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Abstract

Despite recent advances in machine learning, many scientific discoveries in chem-
istry still rely on manually curated datasets extracted from the scientific literature.
Automation of information extraction in specialized chemistry domains has the
potential to scale up machine learning applications and improve the quality of
predictions, enabling data-driven scientific discoveries at a faster pace. In this
paper, we present ChemX, a collection of 10 benchmarking datasets across several
domains of chemistry providing a reliable basis for evaluating and fine-tuning
automated information extraction methods. The datasets encompassing various
properties of small molecules and nanomaterials have been manually extracted
from peer-reviewed publications and systematically validated by domain experts
through a cross-verification procedure allowing for identification and correction of
errors at sources. In order to demonstrate the utility of the resulting datasets, we
evaluate the extraction performance of the state-of-the-art large language models
(LLMs). Moreover, we design our own agentic approach to take full control of
the document preprocessing before LLM-based information extraction. Finally,
we apply the recently emerged multi-agent systems specialized in chemistry to
compare performance against the strong baselines. Our empirical results highlight
persistent challenges in chemical information extraction, particularly in handling
domain-specific terminology, complex tabular and schematic formats, and context-
dependent ambiguities. We discuss the importance of expert data validation, the
nuances of the evaluation pipeline, and the prospects of automated information
extraction in chemistry. Finally, we provide open documentation including stan-
dardized schemas and provenance metadata, as well as the code and other materials
to ensure reproducibility. ChemX is poised to advance automatic information
extraction in chemistry by challenging the quality and generalization capabilities
of existing methods, as well as providing insights into evaluation strategies.

1 Introduction

Integration of machine learning (ML) and artificial intelligence (AI) into chemistry has produced
a series of revolutionary works in drug discovery, materials science, and molecular modeling. A
key driver of this progress is the availability of robust benchmark datasets that provide the essential
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foundation for training, evaluating, and refining computational models. By offering standardized
metrics for comparison, such datasets help researchers gauge algorithmic performance, uncover
limitations in existing methods, and accelerate advancements in the field [1, 2, 3, 4, 5]. Naturally,
domain-specific datasets remain relatively low-scale but play an equally important role in advancing
more specialized areas of chemistry. For example, researchers have demonstrated the efficacy of ML
in predicting cellular toxicity of inorganic nanomaterials [6], forecasting exchange bias in magnetic
heterostructures [7], and designing nanozymes with tunable catalytic activity [8]. These studies
underscore the critical role of high-quality data gathering and curation pipelines to enable reliable
predictive modeling. More importantly, they make a strong case for advancing automated information
extraction solutions to scale up data-driven scientific discoveries.

Early efforts in automated data extraction relied on rule-based systems and dictionary matching, which
struggled with the linguistic diversity and contextual nuances of scientific texts. For example, tools
like OSCAR4 [9] and ChemDataExtractor [10] utilized predefined grammars and regular expressions
to identify entities such as chemical compounds, properties, and reaction conditions. However, these
approaches encounter difficulties due to the wide range of topics and reporting formats in chemistry
and materials research, as they are specifically tailored for narrow use cases.

Chemical and biomedical named entity recognition (NER) tasks have historically relied on corpora
like CHEMDNER [11] and ChemProt [12], which focus on token-level classification and relation
extraction, respectively. Deep learning architectures such as ChemBERTa and domain-tuned trans-
formers have established baselines in this space [13, 14, 15, 16]. For solid-state materials, research
on information extraction has focused on several key areas, including NER of chemical synthesis
parameters from methods sections [17, 18, 19], identification of peak absorption wavelengths in
UV-Vis experiments [20] and other relevant data extraction tasks [21, 22, 23, 24]. More recently, the
CLUB benchmark [25] expanded entity tasks to both patents and literature, though it remains text-
only and modality-restricted. These resources, while foundational, lack support for figure-grounded
or multimodal entity linking that real-world documents demand.

The recent wave of LLMs and vision-language pretraining offers a promising path forward, enabling
systems capable of reasoning over multimodal data [26, 27]. Such works as [28, 29, 30] focus on
LLM fine-tuning for structured information extraction from scientific text, including the domain
of solid materials. Benchmarks such as AgentBench [31] and MultiAgentBench [32] evaluate
autonomous LLM-based agents across interactive and multimodal tasks. The development of multi-
agent systems inevitably necessitates the establishment of appropriate benchmarks. Solovev et al.
[33] propose a multi-agent system designed for drug discovery. To support this work, they construct
six datasets containing drug-related properties, thereby underscoring the importance of high-quality
and well-validated datasets. Notably, existing benchmarks fail to adequately assess the performance
of automated chemical information extraction systems, which represents a critical gap that our work
addresses. Current datasets lack the domain-specific rigor and multimodal scope required to evaluate
such tasks in specialized chemical subfields. Recent works such as ChemLLM [34] and ORDerly
[35] aim to standardize evaluation and data preparation in chemistry while emphasizing multimodal
and reproducible frameworks.

To advance automated data extraction in chemistry, we present ChemX, a manually curated multi-
modal benchmark dataset aimed at extracting chemical features from textual and visual content across
diverse chemical domains. By capturing the heterogeneity and interconnectedness of real-world
chemical literature, ChemX provides a foundation for evaluating and training models that bridge
traditional NLP with vision-language reasoning, large language models, and collaborative multi-agent
systems. This work makes two major contributions:

• We provide the ChemX benchmark, a collection of 10 curated datasets describing various
properties of nanomaterials and small molecules. Each dataset is accompanied with detailed
documentation, standardized metadata, and cross-verification by domain experts. The
datasets are available as a HuggingFace collection, and the corresponding documentation
can be accessed via https://ai-chem.github.io/ChemX.

• In this work, we also present a systematic evaluation of state-of-the-art LLMs and agentic
systems in the task of automated information extraction from domain-specific scientific
literature. The code for the extraction experiments is provided in the GitHub repository.
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2 Related Works

There is a growing ecosystem of benchmark datasets in the chemical sciences, many of which
are designed to support machine learning models for property prediction, structural analysis, or
vision-language tasks [36, 37, 38, 39, 40, 41]. While these studies have significantly advanced
property prediction in chemistry, they are not designed to benchmark the performance of automated
information extraction systems.

In the realm of chemical text understanding, CLUB [25] delivers four benchmark datasets for token
classification and NER tasks across patents and scientific papers, created by chemists. ChemTEB [42]
introduces an embedding benchmark tailored for chemical texts, evaluating models on retrieval and
semantic similarity. In computational chemistry, the Cuby framework [43] integrates well-established
benchmarks like GMTKN55 and NCIAtlas, providing tooling for large-scale simulation comparison.
Huang et al. extended this direction by using generative models to predict inorganic synthesis
conditions, demonstrating the potential of deep learning for reasoning over complex chemical inputs
[44]. Additionally, the FedChem framework introduced a federated learning benchmark for molecular
property prediction, simulating real-world data heterogeneity and privacy constraints [45].

While these prior studies established valuable foundations for information extraction in chemistry, it is
important to note that they were all conducted before the widespread adoption of modern LLMs. Our
work introduces a modern LLM-based benchmark for information extraction in chemistry. Unlike
pre-LLM era works, we systematically evaluate state-of-the-art language models models and agentic
frameworks, going beyond prior technological constraints.

The most closely related study to our work was conducted by Odobesku et al., who developed
nanoMINER for automated data extraction using a manually curated dataset of enzymatic activity of
nanomaterials [46, 47]. While their approach demonstrates the feasibility of structured information
extraction, it is limited to a single highly specialized application. The authors confirm the need to
create more high-quality chemistry datasets for benchmarking similar solutions and improving their
generalization capabilities. In this work, we address this need by introducing a collection of 10
datasets suitable for the task. In our evaluation experiments, we challenge modern LLMs, as well as
agentic approaches, with information extraction, and include nanoMINER for comparison.

3 ChemX

ChemX is a collection of X manually curated benchmarking datasets for automated information
eXtraction across two major domains: nanomaterials and small molecules (Figure 1). It is a
multimodal benchmark that supports robust chemical information extraction from heterogeneous
data — tables, graphs, unstructured text. Each dataset is accompanied with detailed documentation
available at this link.

PDF

Data collection Data validation
Nano-


materials

Agentic 
approaches

Small 
molecules

Baseline 
models

LLM

ChemX

Figure 1: ChemX. This pipeline includes manual collection of multimodal data from scientific articles,
further validation by domain experts and benchmarking automated data extraction.

3.1 Ontology

An overview of the datasets, including domains, sizes, extracted features, and descriptions, is provided
in Table 1. For small molecule datasets, the ontology centers around molecular descriptors, including
SMILES representations, biological activity metrics (e.g., MIC, IC50), and compound-specific
metadata. In contrast, nanomaterials and other material-centric datasets involve a substantially
broader set of parameters, encompassing physicochemical properties (e.g., size, zeta potential,
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surface coating), synthesis conditions, structural characteristics, and application-specific outcomes.
This reflects the inherent complexity and multimodality of material-related information in scientific
literature. Including the datasets of varying sizes and complexity in both domains creates a balanced
and practical benchmark for automated information extraction. Annotation guidelines and other
related details for each dataset are presented on the documentation website.

Table 1: ChemX benchmark datasets grouped by domain.

Domain Dataset Size Features Description
String Numeric

Cytotox 5535 12 9
Cytotoxicity of nanoparticles
in normal and cancer cell lines.

Seltox 3286 9 14
Toxic effects of nanoparticles
on bacterial strains.

Nano-
materials

Synergy 3326 10 19
Drug–nanoparticle synergy
in antibacterial assays.

Nanozymes 1135 9 11
Catalytic properties of inorganic
enzyme mimics.

Nanomag 2578 8 16
Magnetic nanomaterials
and their biomedical uses.

Benzimidazoles 1721 6 1
SMILES molecules with MICs
for antibiotic SAR studies.

Oxazolidinones 2923 6 1
Synthetic antibiotics with
biological activity data.

Small
molecules

Complexes 907 4 1
Organometallic chelate complexes
with thermodynamic parameters.

Eye Drops 163 2 1
Drug permeability data across
corneal tissue.

Co-crystals 70 7 0
Drug co-crystals with improved
photostability.

3.2 Data Collection

We gathered the data from a broad corpus of peer-reviewed chemistry publications by manual
information extraction by domain experts. The information was originally sourced in the text, tables,
schematics, drawings, plots, and other types of formats commonly used in the scientific literature
Figure 2.

Our domain experts annotated a wide range of targets, encompassing chemical entities (i.e., nanopar-
ticles, organic and inorganic molecules), their synthesis protocols, physicochemical and biomedical
properties. Upon data collection, we performed extensive preprocessing of the extracted entities
to ensure consistency of machine-readabable formats. For example, chemical structures depicted
on figures were manually redrawn using ChemDraw or the PDB Chemical Sketch Tool to ensure
accurate conversion to SMILES. Molecular names referenced in the text were also converted to
SMILES notation using the PubChem API. As a result, ChemX is built upon over 1,500 annotated
articles spanning two chemistry domains, namely, small molecules and nanomaterials.

3.3 Quality Control

To evaluate data integrity, we applied a stratified manual cross-verification procedure depicted on
Figure 5. From each source article represented in a dataset, approximately 20% of entries were
randomly selected and reviewed against the original source material, including PDFs, figures, and
supplementary tables. Sampling was rounded up to ensure that at least one entry from each source
article was manually reviewed during the verification process. Errors — including transcription
mistakes, structural mismatches, unit inconsistencies, and unsupported inferences — were categorized
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Figure 2: Multimodal data extraction: A real-world example for collecting a dataset with chelate
complexes [48]

as either common (recurring patterns) or isolated (single occurrence). Importantly, if an isolated error
was identified during review, we systematically checked all the other entries from the same source
article, even if they were not part of the original sample. This additional step was intended to determine
whether similar issues occurred in other records from the same publication. Error categorization
informed the correction strategy. For common errors, we formulated rule-based recommendations
that specified the field affected, the observed scope of recurrence, and the appropriate method for
correction, such as structural replacement, unit standardization, or removal of inferred content.
Corrections were then applied across the whole group. All recommendations were documented in
writing and communicated to the dataset curators for implementation across relevant records. Isolated
issues were corrected individually.

3.4 Dataset Overview and Analysis

The number of openly accessible articles for each dataset is presented in Figure 3B. The distribution
of publication years (Figure 3A) reflects the growth of the underlying literature since the early 2000s,
with a marked rise in publications over the past decade.

A B CPublication years Number of articles Percent of missing values

Open-access

2024202120182015201220092006

Figure 3: Overview of ChemX. (A) Distribution of the publication years. (B) Number of articles per
dataset. (C) Percent of missing values per dataset.

Furthermore, we quantified the prevalence of missing values across the datasets (Figure 3C). Certain
datasets exhibit substantial sparsity due to incomplete data reporting in the original publications.
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This heterogeneity in data completeness is advantageous for benchmarking purposes, as it facilitates
rigorous evaluation of automated extraction systems. Specifically, such variability enables assessment
of both the accurate retrieval of reported information and the correct identification of absent data,
ensuring robust performance metrics.

3.5 Labeling datasets by complexity level for extraction

We assess dataset extraction complexity using five key criteria. A primary challenge is heterogeneous
formats, where data is dispersed across text, tables, and complex figures, making parsing difficult.
Non-uniform table structures often require cross-referencing with the main text. Semantic ambiguity
in labels and units demands contextual interpretation. Furthermore, multi-value records need careful
linking of values to their correct materials and units, increasing error risk compared to single-value
entries. Finally, domain differences matter; extracting hierarchical relationships for nanomaterials is
more complex than using standardized encodings for small molecules.

Table 2: Classification of datasets by complexity level

Domain Dataset Complexity

Nanomaterials

Cytotox High
Seltox High
Synergy High
Nanomag High
Nanozymes Medium

Small molecules

Benzimidazoles Medium
Oxazolidinones Medium
Co-crystalls Medium
Eye drops Low
Complexes Low

Datasets are classified as low, medium, or high complexity based on these factors, with multi-format
parsing, irregular tables, multi-value linking, and hierarchical relationships elevating the difficulty.

4 Experiments

We performed a series of experiments to evaluate the performance of LLMs in extracting structured
data from scientific articles. The study compared two distinct approaches: (1) LLMs as baseline
models and (2) agentic approaches. To quantitatively assess the quality of extraction, we calculated
the precision, recall, and F1-score for each extracted parameter. For this, we calculated the following:

• True Positives (TP): The count of values correctly extracted (i.e., the value exists in both
the original dataset and the extracted dataset).

• False Positives (FP): The count of values incorrectly extracted (i.e., the value does not exist
in the original dataset but is present in the extracted dataset).

• False Negatives (FN): The count of missing values (i.e., the value exists in the original
dataset but is absent from the extracted dataset).

For each PDF in the dataset, we computed precision, recall, and F1 score based on those quantities.
The resulting metrics were then aggregated across all PDFs in the dataset and averaged by dividing
the total sum by the number of PDFs.

To standardize inputs, we created the following prompt template:
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system_prompt = "You are a domain-specific chemical information extraction assistant. You
specialize in the chemistry of ... . Your area of expertise includes ... ."
user_prompt = "Your task is to extract **every** mention of ... for ... from a scientific article,
and output a **JSON array** of objects **only** (no markdown, no commentary, no extra
text):

1. Feature 1 (string): Description (e.g., ’example’).
2. Feature 2 (numeric): Description (e.g., ’example’).
3. ...
4. Target value (numeric): Description (e.g., ’example’).

Extraction rules:
• Extract **each** ... mention as a separate object.
• Do **not** filter, group, summarize, or deduplicate. Include repeated mentions and

duplicates if they occur in different contexts.
• If you cannot find a required field for an object, re-check the context; if it’s still absent,

set that field’s value to "NOT_DETECTED"
• Other rules specific to this dataset

• The example of JSON below shows only one extracted samples, however your output
should contain **all** mentions of ... for ... present in the article.

Output **must** be a single JSON array, like: [{ "feature 1": "example of feature 1", "feature
2": "example of feature 2", ... "target value": "example of target value" }]"

Specific prompts for each dataset can be found in the section 9.5.

4.1 Baseline models

GPT-4o was selected due to the advanced multimodal data processing capabilities. Experiments were
conducted using exclusively open-access scholarly articles to ensure reproducibility and compliance
with accessibility standards. Articles were processed either as full-text PDF files or as sets of
JPEG images, with extraction performance metrics computed independently for each input modality.
In cases where supplementary materials contained relevant information, the primary article and
supplementary files were merged into a single composite document prior to processing. The Assistants
API GPT-4o was leveraged to enhance reproducibility across extraction workflows. [49]

4.2 Agentic approaches

4.2.1 Single agent

To address the opacity and inconsistency of OpenAI’s black-box PDF and screenshot processing,
we adopt a single-agent preprocessing approach using the marker-pdf SDK [50]. The marker-pdf
library was selected due to its robust capabilities for accurately preserving document structure and
semantic integrity during extraction. The text and tables are converted into markdown format, while
local image paths are generated for images and inserted into their corresponding positions within the
markdown document.

Each extracted image is then processed by the gpt-4o-2024-11-20 model using a tailored
image description prompt. GPT-4o’s strong multimodal capabilities enable accurate interpreta-
tion of diverse image types, ensuring consistent descriptions. In addition, this design choice
made it possible to fairly compare the single agent approach with baseline models, isolat-
ing the factor of document pre-processing. These are inserted into the markdown within
<DESCRIPTION_FROM_IMAGE> tags, producing a described.md file. Finally, the described mark-
down is processed by gpt-4.1-mini-2025-04-14 model for information extraction. This pipeline
allows for a controlled, semantically faithful preprocessing workflow and fair comparison against
baseline models. The final outputs are compiled into dataset-specific CSV files.
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4.2.2 The multi-agent approach

We included nanoMINER for comparison to benchmark its performance against the other approaches.
Notably, nanoMINER is a highly specialized solution in the nanomaterial domain that consists of
three agents, two of which were fine-tuned to extract properties of nanozymes. More specifically, the
vision agent leveraged the fine-tuned YOLO model to recognize plots of enzymatic parameters, while
the NER agent made use of the fine-tuned Llama and Mistral models to better recognize nanozyme
properties in text [46]. Therefore, while providing unmatched performance for the nanozymes dataset,
nanoMINER could not be easily evaluated on the other datasets of ChemX.

5 Experimental results

LLM Extraction From PDF LLM Extraction From IMAGE Single agent extraction
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Figure 4: Extraction metrics for LLM and single agent approach. For LLM method two distinct data
extraction approaches were evaluated: text parsing from PDF files versus image processing from
JPEG files. (A-C) Recall and precision for string values extraction using LLM extraction from PDF,
LLM extraction from images and single agent extraction, respectively. (D-F) Recall and precision for
numeric values extraction using LLM extraction from PDF, LLM extraction from images and single
agent extraction, respectively. The eye drops dataset was excluded from the analysis because it does
not include open-access articles. The co-crystals dataset was omitted when calculating metrics for
numerical parameters, as it lacks numerical values. Average metrics across all columns in datasets
are presented. Standard deviation is not presented for better display.

For the baseline models, we compared two extraction methodologies: providing LLMs with PDF
files versus JPEG images for processing. In addition to the baseline, we included the single agent
approach for comparison (Figure 4). The eye drops dataset was excluded from our analysis due to the
absence of open-access articles. Our empirical results evaluating automated information extraction
from the nine remaining datasets highlight three key findings:

1. All methods exhibited better performance on textual parameters (such as compound identi-
fiers, compound names, but not SMILES) compared to numerical ones (such as concentration
values, etc.).

2. While GPT-4o achieved higher metrics than our single agent suggesting their opaque PDF
preprocessing works better, its overall performance remains unsatisfactory for practical
applications. Notably, single agent does demonstrate higher recall and F1 values on some
datasets (see section 9.4), which prompts further investigation of the factors impacting
extraction performance.
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3. We observed consistently higher accuracy for small molecule datasets relative to nanomate-
rials, which was expected due to a larger number of parameters involved.

We also compared the baseline LLMs and single agent approach with nanoMINER [46], a recently
developed multi-agent system for nanomaterials datasets (Table 3). While nanoMINER by far
outperforms all baselines in terms of accuracy and F1 score, it remains a highly specialized solution
that cannot be directly applied to the other datasets of the same domain. LLMs show better metrics
compared to the single agent approach for all datasets but Cytotox. However, both approaches remain
impractical due to insufficient extraction quality.

Table 3: Comparison of different approaches in the nanomaterial domain of ChemX. For LLM-based
extraction, the best metrics between PDF and JPEG are presented. The metrics for nanoMINER are
taken from the original paper. Mean value and standard deviation for precision and F1-score are
presented; these values do not account for the stochastic variability inherent to LLM outputs. The
observed high extraction error rates primarily stem from the inherent heterogeneity in data quality
across the numerous columns present in nanomaterial datasets.

LLM Single agent nanoMINER

Precision F1-score Precision F1-score Precision F1-score

Nanozymes 0.35 ± 0.21 0.34 ± 0.20 0.15 ± 0.11 0.16 ± 0.12 0.80 ± 0.16 0.71 ± 0.16

Cytotox 0.38 ± 0.27 0.11 ± 0.07 0.26 ± 0.19 0.18 ± 0.13 - -

Seltox 0.13 ± 0.08 0.07 ± 0.04 0.07 ± 0.07 0.05 ± 0.04 - -

Synergy 0.27 ± 0.24 0.09 ± 0.08 0.14 ± 0.17 0.08 ± 0.10 - -

Nanomag 0.18 ± 0.18 0.13 ± 0.13 0.04 ± 0.05 0.03 ± 0.03 - -

6 Discussion

We introduce ChemX, a curated collection of 10 benchmarking datasets spanning small molecules
and nanomaterials, rigorously validated through expert cross-verification procedure to ensure reliable
evaluation of information extraction methods. Our analysis demonstrates its utility through evaluations
of modern LLMs, a custom single-agent pipeline, as well as the state-of-the-art multi-agent system
for the nanomaterials domain. Our findings reveal a variety of persistent challenges discussed below.

6.1 Cross-verification results

The primary objective of dataset validation is to verify that the data is suitable for automated extraction
tasks by identifying and correcting unreasonable or erroneous data values. To ensure comprehensive
quality control, we employed a stratified sampling strategy, wherein each article was reviewed at least
once. Errors were categorized into recurring and isolated types, with a focus on addressing common
issues, as these constituted the majority of required corrections. A key strength of this validation
procedure is its ability to extrapolate correction rules across the entire dataset based on a limited
subset of manually verified examples. The limitations of this procedure include execution of only a
single testing cycle. We provide supplementary figures summarizing correction statistics for all ten
datasets (available in subsection 9.2). Across all datasets, the proportion of corrected values remained
below 4%, confirming overall data reliability. Therefore, most of the data was initially accurate and
the validation procedure effectively eliminated remaining deviations.

6.2 Extraction quality assessment

To evaluate extracted string values, we combined semantic and character-level similarity measures.
For semantic assessment, we used SentenceTransformer (BAAI/bge-base-en-v1.5 on Hugging-
Face) to compute cosine similarity between embeddings, supplemented by Levenshtein distance
calculations via RapidFuzz for character-level comparison. However, establishing accurate string
alignments proved challenging, as both methods frequently produced false matches, particularly for
numerical data, chemical formulas, and units where semantic relationships are poorly captured. This
limitation highlights the need for specialized matching strategies in chemical information extraction.
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The comparative analysis reveals consistently lower accuracy for numerical parameters and strong
heterogeneity across columns (Table 4 and Tables 5–9 in Appendix 9.4). In molecular datasets,
SMILES strings showed zero accuracy, whereas compound identifiers and target types were ex-
tracted almost perfectly. Nanomaterial datasets exhibited greater variance due to complex tabular
formats and inconsistent terminology. This heterogeneity likely stems from OCR errors, unit ambi-
guities, and strict precision requirements for numerical values. Additional factors in nanomaterial
datasets—heterogeneous reporting, non-standardized terms, and frequent missing values—further
reduce accuracy and increase false negatives. Overall, aggregated F1 metrics obscure these disparities;
future evaluations should therefore include both aggregate and column-level results.

6.3 Current methodological limitations

Recent studies, such as ChemCrow [51] and FutureHouse [52], have demonstrated the potential of
LLMs for automated data extraction, though this is not their primary objective. In a preliminary
test, FutureHouse was applied to a single article containing one sample from the nanozyme dataset
(Table 4). After processing for 3 minutes and 42 seconds, it produced a reasonably accurate output
(Case 1, Table 4). However, when subsequently provided with another article containing two
nanozyme samples as a follow-up task, the system encountered significant failures. The extraction
process took nearly 16 minutes and returned mostly null (NaN) values. In constrast, nanoMINER
excels in these tasks, but remains limited to a single application, as mentioned earlier.

Our extraction experiments underscore the inherent constraints of general-purpose LLMs in chemical
structure recognition (Section 9.4). Although specialized tools like DECIMER [53] can convert
molecular images to SMILES strings, their practical integration remains unfeasible due to two
unresolved technical challenges: (1) reliable detection of discrete molecular depictions within
complex article layouts, and (2) accurate segmentation of heterogeneous image formats. Future
developments in computer vision—particularly for automated molecule localization and standardized
image preprocessing—may eventually enable DECIMER’s incorporation into extraction pipelines.
However, given these current limitations, we deliberately excluded such tools from our experiments.

6.4 Prospects of automated information extraction

Our findings demonstrate that, despite recent advances in AI and agentic systems, the accurate
extraction of chemical information remains a surprisingly complex task that requires significant
innovation to be effectively addressed. ChemX has already been utilized to benchmark agent-based
automated data extraction systems; however, the performance results were suboptimal, further
highlighting the challenges inherent in this domain [54]. On one hand, future research should focus
on the generalization capabilities of highly specialized systems, such as nanoMINER, to enable
their seamless application to other datasets within the same domain. On the other hand, agents in
such systems should be equipped with more specialized tools, such as DECIMER, to effectively
handle real-world applications. In any case, the future of automated information extraction appears
to be multi-agent, and greater efforts from the research community should be directed toward agent
orchestration.

7 Conclusion

ChemX is a curated benchmark comprising 10 rigorously validated datasets encompassing small
molecules and nanomaterials. Each dataset was cross-verified by domain experts to ensure robustness
in the assessment of information extraction methodologies. We demonstrated the utility of ChemX
through a series of evaluations, including state-of-the-art LLMs, a custom single-agent approach,
and the recently proposed multi-agent system specialized on nanomaterials. We showed that modern
LLMs and agent-based approaches exhibit significant limitations in performing extraction tasks
on ChemX. Analyzing the experimental results, we identified key challenges inherent to chemical
and nanomaterial data—including heterogeneous representations, lack of standardized nanomaterial
descriptions, and prevalent missing values—hindering robust automated information extraction
performance. As the first benchmarking resource of its kind, ChemX provides a critical foundation
for advancing automated information extraction in chemistry. By offering rigorously validated,
expert-curated datasets, it enables systematic evaluation and refinement of emerging techniques,
ultimately driving the progress in chemical information extraction.
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9 Appendix

9.1 Validation of datasets by domain experts
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Figure 5: Quality control process for ChemX datasets
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9.2 Error statistics
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Figure 6: Error statistics for small molecules datasets
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Figure 7: Error statistics for nanomaterials datasets
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9.3 FutureHouse

Table 4: Extraction results for the nanozymes dataset using the Crow
agent of the FutureHouse platform. Case 1: article, type - task, duration -
3m 42s. Case 2: article, type - follow up, duration - 15m 42s.

Case Extracted Expected

1

“‘json
[
{
"Formula": "MnO2 (1.1)",
"Activity Type": "Oxidase (1.1)",
"Crystal System": "NaN (1.1, 1.2)",
"Length (nm)": "NaN (1.1)",
"Width (nm)": "NaN (1.1)",
"Depth (nm)": "NaN (1.1)",
"Surface Molecule": "NaN (1.1, 1.2)",
"Km Value": 0.005,
"Km Unit": "mM (1.2)",
"Vmax Value": 0.155,
"Vmax Unit": "U/mL (1.2)",
"Reaction Type":
"2,6-DMP + O2 (oxidase-like oxidation
of 2,6-DMP without H2O2) (1.1, 1.2)",
"C_min (mM)": 0.005,
"C_max (mM)": 1.0,
"Co-substrate Concentration Value":
"NaN (dissolved oxygen used as electron acceptor;
no explicit concentration provided) (1.1)",
"Co-substrate Unit": "NaN (1.1)",
"Catalyst Concentration Value": 0.1,
"Catalyst Unit": "mg/mL (1.3)",
"pH Level": 3.8,
"Temperature (°C)": 25
}
]
“‘

“‘json
[
{
"Formula": "MnO2",
"Activity Type": "Oxidase",
"Crystal System": "NOT_DETECTED",
"Length (nm)": "NOT_DETECTED",
"Width (nm)": "NOT_DETECTED",
"Depth (nm)": "NOT_DETECTED",
"Surface Molecule": "NOT_DETECTED",
"Km Value": 0.005,
"Km Unit": "NOT_DETECTED",
"Vmax Value": 0.155,
"Vmax Unit": "NOT_DETECTED",
"Reaction Type": "2,6-DMP",
"C_min (mM)": 0.005,
"C_max (mM)": 0.2,
"Co-substrate Concentration Value":
"NOT_DETECTED",
"Co-substrate Unit": "NOT_DETECTED",
"Catalyst Concentration Value": 0.1,
"Catalyst Unit": "mg mL-1",
"pH Level": 3.8,
"Temperature (°C)": 25
}
]
“‘
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2

“‘json
[
{
"Formula": "MnO2",
"Activity Type": "Oxidase-like",
"Crystal System": "NaN",
"Length (nm)": "NaN",
"Width (nm)": "NaN",
"Depth (nm)": "NaN",
"Surface Molecule": "NaN",
"Km Value": 0.005,
"Km Unit": "mM",
"Vmax Value": 0.155,
"Vmax Unit": "U/mL",
"Reaction Type": "2,6-DMP + O2",
"C_min (mM)": 0.005,
"C_max (mM)": 0.2,
"Co-substrate Concentration Value": "NaN",
"Co-substrate Unit": "NaN",
"Catalyst Concentration Value": 0.1,
"Catalyst Unit": "mg/mL",
"pH Level": 3.8,
"Temperature (°C)": 25,
"Citation": "1.1, 1.2"
},
{
"Formula": "Au–Ag–Pt",
"Activity Type": "Peroxidase-like",
"Crystal System": "NaN",
"Length (nm)": "NaN",
"Width (nm)": "NaN",
"Depth (nm)": "NaN",
"Surface Molecule": "chitosan",
"Km Value": "NaN",
"Km Unit": "NaN",
"Vmax Value": "NaN",
"Vmax Unit": "NaN",
"Reaction Type": "TMB + H2O2",
"C_min (mM)": "NaN",
"C_max (mM)": "NaN",
"Co-substrate Concentration Value": "NaN",
"Co-substrate Unit": "NaN",
"Catalyst Concentration Value": "NaN",
"Catalyst Unit": "NaN",
"pH Level": "NaN",
"Temperature (°C)": 37,
"Citation": "2.1 pages 1-2, 2.1 pages 8-9"
}
]
“‘

“‘json
[
{
"Formula": "Pt",
"Activity Type": "peroxidase",
"Crystal System": "NOT_DETECTED",
"Length (nm)": 3.21,
"Width (nm)": 3.21,
"Depth (nm)": 3.21,
"Surface Molecule":
"Polyethyleneimine (PEI)",
"Km Value": 2.02,
"Km Unit": "mM",
"Vmax Value": 0.115,
"Vmax Unit": "10-8 M s-1",
"Reaction Type": "TMB + H2O2",
"C_min (mM)": 0.01,
"C_max (mM)": 0.357,
"Co-substrate Concentration Value": 3,
"Co-substrate Unit": "M",
"Catalyst Concentration Value": 6,
"Catalyst Unit": "µM",
"pH Level": 4,
"Temperature (°C)": 30,
},
{
"Formula": "Pt",
"Activity Type": "peroxidase",
"Crystal System": "NOT_DETECTED",
"Length (nm)": 3.21,
"Width (nm)": 3.21,
"Depth (nm)": 3.21,
"Surface Molecule": "Polyethyleneimine (PEI)",
"Km Value": 43.6,
"Km Unit": "mM",
"Vmax Value": 8.5,
"Vmax Unit": "10-8 M s-1",
"Reaction Type": "H2O2 + TMB",
"C_min (mM)": 0.03,
"C_max (mM)": 0.177,
"Co-substrate Concentration Value": 0.8,
"Co-substrate Unit": "mM",
"Catalyst Concentration Value": 6,
"Catalyst Unit": "µM",
"pH Level": 4,
"Temperature (°C)": 30,
}
]
“‘
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9.4 Extraction metrics

Table 5: Extraction metrics for all columns of small molecule datasets. Baseline model and single
agent methods are presented.

Dataset Columns LLM FROM PDF LLM FROM JPEG SINGLE AGENT

Precision F1 Precision F1 Precision F1

compound_id 1.00 0.25 1.00 0.54 0.97 0.81

smiles 0.00 0.00 0.00 0.00 0.00 0.00

oxazolidinone target_type 1.00 0.25 1.00 0.54 0.93 0.78

target_relation 1.00 0.25 0.88 0.50 0.97 0.81

target_value 0.44 0.09 0.50 0.04 0.41 0.26

target_units 0.00 0.00 1.00 0.54 0.00 0.00

bacteria 0.00 0.00 0.83 0.53 0.94 0.78

Precision F1 Precision F1 Precision F1

compound_id 0.88 0.58 0.74 0.55 0.44 0.32

smiles 0.00 0.00 0.03 0.00 0.00 0.00

benzimidazole target_type 0.98 0.63 0.93 0.65 0.55 0.42

target_relation 0.98 0.63 0.84 0.64 0.55 0.42

target_value 0.46 0.42 0.36 0.30 0.40 0.29

target_units 0.11 0.03 0.00 0.00 0.10 0.07

bacteria 0.30 0.24 0.25 0.19 0.00 0.00

Precision F1 Precision F1 Precision F1

name_cocrystal 0.70 0.69 0.66 0.69 0.64 0.68

ratio_cocrystal 0.52 0.54 0.47 0.49 0.48 0.52

cocrystals name_drug 0.35 0.34 0.42 0.44 0.46 0.49

SMILES_drug 0.00 0.00 0.00 0.00 0.00 0.00

name_coformer 0.08 0.08 0.15 0.15 0.19 0.21

SMILES_coformer 0.12 0.12 0.31 0.33 0.09 0.10

photostability_change 0.03 0.03 0.03 0.03 0.06 0.08

Precision F1 Precision F1 Precision F1

compound_id 1.00 0.39 0.67 0.23 0.43 0.36

complexes compound_name 0.63 0.31 0.35 0.13 0.18 0.19

SMILES 0.00 0.00 0.02 0.01 0.00 0.00

SMILES_type 0.67 0.11 0.98 0.32 0.62 0.61

target 0.29 0.19 0.28 0.10 0.37 0.29
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Table 6: Extraction metrics for all columns of nanozymes dataset. Baseline model and single agent
methods are presented.

Dataset Columns LLM FROM PDF LLM FROM JPEG SINGLE AGENT

Precision F1 Precision F1 Precision F1

formula 0.53 0.51 0.58 0.56 0.30 0.33

activity 0.74 0.72 0.82 0.77 0.35 0.38

syngony 0.59 0.59 0.56 0.55 0.07 0.07

length 0.10 0.09 0.11 0.10 0.23 0.25

width 0.10 0.09 0.09 0.08 0.19 0.19

depth 0.10 0.09 0.06 0.05 0.00 0.00

nanozymes surface 0.33 0.33 0.26 0.26 0.01 0.02

km_value 0.52 0.52 0.51 0.49 0.27 0.29

km_unit 0.64 0.63 0.65 0.62 0.25 0.27

vmax_value 0.34 0.33 0.34 0.34 0.21 0.22

vmax_unit 0.29 0.29 0.18 0.16 0.14 0.14

reaction_type 0.57 0.55 0.47 0.44 0.25 0.28

c_min 0.18 0.20 0.20 0.19 0.09 0.10

c_max 0.12 0.11 0.21 0.20 0.12 0.11

c_const 0.22 0.21 0.26 0.25 0.13 0.12

c_const_unit 0.29 0.28 0.33 0.30 0.13 0.13

ccat_value 0.34 0.31 0.29 0.29 0.10 0.10

ccat_unit 0.10 0.10 0.12 0.12 0.02 0.02

ph 0.56 0.54 0.70 0.66 0.23 0.26

temperature 0.39 0.37 0.00 0.00 0.00 0.00
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Table 7: Extraction metrics for all columns of cytotoxicity dataset. Baseline model and single agent
methods are presented.

Dataset Columns LLM FROM PDF LLM FROM JPEG SINGLE AGENT

Precision F1 Precision F1 Precision F1

material 0.46 0.11 0.19 0.04 0.50 0.33

shape 0.54 0.16 0.41 0.10 0.29 0.22

coat_functional_group 0.72 0.19 0.18 0.04 0.16 0.10

synthesis_method 0.29 0.08 0.14 0.03 0.21 0.16

surface_charge 0.42 0.13 0.33 0.07 0.33 0.24

core_nm 0.00 0.00 0.00 0.00 0.00 0.00

size_in_medium_nm 0.06 0.02 0.00 0.00 0.09 0.06

hydrodynamic_nm 0.22 0.08 0.04 0.01 0.07 0.04

potential_mv 0.26 0.07 0.00 0.00 0.19 0.16

cytotoxicity zeta_in_medium_mv 0.08 0.03 0.00 0.00 0.10 0.07

no_of_cells_cells_well 0.20 0.06 0.07 0.02 0.10 0.04

human_animal 0.92 0.25 0.59 0.14 0.69 0.46

cell_source 0.86 0.24 0.52 0.12 0.64 0.44

cell_tissue 0.44 0.13 0.17 0.04 0.37 0.28

cell_morphology 0.46 0.15 0.28 0.06 0.25 0.18

cell_age 0.44 0.15 0.41 0.09 0.28 0.19

time_hr 0.00 0.00 0.00 0.00 0.38 0.28

concentration 0.49 0.14 0.29 0.06 0.13 0.07

test 0.64 0.20 0.28 0.07 0.42 0.28

test_indicator 0.35 0.12 0.35 0.09 0.24 0.18

viability_% 0.07 0.03 0.00 0.00 0.02 0.02

22



Table 8: Extraction metrics for all columns of seltox dataset. Baseline model and single agent
methods are presented.

Dataset Columns LLM FROM PDF LLM FROM JPEG SINGLE AGENT

Precision F1 Precision F1 Precision F1

np 0.24 0.13 0.12 0.06 0.21 0.12

coating 0.24 0.10 0.12 0.05 0.12 0.08

bacteria 0.28 0.14 0.17 0.09 0.20 0.12

mdr 0.21 0.10 0.11 0.06 0.15 0.08

strain 0.20 0.10 0.13 0.07 0.12 0.07

np_synthesis 0.04 0.03 0.01 0.01 0.00 0.00

method 0.26 0.14 0.15 0.08 0.19 0.11

mic_np_µg_ml 0.09 0.04 0.06 0.03 0.12 0.07

concentration 0.07 0.03 0.04 0.01 0.00 0.00

zoi_np_mm 0.10 0.04 0.05 0.02 0.03 0.02

seltox np_size_min_nm 0.18 0.09 0.06 0.02 0.04 0.03

np_size_max_nm 0.16 0.09 0.07 0.03 0.05 0.03

np_size_avg_nm 0.16 0.07 0.09 0.04 0.08 0.06

shape 0.17 0.11 0.15 0.07 0.11 0.08

time_set_hours 0.16 0.08 0.15 0.08 0.00 0.00

zeta_potential_mV 0.04 0.03 0.03 0.02 0.03 0.03

solvent_for_extract 0.14 0.06 0.07 0.03 0.02 0.01

temperature_for_extract_C 0.03 0.02 0.08 0.05 0.00 0.00

duration_preparing_extract_min 0.01 0.01 0.02 0.02 0.00 0.00

precursor_of_np 0.17 0.09 0.10 0.05 0.11 0.07

concentration_of_precursor_mM 0.08 0.04 0.07 0.04 0.01 0.02

hydrodynamic_diameter_nm 0.01 0.01 0.02 0.02 0.03 0.03

ph_during_synthesis 0.01 0.00 0.00 0.00 0.00 0.00
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Table 9: Extraction metrics for all columns of synergy dataset. Baseline model and single agent
methods are presented.

Dataset Columns LLM FROM PDF LLM FROM JPEG SINGLE AGENT

Precision F1 Precision F1 Precision F1

NP 0.46 0.11 0.57 0.19 0.24 0.14

bacteria 0.00 0.00 0.00 0.00 0.64 0.39

strain 0.55 0.16 0.51 0.15 0.15 0.08

NP_synthesis 0.00 0.00 0.02 0.00 0.02 0.01

drug 0.73 0.26 0.72 0.25 0.46 0.28

drug_dose_µg_disk 0.34 0.12 0.36 0.13 0.04 0.01

NP_concentration_µg_ml 0.32 0.10 0.36 0.12 0.03 0.02

NP_size_min_nm 0.04 0.01 0.01 0.00 0.35 0.22

synergy NP_size_max_nm 0.46 0.13 0.49 0.13 0.02 0.01

NP_size_avg_nm 0.58 0.20 0.53 0.15 0.18 0.11

shape 0.47 0.13 0.68 0.21 0.33 0.19

method 0.35 0.13 0.54 0.14 0.47 0.29

ZOI_drug_mm_or_MIC

_µg_ml
0.00 0.00 0.00 0.00 0.34 0.16

error_ZOI_drug_mm

_or_MIC_µg_ml
0.09 0.06 0.13 0.05 0.05 0.03

ZOI_NP_mm_

or_MIC_np_µg_ml
0.57 0.16 0.57 0.17 0.16 0.10

error_ZOI_NP_mm_

or_MIC_np_µg_ml
0.17 0.06 0.25 0.07 0.10 0.06

ZOI_drug_NP_mm_

or_MIC_drug_NP_µg_ml
0.26 0.09 0.28 0.08 0.09 0.07

error_ZOI_drug_NP_

mm_or_MIC_drug_NP_µg_ml
0.11 0.06 0.08 0.03 0.07 0.05

fold_increase_

in_antibacterial_activity
0.04 0.00 0.02 0.00 0.03 0.00

zeta_potential_mV 0.09 0.03 0.10 0.02 0.09 0.05

MDR 0.47 0.21 0.49 0.19 0.00 0.00

FIC 0.08 0.02 0.06 0.02 0.05 0.03

effect 0.21 0.10 0.25 0.09 0.00 0.00

time_hr 0.37 0.13 0.43 0.16 0.03 0.02

coating_with_

antimicrobial_peptide_polymers
0.44 0.18 0.32 0.11 0.00 0.00

combined_MIC 0.00 0.00 0.00 0.00 0.00 0.00

peptide_MIC 0.00 0.00 0.00 0.00 0.00 0.00

viability_% 0.00 0.00 0.00 0.00 0.01 0.01

viability_error 0.00 0.00 0.00 0.00 0.01 0.01
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Table 10: Extraction metrics for all columns of nanomag dataset. Baseline model and single agent
methods are presented.

Dataset Columns LLM FROM PDF LLM FROM JPEG SINGLE AGENT

Precision F1 Precision F1 Precision F1

name 0.02 0.00 0.00 0.00 0.00 0.00

np_core 0.32 0.21 0.41 0.26 0.22 0.16

np_shell 0.29 0.21 0.32 0.24 0.07 0.06

core_shell_formula 0.15 0.09 0.29 0.19 0.07 0.06

np_shell_2 0.71 0.46 0.78 0.53 0.00 0.00

np_hydro_size 0.06 0.05 0.06 0.04 0.02 0.02

xrd_scherrer_size 0.05 0.03 0.08 0.05 0.02 0.01

emic_size 0.16 0.10 0.18 0.14 0.09 0.09

space_group_core 0.30 0.20 0.30 0.24 0.02 0.02

space_group_shell 0.38 0.26 0.35 0.29 0.02 0.02

squid_sat_mag 0.19 0.12 0.20 0.16 0.14 0.12

nanomag squid_rem_mag 0.27 0.17 0.24 0.19 0.02 0.02

exchange_bias_shift_Oe 0.02 0.01 0.00 0.00 0.01 0.01

vertical_loop_shift_M_vsl_emu_g 0.09 0.05 0.04 0.02 0.00 0.00

hc_kOe 0.01 0.01 0.01 0.01 0.00 0.00

squid_h_max 0.16 0.09 0.17 0.09 0.00 0.00

zfc_h_meas 0.00 0.00 0.00 0.00 0.00 0.00

instrument 0.15 0.11 0.05 0.05 0.00 0.00

fc_field_T 0.10 0.08 0.06 0.04 0.07 0.04

squid_temperature 0.32 0.19 0.34 0.22 0.09 0.08

coercivity 0.20 0.12 0.15 0.11 0.02 0.02

htherm_sar 0.00 0.00 0.01 0.01 0.01 0.01

mri_r1 0.09 0.07 0.17 0.15 0.04 0.02

mri_r2 0.13 0.09 0.18 0.14 0.06 0.05
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9.5 Prompts

Benzimidazole antibiotics

system_prompt = "You are a domain-specific chemical information extraction assistant. You
specialize in chemistry of small molecules. In particular, your area is antibiotics and their properties."

user_prompt = "Your task is to extract every mention of MIC or pMIC measurements against
Staphylococcus aureus and Escherichia coli bacteria for ALL benzimidazole antibiotics from a
scientific article and output a JSON array of objects only (no markdown, no commentary, no extra
text).

Fields for each object:

• ‘compound_id‘ (string): ID of a molecule within the article, as cited in the text, e.g. ‘"5a"‘,
‘"Compound 3"‘.

• ‘smiles‘ (string): full SMILES representation of a benzimidazole antibiotic.

• ‘target_type‘ (string): type of measurement, either ‘"MIC"‘ or ‘"pMIC"‘, exactly as stated.

• target_relation‘ (string): one of ‘"="‘, ‘"<"‘, or ‘">"‘. If no relation symbol is shown, use
‘"="‘.

• ‘target_value‘ (number): the numeric value of MIC/pMIC (without quotes).

• ‘target_units‘ (string): MIC units, e.g. ‘"µg/mL"‘, ‘"mg/L"‘, etc.

• ‘bacteria‘ (string): the organism against which MIC/pMIC was measured, named exactly as
in the text.

Extraction rules:

1. Extract each MIC/pMIC mention as a separate object. If multiple MIC/pMIC are reported
for the same compound against different bacteria, list them as separate entries.

2. Do not filter, group, summarize, or deduplicate. Include repeated mentions and duplicates if
they occur in different contexts.

3. If a range is given (e.g., “2–8 µg/mL”), leave it as a range.

4. If a molecule is fully depicted in a figure, write it as a SMILES string. If a molecule is
depicted as a scaffold and residues separately in different places of an article, connect them
by compound ID into one molecule and write it as a single SMILES string.

5. Extract only measurements with Staphylococcus aureus and Escherichia coli. Record full
names, abbreviations, or any related taxonomic identifiers of bacteria.

6. If you cannot find a required field for an object, re-check the context; if it’s still absent, set
that field’s value to ‘"NOT_DETECTED"‘.

7. The example of JSON below shows only two extracted samples, however your output should
contain **all** MIC or pMIC measurements of benzimidazole antibiotics present in the
article.

Output must be a single JSON array, like:
[ {
"compound_id": "11h",
"smiles": "O=C(OCC)C1=C(N(C(=O)N(C1C2=C(C=CS2)C)[H])
[H])C[N]3C=NC4=C3C=C(C=C4)[N+](=O)[O-]",
"target_type": "MIC",
"target_relation": "<",
"target_value": 1,
"target_units": "mmol/l",
"bacteria": "methicillin-susceptible S. aureus" },
{
"compound_id": "5a",
"smiles": "CCN1C=C(C(=O)C2=CC(=C(C=C21)N3CCN(CC3)
C4=NC=CC(=N4)N)F)C(=O)O",
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"target_type": "pMIC",
"target_relation": "<",
"target_value": 2,
"target_units": "µg/mL",
"bacteria": "Escherichia coli" }]

Oxazolidinone antibiotics

system_prompt = "You are a domain-specific chemical information extraction assistant. You
specialize in chemistry of small molecules. In particular, your area is antibiotics and their properties."

user_prompt = "Your task is to extract every mention of MIC or pMIC values for oxazolidinone
antibiotics from a scientific article and output a JSON array of objects only (no markdown, no
commentary, no extra text).

Fields for each object:

• ‘compound_id‘ (string): ID of a molecule within the article, as cited in the text, e.g. ‘"5a"‘,
‘"Compound 3"‘.

• ‘smiles‘ (string): full SMILES representation of an oxazolidinone antibiotic.
• ‘target_type‘ (string): type of measurement, either ‘"MIC"‘ or ‘"pMIC"‘, exactly as stated.
• ‘target_relation‘ (string): one of ‘"="‘, ‘"<"‘, or ‘">"‘. If no relation symbol is shown, use

‘"="‘.
• ‘target_value‘ (number): the numeric value of MIC/pMIC (without quotes).
• ‘target_units‘ (string): e.g. ‘"µg/mL"‘, ‘"mg/L"‘, etc.
• ‘bacteria‘ (string): the organism against which MIC/pMIC was measured, named exactly

as in the text. Record full names, abbreviations, or any related taxonomic identifiers of
bacteria.

Extraction rules:

1. Extract each MIC or pMIC mention as a separate object.
2. Do not filter, group, summarize, or deduplicate. Include repeated mentions and duplicates if

they occur in different contexts.
3. If a range is given (e.g., “2–8 µg/mL”), leave it as a range.
4. If a molecule is fully depicted in a figure, write it as a SMILES string. If a molecule is

depicted as a scaffold and residues separately in different places of an article, connect them
by compound ID into one molecule and write it as a single SMILES string.

5. If multiple measurement types appear for the same compound and bacterium (e.g., MIC50,
MIC90), extract each separately.

6. If you cannot find a required field for an object, re-check the context; if it’s still absent, set
that field’s value to ‘"NOT_DETECTED"‘.

7. The example of JSON below shows only two extracted samples, however your output should
contain all MIC or pMIC measurements of oxazolidinone antibiotics present in the article.

Output must be a single JSON array, like:
[ {
"compound_id": "12b",
"smiles": "CC1=CC=C(C=C1)C(=O)Nc2ccc(cc2)C
(=O)N3CCCCC3=O",
"target_type": "MIC",
"target_relation": "<",
"target_value": 1,
"target_units": "mmol/l",
"bacteria": "methicillin-susceptible S. aureus" },
{
"compound_id": "5a",
"smiles": "CC1=CC=CC=C1N2C=NC3=CC=CC=C23",
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"target_type": "MIC",
"target_relation": "=",
"target_value": 2,
"target_units": "µg/mL",
"bacteria": "Escherichia coli" } ]"

Cocrystals

system_prompt = "You are a domain-specific chemical information extraction assistant. You
specialize in the chemistry of cocrystals and their properties. Your area of expertise includes
analyzing cocrystals, their components, and photostability changes."

user_prompt = "Your task is to extract every mention of photostability for co-crystals from a
scientific article, and output a JSON array of objects only(no markdown, no commentary, no extra
text).

Fields for each object:

• ‘name_cocrystal‘ (string): name of cocrystal, as cited in the text, e.g. ‘"CAR-HCT"‘,
‘"DMZ-SAC"‘

• ‘ratio_cocrystal‘ (string): molar ratio of the cocrystal components, e.g., ‘"2:1", ‘"0.5:1".

• ‘name_drug‘ (string): name of the drug in the cocrystal as cited in the text, e.g. ‘"Carvedilol"‘,
‘"Epalrestat"‘.

• ‘SMILES_drug‘ (string): full SMILES representation of drug.

• ‘name_coformer‘ (string): name of the coformer in the cocrystal as cited in the text, e.g.
‘"Saccharin"‘, ‘"Oxalic acid"‘.

• ‘SMILES_coformer‘ (string): full SMILES representation of coformer.

• ‘photostability_change‘ (string): one of ‘"decrease"‘, ‘"does not change"‘, or ‘"increase"‘.
Trend of photostability for both the cocrystal and the drug, indicating how their stability
changes over time.

Extraction rules:

1. Extract each photostability mention as a separate object.

2. Do not filter, group, summarize, or deduplicate. Include repeated mentions and duplicates if
they occur in different contexts.

3. If multiple polymorphic forms (e.g., CBZ-SAC Form I, CBZ-SAC Form II) appear for the
same drug and coformer in the same ratio, extract each separately.

4. If you cannot find a required field for an object, re-check the context; if it’s still absent, set
that field’s value to ‘"NOT_DETECTED"‘.

5. The example of JSON below shows only two extracted samples, however your output should
contain all mentions of photostability for co-crystals present in the article.

Output must be a single JSON array, like:
[ {
"name_cocrystal": "CAR-HCT",
"ratio_cocrystal": "2:1",
"name_drug": "Carvedilol",
"SMILES_drug": "C1=CC(=C(C=C1O)O)C=CC2=CC(=CC(=C2)O)O",
"name_coformer": "Saccharin",
"SMILES_coformer": "O=C(O)CC(O)C(=O)O",
"photostability_change": "decrease" }, {
"name_cocrystal": "DMZ-SAC",
"ratio_cocrystal": "0.5:1",
"name_drug": "Epalrestat",
"SMILES_drug": "C1=CC(=C(C=C1O)O)C=CC2=CC(=CC(=C2)O)O",
"name_coformer": "Oxalic acid",
"SMILES_coformer": "C(=C/C(=O)O)

28



C(=O)O",
"photostability_change": "does not change" } ]"

Complexes

system_prompt = "You are a domain-specific chemical information extraction assistant. You
specialize in the chemistry of organometallic complexes and their properties."

user_prompt = "Your task is to extract every mention of organometallic complexes and chelate lig-
ands from scientific article, and output a JSON array of objects only (no markdown, no commentary,
no extra text).

Fields for each object:

• ‘compound_id‘ (string): ID of a complex within the article, as cited in the text, e.g. ‘"L3"‘,
‘"A31"‘.

• ‘compound_name‘ (string): abbreviated or full name of the complex or ligand as cited in the
text, e.g. ‘"DOTA"‘, ‘"tebroxime"‘.

• ‘SMILES‘ (string): full SMILES representation of ligand environment or sin-
gle ligand. If a complete organometallic complex is shown, extract all ligand
structures without mentioning the metal (e.g., "COc1cc(C=CC([O-])CC([O-])CC([O-
])C=Cc2ccc(O)c(OC)c2)ccc1O. [C-]#[O+].[C-]#[O+].[C-]#[O+].[OH-]"). For a chelate
ligand without a complete organometallic complex, extract only that ligand’s structure (e.g.,
’O=C(O)CN(CCN(CC(CC(=O)O)CC(=O)O)CCN(CC(=O)O)CC(=O)O’).

• ‘SMILES_type‘ (string): one of ‘"ligand"‘ or ‘"environment"‘. "environment" refers to the
entire organometallic complex, including one or more ligands and a metal atom.

• ‘target_value‘ (number): the numeric value of logarithms of thermodynamic stability con-
stants lgK or logK (without quotes).

Extraction rules:

1. Extract each mention of ‘target_value‘ (lgK or logK) as a separate object.

2. Do not filter, group, summarize, or deduplicate. Include repeated mentions and duplicates if
they occur in different contexts.

3. If a molecule is fully depicted in a figure, write it as a SMILES string. If a molecule is
depicted as a scaffold and residues separately in different places of an article, connect them
by compound ID or name into one molecule and write it a single SMILES string.

4. If multiple thermodynamic stability constants appear for the same complex or ligand extract
each separately.

5. Extract only structures that comply with these rules:

• The complexes must contain Ga as the metal or the ligands must belong to complexes
of that metal.

• The complete molecular structure shall be given without errors in it or identifiers.
• Compounds must contain more than one carbon (exclude CO, Me).
• Compounds must not contain polymeric structures, attached biomolecules or carbo-

ranes, undefined radicals, undeciphered designations (e.g., amino acids) beyond the
simplest abbreviations (i.e., Me, Et, Pr, Bu, Ph, Ac), names of radicals instead of their
structure, or incomplete indication of the ligand structure (e.g., L = P, N).

• Compounds must not be reaction intermediate or precursor.

6. If you cannot find a required field for an object, re-check the context; if it’s still absent, set
that field’s value to ‘"NOT_DETECTED"‘.

7. The example of JSON below shows only two extracted samples, however your output should
contain all mentions of organometallic complexes and / or chelate ligands present in the
article.

Output must be a single JSON array, like:
[ {
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"compound_id": "L3",
"compound_name": "DOTA",
"SMILES": "O=C(O)CN(CCN(CC(=O)O)CC(=O)O)CC(=O)O",
"SMILES_type": "ligand",
"target": 21.3 }, {
"compound_id": "A31",
"compound_name": "tebroxime",
"SMILES": "[C-]#[N+]CC(C)(C)OC.[C-]#[N+]CC(C)(C)OC.[C-]#[N+]CC(C)(C)OC.[C-
]#[N+]CC(C)(C)OC.[C-]#[N+]CC(C)(C)OC.[C-]#[N+]CC(C)(C)OC",
"SMILES_type": "environment",
"target": 17.9 } ]"

Nanozymes

system_prompt = "You are a domain-specific chemical information extraction assistant. You
specialize in nanozymes."

user_prompt = "Your task is to extract every mention of experiments for ALL nanozymes from a
scientific article and output a JSON array of objects only (no markdown, no commentary, no extra
text).

Fields for each object:

• ‘formula‘ (string): the chemical formula of the nanozyme, e.g. "Fe3O4", "CuO", etc.
• ‘activity‘ (string): catalytic activity type, typically "peroxidase", "oxidase", "catalase",

"laccase", or other.
• ‘syngony‘ (string): the crystal unit of the nanozyme, e.g. "cubic", "hexagonal", "tetragonal",

"monoclinic", "orthorhombic", "trigonal", "amorphous", "triclinic".
• ‘length‘ (number): the length of the nanozyme particle in nanometers.
• ‘width‘ (number): the width of the nanozyme particle in nanometers.
• ‘depth‘ (number): the depth of the nanozyme particle in nanometers.
• ‘surface‘ (string): the molecule on the surface of the nanozyme, e.g., "naked", "poly(ethylene

oxide)", "poly(N-Vinylpyrrolidone)", "Tetrakis(4-carboxyphenyl)porphine", or other.
• ‘km_value‘ (number): the Michaelis constant value for the nanozyme.
• ‘km_unit‘ (string): the unit for the Michaelis constant, e.g., "mM", etc.
• ‘vmax_value‘ (number): the molar maximum reaction rate value.
• ‘vmax_unit‘ (string): the unit for the maximum reaction rate, e.g., "µmol/min", "mol/min",

etc.
• ‘reaction_type‘ (string): the reaction type involving the substrate and co-substrate, e.g.,

"TMB + H2O2", "H2O2 + TMB", "TMB", "ABTS + H2O2", "H2O2", "OPD + H2O2",
"H2O2 + GSH", or other.

• ‘c_min‘ (number): the minimum substrate concentration in catalytic assays in mM.
• ‘c_max‘ (number): the maximum substrate concentration in catalytic assays in mM.
• ‘c_const‘ (number): the constant co-substrate concentration used during assays.
• ‘c_const_unit‘ (string): the unit of measurement for co-substrate concentration.
• ‘ccat_value‘ (number): the concentration of the catalyst used in assays.
• ‘ccat_unit‘ (string): the unit of measurement for catalyst concentration.
• ‘ph‘ (number): the pH level at which experiments were conducted.
• ‘temperature‘ (number): the temperature in Celsius during the study.

Extraction rules:

1. Extract each nanozyme mention as a separate object.
2. Do not filter, group, summarize, or deduplicate. Include repeated mentions and duplicates if

they occur in different contexts.
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3. If you cannot find a required field for an object, re-check the context; if it’s still absent, set
that field’s value to ‘"NOT_DETECTED"‘.

4. The example of JSON below shows only two extracted samples, however your output should
contain all nanozymes present in the article.

Output must be a single JSON array, like:
[ {
"formula": "Fe3O4",
"activity": "peroxidase",
"syngony": "cubic",
"length": 10,
"width": 10,
"depth": 2.5,
"surface": "naked",
"km_value": 0.2,
"km_unit": "mM",
"vmax_value": 2.5,
"vmax_unit": "µmol/min",
"reaction_type": "TMB + H2O2",
"c_min": 0.01,
"c_max": 1.0,
"c_const": 1.0,
"c_const_unit": "mM",
"ccat_value": 0.05,
"ccat_unit": "mg/mL",
"ph": 4.0,
"temperature": 25 }, {
"formula": "CeO2",
"activity": "oxidase",
"syngony": "cubic",
"length": 5,
"width": 5,
"depth": 200,
"surface": "poly(ethylene oxide)",
"km_value": 54.05,
"km_unit": "mM",
"vmax_value": 7.88,
"vmax_unit": "10-8 M s-1",
"reaction_type": "TMB",
"c_min": 0.02,
"c_max": 0.8,
"c_const": 800,
"c_const_unit": "µM",
"ccat_value": 0.02,
"ccat_unit": "mg/mL",
"ph": 5.5,
"temperature": 37 } ]"

Nanomag

system_promt = "You are a domain-specific chemical information extraction assistant. You spe-
cialize in nanomaterials characterization, specifically in magnetic nanoparticles and their physical
properties."

user_prompt = "Your task is to extract every mention of magnetic properties for ALL nanoparticles
from a scientific article and output a JSON array of objects only (no markdown, no commentary, no
extra text).

Fields for each object:

• ‘name‘ (string): material name (e.g., BFO, cobalt irin oxide and bismuth ferrite etc.).
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• ‘np_core‘ (string): composition of material core (e.g., Gd2O3, Fe1Fe2O4 etc.).

• ‘np_shell‘ (string): composition of material shell (e.g., chitosan, Au1 etc.).

• ‘core_shell_formula‘ (string): sometimes nanoparticle composition is represented as one
formula containing both core and shell parts; core and shell materials are typically separated
by a delimiter such as -, /, @, or |, e.g. Cr2O3-Co.

• ‘np_shell_2‘ (string): first additional shell layer if present (e.g., PEG-5000, Curcumin etc.).

• ‘np_hydro_size‘ (number): size of nanoparticles in solution obtained by dynamic light
scattering (DLS) or similar, in nanometers (nm).

• ‘xrd_scherrer_size‘ (number): crystal size calculated from x-ray diffraction, usually repre-
sented in figures, in nanometers (nm).

• ‘emic_size‘ (number): size measured by electron microscopy, usually represented in figures,
in nanometers (nm).

• ‘space_group_core‘ (string): space groups of core material (e.g., fd-3m, p4/mmm, etc.).

• ‘space_group_shell‘ (string): space groups of shell material (e.g., fd-3m, p4/mmm, etc.).

• ‘squid_sat_mag‘ (number): saturation magnetization (Ms, Bs) in emu/g.

• ‘exchange_bias_shift_Oe‘ (number): exchange bias (Heb, exchange bias effect) in Oersted
(Oe).

• ‘vertical_loop_shift_M_vsl_emu_g‘ (number): vertical loop shift (vertical bias) in emu/g.

• ‘hc_kOe‘ (number): coercivity (Hc, coercive force) in Oersted (Oe).

• ‘squid_h_max‘ (number): maximum magnetic field in kOe.

• ‘zfc_h_meas‘ (number): measurement field for ZFC in kOe.

• ‘instrument‘ (string): experimental instrument (e.g., Quantum Design 7 T SQUID magne-
tometer, Seifert XRD 3000P, etc.).

• ‘fc_field_T‘ (number): FC field in Tesla (T).

• ‘squid_temperature‘ (number): squid temperature in Kelvin.

• ‘coercivity‘ (number): coercivity (Hc) in kOe.

• ‘htherm_sar‘ (number): specific absorption rate (SAR) in W/g.

• ‘mri_r1‘ (number): MRI relaxation rate r1 in mM-1·s-1.

• ‘mri_r2‘ (number): MRI relaxation rates r2 in mM-1·s-1.

Extraction rules:

1. Extract each nanoparticle mention as a separate object.

2. Do not filter, group, summarize, or deduplicate. Include repeated mentions and duplicates if
they occur in different contexts.

3. If you cannot find a required field for an object, re-check the context; if it’s still absent, set
that field’s value to ‘"NOT_DETECTED"‘.

4. If the original unit of coercivity or exchange bias is different, it must be converted into Oe:
1T = 1000 Oe, 1 mT = 10000 Oe, 1kOe = 1000 Oe.

5. Do not remove or alter the negative (-) or positive (+) signs for exchange bias and vertical
loop shift. If the article does not explicitly state the sign, assume it is (+) by default.

6. The example of JSON below shows only one extracted sample, however your output should
contain entries for all magnetic nanoparticles present in the article.

Output must be a single JSON array, like:
[ {
"name": "Bismuth Ferrite",
"np_core": "BiFeO3",
"np_shell": "chitosan",
"core_shell_formula": "BiFeO3-chitosan",
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"np_shell_2": "PEG-5000",
"np_hydro_size": 120,
"xrd_scherrer_size": 45,
"emic_size": 50,
"space_group_core": "R3c",
"space_group_shell": "P2_1",
"squid_sat_mag": 40.5,
"squid_rem_mag": 22.1,
"exchange_bias_shift_Oe": 180,
"vertical_loop_shift_M_vsl_emu_g": 5.6,
"hc_kOe": 3.2,
"squid_h_max": 5.0,
"zfc_h_meas": 1.5,
"instrument": "Quantum Design 7 T SQUID magnetometer",
"fc_field_T": 0.1,
"squid_temperature": 300,
"coercivity": 3.5,
"htherm_sar": 1.2,
"mri_r1": 4.5,
"mri_r2": 5.3, } ]"

Synergy

system_prompt = "You are a domain-specific chemical information extraction assistant. You
specialize in antimicrobial drug nanoparticle synergy."

user_prompt = "Your task is to extract every mention of nanoparticle properties, drug details, and
their synergistic antibacterial effects from a scientific article, and output a JSON array of objects
only (no markdown, no commentary, no extra text).

Fields for each object:

• ‘NP‘ (string): nanoparticle name as cited in the text, e.g. , "Ag", "Au".

• ‘bacteria‘ (string): bacterial strain tested, e.g., "Escherichia coli".

• ‘strain‘ (string): specific strain identifier for the bacteria tested as cited in the text, e.g.,
"ATCC 25922", "MTCC 443".

• ‘NP_synthesis‘ (string): method by which the nanoparticles were synthesized, e.g., "chemical
synthesis", "hydrothermal synthesis".

• ‘drug‘ (string): name of the conventional antibiotic or other antimicrobial drug used in
combination with the nanoparticles, e.g., "Ampicillin", "Ciprofloxacin".

• ‘drug_dose_µg_disk‘ (number): specific dosage or concentration of the drug applied, pri-
marily used for methods like disc diffusion assays, typically measured in micrograms per
disk.

• ‘NP_concentration_µg_ml‘ (number): concentration of the nanoparticle used in the antibac-
terial assay, e.g., for MIC, ZOI, or viability studies, typically measured in micrograms per
milliliter.

• ‘NP_size_min_nm‘ (number): the smallest recorded size of the nanoparticle particles as
determined by characterization techniques, measured in nanometers.

• ‘NP_size_max_nm‘ (number): the largest recorded size of the nanoparticle particles as
determined by characterization techniques, measured in nanometers.

• ‘NP_size_avg_nm‘ (number): the average size of the nanoparticle particles, typically based
on measurements from techniques like TEM or DLS, measured in nanometers.

• ‘shape‘ (string): observed morphology or physical shape of the nanoparticle particles, e.g.,
"spherical", "rod-shaped", "cubic", "irregular", "nanosheets".

• ‘method‘ (string): specific experimental technique employed to assess the antibacterial
efficacy or interaction, e.g., "MIC", "disc_diffusion", "well_diffusion", "broth microdilution",
"time-kill assay".
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• ‘ZOI_drug_mm_or_MIC_µg_m‘ (number): quantitative measure of antibacterial activity for
the drug alone. This will be the diameter of the ZOI in millimeters for disc diffusion assays,
or the MIC value in micrograms per milliliter for methods like broth microdilution.

• ‘error_ZOI_drug_mm_or_MIC_µg_ml‘ (number): uncertainty or variability associated with
the antibacterial activity measurement for the drug alone, often represented as the standard
deviation.

• ‘ZOI_NP_mm_or_MIC_np_µg_ml‘ (number): The quantitative measure of antibacterial
activity for the nanoparticle alone. This will be the ZOI diameter in millimeters or the MIC
value in micrograms per milliliter.

• ‘error_ZOI_NP_mm_or_MIC_np_µg_ml‘ (number): uncertainty or variability associated
with the antibacterial activity measurement for the nanoparticle alone.

• ‘ZOI_drug_NP_mm_or_MIC_drug_NP_µg_ml‘ (number): quantitative measure of antibac-
terial activity for the combination of the drug and the nanoparticle. This will be the ZOI
diameter in millimeters or the MIC value in micrograms per milliliter.

• ‘error_ZOI_drug_NP_mm_or_MIC_drug_NP_µg_ml‘ (number): uncertainty or variability
associated with the antibacterial activity measurement for the drug + nanoparticle combina-
tion.

• ‘fold_increase_in_antibacterial_activity‘ (number): numerical value indicating how much
more effective the combination of the drug and nanoparticle is compared to the most effective
component used individually.

• ‘zeta_potential_mV‘ (number): electrokinetic potential of the nanoparticle surface, measured
in millivolts. It is an indicator of the surface charge and stability of the nanoparticles in
suspension.

• ‘MDR‘ (string): indicator of whether the bacterial strain tested exhibits multidrug resistance,
e.g., "Yes", "No", "Resistant", "Susceptible".

• ‘FIC‘ (number): Fractional Inhibitory Concentration index value, calculated to assess the
interaction between the drug and nanoparticle. Values help determine if the interaction is
synergistic (<0.5), additive (0.5-1.0), indifferent (1.0-4.0), or antagonistic (>4.0).

• ‘effect‘ (string): qualitative description of the interaction between the drug and nanoparticle
based on the FIC index, e.g., "synergistic", "additive", "antagonistic", "indifferent".

• ‘time_hr‘ (number): duration of exposure of the bacterial cells to the antibacterial agents
during the experiment, specified in hours.

• ‘coating_with_antimicrobial_peptide_polymers‘ (string): indicates whether the nanoparticles
were modified with a coating of antimicrobial peptides or polymers to enhance their activity
or targeting, e.g., "yes", "no", specifies the coating material.

• ‘combined_MIC‘ (number): Minimum Inhibitory Concentration observed for the combina-
tion of an antimicrobial peptide / polymer coating and the nanoparticle, in micrograms per
milliliter if applicable.

• ‘peptide_MIC‘ (number): Minimum Inhibitory Concentration of the antimicrobial peptide
Used in isolation, in micrograms per milliliter if applicable.

• ‘viability_%‘ (number): percentage of bacterial cells that survive or remain viable after
being exposed to the nanoparticle, drug, or combination for a specific time period.

• ‘viability_error‘ (number): associated error or standard deviation for the bacterial viability
percentage measurement.

Extraction rules:

1. Extract each nanoparticles mention as a separate object.

2. Do not filter, group, summarize, or deduplicate. Include repeated mentions and duplicates if
they occur in different contexts.

3. If you cannot find a required field for an object, re-check the context; if it’s still absent, set
that field’s value to ‘"NOT_DETECTED"‘.
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4. The example of JSON below shows only two extracted samples, however your output should
contain all nanoparticles present in the article.

Output must be a single JSON array, like:
[ {
"NP": "Ag",
"bacteria": "Pseudomonas aeruginosa",
"strain": "ATCC 27853",
"NP_synthesis": "Green synthesis using Gloeophyllum striatum",
"drug": "Ampicillin",
"drug_dose_µg_disk": 16.0,
"NP_concentration_µg_ml": 32.0,
"NP_size_min_nm": 10.0,
"NP_size_ma_nm": 40.0,
"NP_size_avg_nm": 20.0,
"shape": "spherical", "method": "MIC",
"ZOI_drug_mm_or_MIC_µg_ml": 16.0,
"error_ZOI_drug_mm_or_MIC_µg_ml": 1.40,
"ZOI_NP_mm_or_MIC_np_µg_ml": 32.0,
"error_ZOI_NP_mm_or_MIC_np_µg_ml": 2.43,
"ZOI_drug_NP_mm_or_MIC_drug_NP_µg_ml": 8.0,
"error_ZOI_drug_NP_mm_or_MIC_drug_NP_µg_ml": 1.50,
"fold_increase_in_antibacterial_activity": 2.0,
"zeta_potential_mV": -34.0,
"MDR": "R",
"FIC": 0.5,
"effect": "synergistic",
"time_hr": 24.0,
"coating_with_antimicrobial_peptide_polymers": "AP Lysozyme hen egg-white",
"combined_MIC": 12,
"peptide_MIC": 400,
"viability_%": 87.0,
"viability_error": 2.40 }, {
"NP": "Au",
"bacteria": "Escherichia coli",
"strain": "BJ915",
"NP_synthesis": "purchased from Jinke Chemical Co",
"drug": "Colistin",
"drug_dose_µg_disk": 10.0,
"NP_concentration_µg_ml": 25.0,
"NP_size_min_nm": 2.1,
"NP_size_max_nm": 2.9,
"NP_size_avg_nm": 2.5,
"shape": "cubic",
"method": "MBC",
"ZOI_drug_mm_or_MIC_µg_ml": 4.0,
"error_ZOI_drug_mm_or_MIC_µg_ml": 0.30,
"ZOI_NP_mm_or_MIC_np_µg_ml": 12.50,
"error_ZOI_NP_mm_or_MIC_np_µg_ml": 0.87,
"ZOI_drug_NP_mm_or_MIC_drug_NP_µg_ml": 6.25,
"error_ZOI_drug_NP_mm_or_MIC_drug_NP_µg_ml": 0.27,
"fold_increase_in_antibacterial_activity": 1.16,
"zeta_potential_mV": 14.0,
"MDR": "R",
"FIC": 0.75,
"effect": "P",
"time_hr": 24.0,
"coating_with_antimicrobial_peptide_polymers": "4,6-diamino-2-pyrimidinethiol + 1,1-
dimethylbiguanide",
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"combined_MIC": 4.0,
"peptide_MIC": 13.20,
"viability_%": 23.0,
"viability_error": 2.25 } ]"

Seltox

system_prompt = @You are a domain-specific chemical information extraction assistant. You
specialize in antimicrobial nanoparticles."

user_prompt = "Your task is to extract information for ALL antimicrobial nanoparticles from a
scientific article and output a JSON array of objects only (no markdown, no commentary, no extra
text).

Fields for each object:

• ‘np‘ (string): Nanoparticle name (e.g., "Ag", "Au", "ZnO").

• ‘coating‘ (string): Surface coating/modification ("1" for coating, "0" for none).

• ‘bacteria‘ (string): Bacterial strain tested (e.g., "Escherichia coli", "Staphylococcus aureus").

• ‘mdr‘ (number): Multidrug-resistant strain indicator, one of 1 or 0 (1 for multidrug-resistant,
0 for not multidrug-resistant).

• ‘strain‘ (string): Specific strain identifier (e.g., "ATCC 25922").

• ‘np_synthesis‘ (string): Synthesis method (e.g., "green_synthesis", "chemical_synthesis", or
specific details like "Green synthesis using Pimpinella anisum").

• ‘method‘ (string): Assay type (e.g., "MIC", "ZOI", "MBC", "MBEC").

• ‘mic_np_µg_ml‘ (number): Minimum Inhibitory Concentration (MIC) in µg/mL.

• ‘concentration‘ (number): Concentration for Zone of Inhibition (ZOI) in µg/mL.

• ‘zoi_np_mm‘ (number): Zone of Inhibition in mm.

• ‘np_size_min_nm‘ (number): Minimum nanoparticle size in nm.

• ‘np_size_max_nm‘ (number): Maximum nanoparticle size in nm.

• ‘np_size_avg_nm‘ (number): Average nanoparticle size in nm.

• ‘shape‘ (string): Morphology (e.g., "spherical", "triangular").

• ‘time_set_hours‘ (number): Experiment duration in hours.

• ‘zeta_potential_mV‘ (number): Surface charge in mV.

• ‘solvent_for_extract‘ (string): Solvent used in green synthesis (e.g., "water", "ethanol").

• ‘temperature_for_extract_C‘ (number): Temperature during extract preparation in °C.

• ‘duration_preparing_extract_min‘ (number): Time to prepare extract in minutes.

• ‘precursor_of_np‘ (string): Chemical precursor (e.g., "AgNO3").

• ‘concentration_of_precursor_mM‘ (number): Precursor concentration in mM.

• ‘hydrodynamic_diameter_nm‘ (number): Hydrodynamic size in nm.

• ‘ph_during_synthesis‘ (number): pH of synthesis solution.

Extraction rules:

1. Extract solvents and precursors as strings without parsing into molecular components.

2. Extract each nanoparticle mention as a separate object.

3. Do not filter, group, summarize, or deduplicate. Include repeated mentions and duplicates if
they occur in different contexts.

4. If you cannot find a required field for an object, re-check the context; if it’s still absent, set
that field’s value to ‘"NOT_DETECTED"‘.

5. The example of JSON below shows only two extracted samples, however your output should
contain all nanoparticles present in the article.
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Output must be a single JSON array, like:
[ {
"np": "Ag",
"coating": "0",
"bacteria": "Enterococcus faecalis",
"mdr": 0,
"strain": "ATCC 29212",
"np_synthesis": "Green synthesis using Ixora brachypoda",
"method": "MIC",
"mic_np_µg_ml": 32.0,
"concentration": 10,
"zoi_np_mm": 15,
"np_size_min_nm": 10.0,
"np_size_max_nm": 40.0,
"np_size_avg_nm": 20.0,
"shape": "spherical",
"time_set_hours": 24,
"zeta_potential_mV": -27.9,
"solvent_for_extract": "water",
"temperature_for_extract_C": 21.0,
"duration_preparing_extract_min": 1440,
"precursor_of_np": "AgNO3",
"concentration_of_precursor_mM": 1.0,
"hydrodynamic_diameter_nm": 55,
"ph_during_synthesis": 8.5 }, {
"np": "ZnO",
"coating": "0",
"bacteria": "Klebsiella pneumoniae",
"mdr": 1,
"strain": "K-36",
"np_synthesis": "Green synthesis using Phyllanthus emblica",
"method": "MIC",
"mic_np_µg_ml": 6.25,
"concentration": 64,
"zoi_np_mm": 12,
"np_size_min_nm": 20.0,
"np_size_max_nm": 20.0,
"np_size_avg_nm": 20.0,
"shape": "spherical",
"time_set_hours": 24.0,
"zeta_potential_mV": -32,
"solvent_for_extract": "methanol",
"temperature_for_extract_C": 60,
"duration_preparing_extract_min": 60,
"precursor_of_np": "Zn(NO3).6.H2O",
"concentration_of_precursor_mM": 10,
"hydrodynamic_diameter_nm": 30,
"ph_during_synthesis": 7.0 } ]"

Cytotoxicity

system_prompt = "You are a domain-specific chemical information extraction assistant. You
specialize in cytotoxic nanoparticles."

user_prompt = "Your task is to extract information for ALL cytotoxic nanoparticles from a scientific
article and output a JSON array of objects only (no markdown, no commentary, no extra text).

Fields for each object:

• ‘material‘ (string): Composition of the nanoparticle/material tested (e.g., "SiO2", "Ag").

• ‘shape‘ (string): Physical shape of the particle (e.g., "Sphere", "Rod").
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• ‘coat_functional_group‘ (string): Surface coating or functionalization (e.g., "CTAB",
"PEG").

• ‘synthesis_method‘ (string): Synthesis method (e.g., "Precipitation", "Commercial").
• ‘surface_charge‘ (string): one of ‘"Negative"‘, ‘"Neutral"‘, or ‘"Positive"‘. Reported surface

charge.
• ‘core_nm‘ (number): Primary particle size in nm.
• ‘size_in_medium_nm‘ (number): Hydrodynamic size in biological medium in nm.
• ‘hydrodynamic_nm‘ (number): Size in solution including coatings in nm.
• ‘potential_mv‘ (number): Surface charge in solution in mV.
• ‘zeta_in_medium_mv‘ (number): Zeta potential in medium in mV.
• ‘no_of_cells_cells_well‘ (number): Cell density per well in the assay.
• ‘human_animal‘ (string): one of "A" for Animal or "H" for Human. Origin of cells.
• ‘cell_source‘ (string): Species/organism (e.g., "Rat", "Human").
• ‘cell_tissue‘ (string): Tissue origin of the cell line (e.g., "Adrenal Gland", "Lung").
• ‘cell_morphology‘ (string): Cell shape (e.g., "Irregular", "Epithelial").
• ‘cell_age‘ (string): Developmental stage of cells (e.g., "Adult", "Embryonic").
• ‘time_hr‘ (number): Exposure duration in hours.
• ‘concentration‘ (number): Tested concentration of the material (unit-specific, e.g., µg/mL).
• ‘test‘ (string): Cytotoxicity assay type (e.g., "MTT", "LDH").
• ‘test_indicator‘ (string): Reagent measured (e.g., "TetrazoliumSalt" for MTT).
• ‘viability_%‘ (number): Cell viability percentage relative to control.

Extraction rules:

1. If multiple values are reported (e.g., sizes), prioritize TEM-measured sizes for core_nm. For
concentration, note unit context from article if ambiguous.

2. Error Handling: Prioritize table data over text; note assumptions for ambiguous data.
3. Viability Notes: For viability_percent, values >100% may indicate proliferation stimulation;

extract as reported.
4. Extract each nanoparticle mention as a separate object.
5. Do not filter, group, summarize, or deduplicate. Include repeated mentions and duplicates if

they occur in different contexts.
6. If you cannot find a required field for an object, re-check the context; if it’s still absent, set

that field’s value to ‘"NOT_DETECTED"‘.
7. The example of JSON below shows only two extracted samples, however your output should

contain all nanoparticles present in the article.

Output must be a single JSON array, like:
[ {
"material": "SiO2",
"shape": "Rod",
"coat_functional_group": "PEG",
"synthesis_method": "Precipitation",
"surface_charge": "Negative",
"core_nm": 20.0,
"size_in_medium_nm": 25.0,
"hydrodynamic_nm": 30.0,
"potential_mv": -15.0,
"zeta_in_medium_mv": -10.0,
"no_of_cells_cells_well": 5000.0,
"human_animal": "H",
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"cell_source": "Human",
"cell_tissue": "Lung",
"cell_morphology": "Epithelial",
"cell_age": "Adult",
"time_hr": 24.0,
"concentration": 100.0,
"test": "MTT",
"test_indicator": "TetrazoliumSalt",
"viability_%": 85.0 }, {
"material": "Fe3O4",
"shape": "Sphere",
"coat_functional_group": "Dextran",
"synthesis_method": "Thermal Decomposition",
"surface_charge": "Positive",
"core_nm": 10.0,
"size_in_medium_nm": 15.0,
"hydrodynamic_nm": 18.0,
"potential_mv": -30.0,
"zeta_in_medium_mv": -15.0,
"no_of_cells_cells_well": 10000.0,
"human_animal": "A",
"cell_source": "Dog",
"cell_tissue": "Kidney",
"cell_morphology": "Epithelial",
"cell_age": "Adult",
"time_hr": 24.0,
"concentration": 300.0,
"test": "MTT",
"test_indicator": "TetrazoliumSalt",
"viability_%": 115.09 } ]"
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly describe the release of ChemX, a cu-
rated benchmark of 10 datasets for automated information extraction in chemistry, and the
evaluation of both mono- and multi-agent LLM-based systems.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Section 6 discusses multiple limitations, including limitations of dataset vali-
dation system, low numeric extraction accuracy, challenges in multimodal image processing,
lack of standardization in nanomaterials, and the difficulty of chemical structure recognition.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: In this article, we provide full documentation for each dataset, describe the
methodology of the extraction experiments, and also include the code for conducting these
experiments in Sections 3 and 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in the supplemental
material?

Answer: [Yes]

Justification: Datasets and code are available via HuggingFace and GitHub with accompany-
ing documentation.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Sections 5 outline LLM setup, prompt structure, document formats, and
evaluation procedures.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Section 5 reports mean values and standard deviation for precision and F1
scores across nanomaterial datasets and different extraction approaches.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Experiments involving large language models such as GPT-4o were executed
via the OpenAI API. All other computations, including preprocessing, single-agent pipeline
execution, and evaluation metrics, were performed locally on a laptop with the following
specifications: Intel Core i7-11800H (8 cores, 2.3–4.6 GHz), 16 GB RAM, and a 512 GB
SSD. The GPU was not used for local execution.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: All content was extracted from publicly accessible scientific literature or
subscription-based academic access with proper institutional rights. No sensitive data or
human participants were involved.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
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Justification: Section 6.4 discusses the risks of incorrect extraction, hallucination in chemical
contexts, and implications for reproducibility and automation in cheminformatics.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: No high-risk pretrained models or internet-scraped data were released.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The dataset is manually extracted from open-access and subscription-based
articles accessed under institutional license, and all external tools and models are properly
cited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
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• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: All 10 datasets are fully documented with schemas, annotation examples, and
feature descriptions in the supplementary material and HuggingFace page.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No human participants or crowdworkers were involved in data collection or
validation.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
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Justification: No human subjects were involved in the study. All data were derived from
published scientific literature and manually curated by the authors.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: The paper explicitly discusses GPT-4o use for both baseline model and single-
agent pipelines in Section 5.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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