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Abstract
Training deep learning models on limited data
while maintaining generalization is one of the fun-
damental challenges in molecular property pre-
diction. One effective solution is transferring
knowledge extracted from abundant datasets to
those with scarce data. Recently, a novel algo-
rithm called Geometrically Aligned Transfer En-
coder (GATE) has been introduced, which uses
soft parameter sharing by aligning the geomet-
rical shapes of task-specific latent spaces. How-
ever, GATE faces limitations in scaling to multiple
tasks due to computational costs. In this study,
we propose a task addition approach for GATE to
improve performance on target tasks with limited
data while minimizing computational complex-
ity. It is achieved through supervised multi-task
pre-training on a large dataset, followed by the
addition and training of task-specific modules for
each target task. Our experiments demonstrate the
superior performance of the task addition strategy
for GATE over conventional multi-task methods,
with comparable computational costs.

1. Introduction
Molecular property prediction is a key area of computational
chemistry, aimed at developing models that map molecular
structures to their properties (Deng et al., 2023). These prop-
erties can vary from fundamental characteristics such as elec-
tron affinity and critical compressibility factor to complex
and specific properties like chromophore lifetime. These
predictions are crucial for accelerating the development of
next-generation materials, optimizing chemical synthesis,
and understanding molecular interactions.

However, accurately predicting molecular properties poses
a significant challenge due to the complex relationships be-
tween molecular structures and their properties. Transfer
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learning has emerged as an essential technique to address
the scarcity of labeled data and the high dimensionality of
feature spaces in this field (Shen & Nicolaou, 2019). By
leveraging knowledge gained from related tasks or domains,
transfer learning enables models to generalize better to tar-
get tasks with limited training data, enhancing prediction
accuracy and robustness. This is particularly beneficial in
molecular property prediction, where experimental data col-
lection is often expensive and time-consuming.

In the context of molecular property prediction, Geometri-
cally Aligned Transfer Encoder (GATE) has been introduced
as a promising foundation approach for knowledge transfer
(Ko et al., 2024b;a). GATE aligns the geometrical shapes
of latent spaces across tasks to transfer mutual information.
However, GATE’s pairwise transfer between tasks results in
O(N2) computational complexity as the number of tasks
increases, making it computationally expensive.

To address this issue, we propose a task addition approach
for GATE, a two-stage framework that reduces the computa-
tional cost while maintaining effective knowledge transfer.
In the first stage, supervised pre-training is performed on a
large dataset. In the second stage, modules for each target
task are added and trained on smaller datasets of the target
task while the parameters pre-trained on source tasks remain
fixed. This approach allows pre-trained models to be reused
for diverse target tasks, significantly reducing training time.

In this paper, we introduce task addition for GATE to mini-
mize computational cost while maintaining generalizability.
The key contributions of this work are as follows:

• We extend GATE with a task addition approach.

• Task-added GATE outperforms single-task learning
(SINGLE) and task-added multi-task learning (MTL)
across various molecular property prediction tasks.

• The training time for task-added GATE is significantly
faster than training MTL models from scratch and com-
parable to SINGLE and task-added MTL.

• Our results show that task-added GATE is less depen-
dent on the choice of source tasks, unlike task-added
MTL, which heavily depends on source tasks.
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2. Task Addition by Geometrical Alignment
Geometrical alignment is an effective method in a multi-task
prediction setups. However, as shown in (Ko et al., 2024a),
the algorithm requires significant computational power as
the number of tasks increases. To address this, we hereby
introduce a specific mathematical description of the task
addition method for GATE to accelerate the algorithm with
minimal loss of prediction power.

In the GATE algorithm, the core assumption is that the
essence of prediction performance lies in the geometrical
characteristics of the corresponding latent space of a given
input. In multi-task learning, different downstream tasks
induce various latent spaces, yet the input remains equiv-
alent for molecular property prediction tasks. Therefore,
the primary strategy is to align the geometrical shapes of
latent spaces from different prediction tasks to maximize
the utilization of mutual information.

The fundamental architecture of GATE is precisely de-
scribed in (Ko et al., 2024b), including the algorithm di-
agram, thorough mathematical structure, experiments, and
an introduction to Riemannian differential geometry. The
architecture of the task-added GATE is depicted in Figure
1. As shown in the figure, a molecule is initially represented
using the Simplified Molecular-Input Line-Entry system
(SMILES), which serves as the input. It is then embed-
ded into a real-number embedding vector. This embedding
process is mandatory since the GATE algorithm requires
infinitesimal perturbations around the given input vector.
Consequently, the universal embedding vector must be ca-
pable of acquiring perturbation points independent of the
choice of tasks.

The embedding vectors are then fed into the task-specific
encoders to generate task-specific latent vectors, zn. For
this process, we utilize Directed Message Passing Neural
Network (DMPNN) (Yang et al., 2019) and conventional
Multi-Layer Perceptron (MLP) layers. These latent vectors
serve two main purposes: one is to compute prediction
values for tasks, and the other is to align the latent spaces.

To ensure model’s accuracy, we first introduce a simple
regression loss. After the latent vectors pass through the
task-specific head network, the final predicted value should
closely match to the given label. We use a simple Mean
Squared Error (MSE) loss for this purpose.

lreg =
1

K

K∑
i

(yi − ŷi)
2 (1)

Here, K, yi, and ŷi represent the number of target tasks to
add, the target label, and the predicted value, respectively.
In the multi-task extended GATE architecture, the regression
loss is summed over the entire number of tasks, resulting in
the computation complexity of the algorithm being O(N2).

However, as the number of tasks is now restricted to the
number of target tasks, the entire process becomes signifi-
cantly faster.

The other, and the most important part of the algorithm, is
the alignment of latent spaces. To align the geometrical
shapes of these latent spaces, one should know the specific
mapping relation between one another. In the mathematical
description, the mapping should be formulated by coordi-
nate transformation induced by a Jacobian at an arbitrary
point.

z′i ≡
∑
j

∂z′i

∂zj
zj (2)

Deriving an analytic form of the Jacobian from data-driven
methods without assuming the underlying geometry is typ-
ically impossible. We bypass this issue by predicting the
transformed vector directly using a neural network. Neural
networks are generally smooth and differentiable due to the
backpropagation learning scheme, allowing us to assume
the latent space is also smooth and differentiable. Hence,
it is plausible to assume the latent space as Riemannian.
The diffeomorphism invariance of Riemannian geometry
ensures that a locally flat frame can be found anywhere on a
manifold, which we utilize to align latent geometries.

We set up autoencoder models to map a vector in latent space
to a locally flat frame on a universal manifold and vice versa,
as depicted in Figure 2. Specifically, each encoder, ϕ maps
a latent vector from a task-specific latent space to a vector in
a locally flat frame, while each decoder, ϕ−1, maps a vector
from the locally flat frame to the task-specific latent space.
Unlike the original GATE, since this situation involves task
addition, the models for source tasks should be pre-trained.
Therefore, the mapping models can be categorized into two
types: those with fixed parameters and those with learnable
parameters. Mapping from source tasks should be fixed.

z′α = Transferα→LF (zα) (3)

ẑα = Transfer−1
LF→α(z

′
α) (4)

And mapping from the target task should be learnable.

z′t = Transfert→LF (zt) (5)

ẑt = Transfer−1
LF→t(z

′
t) (6)

Here, α denotes the source task, and t indicates the target
task. The index α ranges from 1 to the number of source
tasks. For example, if there are 1 to 10 different source tasks
and one new target task is added, then α ranges from 1 to
10.

Considering Transferα→LF (zα) as an example, where α is
set to 4, this indicates that the latent vector of the 4th task
is mapped to a locally flat frame on a universal manifold.
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Figure 1. Schematic diagram of task addition in multi-task learning, where a model is pre-trained on two source tasks and one target task
is added. (left) In conventional multi-task learning, each task shares a common latent vector and uses a task-specific head for making
predictions. During pre-training, embedding and heads for each source task are trained. Subsequently, heads for target tasks are added and
trained with target data while modules trained in the pre-training stage are kept frozen. (middle) Task addition for GATE algorithm, which
comprises embedding and task-specific modules called regression units (RU). During pre-training, embedding and RUs for source tasks
are trained. Then, RUs for target tasks are added and trained with target data, while modules trained in the pre-training stage are kept
frozen. (right) In GATE, the regression unit for task n consists of four modules: encoder, transfer (T n), inverse transfer (T−1n), and head.
In GATE, latent vectors for heads are not directly shared; instead, they are transferred to a universal locally flat (LF) space, enabling
knowledge transfer through the alignment of geometrical shapes of source and target latent spaces.

One can introduce a simple autoencoder loss that forces the
input latent vector and reconstructed vector to be equal for
the mapping networks.

lauto =
∑
α

MSE(zα, ẑα) (7)

Additionally, a different set of losses can be formulated to
align the geometrical shapes of latent spaces. So far, we
have not imposed any constraints on a mapping network
that should map a latent vector to a locally flat frame. As
introduced in (Ko et al., 2024b), we will introduce three
different kinds of constraints afterward.

One loss involves matching latent vectors on the locally flat
frame that are mapped from different task-specific latent
spaces. This loss aims to align the geometry point-wise by
requiring latent vectors on a locally flat frame to be equal
to one another. This loss is simply induced by the fact that
the input of the model always starts from the same molecule
regardless of the task choice. Hence, while the task-specific
latent vectors may differ, if the mapping encoder correctly
maps the vectors to the locally flat frame on the universal
manifold, the mapped vectors from different tasks should
be equal on the locally flat frame. We call this loss the
consistency loss.

lcons =
∑
α

MSE(z′α, z
′
t) (8)

As mentioned earlier, z′α and z′t represent vectors on the
locally flat frame from the source and target latent spaces, re-
spectively. One can introduce another loss function, namely
the mapping loss, to enhance the bonding between latent
spaces. This loss requires the predicted value for a given

task using a standard downstream route to be equal to the
predicted value for the same task using a detoured route.

z′α = Transferα→LF (zα) (9)

ẑα→t = Transfer−1
LF→t(z

′
α) (10)

Here, ẑα→t indicates a latent vector of the target task
mapped from the vector in the source task latent space by
the source mapping and target inverse-mapping networks.
Although ẑα→t originates from the source task latent space,
the source mapping network should map the vector to a
locally flat frame, and the target inverse-mapping network
should theoretically map the vector to the same latent vec-
tor in the target latent space. Therefore, if zt and ẑα→t go
through the same head network, the predicted value should
be the same. This loss is called the mapping loss.

lmap =
∑
α

MSE(yt, ŷα→t) (11)

yt represents a predicted value from a standard downstream
route, and ŷα→t indicates a predicted value from a detoured
route.

Despite these losses, geometrical alignment remains insuf-
ficient as they only align geometry at specific points. In
general, neural networks often enjoy a vast number of de-
grees of freedom, providing enough flexibility to signifi-
cantly distort the geometrical shape. Hence, even though
the geometry is matched at given points, the surrounding
shape around those points may still not be aligned.

To impose stronger constraints, one should consider not
only a specific point but also the geometrical shape around
a given input point. Typically, this is done by assuming
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an analytic form of the metric and computing Riemannian
properties such as curvatures. However, finding the analytic
form of the metric is nearly impossible. Therefore, we
will impose geometrical constraints without knowing the
analytic form of the metric.

The key notion is the distance between points on a curved
space. While a distance can be easily defined in Euclidean
space, it is not as straightforward in curved space. One
should solve the geodesic (freely falling motion) equation
to find the geodesic path between points and integrate the
infinitesimal distances along the path with metric weighting.

S2 =

∫
l

∑
µ

∑
ν

gµνdx
µdxν (12)

However, we now know that one can always find a locally
flat frame on a Riemannian manifold. By utilizing this fact,
if one is trying to compute the distance between a point on
a locally flat frame and a its infinitesimal perturbations, the
distance is simplified into a mere Euclidean distance.

S2 =
∫
l

∑
µ

∑
ν gµνdx

µdxν

=
∫
l

∑
µ

∑
ν ηµνdx

µdxν

=
∫ b

a
dx2

(13)

Here, a represents a given latent vector, while b denotes
a perturbed vector around the latent vector a. As we as-
sume the perturbation is infinitesimal, the distance between
a given point and its perturbations can be reduced to the
following form:

S = |b− a| (14)

This distance should also be the same for both source and
target tasks after mapping into a locally flat frame. The loss
that ensures this equality is called the distance loss.

ldis =
1

M

∑
α

Cα

M∑
i

MSE(siα, s
i
t) (15)

Here, M is the number of perturbation points around the
input vector, Cα is the weight of distance losses according to
the source tasks, and sis is the displacement between given
data and their perturbations. Specific descriptions of loss
terms are as follows.

siα ≡ |(z′α)− (z′iα)| sit ≡ |(z′t)− (z′it )| (16)

z′iα = Transferα→LF (Encoderα(x
i)) (17)

z′it = Transfert→LF (Encodert(x
i)) (18)

The index i denotes ith perturbation point.

The distance loss is the key term in this architecture. This
loss restricts the local geometrical shape around input vector
points, significantly reducing the vast number of degrees of
freedom of the model. As mentioned earlier, the latent space

should be smooth and differentiable, limiting the freedom
to retain the shape of local geometry around input vectors
and preventing drastic deformations1.

Gathering all the introduced loss terms gives rise to a total
loss function for the architecture.

ltot = lreg + αlauto + βlcons + γlmap + δldis (19)

The total loss contains numerous hyperparameters that need
to be tuned. These parameters affect the prediction perfor-
mance of the model. Hence, some of the hyperparameters
should be tuned with care to achieve superior performance.
For instance, parameters γ, δ, and Cα are sensitive to per-
formance, while others are not. Therefore, we often leave
the other parameters as 1 and focus on finding the best set
of parameters for γ, δ, and Cα. If the relationship between
tasks is well known by domain knowledge, it is a very good
strategy to begin with.

3. Experiments
3.1. Experimental Setup

3.1.1. DATASETS

To evaluate our algorithm, we used 20 datasets, each cor-
responding to a different molecular property, sourced from
three open databases: PubChem (Kim et al., 2022), Ochem
(Sushko et al., 2011), and CCCB (III, 2022). Each property
was standardized by subtracting the mean and dividing by
the standard deviation. Detailed information about each
dataset is provided in Appendix A. We split each dataset
into training and test sets using an 80:20 ratio. For eval-
uating model performance for extrapolation, we split the
dataset based on the scaffold (Bemis & Murcko, 1996). The
training set was further uniformly split into four folds for
cross-validation.

3.1.2. MODELS

We employed ten tasks as source tasks for the supervised
pre-training of GATE and MTL. The remaining ten tasks
were used as target tasks for task addition, individually.
For each target task, we added the regression unit for the
target task to the pre-trained model, resulting in ten different
models for GATE, each for a target task.

To benchmark the performance of GATE, we also trained
MTL models in task addition setup. In the pre-training
stage, a pre-trained MTL model with a shared encoder and
task-specific heads for source tasks were trained. Then,
for each target task, task-specific head was added to the
model architecture and trained on the target task while the
pre-trained parameters were frozen. We also trained ten

1For further information, check experiments and ablation sec-
tion in (Ko et al., 2024b)
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Figure 2. Conceptual depiction of the GATE algorithm for task addition where the model is pre-trained on two source tasks and one target
task is added. Knowledge from source tasks is transferred to a target task by aligning the geometry of the target task to the geometries of
source tasks. This alignment is achieved by finding a transfer function, ϕ, which maps an arbitrary point from a task-specific coordinate
to a universal manifold, M . One can transform an arbitrary point in the overlapping region from one task coordinate to another by
composing transfer functions. By matching the overlapping points on a manifold, one can align the inherent geometry of target data to
the geometry of source data. This allows the information to flow from the source to target tasks. Grey-scaled regions are trained in the
pre-training stage and frozen in the addition stage.

task-added MTL models, each for a target task.

For performance comparison, we trained GATE and MTL on
all 20 tasks from scratch (referred to as ’Vanilla20’ models),
serving as reference performance for task-added GATE and
MTL. To compare computational costs, we trained 10 MTL
and GATE models from scratch (referred to as ’Vanilla11’),
trained on 11 tasks (10 source tasks + one target task).

In summary, we trained the following three different types
of models for both GATE and MTL:

• Task-added model: Pre-trained on 10 source tasks fol-
lowed by addition and training of one target task.

• Vanilla20: Trained on all 20 tasks from scratch.

• Vanilla11: Trained on 10 source tasks and one target
task from scratch.

Lastly, we also trained single-task models (’SINGLE’) on
each target task without multi-task learning. The same
architecture for encoders and heads was used across all
models for fair comparison. A detailed descriptions of the
model architecture and hyperparameters are provided in
Appendix Table 3 and 4, respectively.

3.2. Results

3.2.1. TASK ADDITION REDUCES COMPUTATIONAL
COSTS

The primary motivation for task addition is to reduce the
computational complexity of GATE. We analyzed training
times for SINGLE, MTL, and GATE, as shown in Table 1.
Task-added MTL was the fastest to train, even taking less
time than SINGLE. Task-added GATE was 13 % slower than
SINGLE, but 9.29 times faster than vanilla11 MTL. Task-
added MTL was 10.9 times faster than vanilla11 MTL, while
task-added GATE was 39.13 times faster than vanilla11
GATE . The significant improvement in the training speed
of GATE with task addition is due to the time complexity
of vanilla GATE being O(N2), compared to MTL’s O(N).
In summary, task-added GATE is significantly faster than
training vanilla MTL or GATE from scratch, and its training
time is comparable to that of SINGLE.

3.2.2. TASK-ADDED GATE ENABLES KNOWLEDGE
TRANSFER

The other goal of task addition is to maintain model perfor-
mance compared to training the entire model from scratch.
The performance of SINGLE, task-added MTL, and task-
added GATE is illustrated in Figure 3. The average Root
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Table 1. Training times for SINGLE, MTL, and GATE algorithm.

MODEL TIME PER EPOCH[S]

SINGLE 5.40
TASK-ADDED MTL 5.12
TASK-ADDED GATE 6.09
VANILLA11 MTL 56.00
VANILLA11 GATE 238.32

Mean Squared Error (RMSE) of task-added MTL, SINGLE,
and task-added GATE across 10 target tasks are 0.742, 0.670,
and 0.647, respectively. Similarly, the average Pearson
correlation of task-added MTL, SINGLE, and task-added
GATE across 10 target tasks are 0.527, 0.662, and 0.688,
respectively. Detailed numerical results can be found in
Appendix Table 5. These metrics demonstrate that GATE
outperforms SINGLE, indicating that knowledge transfer
through task addition enhances performance.

RMSE CORR
0.0
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0.6

0.8

Pe
rfo

rm
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ce

MTL
SINGLE
GATE

Figure 3. The performance of task-added MTL, SINGLE, and task-
added GATE algorithm. Average RMSE and Pearson correlation
values are displayed across 10 target tasks, with error bars indicat-
ing standard deviation. Detailed performance values can be found
in Appendix Table 5.

In contrast, MTL underperforms compared to SINGLE,
suggesting that not all MTL architectures are suitable for
task addition. This observation aligns with findings reported
in previous studies (van de Ven et al., 2022; Deng et al.,
2023). Overall, these results indicate that GATE generalizes
well in an extrapolation setting by using task-specific latent
vector for each task, minimizing interference that might be
caused by strongly shared latent vector in MTL.

This effect is further highlighted by comparing the corre-
lation recovery rates of GATE and MTL in Figure 4. On
average, task-added GATE recovered 98.3 % of the Pear-
son correlation of vanilla20 GATE, while task-added MTL
achieved 70.4 % of the Pearson correlation of vanilla20
MTL. GATE shows higher correlation recovery rates than

MTL for all ten tasks. In the worst-case scenario, task-
added GATE achieves a recovery rate of 79.3 % for CMQ,
whereas task-added MTL only recovers 15.1 % for CML.
This highlights that task-added GATE shows robust perfor-
mance regardless of the target task, whereas the performance
of task-added MTL heavily depends on the nature of the tar-
get task. In summary, these results demonstrate that GATE
effectively transfers knowledge from source tasks, while
MTL shows limited performance in task addition setup.

acf

cml

1.4

0.0

1.0

0.5

GATE

MTL

Figure 4. Correlation recovery rate of MTL and GATE algorithm.
The correlation of task-added GATE and MTL is divided by the
correlation of vanilla20 GATE and MTL, respectively. The com-
plete names of the abbreviated tasks are listed in Appendix Table
2.

3.2.3. DEPENDENCE ON SOURCE TASKS

To analyze the factors that affect the performance of task
addition, we examined the correlation between source tasks
and target tasks. Specifically, for each source-target task
pair, we selected molecules that have labels for both source
and target tasks. If a source and target task share at least ten
molecules in common, we calculated the absolute Pearson
correlation between their labels to measure the degree of
relatedness between source and target tasks. Figure 5 reports
the maximum absolute correlation of source tasks for each
target task.

For MTL, the correlation recovery rate tends to decrease
as the maximum correlation between the target task and
the source tasks decreases. This indicates that if no source
task is closely related to the target task, the performance
of multi-task learning (MTL) can decrease. On the other
hand, the correlation recovery rate of task-added GATE is
less dependent on the correlation with source tasks. This
explains why task-added MTL performs worst for CML,
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which has a maximum related source task correlation of
0.387. Conversely, the correlation recovery rate of GATE
for CML is 0.988, achieving a 7.3 % increase compared
to SINGLE. These results demonstrate the ability of task-
added GATE to effectively extract mutual information even
in challenging situations.
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Figure 5. The relationship between correlation to source tasks and
task addition performance. The performance of task-added MTL
decreases as the maximum absolute correlation to the source tasks
decreases, whereas the performance of task-added GATE is less
dependent on the correlation to the source tasks. The complete
names of the abbreviated tasks are provided in Appendix Table 2.

Our experimental results demonstrate that task-added GATE
maintains the performance of vanilla GATE trained from
scratch and shows robust performance across various target
tasks. which is not achievable in conventional MTL archi-
tecture. Additionally, task-added GATE achieves training
times comparable to SINGLE and significantly faster than
training vanilla GATE and MTL from scratch. Collectively,
these findings suggest that task addition is an effective ap-
proach for reducing computational costs without sacrificing
performance for GATE.

4. Discussion
In this study, we proposed and evaluated a two-stage, multi-
task learning approach called task addition for the GATE
algorithm. Task addition aims to enhance performance on
target tasks with limited data while minimizing computa-
tional complexity. This is achieved through leveraging su-
pervised multi-task pre-training on a large dataset, followed
by the addition of task-specific modules. Task-added GATE
demonstrated significant performance improvements over
SINGLE and task-added MTL, with more efficient training
times compared to vanilla MTL and GATE trained from
scratch.

The GATE’s unique approach to knowledge transfer via geo-
metrical alignment enhances the model’s performance. Un-
like conventional multi-task learning (MTL), which shares
latent vectors directly, GATE transfers knowledge through a
universal locally flat (LF) space, aligning the geometrical
shapes of latent spaces across tasks. This method mitigates
negative transfer effects and ensures efficient information
flow from source to target tasks.

In the context of molecular property prediction, where data
scarcity and high dimensionality are significant challenges,
the GATE algorithm offers a robust solution. Our findings in-
dicate that task-added GATE can maintain the performance
of its vanilla counterpart while achieving training times
comparable to SINGLE and task-added MTL models. This
suggests that GATE is particularly well-suited for the effi-
cient screening of novel compounds with desired properties
by adding related tasks to the model.

While our results are promising, there are areas for further
investigation. We used supervised multi-task learning as
a pre-training strategy. Recently, self-supervised learning
has been widely adopted as a pre-training strategy, and
recent studies have showed that self-supervised pre-training
followed by multi-task fine-tuning can improve performance
(Xu et al., 2024). Adopting such strategies to GATE may
further enhance the model’s performance.

In summary, the proposed task addition approach for GATE
offers a powerful tool for improving performance on target
tasks with limited data in molecular property prediction.
By effectively balancing computational efficiency and task
performance, the GATE algorithm stands out as a promising
candidate for addressing the challenges of data scarcity in
this domain.
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A. Detailed Explanation of Datasets
We evaluated task addition using 20 molecular property
datasets. During preprocessing, we excluded data with in-
correct units, typographical errors, and measurements taken
under extreme conditions. Before training, we standardized
all datasets by their mean and standard deviation. Below, we
provide the physical meaning of each molecular property.

• Acentric Factor (ACF) : A measure of the non-
sphericity of molecules, which quantifies how much
the behavior of a fluid deviates from that of a spherical
molecule

• Absorbance Maximum Wavelength (AW) : The
wavelength at which a substance absorbs the maximum
amount of light

• Boiling Point (BP) : The temperature at which a com-
pound changes state from liquid to gas at a given atmo-
spheric pressure.

• Critical Compressibility Factor (CCF) : A dimen-
sionless number that describes the behavior of a sub-
stance at its critical point.

• Collision Cross Section (CCS) : A measure of the
probability of interaction between particles, represent-
ing the effective area that one particle presents to an-
other for a collision to occur.

• Chromophore Emission Max (CME) : The wave-
length at which a chromophore emits the maximum
amount of light upon excitation.

• Chromophore Emission FWHM (CMF) : The width
of the emission spectrum at half of its maximum in-
tensity, indicating the range of wavelengths emitted by
the chromophore.

• Chromophore Life Time (CML) : The average time
a chromophore remains in an excited state before re-
turning to its ground state.

• Chromophore Quantum Yield (CMQ) : The effi-
ciency of photon emission by a chromophore, defined
as the ratio of the number of photons emitted to the
number of photons absorbed.

• Decomposition (DC) : The process by which a chemi-
cal compound breaks down into simpler substances or
elements.

• Dipole Moment (DM) : A measure of the separation of
positive and negative charges in a molecule, indicating
the polarity of the molecule.

• Electron Affinity (EAF) : The amount of energy re-
leased when an electron is added to a neutral atom or
molecule in the gas phase to form a negative ion.

• Flash Point (FP) : The lowest temperature at which
a liquid can form an ignitable mixture in air near its
surface, indicating its flammability.

• HOMO (HM) : The highest energy molecular orbital
that is occupied by electrons in a molecule under nor-
mal conditions.

• LUMO (LM) : The lowest energy molecular orbital
that is unoccupied by electrons, which can accept elec-
trons during a chemical reaction.

• Log P (LP) : The logarithm of the partition coefficient
between octanol and water, indicating the hydropho-
bicity or lipophilicity of a compound.

• Molar Extinction Coefficient (MEC) : A measure
of how strongly a chemical species absorbs light at a
given wavelength per molar concentration.

• Melting Point (MP) : The temperature at which a solid
turns into a liquid at atmospheric pressure.

• pKa (PKA) : The negative logarithm of the acid disso-
ciation constant, indicating the strength of an acid in
solution.

• Refractive Index (RI) : A measure of how much light
is bent, or refracted, when entering a material from
another medium.

B. Architecture and Hyperparameters
Training process for GATE is described in (Ko et al., 2024b).
Our model is composed of five different types of modules,
whose parameter sizes are listed in Table 3.
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Table 2. Dataset statistics

NAME ACRONYM TYPE COUNT MEAN STD

ACENTRIC FACTOR ACF ADDITION 1850 -0.33 0.23
ABSORBANCE MAXIMUM WAVELENGTH AW PRETRAINING 11896 440.39 67.80
BOILING POINT BP PRETRAINING 8044 183.65 96.24
CRITICAL COMPRESSIBILITY FACTOR CCF ADDITION 1357 0.25 0.03
COLLISION CROSS SECTION CCS ADDITION 4006 205.06 57.84
CHROMOPHORE EMISSION MAX CME ADDITION 6407 504.95 100.38
CHROMOPHORE EMISSION FWHM CMF ADDITION 2862 72.14 26.04
CHROMOPHORE LIFE TIME CML ADDITION 2738 0.49 0.64
CHROMOPHORE QUANTUM YEILD CMQ ADDITION 5609 0.35 0.29
DECOMPOSITION DC ADDITION 12998 210.86 58.31
DIPOLE MOMENT DM PRETRAINING 11224 0.30 0.53
ELECTRON AFFINITY EAF ADDITION 198 15.24 28.36
FLASH POINT FP PRETRAINING 9409 114.21 82.87
HOMO HM PRETRAINING 97262 -5.66 0.64
LUMO LM PRETRAINING 97262 -1.63 0.89
LOG P LP PRETRAINING 31264 10.33 9.79
MOLAR EXTINCTION COEFFICIENT MEC ADDITION 16324 7.67 0.64
MELTING POINT MP PRETRAINING 22901 376.53 92.31
PKA PKA PRETRAINING 9514 6.62 3.11
REFRACTIVE INDEX RI PRETRAINING 11143 1.49 0.10

Table 3. Network parameters

NETWORK LAYER INPUT, OUTPUT SIZE HIDDEN SIZE DROPOUT

BACKBONE DMPNN [134,149], 100 200 0
BOTTLENECK MLP LAYER 100, 50 50 0

TRANSFER MLP LAYER 50, 50 50 0.2
INVERSE TRANSFER MLP LAYER 50, 50 50 0.2

HEAD MLP LAYER 50, 1 - 0.2

The hyperparameters for training are described in Table 4.

Table 4. Hyperparameters

HYPERPARAMETER VALUE

LEARNING RATE 0.0005
OPTIMIZER ADAMW
BATCH SIZE 512

EPOCH 1000
# OF PERTURBATION 5

α, β, γ, δ 1, 1, 1, 1

C. Experimental Results
Here, we describe the explicit test results in this section.
The numerical results for Figure 3 is reported in Table 5.

The correlation recovery rate depicted in Figure 4 are listed
in Table 6.

Table 5. The performance of SINGLE, task-added MTL, and task-
added GATEalgorithm

RMSE CORRELATION
MEAN STD MEAN STD

TASK-ADDED MTL 0.742 0.179 0.527 0.242
SINGLE 0.670 0.206 0.662 0.197
TASK-ADDED GATE 0.647 0.213 0.688 0.183

Table 6. The correlation recovery rate of MTL, and GATE algo-
rithm for each target task.

TASK MTL GATE

ACF 0.919 1.041
CCF 0.787 1.132
CCS 0.749 0.970
CME 0.885 0.975
CMF 0.468 0.884
CML 0.151 0.988
CMQ 0.539 0.793
DC 0.835 0.971
EAF 0.857 1.005
MEC 0.852 0.968
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