot−1; θb). To keep notation uncluttered, we drop the depen-
dency on parameter vector θ in derivations below.

Proposition A.4.4.1. MDP formulation has identical Intra-Option Policy Gradient with SMDP for-
mulation in (Bacon et al., 2017).

∂QO[st,ot]

∂θa
=

∞∑
k=0

∑
st+k,ot+k

P (k)
γ (st+k,ot+k|st,ot)

∑
at+k

∂P (at+k|st+k,ot+k)
∂θa

QU (st+k,ot+k,at+k). (35)

24



Under review as a conference paper at ICLR 2021

Proof. This is a direct result by taking gradient of θa with respect to equation (25) by using equa-
tion (31) and (34):

∂QO[st,ot]

∂θa
=
∑
at

∂P (at|st,ot)
∂θa

QU [ot, st,at] + γ
∑
at

P (at|st,ot)
∂QU [ot, st,at]

∂θa

=
∑
at

∂P (at|st,ot)
∂θa

QU [ot, st,at]

+ γ
∑
at

P (at|st,ot)
∑
st+1

P (st+1|st,at)
∂U [ot, st+1]

∂θa

=
∑
at

∂P (at|st,ot)
∂θa

QU [ot, st,at]

+ γ
∑
st+1

P (st+1|st,ot)
∑
ot+1

P (ot+1|st+1,ot)
∂QO[ot+1, st+1]

∂θa

=
∑
at

∂P (at|st,ot)
∂θa

QU [ot, st,at] + γ
∑

ot+1,st+1

P (st+1,ot+1|st,ot)
∂QO[ot+1, st+1]

∂θa

=

∞∑
k=0

∑
st+k,ot+k

P (k)
γ (st+k,ot+k|st,ot)

∑
at+k

∂P (at+k|st+k,ot+k)
∂θa

QU (st+k,ot+k,at+k).

Proposition A.4.4.2. MDP formulation has identical Termination Policy Gradient with SMDP for-
mulation in (Bacon et al., 2017).

∂U [st+1,ot]

∂θb
= −

∞∑
k=0

∑
st+1+k,ot+k

P (k)
γ (st+1+k,ot+k|st+1,ot)

∂βt+1+k

∂θb
A[st+k+1,ot+k+1 = ot+k].

(36)

Proof. We first show the gradient of θb with respect to equation (21) and (25) separately:

∂P (ot+1|st+1,ot)

∂θb
=
[
P (ot+1|st+1)− 1ot=ot−1

]∂βt+1

∂θb
(37)

∂QO[ot+1, st+1]

∂θb
=
∑
at+1

P (at+1|st+1,ot+1)
∑
st+2

P (st+2|st+1,at+1)
∂U [st+2,ot+1]

∂θb

=
∑
st+2

P (st+2|st+1,ot+1)
∂U [st+2,ot+1]

∂θb
. (38)
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The equation (36) is a direct result by taking gradient of θb with respect to equation (34) and using
above results:

∂U [st+1,ot]

∂θb
=
∑
ot+1

∂P (ot+1|ot, st+1)

∂θb
QO[ot+1, st+1] +

∑
ot+1

P (ot+1|ot, st+1)
∂QO[ot+1, st+1]

∂θb

=
∑
ot+1

[
P (ot+1|st+1)− 1ot=ot−1

]
QO[ot+1, st+1]

∂βt+1

∂θb

+
∑
ot+1

P (ot+1|ot, st+1)γ
∑
st+2

P (st+2|st+1,ot+1)
∂U [st+2,ot+1]

∂θb

=
[
V [st+1]−QO[ot+1 = ot, st+1]

]∂βt+1

∂θb

+ γ
∑

ot+1,st+2

P (st+2,ot+1|st+1,ot)
∂U [st+2,ot+1]

∂θb

=−A[ot+1 = ot, st+1]
∂βt+1

∂θb
+ γ

∑
ot+1,st+2

P (st+2,ot+1|st+1,ot)
∂U [st+2,ot+1]

∂θb

=−
∞∑

k=0

∑
st+1+k,ot+k

P (k)
γ (st+1+k,ot+k|st+1,ot)

∂βt+1+k

∂θb
A[st+k+1,ot+k+1 = ot+k].
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A.5 DERIVATIONS OF THE SKILL-ACTION ARCHITECTURE’S VALUE FUNCTIONS

Following Bishop (2006)’s notation, we use A, B and C to denote three non-overlapping sets
of arbitrarily many random variables. Sets A and B are conditional independent on set C if
P (A,B|C) = P (A|C)P (B|C), denoted as A ⊥⊥ B | C. We mainly use head-to-tail conditional
independence properties (Chapter 8.2.1 (Bishop, 2006)) in this section.

Derivations of Eq. (5):

V [st, ôt−1] =E[Gt|st, ôt−1]

=
∑
ôt

P (ôt|st, ôt−1)E(Gt|st, ôt, ôt−1)

=
∑
ôt

P (ôt|st, ôt−1)E[Gt|st, ôt]

=
∑
ôt

P (ôt|st, ôt−1)QO[ôt, st],

where from line 2 to line 3 we use the conditional independence property in PGM that Gt ⊥⊥
ôt−1|{st, ôt}.

Proof. for Proposition 3.4: By law of total expectation:

Eôt−1
[V [st, ôt−1]] = Eôt−1

[E[Gt|st, ôt−1]] = E[Gt|st] = V [st]

thus V [st, ôt−1] is an unbiased estimator of V [st].

Proof. for Proposition 3.5: By law of total conditional variance:

Var(V [st]) = Var([E[Gt|st]]) = E[Var(E[Gt|st, ôt−1])|st] + Var(E[E[Gt|st, ôt−1]]|st)
= E[Var(V [st, ôt−1])|st] + Var(E[V [st, ôt−1]]|st)
≥ Var(E[V [st, ôt−1]]|st).

Derivations of Eq. (7)

QA[st, ôt,at] =E[Gt|st, ôt,at] = E[Rt+1 + γGt+1|st, ôt,at]

=r(s, o, a) + γ
∑
st+1

P (st+1|st, ôt,at)E[Gt+1|st+1, st, ôt,at]

=r(s, a) + γ
∑
st+1

P (st+1|st,at)E[Gt+1|st+1, ôt]

=r(s, a) + γ
∑
st+1

P (st+1|st,at)V [st+1, ôt],

where from line 2 to line 3 we use the conditional independence property in PGM that Rt+1 ⊥⊥
ôt|at, Gt+1 ⊥⊥ st|{st+1, ôt} and Gt+1 ⊥⊥ at|st+1. γ ∈ R is a discounting factor.
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A.6 PROOFS FOR THE SKILL-ACTION ARCHITECTURE GRADIENT THEOREMS

A.6.1 PROOF FOR THE SKILL POLICY GRADIENT THEOREM

Proof.

∂QO[st, ôt]

∂θo
=
∑
at

P (at|st, ôt)
[
r(s, a) + γ

∑
st+1

P (st+1|st,at)
∂V [st+1, ôt]

∂θo

]
=
∑
st+1

γP (st+1|st, ôt)
∂V [st+1, ôt]

∂θo

∂V [st, ôt−1]

∂θo
=
∑
ôt

∂P (ôt|st, ôt−1)
∂θo

QO[st, ôt] + γ
∑
ôt

P (ôt|st, ôt−1)
QO[st, ôt]

∂θo

=
∑
ôt

∂P (ôt|st, ôt−1)
∂θo

QO[st, ôt] + γ
∑

st+1,ôt

P (st+1, ôt|st, ôt−1)
∂V [st+1, ôt]

∂θo

=−
∞∑

k=0

∑
st+k,ôt+k−1

P (k)
γ (st+k, ôt+k−1|st, ôt−1)

∑
ôt+k

∂P (ôt+k|st+k, ôt+k−1)
∂θo

QO[st+k, ôt+k]

=E[
∂P (o′|s′,o)

∂θo
QO[s

′,o′] | st, ôt−1].

A.6.2 PROOF FOR THE ACTION POLICY GRADIENT THEOREM

Proof. Similar to the first equation above, continue expanding gradients of ∂QO∂θa
by equations (5) (6)

and (7):

∂QO[st, ôt]

∂θa
=
∑
at

∂P (at|st, ôt)
∂θa

QA[st, ôt,at] + γ
∑
st+1

P (st+1|st, ôt)
∂V [st+1, ôt]

∂θa

=
∑
at

∂P (at|st, ôt)
∂θa

QA[st, ôt,at] + γ
∑

st+1,ôt+1

P (st+1, ôt+1|st, ôt)
∂QO[st+1, ôt+1]

∂θa

=−
∞∑

k=0

∑
st+k,ôt+k

P (k)
γ (st+k, ôt+k|st, ôt)

∑
at+k

∂P (at+k|st+k, ôt+k)
∂θa

QA[st+k, ôt+k,at+k]

=E[
∂P (at+k|st+k, ôt+k)

∂θa
QA[st+k, ôt+k,at+k] | st, ôt].
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A.7 LEARNING ALGORITHM FOR THE SKILL-ACTION ARCHITECTURE

Algorithm 1: Learning Algorithm for the Skill-Action architecture
1 Initialize the skill embedding matrix WS

2 Assign Initial State: st ← s0
3 Assign Initial Skill: ôt−1 ← ô0

4

5 while Converge do
6 # Rollout trajectories and store in replay buffer
7 repeat
8 Retrieve the skill context vector ôt−1 = W T

S · ôt−1
9 Sample ôt ∼ P (ôt|st, ôt−1)

10 Retrieve the skill context vector ôt = W T
S · ôt

11 Sample at ∼ P (at|st, ôt)
12 Compute QO[st, ôt] and V [st, ôt−1]
13 Take action at in st, observe new state st+1 and reward Rt+1

14 until Rollout Length Reached
15

16 # Compute Advantages for skill & action policies
17 Assign t reversely, from RolloutLength− 1 to 1
18 repeat
19 Compute skill Advantage AOt = Rt+1 + γ(V [st+1, ôt]− V [st, ôt−1]) + γλAOt+1

20 Compute action Advantage AAt = Rt+1 + γ(QO[st+1, ôt+1]−QO[st, ôt]) + γλAAt+1

21 until Rollout Length Reached
22

23 # λ is the GAE coefficient used in PPO.
24 # Optimize PPO Obj
25 while i < PPO Optimization Epochs do
26 θo← PPO(∂P (o′|s′,o)

∂θo
, AO)

27 θa← PPO(∂P (a|s,o)
∂θa

, AA)

28 end
29 end

A.8 IMPLEMENTATION DETAILS

In this section we summarize our implementation details. For a fair comparison, all baselines:
DAC+PPO (Zhang & Whiteson, 2019), AHP+PPO (Levy & Shimkin, 2011), PPOC (Klissarov et al.,
2017), OC (Bacon et al., 2017) and PPO (Schulman et al., 2017) are from DAC’s open source
Github repo: https://github.com/ShangtongZhang/DeepRL/tree/DAC. Hyper-parameters used in
DAC (Zhang & Whiteson, 2019) for all these baselines are kept unchanged.

SA Architecture: For all experiments, our implementation of SA is exactly the same as Figure 1 (b).
We use Pytorch to build neural networks. Specifically, for skill policy module, we use a skill context
matrix WS ∈ R4×40 which has 4 skills (4 rows) and an embedding size of 40 (40 columns). For
Multi-Head Attention, we use Pytorch’s built-in MultiheadAttention function9 with num heads =
1 and embed dim = 40. For layer normalization we use Pytorch’s built-in function LayerNorm 10.
For Feed Forward Networks (FNN), we use a 2 layer FNN with ReLu function as activation function
with input size of 40, hidden size of 64, and output size of 64 neurons. For Linear layer, we use
built-in Linear function11 to map FFN’s outputs to 4 dimension. Each dimension acts like a logit
for each skill and is used as density in Categorical distribution12. For both action policy and critic
module, FFNs are of the same size as the one used in the skill policy.

9https://pytorch.org/docs/stable/generated/torch.nn.MultiheadAttention.html
10https://pytorch.org/docs/stable/generated/torch.nn.LayerNorm.html
11https://pytorch.org/docs/stable/generated/torch.nn.Linear.html
12https://github.com/pytorch/pytorch/blob/master/torch/distributions/categorical.py
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Preprocessing: States are normalized by a running estimation of mean and std.

Hyperparameters of PPO: For a fair comparison, we use exactly the same parameters of PPO as
DAC. Specifically:

• Optimizer: Adam with ε = 105 and an initial learning rate 3× 104

• Discount ratio γ: 0.99
• GAE coefficient: 0.95
• Gradient clip by norm: 0.5
• Rollout length: 2048 environment steps
• Optimization epochs: 10
• Optimization batch size: 64
• Action probability ratio clip: 0.2

Computing Infrastructure: We conducted our experiments on an Intel Core i9-9900X CPU @
3.50GHz with a single thread and process with PyTorch.

A.9 MULTI-HEAD ATTENTION (MHA) MECHANISM

Specifically, an attention mechanism is described as the mapping from a query q ∈ RE and a set
of key-value pairs, i.e., K ∈ RM×E and V ∈ RM×E (M and E are total number of skills and
embedding dimensions defined in section 3.1), to an output:

Attention(q,K,V ) = softmax(
qKT

√
E

)V (39)

A Multi-Head Attention MHA(q,K,V ) is a linear projection of h (number of heads) concatenated
linearly projected Attention outputs:

MHA(q,K,V ) = Concat[head1, . . . , headh]WH (40)

where headi = Attention(qW q
i ,KWK

i ,V W V
i )

where projections are parameter matrices W q
i ∈ RE×E , WK

i ∈ RE×E , W V
i ∈ RE×E , WO

i ∈
RhE×E . In this paper we use MHA as one building block as illustrated in Figure 1.
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