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Abstract
Multimodal Large Language Models (MLLMs)001
have seen growing adoption across various sci-002
entific disciplines. These advancements encour-003
age the investigation of molecule-text model-004
ing within synthetic chemistry, a field dedi-005
cated to designing and conducting chemical006
reactions to synthesize new compounds with007
desired properties and applications. Current008
approaches, however, often neglect the criti-009
cal role of multi-molecule graph interaction010
in understanding chemical reactions, leading011
to suboptimal performance in synthetic chem-012
istry tasks. This study introduces PRESTO013
(Progressive Pretraining Enhances Synthetic014
Chemistry Outcomes), a new framework that015
bridges the molecule-text modality gap by inte-016
grating a comprehensive benchmark of pretrain-017
ing strategies and dataset configurations. It pro-018
gressively improves multimodal LLMs through019
cross-modal alignment and multi-graph under-020
standing. Our extensive experiments demon-021
strate that PRESTO offers competitive results022
in downstream synthetic chemistry tasks. The023
code can be found at https://anonymous.024
4open.science/r/presto.025

1 Introduction026

Multi-modal Large Language Models (MLLMs)027

have achieved extensive success across diverse sci-028

entific domains, including medicine (Singhal et al.,029

2023), material science (Jablonka et al., 2023),030

and biochemistry (Liu et al., 2024b,a; Li et al.,031

2023). Motivated by these advances, molecule-032

text modeling emerges as a new research direc-033

tion, aiming to bridge the modality gap between034

molecules and texts (Liu et al., 2023a; Edwards035

et al., 2022). These methods have shown promising036

results on molecule captioning, retrieval, and de-037

novo molecule design (Liu et al., 2024c; Edwards038

et al., 2021; Li et al., 2024; Tang et al., 2024a).039
In this study, we explore molecule-text modeling040

within synthetic chemistry. Synthetic chemistry in-041

volves designing and executing chemical reactions 042

to create new compounds with specific properties 043

and applications. It is a field of immense practi- 044

cal value and includes tasks like forward reaction 045

and retrosynthesis prediction. Prior molecule-text 046

modeling works (Fang et al., 2024a; Christofidellis 047

et al., 2023; Lu and Zhang, 2022; Zhao et al., 2024) 048

have explored synthetic chemistry tasks, but they 049

mostly overlook the 2D molecular graph informa- 050

tion. However, 2D molecular graph information is 051

crucial for understanding molecular topologies and 052

is essential for synthetic chemistry in prior graph- 053

based retrosynthesis studies (Somnath et al., 2021; 054

Mao et al., 2021). On the other hand, while pio- 055

neering works (Liu et al., 2024c; Cao et al., 2023; 056

Liu et al., 2023b; Su et al., 2022) have enabled 057

text LLMs to perceive 2D molecular graphs, these 058

methods struggle to process multiple 2D molecular 059

graphs in chemical reactions. This limitation stems 060

from their inadequate exploration and analysis of 061

multi-modal pretraining strategies (Cao et al., 2023; 062

Luo et al., 2023c) and dataset configuration (Liang 063

et al., 2023; Li et al., 2024), which do not fully 064

support the comprehension of multiple graphs: 065

• Multi-modal Pretraining Strategy. The effec- 066

tiveness of multi-modal LLMs is heavily influ- 067

enced by their pretraining strategy (Bai et al., 068

2023; Lin et al., 2024; McKinzie et al., 2024), 069

involving decisions like tuning or freezing sub- 070

modules at various stages and selecting the gran- 071

ularity of molecular graph representations. The 072

pretraining strategy of existing molecule-text 073

modeling methods varies significantly (Liu et al., 074

2023b; Su et al., 2022; Liu et al., 2024c; Cao 075

et al., 2023), creating uncertainty about the most 076

effective approach for synthetic chemistry. Partic- 077

ularly, prior works notably overlook the continual 078

pretraining on synthetic chemistry corpus, which 079

can potentially improve performance. 080

• Dataset Configuration. The dataset plays a cru- 081
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Figure 1: Panel (top left) illustrates the components of a prototypical chemical reaction. Panel (bottom left) shows the synthetic
chemistry tasks that PRESTO can support as a dialogue assistant. Panel (right) provides an overview of the two primary stages
in our Progressive Pretraining Strategy PRESTO: the Molecule-Text Alignment stage and the Domain Incremental Pretraining
stage. These stages enable the evolution from single-graph text modeling to complex interleaved multi-graph text modeling.

cial role in the performance of LLMs. For syn-082

thetic chemistry tasks, it is evident that including083

data with multiple molecular graphs in context is084

essential. However, there is still uncertainty re-085

garding which specific datasets (Kim et al., 2022;086

Lowe, 2017; Edwards et al., 2021) are most ben-087

eficial for synthetic chemistry. Additionally, it088

remains to be explored whether incorporating089

single-graph understanding tasks could further090

enhance performance in synthetic chemistry.091

To bridge this research gap, we first present a092

comprehensive benchmark and the corresponding093

analysis for pretraining strategies and dataset con-094

figurations for synthetic chemistry. While several095

prior benchmarks (Fang et al., 2024a; Yu et al.,096

2024) overlap with synthetic chemistry, they, unfor-097

tunately, encompass a limited subset of synthetic098

chemistry tasks, often mishandle dataset splitting,099

and sometimes include potential data leakage. We100

prevent this by cleaning the data meticulously and101

generating challenging test sets with scaffold split-102

ting. Our analysis shows that progressive multi-103

modal domain pretraining significantly enhances104

reaction condition prediction accuracy. Further, we105

find that increasing the granularity of molecular106

representation and using interleaved molecule-text107

data with name-conversion datasets during pretrain-108

ing improve downstream task performance by bet-109

ter leveraging domain knowledge.110
Building on the insights from our benchmark,111

we propose Progressive Pretraining Enhances 112

Synthetic Chemistry Outcomes (PRESTO), a spe- 113

cialized framework tailored for synthetic chemistry 114

tasks. PRESTO enables a MLLM to process and 115

understand interleaved molecular graph-text inputs, 116

deepening the model’s grasp of chemical reaction 117

principles by effectively utilizing interactions be- 118

tween molecule-molecule and molecule-text pairs 119

in context. To achieve this, PRESTO features a 120

pretraining strategy and a pretraining dataset cu- 121

rated for multi-graph understanding. Specifically, 122

PRESTO improves the LLM’s performance on 123

synthetic chemistry in two stages progressively: 124

(1) in the first training stage, PRESTO cultivates 125

the MLLM’s ability of cross-modal alignment; (2) 126

in the second stage, PRESTO focuses on multi- 127

graph understanding, and injects domain knowl- 128

edge of synthetic chemistry into the LLM. Fur- 129

ther, to support effective pretraining, we construct 130

a dataset comprising ∼3 million samples of syn- 131

thetic procedure descriptions and molecule name 132

conversions. Through extensive experiments, we 133

demonstrate that PRESTO can effectively prepare 134

a multi-modal LLM for downstream tasks of syn- 135

thetic chemistry. 136

2 Related Works 137

Deep Learning for Synthetic Chemistry. Syn- 138

thetic chemistry, a fundamental problem in chem- 139

istry, has seen significant advances through deep 140

learning models that assist in various reaction- 141
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related tasks using descriptor-based (Segler and142

Waller, 2017; Segler et al., 2018), graph-based (Dai143

et al., 2019; Tu and Coley, 2021), and sequence-144

based approaches (Schwaller et al., 2019; Irwin145

et al., 2022). Recent works (Lu and Zhang, 2022;146

Schwaller et al., 2020; Fang et al., 2024a; Yu et al.,147

2024) also adapt language models for tasks such as148

forward reaction prediction (Schwaller et al., 2019),149

retrosynthesis (Wan et al., 2022; Liu et al., 2024d),150

and reaction type classification (Schwaller et al.,151

2021a), demonstrating high accuracy. Although152

these models specialize in specific synthetic chem-153

istry tasks, their pretraining on domain-specific154

data limits their ability to generalize and adapt to155

other synthetic tasks. To address this issue, multi-156

task methods (Lu and Zhang, 2022; Christofidellis157

et al., 2023) have been explored and demonstrate158

strong capabilities across domains. However, they159

are constrained by using only molecular sequences160

as input, overlooking the potential of textual in-161

formation to assist in modeling. In contrast, our162

approach integrates reaction-related textual infor-163

mation with molecular modeling, enabling a flexi-164

ble adaptation to various downstream tasks.165

Molecule & Text Modeling (MTM). The in-166

tegration of biomolecular modeling with natural167

language leverages rich textual data sources to168

enhance understanding and facilitate downstream169

text-related molecular tasks (Edwards et al., 2022;170

Christofidellis et al., 2023; Pei et al., 2023; Fang171

et al., 2024a; Yu et al., 2024; Luo et al., 2023b).172

Various approaches have been proposed to learn ef-173

fective representations of molecules, including 1D174

sequences (Fang et al., 2024b; Irwin et al., 2022;175

Edwards et al., 2022; Schwaller et al., 2019; Wang176

et al., 2019), 2D graphs (Rong et al., 2020; Ying177

et al., 2021; Wang et al., 2022b), 3D conforma-178

tions (Liu et al., 2022; Zhou et al., 2023) and a179

combination of them (Luo et al., 2023a; Tang et al.,180

2024b). Cross-modalities modeling includes con-181

trastive learning over molecules and text (Su et al.,182

2022; Liu et al., 2023a; Tang et al., 2024b) or uni-183

fied alignment of the two modalities through lan-184

guage modeling (Zeng et al., 2022; Zhao et al.,185

2023; Liu et al., 2023b; Li et al., 2024). Prior works186

have primarily focused on individual molecule un-187

derstanding or molecule-text retrieval, while our188

research expands to model multiple molecules and189

contextual text, thereby facilitating tasks relevant190

to chemical reactions.191

Multi-modal Language Models. The multi- 192

modal large language models (MLLMs) field 193

has seen rapid progress recently. Several works 194

(Alayrac et al., 2022; Wang et al., 2022a; Chen 195

et al., 2023; Dai et al., 2023; Li et al., 2023; Huang 196

et al., 2023; Liu et al., 2024b) have proposed dif- 197

ferent architectures for integrating visual informa- 198

tion into LLMs. Researchers have explored vari- 199

ous strategies for integrating external modalities 200

into LLMs. Lin et al. (2024) and McKinzie et al. 201

(2024) conducted ablation studies on textual and vi- 202

sual data composition during training. Karamcheti 203

et al. (2024) examined the design space of MLLMs, 204

including training pipeline, modality representa- 205

tions, and scaling. Recent studies have attempted 206

to apply similar methods to small molecule (Li 207

et al., 2024; Cao et al., 2023; Liang et al., 2023) 208

or protein domains (Wang et al., 2023b; Liu et al., 209

2024e). However, there are very few studies inves- 210

tigating the specific design of training strategies in 211

the biomolecular domain. 212

3 PRESTO Framework 213

3.1 Preliminary 214

Here we introduce our model architecture, which 215

follows the common practice in multi-modal LLMs 216

(Liu et al., 2024b; Bai et al., 2023; Karamcheti 217

et al., 2024). Formally, our model processes 218

a collection of 2D molecule graphs represented 219

as {X(i)
G }ni=1, along with text prompt tokens 220

{X(j)
T }mj=1 describing synthetic processes or task 221

queries. The input sequence is designed to accom- 222

modate the interleaved nature of text and molecule 223

tokens, denoted {tk}m+n
k=1 , where each tk is a text 224

token X
(j)
T or a molecule graph X

(i)
G . These inputs 225

are processed through 1) a molecular representa- 226

tion encoder, 2) a molecule-language projector, and 227

3) a language model. 228

Molecular Representation. Each X
(i)
G is first 229

processed by a molecule encoder fM , which out- 230

puts a sequence of features p
(i)
M , such that p(i)M = 231

fM (X
(i)
G ). The length of p(i)M is variable and de- 232

pends on the granularity of the representation. 233
Molecule-Language Projector. Next, we map 234

each p
(i)
M to embeddings e(i)M using a learned projec- 235

tor fψ, where e
(i)
M = fψ(p

(i)
M ). 236

Language Model. The interleaved input sequence 237

EI is formed by the ordered union of molecule 238

embeddings EM = {e(i)M }ni=1 and text token em- 239
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beddings ET = {e(j)T |e(j)T = fembed(X
(j)
T )}mj=1:240

EI = EM ∪o ET ,241

where ∪o preserves the order of elements as they242

appear in the original input sequence {tk}m+n
k=1 .243

This interleaved sequence is passed to the language244

model to generate the output text XO = LMθ(EI).245

3.2 Training Procedure246

Our complete training procedure includes the247

PRESTO’s two-stage pretraining and the down-248

stream supervised finetuning.249

PRESTO-Stage1: Molecule-Text Alignment.250

This stage aims to bridge the modality gap be-251

tween the molecular and textual representations.252

We start from a pretrained molecule encoder fM ,253

a language model LMθ, and a randomly initial-254

ized molecule-language projector fψ. fψ is then255

trained on molecule-text pairs from (Kim et al.,256

2022) while freezing the weights of fM and LMθ.257

The template for captioning can be found in Ap-258

pendix D.1.259

PRESTO-Stage2: Domain Incremental Pre-260

training. During this stage, we continue to train261

the model on a large corpus of molecule-text pairs262

with interleaved segments (Lowe, 2017; Kim et al.,263

2022). Training on mixed data helps the model fur-264

ther understand the relationships between molecu-265

lar graphs and text. Both fM and LMθ are updated266

in this stage. See Appendix D.1 for details of the267

instruction template.268

Supervised Fine-Tuning (SFT). The final stage269

adapts the pretrained model to a diverse set of270

downstream tasks by instruction tuning. Similar to271

(Cao et al., 2023; Liu et al., 2023b), each example272

consists of input molecules or reactions {X(i)
G }ni=1,273

a natural language instruction {X(j)
T }mj=1, and the274

target output XO. Details of the instruction tem-275

plate can be found in the Appendix D.2.276

3.3 Pretrain Dataset277

We present datasets utilized in the PRESTO pre-278

training pipeline. For the first stage of alignment,279

we use a caption dataset, and for the second stage280

of domain incremental pretraining, we use an inter-281

leaved molecule-text and name-conversion dataset.282

283

Caption Dataset. We use molecule-text pairs284

sourced from PubChem (Kim et al., 2022) for align-285

ing molecule and text modalities. Each molecule286

TASK # TRAIN # VALID # TEST # ALL

Pretrain Stage1: Molecule Caption
DATA SOURCE: Kim et al. (2022)
PubChem Caption 326,675 - - 326,675

Pretrain Stage2: Interleaved Molecule-Text
DATA SOURCE: Lowe (2017)
USPTO-Application 1,588,709 - - 1,588,709

Pretrain Stage2: Name Conversion
DATA SOURCE: Kim et al. (2022); Yu et al. (2024)
IUPAC to Formula 300,000 1,497 2,993 304,490
IUPAC to SMILES 300,000 1,497 2,993 304,490
Molecule Graph to Formula 300,000 1,497 2,993 304,490
Molecule Graph to IUPAC 300,000 1,497 2,993 304,490
Molecule Graph to SMILES 293,288 - - 293,288

Table 1: PRESTO progressive pretraining dataset.

structure is associated with a textual description 287

of chemical and physical properties or high-level 288

bioactivity information. 289

Interleaved Molecule-Text Dataset. We start 290

by extracting raw descriptions of experimental 291

procedures from the chemical reaction database 292

USPTO-Applications (Lowe, 2017). Further, we 293

use BERN2 (Sung et al., 2022) to identify all 294

molecule entities in the texts and convert them into 295

2D molecular graphs. We then preprocess the data 296

to remove samples with too many molecule entities 297

or molecules with excessive atom counts to con- 298

trol input length. The resulting interleaved dataset 299

comprises approximately 1.6M samples, covering 300

more than 342K unique molecules. Refer to Ap- 301

pendix A.2 for detailed processing steps and data 302

statistics. 303

Name Conversion Dataset. A molecule can be 304

represented by 2D molecular graphs and differ- 305

ent 1D sequential representations: IUPAC names 306

(Favre and Powell, 2014), chemical formulas (Hill, 307

1900), and SMILES (Weininger, 1988). These 1D 308

sequential representations are used interchangeably 309

in the textual corpus, and each corresponds to a par- 310

ticular aspect of molecular structures. For example, 311

the IUPAC name highlights the subgraph compo- 312

sition of molecules, while SMILES explicitly lists 313

all atom types. Therefore, learning the conversion 314

between these 1D representations and 2D graphs 315

helps the LLM to align different molecular men- 316

tions in texts and improves its understanding of 317

molecular structures. 318

3.4 Downstream Tasks 319

We evaluate PRESTO on a diverse set of down- 320

stream tasks in synthetic chemistry, as detailed in 321

Table 2. Our assessment provides a more com- 322

prehensive and representative evaluation of down- 323

stream tasks, extending beyond the scope of previ- 324

ous benchmarks. The detailed data preprocessing 325
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"""Dissolve <mol1> (5.00 g, 22.2 mmol) and <mol2> (4.1 g, 23.0 
mmol) in carbon tetrachloride (25 mL) and add AIBN radical 
initiator (300 mg). Stir and maintain under a nitrogen atmosphere 
at 80-90° C. or optionally irradiate with a sunlamp ... Cool to room 
temperature and precipitate the <mol3> from the solution by 
allowing to stand overnight. Filter and wash the succinimide (2.25 
g) with <mol4> (20 mL) ..."""

O

Cl

O
N

O

Br

O
H
N

O Cl

Cl

Cl

Cl

<mol1>

<mol3> 

<mol2> 

<mol4> 

OH

HO

C1=CC(=CC=C1O)O

benzene-1,4-diol

C6H6O2

Molecular Formula (MF)

IUPAC Name

SMILES

Molecule 2D Graph

(a) (b)

Data Source

Figure 2: Panel (a) illustrates the interleaved molecule-text dataset format, primarily derived from USPTO-Application (Lowe,
2017). Panel (b) displays the five tasks included in the Molecular Name Conversion Tasks (directions drawn as arrows), with
data mainly sourced from PubChem (Kim et al., 2022), IUPAC (Favre and Powell, 2014), and ChEMBL (Zdrazil et al., 2023).

pipeline is provided in the Appendix A.3.326

Reaction Prediction. This category includes two327

tasks: Forward Prediction, which involves pre-328

dicting the product molecules given the reactant329

molecules, and Retrosynthesis, which predicts330

the reactant molecules given the target product331

molecule. Data from USPTO-full (Lowe, 2017;332

Yu et al., 2024) and USPTO_500_MT (Irwin et al.,333

2022; Fang et al., 2024a) are used for these tasks.334

Reaction Condition Prediction. This category335

involves predicting the reagents, catalysts, and sol-336

vents for a given reaction. We utilize extracted reac-337

tion condition information from Qian et al. (2023)338

and re-split the reagent prediction dataset provided339

by Fang et al. (2024a) into three separate sets.340

Reagent Selection. This task, also known as341

reagent recommendation, involves identifying the342

most suitable reagents for a specific chemical reac-343

tion or process. It is divided into three categories:344

reactant selection, ligand selection, and solvent345

selection. We formulate it as choosing the most346

suitable reagent from a list of candidates. We adopt347

the dataset collected from Guo et al. (2023).348

Reaction Type Classification. This task aims to349

classify a reaction into predefined types to nav-350

igate chemical space and better understand the351

underlying mechanisms. We use the USPTO 1K352

TPL dataset from Schwaller et al. (2021a) with353

1000 labeled classes. Learned representations can354

also serve as reaction fingerprints, capturing fine-355

grained differences.356

Yield Regression. This task involves estimat-357

ing the amount of product (yield) obtained from358

a given chemical reaction. We test the model’s359

performance on two High-Throughtput experimen-360

tation (HTE) datasets: Buchwald-Hartwig and361

Suzuki-Miyaura. Both datasets are obtained from362

Schwaller et al. (2021b).363

Remark: Generating an Uncontaminated and 364

Challenging Test Set. Data leakage is commonly 365

observed in recent LLM studies (Blevins and Zettle- 366

moyer, 2022; Deng et al., 2024; Li and Flani- 367

gan, 2024), and we have observed the same issue 368

in early benchmarks of chemical reaction predic- 369

tion (Fang et al., 2024a). This issue leads to skewed 370

evaluation and can hinder the development of truly 371

effective models. To present a reliable chemical 372

reaction task evaluation, we meticulously ensure no 373

overlap between our pretraining/training datasets 374

and testing datasets. Further, we establish a test 375

set for the reaction prediction task by including 376

only samples with a scaffold similarity below a 377

certain threshold compared to the training samples. 378

This approach separates the training and testing dis- 379

tributions, improving the robustness and accuracy 380

of our evaluations. Prior benchmarks often used 381

random splits, resulting in significant overlaps in 382

molecular scaffolds between training and test sets, 383

compromising the evaluation of real-world gener- 384

alization. For further details, please refer to the 385

Appendix A.1. 386

4 Analyzing Pre-Training Strategy and 387

Dataset Configuration 388

In this section, we conduct experiments to evaluate 389

the impact of different pretraining strategies and 390

dataset configurations on downstream tasks. 391

Experimental Setting. We use the GIN (Xu 392

et al., 2019) pretrained by MoleculeSTM (Liu et al., 393

2023a) as the default graph encoder fM and a two- 394

layer MLP as the projector fψ. For the base LMθ, 395

we use Vicuna v1.5-7B (Chiang et al., 2023) by 396

default. We report the mean similarity measured by 397

Morgan (Schneider et al., 2015), MACCS (Durant 398

et al., 2002), RDKit (Landrum et al., 2024) fin- 399

gerprints for generation tasks, Top-1 accuracy for 400

classification tasks, and R2 scores for regression 401
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(d) PRESTO-Stage2 Dataset Configuration Ablation.

Figure 3: Performance analysis of different pretraining strategies and dataset configurations. (a) Ablation
study on the multi-modal pretraining strategy. (b) We explore various options for the granularity of molecular
encoded tokens. (c) Comparison between base (Llama-2) and instruct-tuned (Vicuna v1.5) language models. (d)
Ablation study on dataset configuration for PRESTO domain incremental pretraining stage.

tasks. Detailed experimental settings are available402

in Appendix B.403

4.1 Analyzing Pretraining Strategy404

We investigate the impact of different pretraining405

strategies, varying levels of molecular representa-406

tion granularity, and different LLMs on the model’s407

performance in downstream tasks. We divide the408

pretraining pipeline into two stages: alignment and409

domain incremental pretraining, as mentioned in410

Section 3.2. Due to the high time and computation411

costs of the incremental pretraining stage, we skip412

it unless explicitly stated otherwise.413

Finding 1: Progressive pretraining strategy 414

enhances downstream task performance. As 415

shown in Figure 3a, Direct SFT significantly de- 416

grades the prediction of reaction conditions and 417

yields. This degradation occurs because the model 418

must simultaneously learn to align different modal- 419

ities and adapt to various downstream tasks, in- 420

creasing the optimization difficulty. W/o align- 421

ment demonstrates that the alignment stage, which 422

acts as a warm-up for modality fusion, effectively 423

connects molecular and language information, aid- 424

ing the transition of a general-domain LLM to the 425

chemistry domain. Additionally, w/o incremen- 426

tal pretrain underscores the importance of domain 427
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TASK # TRAIN # VALID # TEST # ALL

Reaction Prediction
DATA SOURCE: Lu and Zhang (2022); Yu et al. (2024); Fang et al. (2024a)
Forward Prediction 124,384 - 1,000 125,384
Retrosynthesis Prediction 124,384 - 1,000 125,384

Reaction Condition Prediction
DATA SOURCE: Qian et al. (2023); Guo et al. (2023); Fang et al. (2024a)
Reagent Prediction 57,162 6,216 6,378 69,756
Catalyst Prediction 10,232 1,059 1,015 12,306
Solvent Prediction 70,988 7,694 7,793 86,475

Reaction Condition Recommendation
DATA SOURCE: Guo et al. (2023)
Reagent Selection 3,955 - 300 4,255

Reaction Type Classification
DATA SOURCE: Schwaller et al. (2021a)
Reaction Type Classification 360,379 40,059 44,511 445,115

Yield Prediction
DATA SOURCE: Schwaller et al. (2021b)
Buchwald-Hartwig 3,855 - 100 3,955
Suzuki-Miyaura 5,660 - 100 5,760

Table 2: PRESTO downstream tasks dataset statistics.

incremental pretraining in enhancing multi-graph428

modeling and domain knowledge adaptation.429

Finding 2: Molecular representation granular-430

ity matters. Drawing from prior VLMs research431

(Karamcheti et al., 2024; Lin et al., 2024), enhanc-432

ing visual resolution improves downstream perfor-433

mance by capturing intricate details. Similarly, we434

utilize various granularities for molecular represen-435

tation, including graph-level (a global token per436

graph), atom-level (each atom represented by one437

token), and fixed-length query-encoding (Li et al.,438

2024; Liu et al., 2023b). In Figure 3b, scaling439

to the atom level yields substantial improvements440

across all tasks compared to graph-level model-441

ing. Interestingly, the query-encoding approach442

performs remarkably well in regression and classi-443

fication tasks but severely underperforms in tasks444

that require generating entire molecules. We spec-445

ulate that the learned queries may fail to capture446

fine-grained molecular structures, resulting in sub-447

optimal performance in generating full molecules.448

Finding 3: Base and instruct-tuned LLMs449

demonstrate comparable capabilities. Instruct450

tuning is a method to finetune base LLMs (trained451

for next-token prediction) to function as dialogue452

agents that can follow instructions more effectively.453

Modern VLMs research (Liu et al., 2024b; Lin454

et al., 2024) often use instruct-tuned models like455

Vicuna as the base LLMs. We evaluate the im-456

pact of instruct-tuned LLM on downstream syn-457

thetic chemistry tasks via a head-to-head compar-458

ison between a base LLM (Llama-2-7B (Touvron459

et al., 2023)) and its instruct-tuned variant (Vi-460

cuna v1.5). Figure 3c shows that instruction-tuned461

LLMs slightly outperform base in reaction condi- 462

tion prediction and yield tasks, while base LLMs 463

excel in forward prediction and retrosynthesis. 464

4.2 Analyzing Dataset Configuration 465

Here, we analyze the impact of dataset configura- 466

tions on domain incremental pretraining. 467

Finding 4: Both interleaved data and name- 468

conversion data play crucial roles in domain 469

incremental pretraining. As shown in Figure 470

3d, relying solely on an interleaved molecule-text 471

dataset can improve model performance in retrosyn- 472

thesis, classification, and regression tasks, but the 473

improvement is marginal. We believe this is be- 474

cause interleaved data lack strict molecule-text cor- 475

respondence, making it difficult for the model to 476

use the surrounding text to learn molecular syntax 477

and semantics and recognize molecular structural 478

patterns. Therefore, we introduce a name conver- 479

sion task dataset to enhance contextual learning, 480

which aids tasks requiring a deeper understanding 481

of chemical entities and their functions. Experi- 482

ments demonstrate that incrementally, pretraining 483

with a blend of interleaved data and name conver- 484

sion data better leverages the domain knowledge 485

from the synthetic procedure corpus, facilitating 486

downstream tasks. 487

5 Comparison with the State-of-the-arts 488

We integrate the above findings to inform our 489

PRESTO framework at the 7B parameter scale. 490

We present results comparing PRESTO with pre- 491

vious domain expert models (Irwin et al., 2022; 492

Schwaller et al., 2019; Wan et al., 2022; Schwaller 493

et al., 2021a; Wang et al., 2022c; Probst et al., 2022; 494

Ahneman et al., 2018; Kwon et al., 2022; Schwaller 495

et al., 2021b) and other LLM-based methods (Fang 496

et al., 2024a; Livne et al., 2023; Christofidellis 497

et al., 2023; Yu et al., 2024; Taylor et al., 2022; 498

Zhao et al., 2024; Lu and Zhang, 2022). 499
Table 3 presents the performances for generation 500

tasks. We report commonly used metrics in the 501

MTM domain, including Exact Match, BLEU (Pa- 502

pineni et al., 2001), Levenshtein distance, Validity, 503

and fingerprint similarities (RDKit, MACCS, and 504

Morgan). Table 4 reports on regression and classi- 505

fication tasks, evaluating metrics such as Accuracy, 506

Confusion Entropy of the confusion matrix (CEN), 507

Matthews Correlation Coefficient (MCC), and R2 508

scores. Results show that PRESTO outperforms 509

the baseline LLMs across all downstream tasks 510

and narrows the gap with domain expert models. 511
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MODEL EXACT↑ BLEU↑ LEVENSHTEIN↓ RDK FTS↑ MACCS FTS↑ MORGAN FTS↑ VALIDITY↑

Forward Reaction Prediction
Chemformer∗ (Irwin et al., 2022) 0.372 0.824 8.097 0.755 0.820 0.717 0.994
MoleculeTransformers∗ (Schwaller et al., 2019) 0.313 0.663 11.735 0.549 0.619 0.532 0.925
Mol-Instruction (Fang et al., 2024a) 0.065 0.428 24.076 0.260 0.430 0.249 0.999
LLama2-7b∗ (Touvron et al., 2023) 0.251 0.658 13.167 0.533 0.630 0.512 0.940
Vicuna v1.5-7b∗ (Chiang et al., 2023) 0.250 0.659 12.506 0.513 0.600 0.495 0.903
LlaSMol-Mistral (Yu et al., 2024) 0.055 0.750 15.558 0.221 0.471 0.202 0.788
nach0-base (Livne et al., 2023) 0.331 0.857 13.108 0.628 0.709 0.594 0.977
Text+Chem T5 (Christofidellis et al., 2023) 0.236 0.750 13.631 0.523 0.630 0.505 0.967
T5Chem (Lu and Zhang, 2022) 0.313 0.703 13.632 0.535 0.616 0.520 0.965

PRESTO 0.355 0.836 10.647 0.646 0.726 0.624 0.973

Retrosynthesis Prediction
Chemformer∗ 0.011 0.611 21.073 0.659 0.730 0.574 0.998
Retroformer∗ (Wan et al., 2022) 0.273 0.769 14.768 0.690 0.782 0.647 0.952
Mol-Instruction 0.039 0.395 31.611 0.279 0.478 0.26 1.0
LLama2-7b∗ 0.220 0.754 15.695 0.649 0.747 0.608 0.933
Vicuna v1.5-7b∗ 0.220 0.756 15.692 0.658 0.758 0.616 0.943
LlaSMol-Mistral 0.010 0.694 19.719 0.148 0.317 0.119 0.530
nach0-base 0.173 0.854 18.883 0.574 0.668 0.515 0.892
Text+Chem T5 0.042 0.620 13.952 0.261 0.281 0.206 0.345
T5Chem 0.208 0.725 17.278 0.595 0.662 0.566 0.994

PRESTO 0.275 0.902 14.433 0.655 0.747 0.619 0.980

Reaction Condition Prediction (Reagent)
LLama2-7b∗ 0.312 0.564 9.058 0.560 0.575 0.466 1.0
Vicuna v1.5-7b∗ 0.315 0.585 8.664 0.576 0.587 0.473 1.0
nach0-base 0.001 0.172 34.212 0.053 0.134 0.039 0.932
Mol-Instruction 0.0 0.219 27.108 0.034 0.098 0.030 1.0
T5Chem 0.019 0.559 11.044 0.366 0.461 0.374 0.994

PRESTO 0.458 0.776 6.206 0.678 0.683 0.601 0.999

Reaction Condition Prediction (Catalyst)
LLama2-7b∗ 0.680 0.720 2.545 0.882 0.868 0.687 1.0
Vicuna v1.5-7b∗ 0.685 0.703 2.451 0.883 0.869 0.692 1.0
nach0-base 0.0 0.072 36.442 0.129 0.055 0.009 0.849
Mol-Instruction 0.0 0.110 28.424 0.031 0.045 0.015 0.999
T5Chem 0.022 0.346 13.408 0.146 0.268 0.200 0.996

PRESTO 0.768 0.814 1.755 0.914 0.895 0.774 1.0

Reaction Condition Prediction (Solvent)
LLama2-7b∗ 0.311 0.462 3.819 0.452 0.48 0.417 1.0
Vicuna v1.5-7b∗ 0.320 0.436 3.809 0.459 0.486 0.427 1.0
nach0-base 0.0 0.072 36.442 0.129 0.055 0.009 0.849
Mol-Instruction 0.0 0.155 25.117 0.030 0.122 0.035 1.0
T5Chem 0.083 0.311 16.224 0.458 0.424 0.397 0.995

PRESTO 0.419 0.695 2.758 0.529 0.547 0.506 0.912

Table 3: Comparison of various models on forward reaction prediction, retrosynthesis prediction, and reaction condition
prediction tasks. Model indicates a domain expert method, and ∗ denotes our re-implementation.

METHOD REACTANT SOLVENT LIGAND

Reagent Selection
LLama2-7b∗ 0.670 0.550 0.010
Vicuna v1.5-7b∗ 0.690 0.580 0.440
GPT-4† 0.299 0.526 0.534
GAL-30B† (Taylor et al., 2022) 0.107 0.104 0.030
LLama2-13b-chat† 0.145 0.050 0.284
ChemDFM-13b (Zhao et al., 2024) 0.240 0.120 0.350

PRESTO 0.780 0.630 0.520

METHOD ACC↑ CEN↓ MCC↑

Reaction Type Classification
BERT classifier (Schwaller et al., 2021a) 0.989 0.006 0.989
ContraGIN (Wang et al., 2022c) 0.993 0.001 0.993
DRFP (Probst et al., 2022) 0.977 0.011 0.977
T5Chem 0.995 0.003 0.995
LLama2-7b∗ 0.804 0.079 0.803
Vicuna v1.5-7b∗ 0.888 0.048 0.887

PRESTO 0.991 0.004 0.991

METHOD B-H S-M

Yield Regression
DFT (Ahneman et al., 2018) 0.920 -
UAGNN (Kwon et al., 2022) 0.969 0.884
YieldBERT (Schwaller et al., 2021b) 0.950 0.815
T5Chem 0.970 -
LLama2-7b∗ -0.476 0.121
Vicuna v1.5-7b∗ -0.131 0.151

PRESTO 0.944 0.652

Table 4: Comparison with baselines on reagent selection, reaction type classification, and yield regression tasks. † denotes
results from (Zhao et al., 2024). For reagent selection, we report the result in top-1 accuracy except for LIGAND SELECTION,
where we report the top 50% accuracy. For yield regression, we report the R2 score.

These improvements highlight the effectiveness of512

our proposed progressive pretraining strategy and513

comprehensive analytical design. However, it is514

noteworthy that there is still room for improvement515

in validity. Future efforts could involve replacing516

SMILES with SELFIES (Krenn et al., 2019) to517

enhance robustness in representation.518

6 Conclusion and Future Work519

This study explores integrating multimodal LLMs520

into synthetic chemistry tasks to overcome the521

molecule-text modality gap. We highlight the im-522

portance of multi-graph datasets and progressive523

pretraining methods, showing significant improve-524

ments in reaction predictions and synthetic chem- 525

istry tasks. As a result, we introduce PRESTO, 526

which outperforms baseline LLMs. 527
Meanwhile, current multimodal molecule mod- 528

els are limited to generating only 1D sequences. As 529

a potential direction, we envision developing mod- 530

els capable of producing comprehensive molecu- 531

lar representations (i.e., 2D, 3D). Future research 532

could also expand the diversity of datasets to in- 533

clude more molecular structures and improve the 534

LLM’s capability for dialogue. We aim to advance 535

the fields of synthetic chemistry and compound dis- 536

covery, ultimately creating a more powerful and 537

versatile assistant for chemists. 538
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Limitations539

Despite the significant advancements achieved by540

PRESTO, several limitations remain. Firstly, we541

did not conduct ablation studies on additional542

molecular modalities, such as 3D structure informa-543

tion, nor did we explore whether combining differ-544

ent modalities could further enhance molecular rep-545

resentations and improve downstream performance.546

Secondly, we observed that the model’s ability547

to answer general domain questions declined as548

domain-specific finetuning (SFT) progressed. Fu-549

ture training should consider integrating general550

domain SFT datasets to prevent the forgetting is-551

sue. Lastly, our base LLM is a general-domain552

model, and the fields of chemistry and molecu-553

lar science lack specialized LLMs with parameter554

scales comparable to models like LLaMA. This555

limitation restricts the coverage and application of556

domain-specific knowledge, underscoring the need557

to develop larger, more versatile domain-specific558

LLMs for enhanced performance.559

Potential Risks560

The use of AI in synthetic chemistry carries sev-561

eral potential risks. One major concern is the pos-562

sibility of misuse to produce dangerous or illicit563

substances, posing significant safety and ethical564

challenges. Additionally, inaccuracies in the gen-565

erated content could lead to hazardous chemical566

reactions if not carefully verified, potentially caus-567

ing harm or equipment damage. Over-reliance on568

AI-generated synthesis procedures without proper569

validation increases the risk of accidents and un-570

safe practices. Strict oversight and robust ethical571

guidelines are essential to mitigate these risks and572

ensure safe application.573
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A Data Collection1112

All the SMILES strings are canonicalized using1113

RDKit (Landrum et al., 2024) to ensure a standard1114

representation. We apply additional data cleaning1115

steps, such as removing invalid SMILES and han-1116

dling duplicate entries.1117

A.1 Data Cleaning1118

Data leakage in prior works. Our experiments1119

identified data leakage issues in the previous popu-1120

lar benchmark study Mol-Instruction (Fang et al.,1121

2024a). For example, in the retrosynthesis pre-1122

diction task, we compared reactions in the train1123

and test splits after canonicalizing SMILES and1124

found that 72 chemical reactions in the test split1125

also appeared in the train split. Moreover, in the1126

reagent prediction task, 884 reactions in the train1127

split were identical to those in the test split of the1128

retrosynthesis prediction task. Additionally, the1129

study employed a random split method for train1130

and test sets, which resulted in significant molecu-1131

lar scaffold similarities (Fingerprint Tanimoto Sim-1132

ilarity avg ∼ 0.8) between the reactions in the train1133

and test splits. Consequently, the test results on1134

this benchmark lack generalizability for real-world1135

applications.1136

Our non-overlapping, scaffold-based dataset1137

splits. When splitting the dataset, we followed1138

two principles: (1) Ensure that chemical reactions1139

in the test splits of all downstream synthetic chem-1140

istry tasks do not appear in any train datasets, in-1141

cluding both the pretraining and SFT train datasets;1142

(2) Resample the test set based on a scaffold split-1143

ting approach, using a scaffold similarity threshold1144

(Fingerprint Tanimoto Similarity set between 0.51145

and 0.6). The number of samples was maintained1146

consistent with the Mol-Instruction test set, with1147

additional samples selected from the LlaSMol (Yu1148

et al., 2024) test set. Figure 4 illustrates the scaffold1149

similarity distribution of reaction SMILES between1150

previous works and our resampled test set.1151

A.2 Data Collection and Preprocessing of1152

PRESTO1153

In this section, we provide details on the data col-1154

lection and preprocessing procedures for PRESTO1155

two pretraining stages.1156

PubChem Caption Dataset for Mol-Text Align-1157

ment. We constructed a molecule caption dataset1158

to enable the LLM to integrate molecule struc-1159

ture information and biomolecular domain knowl-1160

edge during the initial alignment phase. Using the 1161

PubChem (Kim et al., 2022) database as the data 1162

source, we followed the construction procedures 1163

outlined in Liu et al. (2023a). For each molecule, 1164

we used the “description” field from its annotation 1165

page as the corresponding text description. This 1166

resulted in a dataset of 326,675 molecule-text pairs. 1167

Interleaved Dataset for Domain Incremen- 1168

tal Pretrain. We compiled the interleaved 1169

molecule-text dataset primarily from USPTO- 1170

Applications (Lowe, 2017), consisting of approxi- 1171

mately 2 million reactions and their corresponding 1172

application records published by USPTO between 1173

2001 and September 2016. Raw XML files were 1174

downloaded, and key information for each reaction, 1175

including chemical reaction equations and textual 1176

descriptions of experimental procedures, was ex- 1177

tracted. Following initial deduplication and filter- 1178

ing procedures outlined in (Wang et al., 2023a), 1179

we initially collected 1,593,329 procedure samples. 1180

Subsequently, we proceeded with two main prepro- 1181

cessing steps: 1182

• Entity Recognition: We used the Named Entity 1183

Recognition tool BERN2 (Sung et al., 2022) to 1184

extract molecule entities from procedure para- 1185

graphs, retaining samples containing identifiable 1186

molecule entities. All extracted molecules’ IU- 1187

PAC names were then converted to SMILES for- 1188

mat, suitable for further encoding into 2D molec- 1189

ular graphs. After this step, 1,592,462 samples 1190

remained. 1191

• Removal of samples with excessive molecule 1192

entities and sequence length: To manage token 1193

space and prevent overly long sequences, sam- 1194

ples containing more than 20 entities (filtering 1195

out 1,556 samples) and text sequences exceeding 1196

1024 tokens (filtering out 2,197 samples) were 1197

removed. Finally, our constructed interleaved 1198

dataset comprises 1,588,709 samples, encom- 1199

passing over 342,401 unique molecules. The 1200

statistics of the interleaved molecule-text dataset 1201

are shown in Figure 5. 1202

Name Conversion Dataset for Domain Incre- 1203

mental Pretrain. We collected molecule entries 1204

from PubChem (Kim et al., 2022) and utilized the 1205

existing dataset from LLaSMol (Yu et al., 2024). 1206

LLaSMol originally presents four tasks: SMILES 1207

to Formula, SMILES to IUPAC name, IUPAC 1208

name to SMILES, and IUPAC name to Formula. 1209
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Figure 4: Comparison of similarity distributions for reaction prediction datasets. The plots show the count of
scaffolds within each similarity range for the full test datasets provided in Yu et al. (2024) and Fang et al. (2024a)
(raw data, lighter shade) and the selected subsets of 1000 scaffolds with the lowest similarities (darker shade).
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Figure 5: Statistics of the Interleaved Molecule-Text Dataset.

We retained the latter two tasks as text-only data.1210

To integrate molecule graph tokens into PRESTO,1211

we replaced SMILES with graph representations1212

using Landrum et al. (2024), creating two new1213

tasks: Molecule Graph to Formula and Molecule1214

Graph to IUPAC. Additionally, we derived a fifth1215

task, Molecule Graph to SMILES, directly from1216

the Kim et al. (2022) molecule entries by parsing1217

the SMILES into graph representations similarly.1218

A.3 Downstream Tasks Dataset Construction1219

In this section, we provide details on the data collec-1220

tion process for all downstream tasks of PRESTO1221

introduced in Section 3.4. Additionally, Table 51222

provides a comprehensive comparison of the capa-1223

bilities of each method across these tasks.1224

Reaction Prediction. We use USPTO-500-MT1225

(Lu and Zhang, 2022; Fang et al., 2024a) and1226

USPTO-full (Lowe, 2017; Yu et al., 2024) datasets1227

for reaction prediction. The training set of Fang1228

et al. (2024a) has been chosen for its wide usage1229

(Pei et al., 2023, 2024; Livne et al., 2023; Cao et al., 1230

2023; Zhao et al., 2024). However, while several 1231

previous works have reported near-optimal accu- 1232

racy on the test set of Fang et al. (2024a), we argue 1233

that most models still fail in real-world hard cases. 1234

To enhance the original test set’s complexity, we 1235

add more challenging cases from Yu et al. (2024)’s 1236

test set based on Bemis-Murcko scaffolds (Bemis 1237

and Murcko, 1996). This ensures lower similarity 1238

between train and test sets. The new test set has 1239

1,000 samples to thoroughly evaluate the model’s 1240

generalization ability. 1241

Reaction Condition Prediction. The reaction 1242

condition prediction tasks use combined data from 1243

TextReact (Qian et al., 2023) and Mol-Instruction 1244

(Fang et al., 2024a), both sourced from the USPTO 1245

dataset. Following Qian et al. (2023), we further 1246

annotate reaction condition prediction into subtasks 1247

with reagents, catalysts, and solvents. Notably, 1248

65.75% of the training reactions and 68.47% of 1249
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Method Forward Retro Reaction Condition Pred Reagent
Recommend

Reaction
Type Yield

All Reagent Catalyst Solvent

T5Chem (Lu and Zhang, 2022) ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✓
Text+ChemT5 (Christofidellis et al., 2023) ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗
TextReact (Qian et al., 2023) ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗
ChemDFM (Zhao et al., 2024) ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✓
Mol-Instruction (Fang et al., 2024a) ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗
LlaSMol (Yu et al., 2024) ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗
BioT5+ (Pei et al., 2024) ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗
InstructMol (Cao et al., 2023) ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗
nach0 (Livne et al., 2023) ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗
PRESTO ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 5: Comparison of various models across different chemical reaction prediction tasks. The table
summarizes the capabilities of each method in forward reaction prediction, retrosynthesis prediction, reaction
condition prediction (overall, reagent, catalyst, and solvent), reagent recommendation, reaction type prediction, and
yield prediction. PRESTO demonstrates comprehensive support across all tasks.

the test reactions in Qian et al. (2023) overlap with1250

Fang et al. (2024a). To ensure fair comparison and1251

utilize the additional data, we create a new dataset1252

by combining the overlapping reactions. The data1253

is split into train/valid/test sets with a ratio of 8:1:11254

for each task.1255

Reagent Selection. Our study utilizes the reagent1256

selection dataset from ChemLLMBench (Guo et al.,1257

2023), comprising 4,255 valid samples originally1258

sourced from the Suzuki High-Throughput Experi-1259

mentation (HTE) dataset (Perera et al., 2018). Each1260

sample includes reactants, a product, and a list of1261

candidate reagents. The objective is to select the1262

most suitable reagent from the candidate list to fa-1263

cilitate the reaction. The dataset is divided into1264

3,955 training samples and 300 testing samples,1265

maintaining the same test split as Guo et al. (2023).1266

Reaction Type Classification. For reaction type1267

classification, we use the USPTO 1K TPL dataset1268

(Schwaller et al., 2021a) derived from the USPTO1269

patent database (Lowe, 2017), which contains1270

445,115 reactions labeled with 1000 reaction1271

classes. Keeping the original configuration, the1272

dataset is split into 360,545 samples for training,1273

40,059 for validation, and 44,511 for testing.1274

Yield Regression. In this task, we use the1275

Buchwald-Hartwig dataset (Ahneman et al., 2018)1276

and the Suzuki-Miyaura dataset (Perera et al., 2018)1277

collected from Schwaller et al. (2021b). The1278

Buchwald-Hartwig dataset contains 3,955 reac-1279

tions, while the Suzuki-Miyaura dataset contains1280

5,760 reactions. We follow the approach of Chem-1281

LLMBench, using their predefined test sets (1001282

tests each). Notably, we convert it into a regression1283

task, and the yield values are normalized to the1284

range [0, 1]. 1285

A.4 Discussion on License. 1286

As depicted in Table 6, we elaborate on the ori- 1287

gins and legal permissions associated with each 1288

data component utilized in the development of the 1289

PRESTO. This encompasses both biomolecular 1290

data and textual descriptions. Thorough scrutiny 1291

was conducted on all data origins to confirm com- 1292

patibility with our research objectives and sub- 1293

sequent utilization. Proper and accurate citation 1294

of these data sources is consistently maintained 1295

throughout the paper. 1296

B Implementation Details 1297

B.1 Evaluation Metrics 1298

We utilize a variety of metrics to comprehensively 1299

evaluate the performance of the models across dif- 1300

ferent types of tasks. The key metrics used for each 1301

type of task are as follows. 1302

Classification Tasks. For classification tasks, we 1303

report the following metrics: 1304

• Accuracy: The ratio of correctly classified sam- 1305

ples. 1306

• CEN (Delgado and Núñez-González, 2019): The 1307

CEN score is a measure of the overall entropy 1308

of a confusion matrix, which is used to evaluate 1309

classifiers in multi-class problems. 1310

• MCC (Chicco et al., 2021): The MCC score 1311

is a balanced measure of binary classification 1312

quality, considering true and false positives and 1313

negatives. 1314

Regression Tasks. For regression tasks, we con- 1315

sider the following metrics: 1316

17
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html

Works produced by the U.S. government are not subject to copyright
protection in the United States. Any such works found on National
Library of Medicine (NLM) Web sites may be freely used or reproduced
without permission in the U.S.

ChEBI https://creativecommons.org/
licenses/by/4.0/

You are free to: Share — copy and redistribute the material in any
medium or format. Adapt — remix, transform, and build upon the
material for any purpose, even commercially.

IUPAC https://iupac.org/wp-content/
uploads/2021/06/iupac-inchi-license_
2020.pdf

An "IUPAC license" generally refers to the permissions, guidelines, or
rights associated with using the standards, software, data, or publications
provided by the International Union of Pure and Applied Chemistry
(IUPAC). This can include adhering to IUPAC’s chemical nomenclature
guidelines in scientific communication, using their proprietary software
or databases under specific licensing terms, and obtaining permissions to
reproduce or adapt copyrighted materials.

USPTO https://www.uspto.gov/
learning-and-resources/
open-data-and-mobility

It can be freely used, reused, and redistributed by anyone.

Table 6: Data resources and licenses utilized in data collection for PRESTO.

• MAE: Mean Absolute Error, the average abso-1317

lute difference between predicted and actual val-1318

ues.1319

• MSE: Mean Squared Error, the average squared1320

difference between predicted and actual values.1321

• R2: The coefficient of determination, indicating1322

the proportion of variance in the target variable1323

that is predictable from the input features.1324

Molecule Generation Tasks. For tasks involv-1325

ing SMILES (Weininger, 1988) representations of1326

molecules, we calculate:1327

• Exact Match: The proportion of predicted1328

SMILES strings that exactly match the ground1329

truth after canonicalization.1330

• BLEU (Papineni et al., 2001): The BLEU score1331

treats the SMILES strings as text, measuring n-1332

gram overlap between predictions and references.1333

• Levenshtein Distance (Levenshtein, 1966): The1334

minimum number of single-character edits re-1335

quired to change the predicted SMILES into the1336

reference.1337

• RDKit Similarity (Landrum et al., 2024): The1338

Tanimoto similarity between RDKit fingerprints1339

of the predicted and reference molecules.1340

• MACCS Keys Similarity (Durant et al., 2002):1341

The Tanimoto similarity between MACCS keys1342

fingerprints of the molecules.1343

• Morgan Fingerprint Similarity (Schneider1344

et al., 2015): The Tanimoto similarity between1345

Morgan circular fingerprints of the molecules.1346

• Validity: The proportion of predicted SMILES1347

strings that can be successfully parsed into valid1348

molecule structures by RDKit.1349

Note that if the origin model is trained on1350

SELFIES (Krenn et al., 2019), we use Alstonlo 1351

et al. (2024) to translate the generated SELFIES to 1352

SMILES before evaluation. 1353

B.2 Experimental Details 1354

Here we detail the hyperparameters for PRESTO 1355

pretraining and SFT. 1356

PRESTO Alignment Stage. We employed the 1357

PubChem molecule caption dataset, comprising 1358

approximately 327K samples, for training over 5 1359

epochs. Training was conducted using 8×A6000 1360

GPUs, with a total batch size of 128. AdamW 1361

optimizer was utilized with β = (0.9, 0.999) and 1362

a learning rate of 2e-3, without weight decay. The 1363

learning rate was initially warmed up over 3% of 1364

the total training steps, followed by a cosine decay 1365

schedule. The model’s maximum sequence length 1366

was set to 2048 for the base LLM. To conserve 1367

CUDA memory, we employed DeepSpeed ZeRO-2 1368

strategy and gradient checkpointing. 1369

PRESTO Domain Incremental Pretrain Stage. 1370

Using the projector checkpoint from the alignment 1371

stage, training followed the fundamental settings 1372

of the alignment stage, with adjustments made to 1373

the total batch size, set to 64, and the learning rate, 1374

set to 2e-5. Due to the prohibitive costs associated 1375

with fully finetuning the base 7B LLMs and the 1376

extensive pretraining dataset, all experiments were 1377

limited to one epoch. 1378

Supervised Finetuning. We utilize the updated 1379

projector and LLM weights from the pretraining 1380

stage and combine all downstream task training 1381

sets for joint model training. For the full finetuning 1382

experiment, we train for three epochs by default, us- 1383

ing the same hyperparameters as in the pretraining 1384
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stage except for setting the total batch size to 128.1385

For the LoRA ablation, we set the peak learning1386

rate to 8e-5.1387

C More Ablations1388

This section extends Section 4 to introduce more1389

findings according to the ablation experiments.1390

C.1 Analyzing SFT1391

Here, we explore important aspects of supervised1392

finetuning, such as parameters, training time, and1393

data scaling.1394

Finding 5: Updating LLMs is essential. We1395

conducted an ablation study on the trainable pa-1396

rameters of LLMs during the SFT stage (Figure1397

6a), progressing from not updating any LLM pa-1398

rameters to updating the attention block’s q_proj1399

and v_proj layers with LoRA, then updating all1400

linear layers except the lm_head layer with LoRA,1401

and finally fully finetuning all parameters. All ex-1402

periments involved training for 3 epochs on the1403

SFT dataset. We found that not updating the LLM1404

parameters during SFT led to nearly zero perfor-1405

mance, highlighting the necessity of parameter up-1406

dates for adapting to downstream tasks. Incorpo-1407

rating LoRA modules significantly boosted perfor-1408

mance, and adding more trainable LoRA modules1409

consistently improved results. Moreover, when1410

computational resources allow, full-tuning outper-1411

forms LoRA-tuning across various downstream1412

tasks.1413

Finding 6: Balancing SFT training time opti-1414

mizes downstream task performance. We in-1415

vestigate the impact of SFT training time on a sub-1416

set of our SFT training dataset (1/7 size, detailed1417

in the Appendix). Unlike existing Vision LMs,1418

which typically undergo only one epoch of training,1419

we compare performance across different numbers1420

of epochs. We observe severe underfitting with1421

only one epoch of training. Surprisingly, we find1422

steady improvement across all tasks when trained1423

for up to three epochs but encounter overfitting1424

when training to four epochs, leading to perfor-1425

mance degradation. In conclusion, we recommend1426

training for three epochs for optimal performance1427

on downstream tasks.1428

Finding 7: Coverage and diversity of SFT1429

dataset are critical for better results. We ex-1430

amined the impact of data repetition (i.e., allocat-1431

ing FLOPs across multiple epochs on the same1432

data) and SFT-data size on downstream tasks. In1433

our experiments on forward and retrosynthesis 1434

prediction, we fixed the training FLOPs (equiv- 1435

alent to the FLOPs used to train for 1 epoch with 1436

the full dataset) and successively halved the train- 1437

ing dataset while doubling the number of training 1438

epochs. We used two subsampling methods: (1) 1439

random subsampling and (2) hierarchical subsam- 1440

pling based on scaffold clustering. Figure 7 re- 1441

vealed that for a fixed compute budget, training up 1442

to four epochs with repeated data resulted in neg- 1443

ligible changes in loss compared to using unique 1444

data. Moreover, we found that the coverage and 1445

diversity of the SFT training set are crucial; even 1446

when the training set size was halved, maintain- 1447

ing the number of scaffold clusters led to higher 1448

performance on the test set. 1449

D Instruction Templates 1450

In this section, we provide a basic description of the 1451

instruction templates utilized in PRESTO. These 1452

templates are designed to guide the model during 1453

pretraining and downstream tasks. We have a va- 1454

riety of templates for each task, and we present a 1455

randomly selected template in this part. 1456

D.1 Template for Pretraining 1457

Here are six templates used in the pretraining stage 1458

of PRESTO: 1459

1. PubChem Caption (Table 7) 1460

2. IUPAC to Formula (Table 8) 1461

3. IUPAC to SMILES (Table 9) 1462

4. Molecule Graph to Formula (Table 10) 1463

5. Molecule Graph to IUPAC (Table 11) 1464

6. Molecule Graph to SMILES (Table 12) 1465

D.2 Template for Downstream Tasks 1466

Here are 10 templates used for downstream tasks 1467

of PRESTO: 1468

1. Forward Prediction (Table 13) 1469

2. Retrosynthesis Prediction (Table 14) 1470

3. Catalyst Prediction (Table 15) 1471

4. Reagent Prediction (Table 16) 1472

5. Solvent Prediction (Table 17) 1473

6. Reagent Selection (Table 18) 1474

7. Ligand Selection (Table 19) 1475

8. Solvent Selection (Table 20) 1476

9. Yield Prediction (Table 21) 1477

10. Reaction Type Classification (Table 22) 1478
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Figure 6: Performance analysis of different training strategies and dataset configurations. (a) Ablation study
on the trainable parameters in the LLM during SFT. An increase in trainable parameters consistently enhances
performance. (b) Analysis of training duration impacts on SFT. Performance improves up to three epochs, while
training for four epochs results in overfitting.
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Figure 7: Impact of SFT training dataset coverage and diversity on downstream task performance. Training up
to four epochs with repeated data resulted in negligible changes in loss compared to using unique data. Maintaining
the number of scaffold clusters even when the training set size was halved led to higher performance on the test set.

E Case Studies1479

We show some selected cases for forward predic-1480

tion (Table 8), retrosynthesis prediction (Table 9),1481

reagent prediction (Table 10), solvent prediction1482

(Table 12), and catalyst prediction tasks (Table 11).1483
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System Prompt:
You are a chemist. Now you are given a representation of a molecule. Please help me to understand the
molecule.
Instruction:
Provide a brief overview of this molecule: <molecule>.
Output:
Sure! Here is a description of this molecule. <caption>.

Table 7: An instruction template for generating captions for molecules. This template guides the generation of a
brief description or overview of the given molecule representation.

System Prompt:
You are a chemist. Please follow the instructions to convert the structure to the corresponding name.
Instruction:
<input> is the IUPAC name of a molecule. Please give its molecular formula.
Output:
The molecular formula is <output>.

Table 8: An instruction template for converting IUPAC names to molecular formulas. This template guides the
conversion from the given IUPAC name to its corresponding molecular formula.

System Prompt:
You are a chemist. Please follow the instructions to convert the structure to the corresponding name.
Instruction:
Convert the IUPAC name of a molecule <input> into SMILES representation.
Output:
The SMILES representation is <output>.

Table 9: An instruction template for converting IUPAC names to SMILES representations. This template
guides the conversion from the given IUPAC name to its corresponding SMILES representation.

System Prompt:
You are a chemist. Please follow the instructions to convert the structure to the corresponding name.
Instruction:
<input> is the representation of a molecule. What is its molecular formula?
Output:
The molecular formula is <output>.

Table 10: An instruction template for converting molecular graph to molecular formula. This template guides
the conversion from the given graph representation to its corresponding molecular formula.

System Prompt:
You are a chemist. Please follow the instructions to convert the structure to the corresponding name.
Instruction:
<input> is the representation of a molecule. What is its IUPAC name?
Output:
The IUPAC name is <output>.

Table 11: An instruction template for converting molecule graph to IUPAC name. This template guides the
conversion from the given graph representation to its corresponding IUPAC name.
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System Prompt:
You are a chemist. Please follow the instructions to convert the structure to the corresponding name.
Instruction:
The representation of a certain molecule is <input>. Can you provide its SMILES representation?
Output:
The SMILES representation is <output>.

Table 12: An instruction template for converting the molecule graph to SMILES representation. This template
guides the conversion from the given graph representation to its corresponding SMILES representation.

System:
You are a chemist. Your task is to predict the SMILES representation of the product molecule, given the
molecule representations of the reactants.
Instruction:
Using <reactant_1>.<reactant_2>.<reactant_3> as the reactants and reagents, tell me the potential
product.
Output:
Sure. A potential product: <product_1>.<product_2>.

Table 13: An instruction template for forward prediction. This template guides the prediction of the product
based on the given reactants and reagents. The reactants and reagents are specified, and the model must predict the
potential product from the reaction.

System:
You are a chemist. Your task is to predict the SMILES representation of the reactant molecules, given
the molecule representations of the product.
Instruction:
Using <product_1>.<product_2>.<product_3> as the products, predict the possible reactants that could
have been utilized to synthesize these products.
Output:
Here are possible reactants: <reactant_1>.<reactant_2>.

Table 14: An instruction template for retrosynthesis prediction. This template guides the prediction of the
possible reactants based on the given product. The product is specified, and the model must predict the reactants
that could have been used to synthesize this product.

System Prompt:
You are a chemist. Now, you are given a reaction equation. Your task is to predict the SMILES
representation of the catalyst, given molecule representation of the reaction.
Instruction:
Based on the given chemical reaction: <reactant_1>.<reactant_2>.<reactant_3> » <prod-
uct_1>.<product_2>, propose some likely catalysts that might have been utilized.
Output:
A possible catalyst can be <catalyst>.

Table 15: An instruction template for catalyst prediction. This template guides the prediction of possible catalysts
based on the given reaction components. The reactants and products are specified, and the model must predict the
potential catalyst from the reaction.
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System Prompt:
You are a chemist. Now, you are given a reaction equation. Your task is to predict the SMILES
representation of the reagents, given molecule representation of the reaction.
Instruction:
Based on the given chemical reaction: <reactant_1>.<reactant_2>.<reactant_3> » <prod-
uct_1>.<product_2>, propose some likely reagents that might have been utilized.
Output:
A possible reagent can be <reagent>.

Table 16: An instruction template for reagent prediction. This template guides the prediction of possible reagents
based on the given reaction components. The reactants and products are specified, and the model must predict the
potential reagent from the reaction.

System Prompt:
You are a chemist. Now, you are given a reaction equation. Your task is to predict the SMILES
representation of the solvents, given molecule representation of the reaction.
Instruction:
Based on the given chemical reaction: <reactant_1>.<reactant_2>.<reactant_3> » <prod-
uct_1>.<product_2>, propose some likely solvents that might have been utilized.
Output:
A possible solvent can be <solvent>.

Table 17: An instruction template for solvent prediction. This template guides the prediction of possible solvents
based on the given reaction components. The reactants and products are specified, and the model must predict the
potential solvent from the reaction.

System Prompt:
You are an expert chemist. Given one reactant, two reagents, and one solvent of a Suzuki reaction,
predict the optimal reactant that maximizes the yield with the rest of the reaction components. Only
return the option from the given list.
Instruction:
Given the rest of the reaction components: <reactant_1> > <reagent_1>.<reagent_2> » <solvent>.
Select the optimal reactant: <reactant_2>.<reactant_3>
Output:
Optimal reactant: <reactant_3>.

Table 18: An instruction template for reagent selection. This template guides the prediction of the optimal
reactant based on the given reaction components. The reactant, reagents, and solvent are specified, and the model
must choose the best reactant from the provided list.
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System Prompt:
You are an expert chemist. Given two reactants, one reagent, and one solvent of a Suzuki reaction,
predict the optimal ligand that maximizes the yield with the rest of the reaction components. Only
return the option from the given list.
Instruction:
Given the rest of the reaction components: <reactant_1>.<reactant_2> » <reagent>.<solvent>.
Select the optimal ligand: <ligand_1>.<ligand_2>
Output:
Optimal ligand: <ligand_1>.

Table 19: An instruction template for ligand selection. This template guides the prediction of the optimal ligand
based on the given reaction components. The reactants, reagents, and solvents are specified, and the model must
choose the best ligand from the provided list.

System Prompt:
You are an expert chemist. Given two reactants, one ligand, and one base of a Suzuki reaction, predict
the optimal solvent that maximizes the yield with the rest of the reaction components. Only return the
option from the given list.
Instruction:
Given the rest of the reaction components: <reactant_1>.<reactant_2> » <ligand>.<base>.
Select the optimal solvent: <solvent_1>.<solvent_2>
Output:
Optimal solvent: <solvent_2>.

Table 20: An instruction template for solvent selection. This template guides the prediction of the optimal solvent
based on the given reaction components. The reactants, ligand, and base are specified, and the model must choose
the best solvent from the provided list.

System Prompt:
You are a chemist. Now, you are given a reaction equation. Your task is to predict the yield ratio of
the reaction. The return value should be in the range of 0-1. The higher the value, the more likely the
reaction is to occur.
Instruction:
Based on the given chemical reaction: <reactant_1>.<reactant_2>.<reactant_3> » <prod-
uct_1>.<product_2>, what is the yield ratio of the reaction?
Output:
The yield ratio is <ratio>.

Table 21: An instruction template for yield prediction. This template guides the prediction of the yield ratio
based on the given reaction components. The reactants and products are specified, and the model must predict the
yield ratio from the reaction.
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System Prompt:
You are a chemist. Now, you are given a reaction equation. Your task is to predict the class of the
reaction. Your task is to predict the class number of the reaction.
Instruction:
Based on the given chemical reaction: <reactant_1>.<reactant_2>.<reactant_3> » <prod-
uct_1>.<product_2>, predict the class number of the reaction.
Output:
The class number is <class_number>.

Table 22: An instruction template for reaction type classification. This template guides the prediction of the
reaction class number based on the given reaction components. The reactants and products are specified, and the
model must predict the reaction class number from the reaction.
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Figure 8: More examples of the Forward Prediction task. We include Mol-Instruction (Fang et al., 2024a) and
nach0 (Livne et al., 2023) as baselines.
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Figure 9: More examples of the Retrosynthesis Prediction task. We include Mol-Instruction (Fang et al., 2024a)
and nach0 (Livne et al., 2023) as baselines.
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