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ABSTRACT

Many machine learning algorithms require large numbers of labeled training data to deliver state-of-
the-art results. However, in many domains of AI, there are abundant unlabeled data but it is costly
to get data labeled by experts, such as medical diagnosis and fraud detection. In these domains,
active learning, where an algorithm maximizes model accuracy while requiring the least number of
labeled data, is appealing. Active learning uses both labeled and unlabeled data to train models, and
the learning algorithm decides which subset of data should acquire labels. Due to the costly label
acquisition, it is interesting to know whether it is possible from a theoretical perspective to under-
stand how many labeled data are actually needed to train a machine learning model. This question
is known as the sample complexity problem, and it has been extensively explored for training linear
machine learning models (e.g., linear regression). Today, deep learning has become the de facto
method for machine learning, but the sample complexity problem for deep active learning remains
unsolved. This problem is challenging due to the non-linear nature of neural networks. In this pa-
per, we present the first deep active learning algorithm which has a provable sample complexity.
Using this algorithm, we have derived the first upper bound on the number of required labeled data
for training neural networks. Our upper bound shows that the minimum number of labeled data a
neural net needs does not depend on the data distribution or the width of the neural network but is
determined by the smoothness of non-linear activation and the dimension of the input data.

1 INTRODUCTION

Deep learning has revolutionized our society by achieving unprecedented breakthroughs in various challenging AI
tasks, including face detection, text- and image-based search, personal assistants, and autonomous driving. Deep
learning models can have millions to billions of parameters, and training deep learning models usually require abundant
labeled training data for these models to deliver state-of-art results (Brown et al., 2020; Devlin et al., 2018; Radford
et al., 2019). There have been many impactful efforts to bringing more high-quality labeled datasets into our research
community (Bengio et al., 2007; Krizhevsky et al., 2012). Unfortunately, in many important areas of AI, there are
abundant unlabeled data but acquiring the correct label for them is costly. For example, in healthcare, asking expert
radiologists to manually diagnose patients’ medical images is more expensive than taking the medical images using
increasingly cheaper imaging devices. Another standard example is natural language processing: plenty of texts have
already existed on the Internet, but labeling them requires additional human effort.

In these domains, active learning, where the learning algorithms can use the least number of labeled data to achieve
high model accuracy, is appealing (Balcan et al., 2009). In active learning, the learner has access to a set of unlabeled
training data. The learner can select a subset of the unlabeled data for an oracle to label. The choice of the subset is
usually based on the characteristics of the unlabeled data, for example, uncertainty (Beluch et al., 2018; Joshi et al.,
2009; Ranganathan et al., 2017; Lewis & Gale, 1994; Seung et al., 1992; Tong & Koller, 2001), diversity (Bilgic &
Getoor, 2009; Gal et al., 2017; Guo, 2010; Nguyen & Smeulders, 2004), and expected model change (Freytag et al.,
2014; Roy & McCallum, 2001; Settles et al., 2007). The oracle returns the correct labels of the selected unlabeled
data. After this, the learner uses the labels on the selected data to train an accurate model.

Due to the strong performance of deep learning and the active learning’s potential to substantially reduce the labeling
costs, the oblivious approach is to combine them. This is known as deep active learning, and it has recently received
significant attention in AI research. Researchers have combined supervised and semi-supervised learning on labeled
and unlabeled data to enable deep learning with fewer labeled training data (Hossain & Roy, 2019; Siméoni et al.,
2021). Other works target improving existing active learning’s sampling strategies for deep neural networks (Sener
& Savarese, 2017; Settles, 2009; Ash et al., 2019; Gissin & Shalev-Shwartz, 2019; Kirsch et al., 2019; Zhdanov,
2019). Today, deep active learning has been widely used in various domains, including object recognition and text
classification (Du et al., 2019c; Gal et al., 2017; Gudovskiy et al., 2020; Huang et al., 2019; Shen et al., 2017; Zhang
et al., 2017; Zhou et al., 2013; Aghdam et al., 2019; Feng et al., 2019; Qu et al., 2020).
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One of the most important theoretical questions in active learning is to understand how many labeled data are necessary
to train a model that has a high accuracy. This problem is known as the sample complexity problem in active learning,
and it has been well studied in the context of linear models, e.g., linear regression (Chen & Price, 2019; Boutsidis
et al., 2013; Song et al., 2019).

This raises an important theoretical question:

What’s the minimal number of labeled data needed for deep active learning?

This question is important because deep active learning has the potential to substantially reduce the cost of AI by
reducing the number of labeled data required. At the same time, this question is challenging, because a neural network
is a non-linear model and traditional techniques to estimate the sample complexity for linear models do not apply.

In this paper, we present the first active deep learning algorithm with a provable sample complexity. Our algorithm
is based on former research in the spectral sparsification for graphs (Spielman & Teng, 2004; Spielman & Srivastava,
2011; Batson et al., 2012; Lee & Sun, 2018). Our main intuition is that similar to spectral sparsifiction for graphs, we
can also view active learning as a sparsification problem: we want to get a sparse representation for a large dataset.
Our algorithm is based on the randomized BSS algorithm (Lee & Sun, 2018), and we expand it to active learning on
non-linear functions.

Using this algorithm, we prove the first upper bound on the number of required labeled data for training one-hidden
layer neural networks. Our results show that the minimum number of labeled data a neural net needs does not depend
on the data distribution or the width of the network but is determined by the smoothness of non-linear activation and
the dimension of the input data. Besides, our results also show that more labels in a dataset do not necessarily improve
the prediction result.

To bound the sample complexity, we first project the non-linear neural network into a space with a ρ-nearly or-
thonormal basis. Decomposing a non-linear neural network into an orthonormal basis is hard, but using the nearly
orthonormal basis is easier. We then define a class of procedure called importance sampling procedure. Any sampling
procedure that is an importance sampling procedure can select sufficient labels to train an optimal predictor. So the
data selected by an importance sampling procedure have the ability to recover the entire distribution. We finally find
two useful importance sampling procedures to complete our proof. The first one samples our unlabeled dataset by
i.i.d. sampling from an unknown distribution. We show that when the dataset is sufficiently large, it is an importance
sampling procedure and it has the potential to approximate the original unknown distribution. Then, we introduce the
second importance sampling procedure which is based on randomized BSS. We apply this algorithm with a uniform
distribution on the unlabeled dataset. We show that it only requires a small number labels. Correspondingly, we need
to change our training objective into a weighted one which can be achieved by using a novel data sampler.

This paper makes the following contributions:

• We provide the first formulation of the sample complexity problem for deep active learning.

• We propose a ρ-nearly orthonormal basis for one-hidden layer neural network.

• We introduce a new active learning algorithm for one-hidden layer neural network.

• We present a novel data sampler in the optimization of neural networks.

2 RELATED WORK

Active learning Active learning aims to select a few most useful data to acquire labels (Balcan et al., 2009). This
allows training an accurate machine learning model and at the same time minimizes labeling costs. There are three
types of active learning: membership query synthesis, stream-based sampling, and pool-based sampling. In mem-
bership query synthesis, the learner can query a label for any data in the input space (Angluin, 1988; King et al.,
2004). The data does not have to be in the set of unlabeled data. Stream-based sampling means the active learning
algorithm has to decide whether to query for label based on each individual data in a stream (Dagan & Engelson,
1995; Krishnamurthy, 2002). Pool-based sampling means that the active learning algorithm can access the entire set
of unlabeled data and then decide which subset to query the oracle (Lewis & Gale, 1994). Our results are based on
pool-based sampling, which is more common in practice (Ren et al., 2020). To decide whether to query label for a
given dataset, there has been many works that show strategies based on uncertainty (Beluch et al., 2018; Joshi et al.,
2009; Ranganathan et al., 2017; Lewis & Gale, 1994; Seung et al., 1992; Tong & Koller, 2001), diversity (Bilgic &
Getoor, 2009; Gal et al., 2017; Guo, 2010; Nguyen & Smeulders, 2004), or expected model change (Freytag et al.,
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Algorithm 1 Framework of Our Active Learning Algorithm

1: procedure REGRESSIONUNKNOWNDISTRIBUTION(ε,Fnn,X , P )
2: . |X | = O(KD log(d) +KD/ε)
3: Let D0 be the uniform distribution over X = (x1, . . . , xk0).
4: Generate weight ui and samples xi, i ∈ [k] from a good output of P with parameters Fnn, D0,Θ(ε).
5: Label xi with yi with yi ∼ Y (xi), i ∈ [k].
6: Output W̃ ← arg min

W∈Rd×m

∑k
i=1 ui · |fnn(W,xi)− yi|2.

7: end procedure

2014; Roy & McCallum, 2001; Settles et al., 2007) are effective. Many researchers (Ash et al., 2019; Shui et al., 2020;
Yin et al., 2017; Zhdanov, 2019) have also explored combinations of these strategies.

Deep active learning Deep learning has become the de facto method for machine learning, and thus it is the obvious
area to apply active learning. This is known as deep active learning, and it has recently received much attention
because it is difficult to acquire labels in many domains of deep learning. One challenge of deep active learning is
that deep learning inherently requires abundant labeled training data, because deep neural networks have millions to
billions of parameters (Brown et al., 2020; Devlin et al., 2018; Radford et al., 2019). However, traditional active
learning algorithms often rely on a small number of labeled data to learn. There has been a lot of effort in the
research community to integrate active learning into deep learning. Some works focuses on improving sampling
strategies (Sener & Savarese, 2017; Settles, 2009; Ash et al., 2019; Gissin & Shalev-Shwartz, 2019; Kirsch et al.,
2019; Zhdanov, 2019), and other works target improving neural network training methods (Hossain & Roy, 2019;
Siméoni et al., 2021). Our paper focuses on an important theoretical aspect of deep active learning: the sample
complexity, i.e., the number of labeled data required to achieve high model accuracy.

Theoretical active learning Many theoretical works have considered ways to perform active learning in linear
regression tasks. They consider subsample linear regression problems in which the solution to the subsampled problem
approximates the overall solution. A trivial approach is uniform sampling (Cohen et al., 2013; Hsu & Sabato, 2016).
However, It can be significantly improved by the most common approach which uses leverage score sampling (Drineas
et al., 2008; Magdon-Ismail, 2010; Mahoney, 2011; Woodruff, 2014). To go beyond the leverage score sampling
complexity, some works (Boutsidis et al., 2013; Song et al., 2019) apply the deterministic linear-sample spectral
sparsification method proposed by (Batson et al., 2012). Other works (Dereziński & Warmuth, 2017; Derezinski et al.,
2018) utilize volume sampling to improve the sample complexity. There are also works (Sabato & Munos, 2014;
Chaudhuri et al., 2015) with additional assumptions or simplifications. Our paper is the first theoretical work on the
sample complexity of deep active learning. Our main challenges are to formulate the sample complexity problem and
deal with the non-linear nature of neural networks.

3 PRELIMINARY

In this paper, we consider a regression task. We first define some notations here.

• We use [k] to denote the set {1, 2, · · · , k}.
• We denote unlabeled training data xi ∈ Rd, i ∈ [k0], where k0 denotes the number of unlabeled training

data. We also use X = (x1, . . . , xk0) to denote the unlabeled dataset.
• For convenience, we use xi ∈ Rd, i ∈ [k] to denote the labeled training data.
• We denote corresponding label as yi ∈ R, i ∈ [k].
• We use (D,Y ) to denote an unknown joint distribution where the data and label are from.
• We use ‖h(x)‖2D to denote Ex∼D[h2(x)].

• We use v : Rd → Rd to denote
(
v1(x), . . . , vd(x)

)
where x ∈ Rd.

3.1 ACTIVE LEARNING

In the setting of active learning, We assume that our data x ∈ Rd and corresponding labels y ∈ R are sampled from an
unknown joint distribution (x, y) ∼ (D,Y ). More specifically, we sample data x ∼ D from distribution D and obtain
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the unlabeled dataset X = [x1, . . . , xk0 ] ∈ Rk0×d. Since labeling is costly, we only select k samples and label them
according to the conditional distribution y ∼ Y (x). We use our sampled data and the corresponding labels to train our
neural network.

The global framework of our algorithm is shown in Algorithm 1. In Step 4, we perform our proposed query algorithm
which selects samples xi, i ∈ [k] in the large dataset and generate an weight ui, i ∈ [k]. Finally, as shown in Step 6,
we use a weighted objective to obtain the optimal parameter of the neural network.

3.2 NEURAL NETWORKS

For simplicity, we only consider one hidden layer neural network in this paper. Our result holds for a large class of
non-linear functions including any polynomial, ReLU, Sigmoid, and Swish. We now provide the definition of a neural
network function.
Definition 3.1 (Two layer neural network). Let wr ∈ R, r ∈ [m] be the weight vector of the first layer, ar ∈ R, r ∈
[m] be the output weight. We define a two layer neural network

fnn : Rd×m × Rm × Rd → R
as the following form

fnn(W,a, x) :=
1√
m

m∑
r=1

arφ(w>r x) ∈ R

where x ∈ Rd is the input and φ(·) is the non-linear activation function. We will also define W = [w1, · · · , wm]> ∈
Rd×m and a = [a1, · · · , am]> ∈ Rm for convenience.

Similar to other works in theoretical deep learning (Li & Liang, 2018; Allen-Zhu et al., 2019a;b; Du et al., 2019a;b;
Song & Yang, 2019; Brand et al., 2021), we use normalization 1/

√
m and consider only training W while fixing

a ∈ {−1,+1}m. Note that each entry of W are initialized to be N (0, 1). So, we can write fnn(W,x) = fnn(W,a, x).

To prove the above result, without loss of generality, we make the following assumption which bounds the samples
x ∈ Rd.
Assumption 3.2 (Bounded samples). For the distribution D, we have that maxx∈supp(D) ‖x‖2 ≤ 1.

The assumption basically says that there is a bound on the maximum value in the input data. We can always achieve
this by rescaling the data. Inputs are bounded is a standard assumption in the optimization field (Lee et al., 2020; Li &
Liang, 2018; Allen-Zhu et al., 2019a;b).

3.3 CONDITION NUMBER

We use condition number K to measure the concentration of neural network on distribution D. Intuitively, concentra-
tion means that there does not exist x ∈ D that can lead to a very large value in neural network fnn. We prove that both
the number of required unlabeled samples and the number of required labeled data are proportional to the condition
number of distribution D. We define condition number as follows:
Definition 3.3 (condition number). Let D be the marginal distribution over x. We will define “condition number” as
follows

K := sup
W∈Rd×m:W 6=0

supx∈G |fnn(W,x)|2

‖fnn(W,x)‖2D
. (1)

Note that this definition for condition number is also used by (Chen & Price, 2019). However, they target linear
functions, where this paper focuses on the non-linear case.

4 OUR RESULTS

Our main result is the following upper bound of required labeled samples and increasing the number of labeled samples
further would not improve the prediction accuracy of a neural network. The theorem states that when the number
of unlabeled samples k0 and the number of required labels k is large enough, the prediction accuracy difference
is negligible between the optimal predictor fnn(W ∗, x) trained by unlimited labeled data and the optimal predictor
fnn(W̃ , x) trained by sampled data with only k labels.
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Theorem 4.1. Let fnn(W,x) be a neural network as defined in Definition 3.1, and consider any (unknown) distribution
on (x, y) over Rd×R. Suppose that C = (10d+log(1/ε0)/ log(d)) and the C-th derivative of the activation function
φ of fnn satisfied that

• φ(C)(x) exists and is continuous.

• φ(C)(x) ≤ 1, x ∈ R.

Let D be the marginal distribution over x, and suppose it has bounded “condition number”

K := sup
W∈Rd×m:W 6=0

supx∈G |fnn(W,x)|2

‖fnn(W,x)‖2D
. (2)

Let W ∗ ∈ Rd×m minimizes E(x,y)∼(D,Y )[|fnn(W,x) − y|2]. For any 0 < ε ≤ O(1/ log3(d)), ρ ∈ (1, 1/10), and
ε0 ∈ (0, 1/10), there exists

d ≤
(

10d+ log(1/ε0)/ log(d)

d

)
and an randomized algorithm P that takes O((1 + ρd)(K log(d) + K/ε)) unlabeled samples from D and requires
O(d/ε) labels to output W̃ ∈ Rd×m such that

E
P
E

x∼D
[|fnn(W̃ , x)− fnn(W ∗, x)|2] ≤ ε0 + ε(1 + ρd) · E

(x,y)∼(D,Y )
[|y − fnn(W ∗, x)|2].

The size of unlabeled dataset depends on both the distribution D and desirable accuracy ε. Note that the number of
size of unlabeled dataset is also proportional to the condition number and 1/ε. However, our upper bound of required
labeled data does not depend on the data distribution or the width of the neural network but is determined by the
smoothness of non-linear activation and the dimension of the input data.

To test our model, we can choose any (x, y) ∼ (D,Y ) and measure the `2 distance between the prediction results of
the practical optimal model and the theoretical optimal model. To make our result reasonable, we take expectation
over the distribution (D,Y ). Note that Ex,y[|y − fnn(W

∗, x)|2] is an internal constant measuring the expressive
power of neural network fnn. We prove the perturbation between predictor loaded practical optimal weights W̃ and
predictor loaded theoretical optimal weights W ∗ within up to a constant scaled with ε. Another way to understand the
perturbation bound is equivalently rewrite the bound in Theorem 4.1 as

E
P

E
(x,y)∼(D,Y )

[|y − fnn(W̃ , x)|2] ≤ ε0 + (1 + ε) · E
(x,y)∼(D,Y )

[|y − fnn(W ∗, x)|2].

which shows that training with limited labeled samples can achieve very similar prediction accuracy compared with
training with unlimited labeled data.

However, treat each labeled data equally when we train a neural network would not obtain the optimal predictor
because some of the data and labels are more important than others. It’s natural to include the consideration of
importance into the training strategy. To obtain the optimal result, we should combine our new query algorithm with
a novel data sampler. Our theorem is as follows:

Theorem 4.2 (Data Sampler). Let the neural network fnn(W,x), condition number K, algorithm P , labeled samples
xi, corresponding label yi, i ∈ [k] and, practically optimal parameter W̃ be defined as in Theorem 4.1. Our algorithm
P generates weights ui, i ∈ [k]. We claim that the optimal parameter W̃ can be obtained by optimizing with weighted
objective as follows

W̃ = arg min
W∈Rd×m

{
k∑
i=1

ui · |fnn(W̃ , xi)− yi|2
}
.

This theorem claims that a weighted objective is a better choice. Practically, This theorem implies that we should
sample our data proportional to the weight wi if we use stochastic gradient descent to train our network. If we sample
with Pr[xi] = ui/

∑k
j=1 uj , then we can use the weighted objective to train to obtain the optimal result. Under this

sampling strategy, we can get the optimal parameter W̃ claimed in Theorem 4.1.
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5 OVERVIEW OF TECHNIQUES

In this section, we first claim how to select xi and generate ui as mentioned in Step 4. We then provide a high-level
view of our approach. Finally, we introduce our techniques in detail.

5.1 OUR ALGORITHM

Our algorithm is shown as in Definition 5.5. Our algorithm executes in an iterative way. In each iteration, it generates
a coefficient βi, a distribution Di, sample xi ∼ Di from the distribution, and calculates the weight ui. After each
iteration, coefficient βi and distribution Di change. In Lemma 5.8, we provide an effective procedure that can fit
into the framework and we get an upper bound of the required labels as shown in Step 4 in Algorithm 1. Full details
about this algorithm can be found in Appendix. In Lemma 5.9, we provide an upper bound on the number of required
samples. This shows that the requirement on the size of unlabeled dataset |X | = k0 in Algorithm 1 is reasonable.

5.2 HIGH-LEVEL APPROACH

Our goal is to find an algorithm that can recover the optimal predictor with finite data and limited labels. However,
this problem is hard to tackle directly because a neural network is a non-linear function. Our main approach is that we
need to project the non-linear neural network fnn into an orthonormal basis.

However, it is hard to find an exact orthonormal basis for a non-linear neural network fnn. Instead, we introduce
the ρ-nearly orthonormal basis. We can take advantage of the basis and turn the problem of studying the property
of a non-linear function into studying the property of a function space with a nearly orthonormal basis. In the active
learning problem, we can separate our problem into two levels. We should first provide a bound on the unlabeled
dataset, then provide a bound on the minimum number of labels that we need. In another word, we should handle
those two problems:

• We provide an upper bound of the size of the training dataset under which the optimal predictor can be
recovered.

• We provide an upper bound of the number of required labeled data that can guarantee the recovery.

Although those two problems seem very different, technically we can handle them similarly. To see this, we can
consider that the dataset is sampled from the unknown distribution D. If we can find a general condition that can
deduce the recovery guarantee, we can check the condition for our algorithm proposed for each of the two parts. We
call this condition importance sampling procedure. If a procedure is importance sampling procedure, we can guarantee
the recovery.

First, we handle the dataset forming part. Normally, we obtain the dataset by i.i.d sampling in a distribution D. We
show that this procedure is an importance sampling procedure when the dataset is sufficiently large. So, if we use this
algorithm to train our neural network, it would take too many data labels. This algorithm is not efficient and is not a
good choice for active learning. However, if we sample i.i.d. from the dataset, we get a known distribution and thus
we can apply our randomized sampling on it.

Second, we handle the query strategy part. We show that our randomized sampling is an importance sampling proce-
dure and only required a limited number of labels. We build our algorithm on the procedure. However, this algorithm
required known distribution D0. We show that a uniform distribution D0 on our dataset is a good choice.

Now, we can conclude that there are five major steps to prove our main result.

1. By picking a sufficiently large dimension d, we prove that neural network can be decomposed into a ρ-nearly
orthonormal function family Fnn with perturbation less than ε.

2. We prove that a good output of an importance sampling procedure has the recovery guarantee.

3. We prove that random i.d.d. sampling from an unknown distribution D is an importance sampling procedure.
The result says that a large explicit dataset can replace the unknown implicit distribution when we try to
obtain the optimal predictor. The result provides the minimum size of the dataset but does not provide the
minimum number of labels.

4. We prove that our randomized sampling for the ρ-nearly orthonormal basis is an importance sampling proce-
dure. As a result, the recovery guarantee holds for samples from a known dataset with only a limited of data
labeled.
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5. Lastly, we combine the results of step 1, step 3, and step 4 using triangle inequality. This finishes the proof
of the equivalence between optimal predictor trained by unlimited labeled data and optimal predictor trained
by data that select to label by our proposed algorithm.

5.3 ρ-NEARLY ORTHONORMAL BASIS

We define basis of a function family F to be a set of function V = {v1(x), . . . , v|V|(x)} such that vi : Rd → R, i ∈
[|V|] and for any function f ∈ F , there exists α1, . . . , α|V| ∈ R holds that

f = α1v1 + . . .+ α|V|v|V|.

An orthonormal basis for distribution D is a basis of function family F with

E
x∼D

[vi(x) · vj(x)] = 1i=j .

For linear functions such an orthonormal basis always exists for different distributions. However, it’s hard to decom-
pose a non-linear function into the summation of such a base. Finding an orthonormal basis for non-linear functions
is even harder. This fact motivates us to propose a generalized concept for an orthonormal basis to take the advantage
of the orthonormal basis.

Now, we define the ρ-nearly orthonormal basis as follows. We show such a ρ-nearly orthonormal basis exists for
neural network fnn. We motivate this definition from Cheap Kabatjanskii-Levenstein bound (Tao, 2019) and John-
son–Lindenstrauss lemma.
Definition 5.1 (ρ-nearly orthonormal basis). Given the distribution D and desired accuracy ε0, a set of function
{v1(x), . . . , vd(x)} forms a fixed ρ-nearly orthonormal basis of neural network fnn when the inner products taken
under the distribution D such that

E
x∼D

[vi(x) · vj(x)] = 1,∀i = j ∈ [d]∣∣∣ E
x∼D

[vi(x) · vj(x)]
∣∣∣ ≤ ρ, ∀i 6= j ∈ [d]

Furthermore, let the basis forms function family Fnn, for any weight W ∈ Rd×m, there exist function h ∈ Fnn and
α(h) := (α(h)1, . . . , α(h)d) under the basis (v1, . . . , vd) such that

h(x) =

d∑
i=1

α(h)i · vi(x) and |h(x)− fnn(W,x)| ≤ ε0.

Remark 5.2. Note that for linear function family F , we know that d = d and ρ = 0. However, for the neural network
function family Fnn, we will have d� d and ρ is not necessary to be 0.

Note that this definition relies on the distributionD. So, the distribution should be known when we practically compute
orthonormal basis. We would not utilize the orthonormal basis for unknown distribution D in our algorithm.

In Definition 5.1, we state that ρ-nearly orthonormal basis always exist for neural network fnn. We will show the
mentioned correctness here.
Claim 5.3. Let ρ-nearly orthonormal basis be defined as in Definition 5.1. There exists {v1, . . . , vd} which forms a
fixed ρ-nearly orthonormal basis for neural network fnn. Furthermore, let Fnn be the function family formed by the
ρ-nearly orthonormal basis, then for any W ∈ Rd×m, there exists h ∈ Fnn such that

‖h(x)− fnn(W,x)‖2D ≤ ε.

Besides, for any h ∈ Fnn, there exists W ∈ Rd×m such that

‖h(x)− fnn(W,x)‖2D ≤ ε.

5.4 IMPORTANCE SAMPLING PROCEDURE

In this section, we first propose α-condition number. Then, based on α-condition number, we propose an importance
sampling procedure and its corresponding good output. Finally, we prove that good output of the importance sampling
procedure is suffice to recover the optimal predictor.
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In our algorithm, we utilize important sampling trick and we can estimate the properties of an desired distribution by
sampling in an unknown distribution as shown below

E
x∼D′

[
D(x)

D′(x)
h(x)] =

∫
D′(x)

D(x)

D′(x)
h(x)dx = E

x∼D
[h(x)].

As a result, we generalize the definition in Definition 3.3 and propose α-condition number.
Definition 5.4 (α-Condition Number). For any distribution D′ over the domain Rd and any function h : Rd → R.
Let the ρ-nearly orthonormal basis {v1, . . . , vd} and corresponding decomposition coefficient α(h) be defined as in
Definition 5.1. When the distribution D is clear, we use Kα,D′ to denote the α-condition number of sampling from D′,
i.e.,

Kα,D′ = sup
x

{
D(x)

D′(x)
· sup
h∈Fnn

{ |h(x)|2

‖α(h)‖22

}}
.

Note that when ρ = 0, we have ‖α(h)‖22 = ‖h‖2D and

E
x∼D′

[
D(x)

D′(x)
· |h(x)|2

‖α(h)‖22
] = E

x∼D
[
|h(x)|2

‖α(h)‖22
] = E

x∼D
[
|h(x)|2

‖h‖2D
] = 1,

which indicates that Kα,D′ shows the concentration of the weighted term.

Next, we introduce the importance sampling procedure. The importance sampling procedure helps us find an important
property of i.d.d. samples and provide us an effective way to find an available query algorithm. We show our definition
as follows:
Definition 5.5 (Importance Sampling Procedure). Given Fnn and underlying distribution D, let P be a random sam-
pling procedure depend on D and Fnn. Suppose P terminates in k iterations (k is not necessarily fixed) and generates
a coefficient βi and a distribution Di to sample xi ∼ Di in every iteration i ∈ [k]. We say P is an ε-importance
sampling procedure if it satisfies the following two properties:

1. Let v1, . . . , vd of Fnn under D be defined as in Definition 5.1. Let weight wi = βi ·D(xi)/Di(xi) for each
i ∈ [k]. With probability 0.9, the matrix A(i, j) =

√
ui · vj(xi) ∈ Rk×d has λ(A∗A) ∈ [ 34 ,

5
4 ].

2. The coefficients always have
∑k
i=1 βi ≤

5
4 and βi ·Kα,Di ≤ ε/2, ∀i ∈ [k].

The definition of an importance sampling procedure consists two parts. First, it claims a bound for eigenvalue of a
specific matrix. To give some intuition for it, we claim that if both ε0 and ρ defined in Definition 5.1 equals 0, then the
first property is equivalent to

sup
h∈F

∑k
i=1 ui · |h(xi)|2

‖h‖2D
∈ [

3

4
,

5

4
]

This indicates that the sampling procedure preserves the mass of the signal. The second property provides the neces-
sary bound on the coefficient βi. It helps us bound perturbation ‖fnn(W̃ , x)− fnn(W ∗, x)‖2D in Theorem 4.1.

It’s clear that the first property of Definition 5.5 is not necessary to be satisfied. We define good output of an importance
sampling procedure when the first property is satisfied.
Definition 5.6 (Good Output). Given an importance sampling procedure P , we say the output of P is good only if the
samples xi with weights ui = βi ·D(xi)/Di(xi) satisfy the first property in Definition C.4. Given a joint distribution
(D,Y ) and an execution of an importance sampling procedure P with xi ∼ Di and ui = βi ·D(xi)/Di(xi) of each
i ∈ [k]. Querying yi ∼ (Y |xi) for each point xi. We define f̃ as follows:

f̃ := arg min
h∈Fnn

k∑
i=1

ui · |h(xi)− yi|2. (3)

The next theorem shows that a good output of an ε-importance sampling procedure suffice for the recovery of the
optimal predictor.
Theorem 5.7 (Importance Sampling Case). Given a neural network function family Fnn, joint distribution (D,Y ),
and ε ∈ (0, 1), let P be an ε-importance sampling procedure for Fnn and D, and we define f as follows: f :=

arg min
h∈Fnn

E
(x,y)∼(D,Y )

[|y − h(x)|2]. Let P ′ be a good output of P . Let f̃ be define as Eq. (3). Then f̃ of P ′ satisfies

E
P ′

[‖f − f̃‖2D] ≤ ε · E
(x,y)∼(D,Y )

[|y − f(x)|2].

8



Under review as a conference paper at ICLR 2022

Note that the inequality in Theorem 5.7 is exactly the inequality in Theorem 4.1. So, if we can check a procedure is an
importance sampling produce, we can directly apply the Theorem 5.7 and obtain an bound on the number of required
labeled data.

5.5 SAMPLE ALGORITHM FOR KNOWN DISTRIBUTION

Definition 5.5 and Theorem 5.7 shows that we may acquire better result when Di, i ∈ [k] are not set to D and
βi, i ∈ [k] are not equal. The result in this section allows our algorithm to label less number of samples.

Lemma 5.8 (Importance Sampling Procedure for Known Distribution). Given any dimension d linear space Fnn, any
distribution D over the domain of Fnn, and any ε ∈ (0, 1), there exists an ε-importance sampling procedure that
terminates in O(d/ε) rounds with arbitrarily large constant probability.

The process claimed in this lemma is based on randomized BSS (Lee & Sun, 2018). BSS (Batson et al., 2012) is first
proposed as sparsifiers of arbitrary graphs. Later, (Lee & Sun, 2018) developed randomized BSS to construct linear-
sized spectral sparsification for graphs. (Chen & Price, 2019) utilized it for subsample linear regression problem
and Fourier-sparse signal recovery. We expand it into our non-linear active learning cases. Randomized BSS is an
iterative process that defines a potential function for matrices. During the iteration process, the potential function
is non-increasing. We will use this property to construct our distribution Di and coefficient βi. This process is too
complex and we put the details into Appendix.

5.6 I.I.D. DISTRIBUTIONS

A specific case of Definition 5.5 will occur when we set Di ← D and βi ← 1/k. It is exactly the process when
we obtain the unlabeled dataset X = [x1, . . . , xk0 ]. We will show in this section that it is an importance sampling
procedure when k0 is sufficiently large. As a result, the optimal predictor trained by k0 labeled samples can recovery
the theoretical optimal predictor trained with unlimited samples and labels.

Although results in Lemma 5.8 show that labeling all the data in a dataset is not a clever choice, this result provides us
a theoretical tool to bridge the unknown distribution D and the requirement of explicit distribution in Definition 5.5.
Lemma 5.9. Given any distributionD′ with the same support ofD and any ε ∈ (0, 1), the random sampling procedure
with k = Θ(Kα,D′ log(d) + ε−1Kα,D′) i.i.d. random samples from D′ and coefficients βi = 1/k, ∀i ∈ [k] is an ε-
importance sampling procedure.

The result provides the minimum size of the dataset but does not provide the minimum number of labels. This Lemma
states that the recovery guarantee holds for a sufficiently large dataset that all the samples in it are labeled. This
indicates that a large explicit dataset can replace the unknown implicit distribution when we try to obtain the optimal
predictor. Combining with the original result in Lemma 5.8 where Di and βi are different, Lemma 5.9 can indicate
that acquiring less label is always possible and labeling all the samples in a dataset will not necessarily improve the
prediction result.

6 CONCLUSION

It is well-known that deep learning requires large numbers of labeled training data to deliver state-of-the-art results.
However, in many domains of AI, abundant unlabeled data are available but it is expensive to acquire data labels. This
is especially important in domains where only experts have the ability to label data, e.g., diagnosing patients using
their x-rays. In these AI domains, active learning can potentially substantially reduce the costs of AI by reducing the
labeling costs. An active learning algorithm uses unlabeled data and selects a fraction of them for an oracle to label.
The algorithm then uses the labels to generate an accurate model for an AI task. The goal of active learning is to
maximize model accuracy while maintaining a low sample complexity, i.e., the number of data for the oracle to label.
From a theoretical perspective, it is interesting to know whether it is possible to understand how many labeled data
are actually needed to train a machine learning model. This problem has been extensively explored for training linear
machine learning models (e.g., linear regression). Today, deep learning has become the de facto method for machine
learning, but the sample complexity problem for deep active learning is still unsolved. This problem is challenging
because neural networks are inherently non-linear. We present the first deep active learning algorithm which has a
provable sample complexity. Using this algorithm, we have derived the first upper bound on the sample complexity of
deep active learning. Our upper bound shows that the minimum number of labeled data does not depend on the data
distribution or the width of the neural network, but it is determined by the smoothness of non-linear activation and the
dimension of the input data.
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Changjian Shui, Fan Zhou, Christian Gagné, and Boyu Wang. Deep active learning: Unified and principled method
for query and training. In International Conference on Artificial Intelligence and Statistics, pp. 1308–1318. PMLR,
2020.
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