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ABSTRACT

Despite the existing evolution of Multimodal Large Language Models (MLLMs),
a non-neglectable limitation remains in their struggle with visual text grounding,
especially in text-rich images of documents. Document images, such as scanned
forms and infographics, highlight critical challenges due to their complex lay-
outs and textual content. However, current benchmarks do not fully address these
challenges, as they mostly focus on visual grounding on natural images, rather
than text-rich document images. Thus, to bridge this gap, we introduce TRIG, a
novel task with a newly designed instruction dataset for benchmarking and im-
proving the Text-Rich Image Grounding capabilities of MLLMs in document
question-answering. Specifically, we propose an OCR-LLM-human interaction
pipeline to create 800 manually annotated question-answer pairs as a benchmark
TRIG-Bench based on four diverse datasets. A comprehensive evaluation of var-
ious MLLMs on our proposed benchmark exposes substantial limitations in their
grounding capability on text-rich images.

1 INTRODUCTION

Figure 1: An example from Info-
grahicsVQA. Question: What is the
resource and expertise level needed for Pin-
terest? Answer: high. The LLM is expected
to generate the answer together with the cor-
responding grounded bounding boxes that
can support its answer, which requires deeper
spatial understanding and reasoning, and
sometimes instruction-following abilities.

Despite the remarkable advancements in LLMs
(Chang et al., 2024; Hadi et al., 2023; Xu et al.,
2024; Thirunavukarasu et al., 2023) and MLLMs
(Zhang et al., 2024a; Ghosh et al., 2024), the
trustworthiness of their generated outputs remains a
critical concern (Liu et al., 2024d; Sun et al., 2024a).
While these models can produce fluent and coherent
responses, they often lack grounding capability,
which can lead to potential hallucinations (Ji et al.,
2023; Rawte et al., 2023; Liu et al., 2024a). Ground-
ing capability is defined as the model’s ability to
accurately localize relevant regions in the visual con-
tent based on the provided semantic description (Na-
garaja et al., 2016; Luo & Shakhnarovich, 2017; Yu
et al., 2017; Kamath et al., 2021; You et al., 2024).
This capability is essential for ensuring that the
responses are accurate and verifiable. By providing
grounding information, these models enable real-
world users to easily verify the correctness of the
generated responses, thereby mitigating the uncer-
tainty associated with LLM outputs. This grounding
serves as a crucial bridge for enhancing the interac-
tion between humans and LLMs, fostering greater
trust and transparency in AI-generated content.

This work was done at the University of Maryland.

1

https://github.com/MingLiiii/TRIG-Bench


Published at the ICLR 2025 Workshop on Bidirectional Human-AI Alignment (BiAlign)

Existing grounding efforts in MLLMs mainly focus on natural images, where the task involves asso-
ciating textual descriptions with corresponding visual elements, such as objects or scenes(Plummer
et al., 2015; Chen et al., 2023b; Zhang et al., 2023a; 2024c; Peng et al., 2024; You et al., 2024).
However, there is a significant gap in the literature when it comes to grounding in text-rich
document images. Document images, such as scanned forms, charts, and complex posters, present
unique challenges that differ markedly from those found in natural images (Mathew et al., 2021;
Masry et al., 2022; Mathew et al., 2022; Zhang et al., 2024b). They often feature a mix of textual
and graphical elements and require precise localization and understanding of content, especially
textual content. An example is shown in Figure 1, for the given text-rich document image, we
expect LLMs to not only generate the answer alone but also to provide the corresponding grounded
bounding boxes that can support its answer, which requires deeper spatial understanding and
reasoning capabilities, and sometimes better instruction-following abilities to correctly provide the
grounding information in the desired formats.

Despite its importance, there is no established benchmark specifically designed to evaluate the
grounding capabilities of MLLMs on Text-Rich Document Question-Answering tasks. The absence
of such a benchmark and training data limits the ability to systematically assess and improve the per-
formance of different models in this domain. Thus to bridge this gap, we introduce TRIG, a novel
Text-Rich Image Grounding task with instruction set for document QA grounding, along with its
corresponding benchmark notated as TRIG-Bench. TRIG-Bench consists of 800 question-answer
pairs manually collected from DocVQA (Mathew et al., 2021), ChartQA (Masry et al., 2022), Info-
graphicsVQA (Mathew et al., 2022), and TRINS datasets (Zhang et al., 2024b), along with human-
inspected ground-truth bounding boxes that support the answer to the corresponding question. They
provide a standardized framework for evaluating the ability of MLLMs to accurately ground their
responses to document-related visual questions.

For text-rich document images, we mainly focus on visual texts on them as the main grounding
target. Considering the supreme performance of the modern OCR models (Chen et al., 2021; Sub-
ramani et al., 2021; Du et al., 2022; Li et al., 2023c;b; Wei et al., 2024; Sun et al., 2024b) and the
promising reasoning ability of current LLMs like GPT4o, an OCR-LLM-Human interaction pipeline
is proposed for the benchmark construction. Specifically, for every given VQA pair, we first utilize
PaddleOCR to detect and recognize all the texts. Given all these OCR results, LLMs are prompted
to judge which bounding boxes support the answer to the corresponding question, followed by an-
other LLM evaluating the correctness of the grounded bounding boxes chosen. The resulting data
has already been of good quality as it is generated and verified by the powerful GPT4o model. Then,
further human participants will manually inspect the generated results and select the correct ones to
form our benchmark data. Our main contributions:

• We introduce a novel benchmark, TRIG-Bench, specifically designed for the challenging
text-rich document image grounding task. This benchmark is the first of its kind and pro-
vides a standardized framework for evaluating MLLMs in this domain, filling a critical gap
in existing research.

• We conduct a comprehensive evaluation of a range of existing MLLMs on our new bench-
mark. Our analysis provides a deeper understanding of the limitations and constraints of
current MLLMs when applied to this new and complex task.

• Our findings reveal a significant issue: Although most of the current MLLMs perform well
on well-defined tasks, they lack the capability to follow customized and complex tasks that
require a deep understanding and reasoning capabilities.

2 RELATED WORKS

Grounding (Harnad, 1990) is essential for effective human communication with machines. Cur-
rently, grounding datasets have been utilized for vision-language pre-training and improvement for
both object-level recognition (Li et al., 2022) and language acquisition (Ma et al., 2023). Recent
studies propose to integrate text and grounding regions into token sequences (Yang et al., 2022;
Lu et al., 2022; Wang et al., 2022) within language modeling frameworks. Building on such
approaches, researchers have developed a series of grounded MLLMs, including GPT4ROI (Zhang
et al., 2023a), Kosmos-2 (Peng et al., 2023), Shikra (Chen et al., 2023b), PVIT (Chen et al., 2023a),
BuboGPT (Zhao et al., 2023), Qwen-VL (Bai et al., 2023b), and Ferret (You et al., 2023). Despite
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their impressive performance, these models mainly focus on the grounding of natural image objects,
and the grounding of text-rich document images is still under-explored. For the two most related
works which also mentioned text grounding on document images, P2G (Chen et al., 2024) includes
the OCR model into the QA pipeline as an information amplifier; TG-Doc (Wang et al., 2023b)
utilizes grounding capability to improve models QA capabilities. Both of these two works treat the
text grounding process as an intermediate step and do not conduct any evaluation of the grounding
capability. On the contrary, we entirely focus on the grounding capability and first propose the
benchmark for it.

3 DATA CONSTRUCTION

In this section, we focus on the construction of our benchmark and training dataset, including the
Data Source, the Construction Pipeline, and Statistics.

3.1 DATA SOURCE

To ensure the diversity of our benchmark data, four existing document datasets are chosen as our
data sources, covering a wide range of document image types, including DocVQA (Mathew et al.,
2021), ChartQA (Masry et al., 2022), InfographicVQA (Mathew et al., 2022), and TRINS (Zhang
et al., 2024b).

3.2 CONSTRUCTION PIPELINE

Figure 2: Main Constriction Pipeline. The
pipeline contains 4 steps: Preprocessing,
Generation, Correction, and Human Evalu-
ation. The benchmark data will go through
all of these 4 steps and the training data will
go through the previous 3 steps.

Our OCR-LLM-Human interactive pipeline for
training data and benchmark data generation is
shown in Figure 2.

Step 1 Preprocessing: PaddleOCR1 is utilized to
obtain the initial OCR information for its simplicity
and promising performance.

Step 2 Generation: After obtaining the OCR infor-
mation, a critical issue is how to transmit the OCR
information to the LLMs. The common method
in the literature is wrapping all the obtained OCR
information to the prompt (Zhang et al., 2023b;
Wang et al., 2023b), however, we observe a se-
vere misalignment between the text information in
the prompt and the visual information in the image,
leading to unpromising results. Thus to further align
the visual and text information provided in different
genres, we innovatively assign every OCR bound-
ing box an identical index, draw every bounding
box with its index on the original images, and si-
multaneously provide all the OCR information with
the index in the prompt. By utilizing this strategy,
the LLM is able to better align each visual element
with its detailed information. Along with the orig-
inal question and ground truth answer, the LLM is
prompted to select the bounding boxes that can sup-
port the given answer to the corresponding question.

Step 3 Correction: Then another Reflection & Rectification module (Pan et al., 2023; Huang et al.,
2023; Li et al., 2023a; 2024b) is introduced to examine the correctness of selected bounding boxes.
In addition to all the previous information used in Step 2, the previously generated bounding box
indices are also provided to the LLM, prompting it to judge if the selected grounded bounding boxes
can adequately lead to the given answer. If the judging result is “correct”, this sample will be kept

1https://github.com/PaddlePaddle/PaddleOCR
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if it is from the training set, or sent to the next step if it is used for building benchmark. Otherwise,
it will be sent back to the previous step until reaching the maximum round and being discarded.
The resulting data after the previous 3 steps has already been of good quality as it is generated and
verified by the powerful LLM.

Step 4 Human Evaluation: The sample sent to step 4 has been evaluated and rectified by LLM,
however, its quality might still have discrepancies with the requirements of being a benchmark. Thus
to ensure the correctness of our benchmark data, further human inspection is conducted. Specifically,
two human participants are invited for the human evaluation. Only those samples that are agreed to
be correct for both of the participants can be kept in our benchmark, otherwise will be discarded.
Finally, for each dataset, 200 QA pairs are manually selected as the ground truth of this benchmark.

3.3 DATA STATISTICS

The benchmark data statistics are presented in Table 1. “Avg Question Len”, “Avg Answer Len”,
and “Avg OCR Text Len” calculate the average question, answer, and OCR text word counts. “Avg
OCR Box #”, “Avg GT Box”, and “Avg GT Box Ratio” calculate the number of bonding boxes
provided by OCR models, selected as the ground truth and their ratio. “Avg OCR Area (%)”, “Avg
GT Area (%)” and “Avg GT Area Ratio” calculate the area of bonding boxes provided by OCR
models, selected as the ground truth and their ratio. From these statistics, the characteristics of each
dataset can be illustrated, which showcases the variety of our data components and further provides
a clear understanding of evaluation results.

Chart Doc Info Trins Total

Total Question # 200 200 200 200 800
Total Image # 171 190 199 199 759

Avg Question Len 11.04 9.66 12.42 11.69 11.20
Avg Answer Len 1.39 2.94 1.93 19.48 6.44
Avg OCR Text Len 2.7 4.73 3.02 3.00 3.36

Avg OCR Box # 26.15 53.30 102.26 8.94 47.66
Avg GT Box # 2.67 1.73 2.78 2.45 2.41
Avg GT Box Ratio 11.83% 4.88% 3.72% 37.74% 14.54%

Avg OCR Area (%) 12.56 19.75 18.29 15.82 16.61
Avg GT Area (%) 0.80 0.79 0.53 6.09 2.05
Avg GT Area Ratio 8.59% 5.10% 2.89% 42.69% 14.82%

Table 1: Benchmark Data Statistics. Total Question # represents the unique question number
from each dataset. Total Image # represents the Unique image number. Other statistics are averaged
on each dataset.

4 EXPERIMENTAL RESULTS

For the instruction-based method, we utilize LLaVA-v1.5-Vicuna-13B (Liu et al., 2023a) as our
base model to be fine-tuned. For the embedding-based method, we utilize PaliGemma-3B (Beyer
et al., 2024) as our base model to be fine-tuned. Detailed training configurations, data statistics, and
examples can be found in the supplementary material. All experiments are performed on Nvidia
A100 GPUs.

4.1 MAIN RESULTS

The overall evaluation results across various MLLMs are presented in Table 2 (Evaluation Setting
1), Table 3 (Evaluation Setting 2). The MLLMs we evaluated are listed as follows: LLaVA-v1.6-
Vicuna-13B, LLaVA-v1.6-Vicuna-7B (Liu et al., 2023a;b; 2024b), Phi3-V(Team, 2024), DeepSeek-
VL-7B-chat (Lu et al., 2024), Idefics2-8B (Laurençon et al., 2023; 2024), Qwen-VL (Bai et al.,
2023a), CogVLM2-Llama3-19B (Wang et al., 2023a), InternLM-XComposer2-VL-7B (Dong et al.,
2024a), InternLM-XComposer2-4KHD-7B (Dong et al., 2024b), Monkey-Chat (Li et al., 2024d),
MiniCPM-Llama3-V 2.5 (Yao et al., 2024), and GPT series.

As shown in Table 2, all the existing models, including open-source models and the powerful
GPT4o, perform not well for the OCR-free Grounding setting, in which they are required to gen-
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Testsets Chart Doc Info Trins Avg

Metrics (%) IoU IoU IoU IoU Avg

LLaVA-v1.6-Vicuna-13B 0.00 0.00 0.00 0.00 0.00
LLaVA-v1.6-Vicuna-7B 0.00 0.00 0.00 0.00 0.00
Phi3-V 0.00 0.00 0.00 0.00 0.00
DeepSeek-VL-7B-chat 0.07 0.00 0.02 0.00 0.02
Idefics2-8B 0.21 0.01 0.00 0.00 0.06
Qwen-VL 0.43 0.06 0.18 0.23 0.22
CogVLM2-Llama3-19B 0.19 0.01 0.16 0.66 0.25
InternLM-XComposer2-VL-7B 0.15 0.20 0.13 0.57 0.26
Monkey-Chat 0.77 0.19 0.15 0.45 0.39
InternLM-XComposer2-4KHD-7B 1.04 0.10 0.90 0.14 0.55
MiniCPM-Llama3-V 2.5 0.44 1.40 0.65 4.96 1.86

GPT-4o 3.90 1.79 1.60 13.73 5.26

Table 2: OCR-free Grounding. Chart, Doc, Info, and Trins represent evaluation results on ChatQA,
DocVQA, InfographicsVQA, and TRINS datasets, respectively. IoU represents the pixel-level IoU
scores. Avg represents the average IoU score on the 4 datasets and the ordering of each model is
decided by this average score.

Testsets ChartQA DocVQA InfographicsVQA TRINS Avg

Metrics (%) IoU P R F1 IoU P R F1 IoU P R F1 IoU P R F1 Avg

LLaVA-v1.6-Vicuna-13B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
LLaVA-v1.6-Vicuna-7B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Idefics2-8b 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.17 1.17 3.50 1.69 0.47
DeepSeek-VL-7B-chat 0.84 1.35 2.25 1.23 0.19 0.19 1.50 0.34 0.00 0.00 0.00 0.00 1.60 1.60 2.00 1.67 0.92
InternLM-XComposer2-4KHD-7B 1.00 2.00 1.00 1.25 0.25 0.50 0.25 0.33 0.00 0.00 0.00 0.00 3.67 6.80 3.79 4.65 1.59
Monkey-Chat 3.58 5.38 9.91 5.05 0.94 1.19 1.75 1.15 0.34 0.30 2.00 0.51 0.00 0.00 0.00 0.00 2.01
Phi3-V 2.54 3.14 5.46 3.25 0.97 1.22 2.00 1.21 0.40 0.35 2.08 0.59 3.81 4.31 5.00 4.28 2.54
CogVLM2-Llama3-19B 1.65 2.30 3.68 2.02 1.56 1.87 3.58 1.89 0.42 0.84 1.75 0.71 6.76 7.93 8.33 7.53 3.30
Qwen-VL 4.36 4.33 28.00 7.27 1.07 1.06 8.25 1.83 0.70 0.71 4.50 1.20 1.51 1.83 3.32 2.08 4.50
InternLM-XComposer2-VL-7B 8.10 15.31 9.03 10.49 7.36 11.28 8.08 8.73 2.32 6.39 2.85 3.39 15.82 18.12 17.32 16.98 10.10
MiniCPM-Llama3-V 2.5 7.40 12.50 8.40 9.24 15.78 19.22 18.42 17.48 5.71 9.87 7.34 7.14 54.06 62.06 57.89 57.95 23.15

GPT-4o 83.80 88.80 89.24 87.47 82.14 87.14 89.50 86.16 68.19 79.57 78.81 75.82 89.08 96.06 91.53 92.16 85.34

GPT-3.5-turbo (Without Image) 8.81 14.17 9.48 10.64 32.05 40.92 32.50 35.00 12.66 20.45 14.39 15.75 15.81 18.75 15.80 16.62 19.58
GPT-4 (Without Image) 51.58 57.29 53.75 54.34 52.18 62.79 53.61 56.28 47.31 57.51 54.34 53.51 69.83 76.16 71.05 72.39 58.59
GPT-4o (Without Image) 59.50 67.13 62.84 63.29 77.83 83.41 80.71 80.80 63.34 72.64 69.03 68.88 71.05 80.01 72.54 74.38 71.69

Table 3: OCR-based Grounding. IoU, P, R, F1 represent bounding-box-level IoU score, precision,
recall and F1 score. Avg represents the average score on all datasets and evaluation metrics and the
ordering is decided by this score.

erate supportive bounding boxes without any additional bounding box information. From the evalu-
ation setting 1 results, we can conclude that the capability of existing models to generate grounded
bounding boxes from scratch is limited and thus the training specifically for this setting is required.

As shown in Table 3, for the OCR-based Grounding setting, most of the models can reach a much
better performance as the OCR information has been provided. However, the performances of open-
source models still have a large gap with GPT4o.

4.2 ANALYSIS

Finding 1. All existing MLLMs are not good at generating grounded bounding boxes from
scratch.

As shown in Table 2, even the most powerful GPT4o can only gain an average IoU score of 5.28%,
consisting of 13.73% on TRINS and approximately under 4.0% on other datasets. The relatively
higher performance on TRINS is due to its special characteristic that the images in TRINS contain
the least number of OCR objects while occupying the most area, making it easier to generate
intersected bounding boxes2. However, when it comes to common information-intense documents,
the performances drop dramatically as the ground truth bounding boxes become much smaller.

Compared with GPT4o, the IoU values from other open-source models are mostly under 1.0%,
which is negligible. GPT4o is able to follow the instructions and generate bounding boxes, though
its relatively weak spatial understanding makes the generation not precise enough. However, most
of the other open-source models are not able to either understand our instructions or generate
reasonable bounding boxes, especially for those MLLMs that get near-zero IoU values. Even if

2Examples can be found in the supplementary material for better understanding.
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we provide further instructions requiring them to generate bounding boxes that can support their
answer, they are not able to understand the instructions nor to follow them.

These results reveal a critical issue that current MLLMs have a relatively weak spatial understanding
and are not capable of generating grounded boxes that support their answer from scratch, which
makes it a potential future direction.

Finding 2. Most existing open-source MLLMs are not able to follow customized complex in-
structions.

Table 3 represents the evaluation setting where the OCR information, including bounding boxes
and texts, is wrapped into the input to MLLMs, thus making the whole process a much simpler
bounding box selection process. The performance of GPT4o reaches an astonishingly high value
of 85.34% on average compared with the 5.26% on evaluation setting 1, indicating that generating
grounded bounding boxes from scratch is hard for GPT4o. In this setting, even the text-only models
can achieve a reasonably high performance due to the detailed information provided by OCR
models while the performances of most of the existing open-source MLLMs still kept low, making
it impossible for practical usage.

By careful inspection, we observe that these low performances on existing open-source MLLMs
are mainly caused by their inability to follow the given instructions: most existing open-source
MLLMs will directly generate corresponding answers to the question and ignore the instruction
of selecting supporting grounded bounding boxes, potentially due to the overfitting on the format
of the training data. To further quantitatively analyze this issue, we introduce another value, the
instruction-following rate, defined by the proportion of testing samples for which the MLLMs
are able to generate at least one bounding box required in the additional instruction. This value
does not measure the correctness of MLLM-generated bounding boxes but only the existence of
them. It directly represents MLLMs’ instruction-follow ability for this task, i.e. generate at least
one bounding box regardless of the correctness.

From the results of the instruction-following rates, we can see that GPT4o reaches an average
instruction-following rate of 98%. Even if for the OCR-free Grounding setting, in which it can
only reach an average IoU score of 5.26%, it still achieves the instruction-following rate of 96%.
The comparison between the instruction-following rate and IoU score reveals that (i) GPT4o has
a strong capability in following customized complex instructions; (ii) The low IoU is caused by
GPT4o’s inability of spatial understanding. On the contrary, the instruction-following rates on
existing open-source MLLMs are mostly less than 30.0% or even 10.0%, which means under most
circumstances, they do not understand our instruction and do not generate any bounding boxes,
representing a “not-even-wrong” situation. Since the average instruction-following rates are much
higher than the grounding metrics, the gaps between them indicate the MLLMs’ inability to ground.

Our settings reflect both MLLMs’ instruction-following and grounding ability. Most of the existing
open-source models are not able to follow the relatively complex instructions in this task, and even
if they correctly follow the instructions, most of them are not able to find the correct grounded
bounding boxes that support their answers. Comparing these results with their outstanding perfor-
mances on standard QA tasks, we reveal this critical issue that most existing open-source MLLMs
are potentially overfitted to the standardized tasks, and they still lack instruction-following abilities.

5 CONCLUSION

In this paper, we introduce TRIG, a novel task designed to evaluate and enhance the visual text
grounding capabilities of MLLMs in text-rich document images. We first build TRIG-Bench, a
comprehensive benchmark. Our evaluation reveals significant limitations in the visual text ground-
ing capabilities of existing MLLMs, particularly in their ability to handle complex document layouts
and textual content.
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Lucas Beyer, Andreas Steiner, André Susano Pinto, Alexander Kolesnikov, Xiao Wang, Daniel Salz,
Maxim Neumann, Ibrahim Alabdulmohsin, Michael Tschannen, Emanuele Bugliarello, Thomas
Unterthiner, Daniel Keysers, Skanda Koppula, Fangyu Liu, Adam Grycner, Alexey Gritsenko,
Neil Houlsby, Manoj Kumar, Keran Rong, Julian Eisenschlos, Rishabh Kabra, Matthias Bauer,
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A DETAILED EVALUATION SETTINGS AND METRICS

To simulate various real-world scenarios and test models’ capability for grounding at different levels,
three different evaluation settings are provided compatible with this benchmark.

Figure 3: Illustrations on Evaluation Settings. In evaluation setting 1, no OCR model is used,
representing the hardest scenario. While in settings 2 & 3, an additional OCR model is utilized to
facilitate LLM on grounding information generation. The “Instruction” in the prompt describes the
requirement of generating grounded bounding boxes and defines the desired format.

A.1 EVALUATION SETTING 1 (OCR-FREE GROUNDING)

In this setting, as shown in Figure 3 (a), only the document image and corresponding question are
provided for the MLLMs, together with the specific instruction that describes the task requirement
and defines the desired format. It represents the hardest level of MLLMs’ grounding capabilities as
it requires MLLMs to answer the question and simultaneously generate the corresponding grounded
bounding boxes from scratch. In addition to the measurement of MLLMs’ grounding capabilities, it
also measures their instruction-following abilities. As a complex customized task, the instructions
for generating grounded bounding boxes have never been seen by MLLMs during training, and it
requires deep reasoning capability to correctly follow.

Pixel-level IoU (Intersection over Union) is utilized as the evaluation metric. It calculates the over-
lap between pixels in the predicted bounding boxes and ground truth bounding boxes, normalized
by the total number of unique pixels. It is commonly used in image segmentation tasks to assess the
accuracy of pixel-wise predictions:

IoUpixel =
1

N

N∑
i=1

|Predi ∩ GroundTruthi|
|Predi ∪ GroundTruthi|

(1)

where N represents the total number of testing samples, Predi represents the pixels within the
predicted grounded bounding boxes of ith testing sample and GroundTruthi represents the pixels
within the groundtruth bounding boxes.

A.2 EVALUATION SETTING 2 (OCR-BASED GROUNDING)

Although the previous setting aligns with our aim the best, it is too hard for all the existing models,
from proprietary models to open-source models. Thus further evaluation settings are proposed. In
this setting, as shown in Figure 3 (b), an additional OCR model is utilized to facilitate the generation
of grounded bounding boxes. Specifically, all the bounding box coordinates and corresponding text
content obtained from the OCR model will be wrapped into the prompt for MLLMs as additional
information. Under this circumstance, the bounding box generation task is converted into an easier
bounding box selection/retrieval task, in which MLLMs do not need to generate coordinates from
scratch but only need to select the proper ones given in the prompt. It is worth noting that this
evaluation setting still measures MLLMs’ grounding capability as they have to align the given OCR
information to the image information. In this setting, instance-level IoU score, precision, recall,
and F1 score are utilized as the evaluation metrics.
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Instance-level IoU measures the overlap between the retrieved grounded bounding boxes and the
ground truth bounding boxes, normalized by the total number of unique elements. It evaluates how
well the retrieved bounding boxes match the ground truth ones:

IoUinst =
1

N

N∑
i=1

|Predi ∩ GroundTruthi|
|Predi ∪ GroundTruthi|

(2)

where N represents the number of testing samples, Predi represents the bounding boxes selected
from the prompt of ith testing sample and GroundTruthi represents the groundtruth bounding boxes.

Precision measures the proportion of correctly retrieved elements out of all elements retrieved by
the model. It reflects the accuracy of the model’s positive predictions:

Precision =
1

N

N∑
i=1

|Predi ∩ GroundTruthi|
|Predi|

(3)

Recall measures the proportion of correctly retrieved elements out of all actual ground truth ele-
ments. It indicates the model’s ability to capture all relevant elements in the ground truth.

Recall =
1

N

N∑
i=1

|Predi ∩ GroundTruthi|
|GroundTruthi|

(4)

F1 Score is the harmonic mean of precision and recall, providing a balanced measure that accounts
for both false positives and false negatives.

F1 =
1

N

N∑
i=1

2× Precisioni × Recalli
Precisioni + Recalli

(5)

where Precisioni and Recalli represent the precision and recall of ith testing sample.

A.3 EVALUATION SETTING 3

Although the above two settings represent the most common scenario of grounded bounding box
generation for document-level VQA tasks, however, they both have their own flaws: Setting 1 is
too difficult for existing MLLMs if not specifically trained on in-domain data, even GPT4o can only
have a performance under 10%, thus not suitable for the evaluation of most existing MLLMs. Setting
2, on the contrary, provides a potential shortcut that models might directly select the bounding boxes
according to the text content.

Thus, Setting 3, as shown in Figure 3 (c), is proposed as the combination of previous settings,
where the OCR-generated bounding boxes will be provided without the specific text content. Under
this circumstance, the testing model still needs to have a spatial understanding to select the correct
grounded bounding boxes with no need to generate coordinates from scratch. Though this setting is
not aligned with the most common practical scenarios, it serves as a reasonable evaluation setting.
The evaluation metrics used for this setting are the same as in the setting 2.

A.4 EVALUATION PROMPTS

In order to alleviate the influences of prompts when testing on our benchmark, 3 different prompts
with diverse formatting requirements (Liu et al., 2024c; Li et al., 2024c;a) are proposed for each
evaluation setting, resulting in a total of 9 different evaluation prompts. For each evaluation setting,
we present the best results across the 3 different prompts as shown in Figure 4. The main difference
between different prompts in the same evaluation setting is the required format for the generation or
selection of the grounded bounding boxes. Specifically, prompts with “#1” utilize the CSS format,
which is widely used for pretraining; prompts with “#2” utilize the most naive format containing
the necessary information in a list; prompts with “#3” are similar to “#2” but utilize the relative
coordinates.
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Figure 4: The evaluation prompts for different evaluation settings.
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Figure 5: Benchmark data examples from ChatQA. The grounded bounding boxes have already
been visualized in the original image for better illustration.

B BENCHMARK DATA EXAMPLES

The benchmark data examples are visualized in Figure 5 for ChatQA, Figure 6 for DocVQA, Figure
7 for InfographicsVQA, Figure 8 for TRINS. The questions and answers are given in text form,
the supported grounded bounding boxes are directly visualized in the images. The samples from
different sources show the diversity of our benchmark data.
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Figure 6: Benchmark data examples from DocVQA. The grounded bounding boxes have already
been visualized in the original image for better illustration.
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Figure 7: Benchmark data examples from InfographicsVQA. The grounded bounding boxes have
already been visualized in the original image for better illustration.
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Figure 8: Benchmark data examples from TRINS. The grounded bounding boxes have already been
visualized in the original image for better illustration.
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