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ABSTRACT

Synthesizing relational data has started to receive more attention from researchers,
practitioners, and industry. The task is more difficult than synthesizing a single-
table due to the added complexity of relationships between tables. For the same
reason, benchmarking methods for synthesizing relational data introduces new
challenges. Our work is motivated by a lack of an empirical evaluation of state-
of-the-art methods and by gaps in the understanding of how such an evaluation
should be done. We review related work on relational data synthesis, common
benchmarking datasets, and approaches to measuring the fidelity and utility of
synthetic data. We combine the best practices and a novel robust detection ap-
proach into a benchmarking tool and use it to compare six methods, including two
commercial tools. While some methods are better than others, no method is able
to synthesize a dataset that is indistinguishable from original data. For utility, we
typically observe moderate correlation between real and synthetic data for both
model predictive performance and feature importance.

1 INTRODUCTION

Synthesizing relational data - generating relational data that preserve the characteristics of the orig-
inal data - is an emerging field. It promises several benefits, from protecting privacy to addressing
data scarcity while preserving the complexities and inter-dependencies present in the original data.
This makes it attractive for domains such as healthcare (Appenzeller et al.| [2022)), finance (Assefa
et al.| [2020), and education (Bonnéry et al.,[2019), where accessing and utilizing data can be chal-
lenging due to privacy concerns, data scarcity, or biases (Ntoutsi et al.,[2020; Rajpurkar et al.,[2022).

The foundations of synthesizing relational data were laid by the Synthetic Data Vault (Patki et al.,
2016). Recently several deep learning methods have been proposed (Gueye et al.| 2023} [Li & Tay,
2023; Mami et al.} [2022; Xu et al., 2023} |Canale et al., |2022; Solatorio & Dupriez, [2023}; [Pang
et al., 2024). The field has also received attention from industry, with several commercial tools
now available and with Google, Amazon, and Microsoft integrating them into their cloud services
(Gretel.a1, 12024).

While there are several packages for evaluating the quality of synthetic data, only the SDMetrics
package (Patki et al., 2016)) provides some support for the evaluation of synthetic relational data. As
such, the field lacks not only an empirical comparison of available methods but also an understand-
ing of how such an evaluation should be done. We address this gap with an evaluation methodology
that combines established evaluation metrics (Section [2.2), best practices, sampling procedures for
relational data (Section [2.3), and a novel metric that improves on existing approaches and general-
izes to relational data (Section [3). We implement the methodology in a benchmarking tool that is
available as an open source package and can be easily extended. Finally, we use the benchmark for
current state-of-the-art methods (Section on several relational data sets (Section [2.3). This is
the first comprehensive evaluation and comparison of methods for synthesizing relational data and
provides valuable insights into their ability to synthesize relational aspects of the data (Section[4).

Our benchmark reveals that lenient evaluation practices in related work have led to sub-par fidelity in
single-table generation. Furthermore, where individual tables are synthesized well, current methods
struggle to faithfully model the relationships between them. We highlight these gaps and offer a
robust evaluation tool to guide and assess future advancements in synthetic relational data.
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2 RELATED WORK

2.1 METHODS FOR SYNTHESIZING RELATIONAL DATA

In this work we focus on relational data - a collection of tables connected by foreign keys that form
a relational database. We distinguish this from synthesizing tabular data (a single-table), which is a
special case and an even more active field (Borisov et al., 2022} [Qian et al.|[2023b)). Here we briefly
summarize the methods. A detailed description can be found in Appendix [A]

The Synthetic Data Vault (SDV) uses Gaussian copulas and predefined distributions to model rela-
tional data. Row Conditional-TGAN (RC-TGAN) (Gueye et al., 2023) and Incremental Relational
Generator (IRG) (L1 & Tayl, 2023) are based on GANs. The Realistic Relational and Tabular Trans-
former (REaLTabFormer) (Solatorio & Dupriez, 2023)) and Composite Generative Models (Canale
et al.} 2022) are based on transformers. The work of Mami et al.| (2022) is based on Graph Vari-
ational Autoencoders, while Xu et al.|(2023) propose a framework for synthesizing many-to-many
datasets using random graphs. Recently, Pang et al.|(2024) propose ClavaDDPM, a method based
on classifier-guided diffusion models.

2.2  METRICS FOR EVALUATING SYNTHETIC DATA

The two main aspects for evaluating the quality of synthetic tabular and relational data are fidelity
and utility. Fidelity measures the degree of similarity between synthetic and real data in terms of its
properties, whereas utility measures how well the synthetic data can replace real data when the data
are part of some tasks, for example, for predictive modeling (Hansen et al., 2023)). We further divide
fidelity metrics into statistical, distance-based, and detection-based metrics. Utility of synthetic
data is typically assessed with train-on-synthetic evaluate-on-real methods (Beaulieu-Jones et al.,
2019).

Another dimension of evaluation metrics for relational data is granularity. The most common are
single-column metrics that evaluate the marginal distributions, two-column metrics that evaluate
bivariate distributions, single-table metrics that evaluate tables, and multi-table metrics that evaluate
the relational aspects.

2.2.1 STATISTICAL FIDELITY

Statistical fidelity methods are typically used to assess marginal distributions, sometimes bivariate
distributions. The most commonly used methods are the Kolmogorov-Smirnov test and the X2 test
for numerical and categorical variables, respectively. For relational data, cardinality shape similarity
is used, where for each parent row the number of child rows is calculated. This yields a numerical
distribution for both real and synthetic data, on which a Kolmogorov-Smirnov test is performed.

2.2.2 DISTANCE-BASED FIDELITY

Similar to statistical fidelity, distance-based fidelity is typically used to assess the fidelity of marginal
distributions. However, some distance metrics also assess entire tables. Commonly used distance-
based methods are total variation distance, Kullback-Leibler divergence, Jensen-Shannon distance,
Wasserstein distance, maximum mean discrepancy, and pairwise correlation difference. Unlike sta-
tistical methods, reports of distance-based fidelity do not include hypothesis testing or any other
quantification of uncertainty. This is an issue both when evaluating a method and when compar-
ing two methods. In the former, a method can achieve a seemingly high distance that is in a high
probability region when taking into account the sampling distribution. In the latter, a seemingly
large difference between the two methods can be explained away by the variance of the sampling
distribution.

2.2.3 DETECTION-BASED FIDELITY

The basic idea of detection-based fidelity is to learn a model that can discriminate between real and
synthetic data. If the model can achieve better-than-random predictive performance, this indicates
that there are some patterns that identify synthetic data. Recent work by [Zein & Urvoy| (2022)
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shows that using discriminative models can highlight the differences between real and synthetic
tabular data.

The most common detection-based method is logistic detection (LD) (Gueye et al.,[2023}; |Solatorio
& Dupriez, 2023} |Li & Tayl [2023}; [Pang et al., [2024), where a logistic regression model is used for
discrimination. An extended version of LD known as parent-child logistic detection (P-C LD) is used
to evaluate relational data. P-C LD applies LD to denormalized pairs of synthetic parent and child
tables, assessing the preservation of parent-child relationships. A serious issue with denormalization
is that it may introduce correlation between rows, breaking the i.i.d. assumption. This results in an
over-performance of the discrimintative model and in underestimating the quality of the method
for synthesizing relational data. It also makes it impossible to set a detection threshold for testing
fidelity (for example, accuracy would be greater than 50% even if both datasets were from the same
data generating process). For these reasons, we do not consider P-C detection.

Note that logistic regression is unable to capture interactions between columns unless these interac-
tions are explicitly included as features. Therefore, LD is unable to discriminate between real and
synthetic data when the marginal distributions are synthesized well. Furthermore, a mean-preserving
transformation can produce synthetic data that LD will not be able to discriminate, although the
synthetic data will be very different from the original data. We demonstrate this empirically in
Appendix [D.I] The popularity of LD implies a lenient evaluation of the state-of-the-art methods.
Tree-based ensemble models are a better alternative, which is also suggested by the findings of Zein
& Urvoy|(2022) for tabular data.

2.2.4 MACHINE LEARNING UTILITY

The utility of synthetic data is most commonly measured with machine learning efficacy (ML-E)
- comparing the hold-out performance of a predictive model trained on the original data with a
predictive model trained on a synthetic dataset (Canale et al., 2022} [Li & Tay, 2023; |Mami et al.,
2022;|Solatorio & Dupriez, [2023}; |Pang et al.,[2024). |Patki et al.|(2016) measured utility with a user
study and|[Hansen et al.|(2023)) with the ability to retain model ranking or feature importance ranking
(measured with rank correlation) in the train-on-synthetic evaluate-on-real paradigm. It is important
to highlight that all these studies evaluated utility on a single-table, even those that investigated
synthetic relational data.

Note that the typically used unweighted rank correlation (for example, Spearman or Kendall correla-
tion coefficients) could be misleading. The issue gets worse as we increase the number of models or
features, and their ordering becomes more susceptible to noise, especially among the models close
to optimal performance and irrelevant features. That is, unweighted ranking will be most affected
by the ranking of models and features in areas where ranking is of little practical utility.

2.3 RELATIONAL DATASETS AND SAMPLING PROCEDURES

We organize the datasets used in related work based on the structure of their relational schema, de-
fined in Section 3| Datasets using only linear relationships (one parent and one child table) include
AirBnB (Montoya et al.,|2015)) and Rossmann Store Sales (FlorianKnauer, 2015). While this struc-
ture may be sufficient for some practical applications, Gueye et al.|(2023) and [Xu et al.|(2023) high-
light the need for methods supporting more complex, multiple-parent relational structures found in
datasets like MovieLens (Harper & Konstan,|2015)) and World Development Indicators (World Bankl,
2019). Datasets including multiple child tables include Telstra Network Disruptions (Wendy Kan,
20135), Walmart Recruiting - Store Sales Forecasting (Walmart, 2014), and Mutagenesis (Debnath
et al.L|1991)). Datasets with multiple children and parents include Coupon Purchase Prediction (Kato
et al.| 2015), World Development Indicators (World Bankl [2019), MovieLens (Harper & Konstan),
2015) and Biodegradability (Blockeel et al.,|1999). An additional possibility in relational databases
is the use of composite foreign keys, which only the IRG (Xu et al., 2023)) method supports. One
such dataset is the Grants database (Alawini et al.l [2018)).

An important issue with evaluating relational data is that representative sampling is difficult (Buda
et al., 2013} |Gemulla et al.| [2008)). If the dataset does not include a time component or if the
relationships are non-linear, the sampling becomes non-trivial and directly impacts the performance
of the generative method. Even if the data have a strict hierarchy between tables, the rows in a child
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table are related via their parent, which breaks the assumption of i.i.d. sampling. Typically, the
method for synthesizing relational data is trained using the entire original dataset.

Note that a benchmark for relational learning based on graphs was recently proposed by [Fey et al.
(2023). It includes a collection of relational datasets along with machine learning tasks with defined
train, evaluation, and test splits. However, these datasets include modalities such as text, which are
not supported by the generative models evaluated in this work.

3 A GENERAL APPROACH TO FIDELITY WITH DISCRIMINATIVE DETECTION

In this section, we propose discriminative detection (DD), a generalization of the detection-based
approach to fidelity, and its extension to relational data using aggregation (DDA). We are primarily
motivated by the issues of existing approaches to multi-table fidelity, cardinality shape similarity (see
Section [2.2.1)) and P-C LD (see Section [2.2.3), and the subsequent need to strengthen the testing of
this aspect in our benchmark. However, as we show, DD also improves on existing approaches to
single-column and single-table fidelity.

Fidelity methods are concerned with measuring the similarity between two databases with the same
schema but different data. Typically, these will be the real database Drgar, and a synthetic database
Dgsyn, with the goal of detecting whether, to what extent, and where the synthetic data differ from
the real data.

Let a relational database be a collection of tables 7 = {T},...,T,,} and a schema S = (R, A),

where R C T x T are the relations between the tables and A7, = {a]’,...,a;*} € A define the
tables’ attributes. Each table is a set T' = {vy, ..., v, } consisting of elements v; called rows. Each
row v € T has three components v = (p,, K, z,). A primary key p, that uniquely identifies the
row v; the set of foreign keys K, = {p, : v € T’ and (T, T') € R}, where p, is the primary key
of the row v’; and the set of values =, = {(a, ) : a € Ar} corresponding to attributes of table 7.

DD is summarized in Algorithm |1} It can be used for single-table, multi column, or single-column
fidelity, which we determine by selecting target table and the subset of target columns. We then
combine the two datasets and label the real and synthetic observations. From this point onwards,
DD can be interpreted as a classification task of discriminating between real and synthetic observa-
tions. First, we use the selected classifier and error estimation procedure to estimate generalization
accuracy. Then we use a Binomial test for proportion to test the deviation from baseline accuracy.
Any better than random predictive performance implies a deviation from perfect fidelity. If a devia-
tion is detected, we can optionally use an interpretability method to provide additional insight into
where the classifier is able to distinguish between real and synthetic data.

In practice, we have to choose a classifier, an interpretability method for our classifier (optional),
and a procedure for estimating accuracy. In our experiments we achieved good results with common
choices of XGBoost, built-in feature importance, and cross-validation (see Section [4{ for details).
However, we could also consider multiple classifiers and perform model selection.

Algorithm 1 Discriminative Detection

Require: relational databases Drear and Dgyn that follow schema &
Require: target table 7; and target columns Z

Require: classifier C'

Require: classification accuracy estimation method M

Require: (*optional) explainability method E

. Trear < SelectColumns(Dggar, 75, 7) > n rows
: Tsyn < SelectColumns(Dsyn, T5,7Z) > m rows
. TReAL TerR™!
P X |:TSYN:|’y<_ {66[&’"“

2 lossg—1 € {0,1}"1™*! « M(C, X, y)
: pval < BinomTest(losso—1, %

: return losso—1, pval, *E(C, X, y)

AN A W N =
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3.1 JUSTIFICATION AS A TWO SAMPLE TEST

DD can be interpreted as a null-hypothesis test for comparing two distributions (two sample testing)
with classification accuracy as a proxy. The classifier serves as a map from high-dimensional data
to a one-dimensional test statistic.

Using ML models is a common approach to two sample testing of high-dimensional data, with
methods such as maximum mean discrepancy (Gretton et al.,2012) also used for single-table fidelity
of synthetic data. Using predictive performance as a proxy is less common, but it has been receiving
more attention (see Lopez-Paz & Oquab|(2017), |Kim et al.|(2021) and |Snoke et al.|(2018))).

It has been shown that the accuracy-based approach to two-sample testing is consistent and controls
for Type I error and (asymptotically) Type II error (see Kim et al.| (2021) for theoretical results
and a summary of empirical results). In practice, we are also interested in finite sample behavior.
Experiment-based recommendations show that the approach should have an advantage in power
when the data are well-structured or we have a lot of data, or when it is difficult to specify a test
statistic, which is very common for high-dimensional data. Therefore, the large, higher-dimensional
and structured nature of relational data is a perfect fit for DD.

3.2 MULTI-TABLE FIDELITY USING AGGREGATION

Discriminative detection with aggregation (DDA) extends DD to multi-table fidelity by augmenting
the table with columns that aggregate information from child tables. Aggregation is an established
technique in the field of relational reasoning (Getoor et al., 2007; [Dzeroski, |2010) and DDA can be
thought of as a propositionalization (Kramer et al., 2001)) approach to the C2ST on relational data.
In DDA we replace the column selection in rows 1 and 2 of Algorithm|T|with calls to the aggregation
algorithm described in Algorithm

1: TreaL < Relational Aggregation(IDrgar, ¢)

2: Tsyn  RelationalAggregation(Dsyn;, %)

For each child table we add CountRows, a count of the the number of child rows corresponding to a
parent row. For each attribute in each child table, we compute an aggregation attribute (mean, count,
etc.). The aggregation attributes are added to the target table. In practice, different aggregation
functions may be applied, as long as they maintain the i.i.d. assumption of the data.

3.3 ADVANTAGES OVER RELATED WORK

DD generalizes LD in two ways: by allowing for any classifier and by wrapping detection into a sta-
tistical testing framework that simplifies decision making. Aggregation (DDA) further generalizes
the approach to multi-table fidelity and addresses the issues of the two methods that are commonly
used for multi-table fidelity: cardinality shape similarity, which focuses on a very specific aspect,
and Parent-Child LD, which suffers from the issues of denormalization.

DD (and DDA) can also be used to detect data copying. For example, if tables A and B are perfect
copies, some training observations from A will have their corresponding copies in the test set of B
(and vice versa). If any pattern is learned on these, the test data will have the labels reversed, and
accuracy can drop below % Instead of accuracy, LD typically uses 2 - max(AUC, %) — 1, based on
the popular implementation (DataCebo, 2022). Limiting to a minimal value of % can therefore mask
data copying (see Appendix [D.2[for an example).

4 BENCHMARKING AND RESULTS

We combine our findings into a synthetic relational data benchmark, including single-column,
single-table and multi-table fidelity metrics, as well as machine learning utility metrics.

We compare the following methods for synthesizing relational data: SDV, RC-TGAN, REaLTab-
Former, and ClavaDDPM. Other related work does not have an API or available source code or
we were not able to run the source code. We also included two of the most popular commercial
tools, MostlyAI and GretelAlL The former do not disclose their generative method, while the latter
provide two generative models TabularLSTM and ACTGAN. As a baseline for single-column and
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single-table comparison, we also include state-of-the-art single-table methods (see Appendix [D.3]
for details).

We include 5 datasets that feature in related work (AirBnB, Rossmann, Walmart, Biodegradabil-
ity, MovieLens) and the Cora dataset by McCallum et al.|(2000), a popular dataset in graph rep-
resentation learning. The datasets vary in types of relationships and number of tables and columns
(see Appendix [B.2]for details).

Our evaluation focuses on all three levels of synthetic relational data generation, with a focus on
multi-table evaluation (see Appendix for details). For statistical metrics, confidence intervals
and p-values are readily available, and for detection methods we use a binomial model. For distance-
based metrics we use bootstrapping (1000 bootstrap replications) to approximate the sampling dis-
tribution. For the purposes of this evaluation, we consider a method failed to achieve fidelity if the
difference between original and synthetic data is significant at level & = 0.05. Most methods are
non-deterministic, so we report results for three different replications. However, all results are stable
across replications.

We use DD with either logistic regression or XGBoost and for DDA we augment the rows with (a)
counts of child rows for each row in each parent table, (b) the mean values of the numeric columns
in the child table corresponding to the parent row, and (c) the number of unique categories in related
rows. We use 10-fold stratified cross-validation to estimate DD accuracy.

4.1 SINGLE-COLUMN PERFORMANCE

Single-column results show that most methods have trouble synthesizing even marginal distributions
(see Table[9]in the Appendix). The diffusion-based approach ClavaDDPM performs better than the
rest of the methods, but is limited by dataset structure (see Appendix [A). Figure[I] shows how SDV,
which models columns with simple predefined distributions performs poorly in most cases, while
deep learning methods perform better. Despite this, SDV is still the primary baseline in related work,
motivating our comprehensive comparison of current methods.
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Figure 1: Examples of marginal distributions on the Rossmann Dataset. Deep learning-based
methods generally synthesise both categorical and continuous marginal distributions well enough to
pass the eye test. SDV, a commonly used baseline often fails to model even marginal distributions.

4.2 SINGLE-TABLE PERFORMANCE

The single-table results are worse than the single-column results (see Table [I0]in the Appendix).
In most cases methods fail the detection metric. Note that the relational synthetic data methods
synthesize parent tables better than child tables (see Figure 2a). We hypothesize that this is due to
the generation of child rows conditionally on parent rows, propagating errors down the hierarchy.

4.3 MULTI-TABLE PERFORMANCE

Multi-table metrics examine how well the referential integrity is preserved and how well the relation-
ships between the columns of different tables are modeled. Cardinality shape similarity examines
only the former and has fewer detections, while DD examines both. With few exceptions, meth-
ods fail to pass the multi-table fidelity tests based on detection (see Table[I). In the following two
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Figure 2: Maximum mean discrepancy (a) and pairwise correlation difference (b) on the Ross-
mann dataset. The dotted line indicates the 95% bootstrapped confidence interval of the metric
on original data. In Figure a, we observe that most methods model the parent table (store) better
as the tests find more differences for the child table (historical). In Figure b however, although the
metric values are higher for the parent table, the metric fails to detect differences in either table. This
highlights the importance of interpreting a metric in the context of its uncertainty when analyzing
the original data.

sections, we examine how DDA reveals shortcomings in relational fidelity, even in cases where
single-table fidelity is preserved, and confirm this using interpretability methods.

Table 1: Multi-table results. We report the number of times the method failed the fidelity test.
There are three numbers for each combination, one for each replication. The number in parentheses
is the total number of tests per run. For cardinality shape similarity a test is run for every relationship
in the dataset, while DD with aggregation is run for every table with dependent tables.

Statistical Detection

Dataset Method Cardinality AggLlD Agg XGB
SDV LL,1() 1,L,1() 1,1,1(1)

RCTGAN LI,1() 1L, L,I() 1, 1,1(D)

REALTABFE. LIL,I() LLIM 1LL1)

AirBnB MOSTLYAI 1,1, 1(1) LL1() 1,1,1(D)
G-ACTGAN 0,0,01) I, LLI(H I, I,I1(D

G-LSTM 0,0,0(1) I, I,I1(D) I, I,1(D)
CLAVADDPM 0,0,0(1) I, I,1() I, 1,1(1)

SDV 0,0,0(1) I, 1,1() 1, 1,1(D)

RCTGAN LLI( LILI() LLID

REALTABE. LL,1() LLI() LILI1()

Rossmann ~ MOSTLYAI LI,I() 1, L,I() 1, 1,1
G-ACTGAN 0,0,0(1) I, I,I(D) I, I,1(D)

G-LSTM 0,0,0(0) LI,I() ILLID
CLAVADDPM 0,0,0(1) 11,0 I, I,1(D)

SDV LI,12) LLI() ILI1(D)

RCTGAN ,0o,1(2 I, L,I1() 1,1,1(D)

REALTABFE. 2, 1,12 I1,LLI() 1, 1,1

Walmart MOSTLYAI LIL,12 LLIM L1
G-ACTGAN 0,0,02 LLI() LLI(D)

G-LSTM 0,0,02 L,LLI(H L, I,1(D
CLAVADDPM 0,0,0(2) I, I,1(1) I, 1,1(1)

SDV 3,3,34 3,3,33 3,3,303

RCTGAN 4,3,34) 3,223 3,2,3(3)

Biodeg. MOSTLYAI 4,4,44) 3,3,33 3,3,303)
G-ACTGAN 0,0,04 2,2,2(3) 3,3,3(3)

G-LSTM 0,0,04) 2,2,2(3) 3,3,3(3)

RCTGAN 6,5,5(06) 4,3,3(4) 4,444

MovieLens MOSTLYAI 6,6,6(6) 3,3,3@4 4,444
G-ACTGAN 0,0,06) 4,444 4,444
CLAVADDPM 0,0,0(6) 4,4,3(4) 4,4,4(%

SDV 2,222 LLI() LLI1(D)

CORA RCTGAN 1,2,2(2) 1, L,LI(D) 1, 1,1
G-ACTGAN 0,0,02) I, I,I() I, I,1(D)

G-LSTM 0,0,02 LII() LLID
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4.4 DISCRIMINATIVE DETECTION WITH AGGREGATION

Figure [3] shows that DD with XGBoost is able to better distinguish between real and synthetic
data than LD on single-table fidelity. When incorporating the relational information by adding
aggregations, the differences are more pronounced. Adding aggregations to LD allows it to detect a
synthetic dataset even when marginal distributions for a single-table are perfectly generated (Fig.[3a)
indicating that methods fail at preserving the characteristics of the relationships between tables.
When using XGBoost as the discriminative model, the contribution of aggregations is similar, except
in cases where discriminating between real and synthetic observations is already trivial (Fig. Bb).
The best performing combination of DD with XGBoost and aggregation is, in almost all cases, able
to identify a synthetically generated dataset and is often able to discriminate between individual
observations with high accuracy. In particular, even when methods pass the single-table fidelity
test (Fig. @ method G-LSTM), DDA reveals that the method fails to model relationships between
columns in connected tables.

[ableDetection-LogisticRegression SingleTableDetection-LogisticRegression
ableDetection-XGBClassifier SingleTableDetection-XGBClassifier
ionDetection-LogisticRegressi — gationDetection-Logisti i
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SDV RCTGAN MOSTLYAI G-ACTGAN G-LSTM SDV RCTGAN REALTABF MOSTLYAI G-ACTGAN  G-LSTM CLAVADDPM

fon Accuracy

t
P

(a) Dataset Biodegradability, table Molecule (b) Dataset Rossmann, table Store

Figure 3: Discrimination accuracy for DD and DD with aggregation. The results are for the
parent tables. The red dashed line marks the expected 50% accuracy for perfectly generated data.

4.5 INTERPRETABILITY FOR GENERATIVE METHOD DIAGNOSTICS

ML interpretability with feature importance confirms that methods struggle with preserving the re-
lationships between columns across tables. Figure 4] shows an example of how information about
child columns is the most discriminative feature for two methods that pass single-table fidelity tests.
We examine two such relationships in Figure[5] The partial dependence plots of the first and fourth
most important features from Figure [Ab] show how subsets of both categorical (Fig.[5a) and numeri-
cal (Fig.[5b) features’ conditional distributions are informative to the discriminative model.

Atom Molecule Type #Unique eemms  Movies2actors Cast Num #Unique L L
Movies2directors Genre #Unique o
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U2base Rating Mean L
U2base Counts ¥
Mweight X
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Year
Logp Runningti o s 3
Feaure type gtime ©  AGGREGATE
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. > N o CATEGORICAL
Activity NUMERIGAT IsEnglish » == g
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(a) Biodegradability - G-LSTM (78% 4+ 1.6)  (b) MovieLens - ClavaDDPM (83.4% =+ 0.4)

Figure 4: Feature importance for DD with aggregation using XGBoost. Results are for the best
performing methods (lowest DD accuracy). The added features that incorporate relational infor-
mation (red) are the most important for discriminating between real and synthetic data. Notably,
methods synthesize individual tables well, passing single-table fidelity tests in both cases.
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Figure 5: Partial dependence plots. Results are for the 1st and 4th most important feature from
Figure @bl With ideally generated synthetic data, features could not discriminate between synthetic
and original data and every partial dependence plot would be a horizontal line at 50% probability. We
can observe that (a) the synthetic data have too many unique actor cast numbers (higher probability
of being synthetic when feature value is larger than 4) and (b) the mean movie ratings in the original
data vary more than in the synthetic data, where they are more concentrated around 3.5.

4.6 RELATIONAL MACHINE LEARNING UTILITY PERFORMANCE

We construct ML utility pipelines for the three datasets: AirBnB, Rossmann, and Walmart. These
datasets meet two criteria: all methods were able to generate data and they contain a temporal feature
that allows us to split the data for evaluation on a held-out test set. We provide a detailed description
of the utility pipelines in Appendix

Table [2] summarizes the utility results. For the AirBnB classification task, most methods have a
moderate drop in predictive performance, except SDV and REALTABFORMER, that have near
naive baseline performance. For the two regression tasks, the predictive performance when using
synthetic data is at most near the naive baseline, often much worse. The only exception is SDV on
the Walmart dataset, where the performance is better than when trained on original data.

Table 2: Machine Learning Utility. XGB Score is the predictive performance of an XGBoost model
tested on original data (higher is better for AirBnB, lower is better for Rossmann and Walmart). As
a baseline for comparison, we add original data performance and, in parentheses, performance if we
predict the majority class or mean (naive baseline). The Model and Feature selection columns show
the Spearman Rank Correlation between original and synthetic data model and feature ordering.

Dataset ~ Method XGB Score  Model Selection  Feature Selection
Real Data 0.72 + 0.001 (0.5) - -

SDV 0.51 £ 0.002 —0.43£0.03 0.01 £0.01

RCTGAN 0.7 +0.001 0.88 +0.01 0.01 +0.01

. REALTABF. 0.54 =+ 0.001 0.40 £ 0.01 —0.00 £ 0.01
AitBnB  \ioSTLYAT 0.7 + 0.001 0.98 + 0.01 0.09 + 0.01
GRE-ACTGAN 0.7 +0.001 0.69 + 0.01 0.09 + 0.01
GRE-LSTM 0.67 + 0.001 0.64 +0.01 —0.04 £ 0.01
CLAVADDPM 0.55 & 0.003 0.42 +0.02 0.03 +0.01

Real Data 81 + 0.9 (345) - -

SDV 3406 £ 20 0.0 £0.02 —0.28£0.02

RCTGAN 3214 0.6 0.54 +0.04 0.16 + 0.03
REALTABF. 42443 —0.04 +£0.03 —0.37 £0.02

Rossmann  prp yAT 46445 0.07 £ 0.02 0.23 +0.02
GRE-ACTGAN 328 + 0.4 —0.75 £ 0.04 0.13 +0.03
GRE-LSTM 3334 0.4 —0.36 £ 0.04 0.31 +0.02
CLAVADDPM 269 + 1 0.46 +0.03 0.28 + 0.02

Real Data 6,117 £ 103 (7.697) B B

SDV 4,954 £ 66 0.68£0.02 0.14 £0.03

RCTGAN 8,194 + 154 0.11 £ 0.04 0.31 +0.02
REALTABF. 19,071 + 431 —0.43 +0.03 0.20 + 0.02

Walmart  \1oSTLYAL 9,827 + 213 0.18 4+ 0.04 —0.244+0.03
GRE-ACTGAN 9,942 + 81 —0.11 4+ 0.03 —0.314+0.02
GRE-LSTM 12,382 + 81 0.75+0.05 0.15 =+ 0.02
CLAVADDPM 8759 + 65 0.30 + 0.04 0.12 + 0.02
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Model selection ranking results do not show any simple pattern. Overall, the methods do not pre-
serve the model rankings well, sometimes even reversing the ranking for a negative correlation.
Results improve on average if we use weighted rank correlation (see Appendix Figure[7). Fea-
ture selection rankings results are similar and again improve if we use weighted rank correlation
(see Appendix [D.4] Figure[8). This suggests that most methods are better at ordering the top models
(features) than all models (features). As these are usually of more interest than bottom performing
models (least important features), unweighted rank correlation might not be the best approach.

Utility results suggest that the generated data might still be useful for certain tasks (e.g. developing
classification pipelines on synthetic datasets) despite failing the fidelity tests. This is supported by
the improvement in performance when using the weighted rankings and by most methods perform-
ing well on the AirBnB dataset. These results are in line with previous work (Hansen et al., [2023))
indicating that fidelity and utility are inherently separate aspects of the quality of synthetic data.

5 CONCLUSION

We surveyed methods for synthesizing relational data and provided a critical review of approaches
to evaluating the fidelity and utility of synthetic data. We integrated our findings into the first bench-
mark tailored to evaluating relational synthetic data (see Appendix [B.3|for a comparison with related
tools). Our work is available as a Python package (URL anonymised and the work included as sup-
plementary material). that can be easily extended with new methods, metrics, and datasets.

We introduced DD, a generalization of detection-based approaches to fidelity, based on framing
the problem as a classification task. Compared to commonly used statistical and distance-based
approaches, we have the additional choices of classifier and, for multi-table fidelity, engineering
additional features. However, empirical results show that DD outperforms other approaches even
with basic additional features and XGBoost. The approach can be applied to single-column, multi
column, single-table, or, with aggregation (DDA), multi-table fidelity. Worse-than-random perfor-
mance of the discriminative model is also a viable diagnostic for data-copying. Finally, we demon-
strate how, by explaining the predictions of the discriminative model, we can gain additional insights
into which aspects of the original data were not synthesized well. We argue that DDA is a viable
one-size-fits-all approach for investigating the fidelity of synthetic data.

We used our benchmark for the first comprehensive evaluation and comparison of the state-of-the-art
methods for generating synthetic relational data. Methods are not yet able to generate synthetic rela-
tional data that is indistinguishable from original data. Most methods have problems with marginal
distributions at least on some benchmark datasets and with single-tables on most datasets. None of
the methods capture the relational properties of the original data, which results in relatively poor
fidelity and utility. We highlight this as an important direction for future work on relational data
synthesis (see Appendix [5.1]for limitations of the study and directions for future work).

5.1 LIMITATIONS AND FUTURE WORK

Our work focused on fidelity and utility, but not privacy. While we do briefly touch upon one as-
pect of privacy - data copying - we delegate the research of privacy metrics for synthetic relational
data to future work. More work needs to be done in understanding the relationship between model
quality and feature importance and practical utility. Unweighted rankings are flawed and it is not
clear what weighting should be used or if metrics of this type are even a practically relevant utility
measure. Finally, several aspects of synthetic data evaluation are limited by the difficulty of repre-
sentative sampling. More work needs to be done in understanding the limitations and preparing new
benchmark datasets or dataset generators.

Our results reveal significant gaps in multi-table fidelity. However, utility metrics on some datasets
show performance comparable to real data, even when fidelity tests fail, highlighting the practical
value of the generated data. To improve fidelity, future methods should focus on the relational
aspects, with graph representation learning on relational data (Fey et al.|[2023) showing promise for
both generative modeling and a general approach for evaluating multi-table utility.
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APPENDIX

A A SURVEY OF SYNTHETIC RELATIONAL DATA GENERATION METHODS

The Synthetic Data Vault (SDV) (Patki et al., [2016) introduced the first learning-based method
for generating relational data. The method is based on the Hierarchical Modeling Algorithm (HMA)
synthesizer, which is a multivariate version of the Gaussian Copula method. The method converts all
columns to a predefined set of distributions and selects the best-fitting one. To learn dependencies,
columns are converted to a standard normal before calculating the covariances. Tables are modeled
with a recursive conditional parameter aggregation technique, which incorporates child table covari-
ance and column distribution information into the parent table. The method requires the relational
structure or metadata, which has since become a common practice.

The work of [Mami et al.| (2022) leverages the graph representation of relational data using Graph
Variational Autoencoders. They focus on the case of one primary table connected by an identi-
fier to an arbitrary number of secondary tables. The approach begins by transforming categorical,
datetime, and numeric attributes into a normalised numeric format using an invertible function.
Subsequently, all tables’ attributes are merged into a single-table, where rows from each table are
vertically concatenated. This merged table, along with an adjacency matrix based on foreign key
relations, forms a homogeneous graph representation of the dataset. Message passing is then ap-
plied to this graph representation using gated recurrent units (GRU). Following the message passing
phase, the data is processed through a variational autoencoder, which encodes the joined table and
random samples are taken from its latent space. These samples are then decoded back to the data
space.

Composite Generative Models (Canale et al., 2022) propose a generative framework based on
codecs for modeling complex data structures, such as relational databases. They define a codec as
a quadruplet: C = (E,D,S,L), consisting of an encoder E producing embeddings and intermediate
contexts, a decoder D for distribution representation, a sampler S and loss function L. The authors
define the following codecs: Categorical and Numerical Codecs for individual columns, while com-
posite data types are encoded using Struct and List Codecs, allowing for relational data synthesis.
They also propose a specific implementation using causal transformers as generative models.

The Row Conditional-TGAN (RC-TGAN) (Gueye et al., |2023)) extends the conditional tabular
GAN model (Xu et al.,[2019)) to relational data. RC-TGAN incorporates data from parent rows into
the child table GAN model, allowing it to synthesise data conditionally on the connected parent table
rows. The ability for conditional synthesis allows the method to handle various relationship schemas
without additional processing. They enhance RC-TGAN to capture the influence of grandparent
rows on their grandchild rows, preserving this connection even when the relationship information is
not transferred by the parent table rows. Database synthesis is based on the row conditional generator
of RC-TGAN model trained for each table. First, all parent tables are synthesised, followed by
sampling the tables for which parents are already sampled. This allows using the synthesised parent
rows as features when synthesizing child table rows.

The Incremental Relational Generator (IRG) (Li & Tayl 2023) uses GANs to incrementally fit
and sample the relational dataset. They first define a topologically ordered sequence of tables in the
dataset. Parent tables are modeled individually, while child tables undergo a three-step generation
process. First, a potential context table is constructed by combining data from all related tables
through join operations and aggregation. Then, the model predicts the number of child rows to be
generated for each parent row, which they call its degree. They then extend the context table with
corresponding degrees. Taking this table as context, they use a conditional synthetic tabular data
generation model to generate the child table.

The Realistic Relational and Tabular Transformer (REaLTabFormer) (Solatorio & Dupriez,
2023)) focuses on synthesizing single parent relational data and employs a GPT-2 encoder with a
causal language model head to independently model the parent table. The encoder is frozen after
training and used to conditionally model the child tables. Each child table requires a new conditional
model, implemented as a sequence-to-sequence (Seq2Seq) transformer. The GPT-2 decoder with a
causal language model head is trained to synthesise observations from the child table, accommodat-
ing arbitrary-length synthetic data conditioned on an input. While this method supports conditional
synthesis of child rows, only one level is supported by this method.
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Xu et al.| (2023)) propose a method for modeling many-to-many (M2M) datasets via random graph
generation. They leverage a heterogeneous graph representation of the relational data and propose
a factorization for modeling the graph representation incrementally. First, the edges of the graph
are generated unconditionally using a random graph model. Second, one of the tables is generated
conditionally on the topology of edges. One way to achieve such conditioning is by using a node
embedding. Lastly, the remaining tables are generated using the conditional table model, which
requires the generation of each node of the table based on the currently generated tables and all
connections. They achieve this by using set embeddings to conditionally generate connected ta-
bles. The authors propose two variants using different conditional table models BayesM2M and
NeuralM2M.

Privacy-preserving graphical models with latent variables. (PrivLava) (Cai et al.,|2023)) synthe-
sizes relational databases with foreign key dependencies under differential privacy (DP). PrivLava
models each foreign key in a relational schema as a separate graphical model, incorporating latent
variables to capture inter-relational dependencies. Each entity in a child table associated with a
parent table is modeled using a latent variable representing characteristics of the relationship. The
approach handles foreign key relationships by treating them as a directed acyclic graph (DAG). It
incrementally models the tables following a topological order, beginning with root tables and then
moving on to tables that depend on them. This ensures that each synthetic row in child tables is
conditionally generated based on latent features of related parent rows. Noise is injected at various
stages to achieve DP guarantees.

The Cluster Latent Variable guided Diffusion Probabilistic Models (ClavaDDPM) (Pang et al.,
2024) utilizes classifier-guided diffusion models, integrating clustering labels as intermediaries be-
tween tables connected by foreign-key relations. The authors first propose a model for generating a
single parent-child relationship. The connection between the tables is modeled by a latent variable
obtained using Gaussian Mixture Model clustering. ClavaDDPM learns a diffusion process on the
joint parent and latent variable distribution, followed by training a latent variable classifier on the
child table to guide the diffusion model for the child table. Additionally, it includes a model to
estimate child group sizes, to preserve relation cardinality. The authors then extend this to more
parent-child constraints through bottom-up modeling and address multi-parent scenarios by em-
ploying majority voting to mitigate potential clustering inconsistencies. Despite strong performance
on our benchmark a key limitation of the method is its inability to generate datasets with multiple
relationships between pairs of tables.

B  SYNTHETIC RELATIONAL DATA GENERATION BENCHMARK

We provide our work as a Python package. The main goal of the package is the evaluation of the
quality of synthetic relational data. We can compare multiple methods across multiple datasets with
the Benchmark class or evaluate a single method on a single dataset with the Report class. All of
the results of the benchmark are saved as JSON files and then parsed by our package for results
summarization and visualization. The package is open source under the MIT license and can easily
be extended with new methods, evaluation metrics, or datasets.

B.1 EVALUATION METRICS

We list the evaluation metrics for data fidelity and utility currently supported in our benchmark in
Table 3| based on the granularity of the data they evaluate.

We do not aggregate the values of the metrics over all tables and/or columns in the dataset, but
rather report the results for all metrics. We believe that a single aggregated value does not give a
good representation of the fidelity or utility of the synthetic data. We focus our evaluation of fidelity
on the inseparability of the synthetic data from the original data (see Appendix [B.1.2). We believe
this gives a better insight into the quality of the data than just reporting metric values, which depend
on the support of the values of the data we are evaluating.
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Table 3: Evaluation Metrics supported in the benchmark.

Single-Column Single-Table Multi-Table
Statistical KS Test, X2 Test / cardinality shape similarity
Distance Total Variation, Maximum Mean /
Hellinger, Discrepancy,
Jensen-Shannon, Pairwise Correlation
Wasserstein Difference
Detection  Discriminative Detection Discriminative Detection Aggregation Detection,
Parent-Child Detection
Utility / Single-Table ML-Utility Relational ML-Utility

B.1.1 RELATIONAL AGGREGATION DETAILS

Algorithm 2] describes how aggregation attributes are constructed from values in related tables based
on foreign key relationships. The algorithm defines a propositionalisation (Lachiche| [2010) of the
relational dataset given a target table of interest 7;.

Algorithm 2 Relational Aggregation.

Require: relational database ID with tables 7 and relational schema S = {R, {Ar, ... Ar, }}
Require: target table T'
1: aggregationAttributes < []
2: foreach C; € {C : (C,T) € R} do
3: KXeoint < CountRows(C;, T') > count the rows in C; corresponding to rows in 1"
aggregationAttributes.append(ngmt)
for each afi € Ac, do

4
5
6: xacj <+ Agg(Ch, afl , 1) > calculate aggregation attribute
7 aggregationAttributes.append(xac;' )

8 end for

9: end for

10: 10

11: for eachv € T do

12: (po, Ko, o) v

13: for each a € aggregationAttributes do

14: Ty < Zo U {(a.name, a[i])} > add aggregation attribute and value to x,
15: end for

16: T 1+1

17: end for

18: return T; > final table with all aggregations

B.1.2 SEPARABILITY OF SYNTHETIC AND ORIGINAL DATA

Statistical metrics report the underlying statistic and p-value. We decide if the metric was able to
separate synthetic data from the original data if the p-value is less than the significance level a,
which in our case is 0.05.

Distance metrics must report the metric value, the support of the values the metric can obtain and
the goal (minimization or maximization of the metric). Depending on the support and goal, a boot-
strap confidence interval is constructed, which can be asymmetric depending on the support. The
separability of the original and synthetic data is decided based on the 1 — « confidence interval. If
the metric value falls outside of the confidence interval, the metric is able to differ between real and
synthetic data.

Detection metrics report the classification accuracy, however it can be replaced with any classifica-

tion metric. The separability of the data is determined using a one-sided binomial test for propor-
tions, assuming a probability parameter of % (where n, m are numbers of rows for real and

synthetic datasets respectively) for both groups, which indicates complete inseparability of the data.
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B.2 DATASETS

Table @] summarizes the relational datasets used in our benchmark. Five datasets are from related
work and we add the Cora dataset by McCallum et al.| (2000), which contains a simple yet chal-
lenging relational schema. We include 2 datasets per hierarchy type to progressively add complexity
in generation. The datasets used in our evaluation are diverse in terms of the number of columns,
tables and relationships.

Table 4: A summary of the 6 benchmark datasets. The number of columns represents the number
of non-id columns. The collection is diverse and covers all types of relational structures.

Dataset Name # Tables # Rows # Columns # Relations Hierarchy Type
Rossmann Store Sales 2 59.085 16 1 Linear

AirBnB 2 57.217 20 1 Linear

Walmart 3 15.317 17 2 Multi Child

Cora 3 57.353 2 3 Multi Child
Biodegradability 5 21.895 6 5 Multi Child & Parent
IMDB MovieLens 7 1.249.411 14 6 Multi Child & Parent

The AirBnB (Airbnb| 2015) dataset includes user demographics, web session records, and summary
statistics. It provides data about users’ interactions with the platform, with the aim of predicting the
most likely country of the users’ next trip.

The Biodegradability dataset (Blockeel et al.,|1999) comprises a collection of chemical structures,
specifically 328 compounds, each labeled with its half-life for aerobic aqueous biodegradation. This
dataset is intended for regression analysis, aiming to predict the biodegradation half-live activity
based on the chemical features of the compounds.

The Cora dataset (McCallum et al., [2000) is a widely-used benchmark dataset in the field of graph
representation learning. It consists of academic papers from various domains. The dataset consists
of 2708 scientific publications classified into one of seven classes and their contents. The citation
network consists of 5429 links.

The IMDB MovieLens dataset (Harper & Konstan,2015)) comprises information on movies, actors,
directors, and users’ film ratings. The dataset consists of seven tables, each containing at least one
additional feature besides the primary and foreign keys.

The Rossmann Store Sales (FlorianKnauer, [2015) features historical sales data for 1115 Rossmann
stores. The dataset consists of two tables connected by a single foreign key. This makes it the
simplest type of relational dataset. The first table contains general information about the stores and
the second contains sales-related data.

The Walmart dataset (Walmart, 2014} includes historical sales data for 45 Walmart stores across
various regions. It includes numerical, date-time and categorical features across three connected
tables store, features and depts. The dataset is from a Kaggle competition, with the task of predicting
department-wide sales.

B.3 COMPARISON WITH EXISTING EVALUATION TOOLS

The most popular and comprehensive package for evaluating tabular synthetic data is Synthc-
ity (Qian et al. |2023agb)). It supports many statistical, privacy and detection-based (with several
different models) metrics.

The only package that supports multi-table evaluation is SDMetrics (DataCebol 2022). It includes
multi-table metrics cardinality shape similarity and parent-child detection with logistic detection and
support vector classifier. The package is not easy to extend and limits the adaptation of metrics. We
re-implement detection metrics (discriminative detection, aggregation detection, and parent-child
detection) to be used with an arbitrary classifier supporting the Scikit-learn classifier API (Pedregosa
et al.,2011; Buitinck et al., 2013)). In SDMetrics, the results of different metrics are aggregated into
a single-value, which limits the comparison of individual metrics between the methods and datasets.
We re-implement the distance and statistical metrics so that each statistic, p-value, and confidence
interval is easy to access.
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Our benchmark package can be easily extended with new methods, metrics, and datasets. The
process for adding custom metrics and new datasets is described in (URL anonymised and the work
included as supplementary material).

B.4 LICENSE AND PRIVACY

We obtain the datasets from the public SDV relational demo datasets repository (https://docs.
sdv.dev/sdv/single-table—-data/data-preparation/loading—datal accessed
June 6th, 2024.). The SDV project is licensed under the Business Source License 1.1 (https:
//github.com/sdv-dev/SDV?tab=License—-1-ov—file#readmel which allows use
for research purposes. We manually check all of the data to ensure it does not include any personally
identifiable information. Some of the datasets contain processed columns, including aggregations
of numerical values and connected table rows (eg. nb_rows_in_{related table}). The authors of SDV
(Patki et al., |2016) confirmed that these aggregations are not part of the original datasets, so we
post-process all of the datasets to include only the columns found in their original form and update
the metadata accordingly.

We adapt some of the metrics from the SDMetrics (DataCebo, [2022) (MIT License) and Synthc-
ity (Qian et al., |2023a3b)) (Apache-2.0 License) synthetic data generation benchmarks.

C EXPERIMENTS

C.1 COMPUTATIONAL RESOURCES

The generative methods were trained on NVIDIA 32GB V100S GPUs and H100 80GB GPUs. The
total number of GPU hours spent across all experiments is approximately 500. Results which do not
require a GPU were run on machines running AMD EPYC 7702P 64-Core Processor with 256GB
of RAM. All experiments were performed on an internal HPC cluster.

C.2 REPRODUCIBILITY
C.2.1 DATASETS AND DATA SPLITTING

Scripts for downloading the datasets and their metadata in the SDV format (Patki et al., |2016) are
available in the project repository (URL anonymised and the work included as supplementary mate-
rial), as well as the corresponding synthetic data samples for all methods to enable the reproduction
of the benchmark results.

We opt not to split the datasets into train, test, and validation sets for generative model training.
When no temporal information is included and the structure is non-linear the representative sampling
in relational datasets is non-trivial. We delegate this to future work.

Due to computational limits (also reported by Solatorio & Dupriez|(2023))), we subsample the Ross-
mann Store Sales, AirBnB, and Walmart datasets. The linear structure of these datasets allows
us to representatively sample from them and split them temporally for the purposes of ML-Utility
experiments. We subsample the datasets and use the remaining data to obtain hold-out test sets:

* Rossmann Store Sales: Subsampled on table historical, column Date by taking the rows
of a two month period from 207/4-07-31 to 2014-09-30, similarly to |Solatorio & Dupriez
(2023).

¢ AirBnB: Subsampled the dataset by only including the users who have less than 50 sessions
and then sampled 10k users, as done by Solatorio & Dupriez| (2023).

* Walmart: Subsampled on tables departments and features on the column Date by taking
the rows from December 2011.

C.2.2 EXPERIMENTAL DETAILS AND HYPERPARAMETERS

To provide some quantification of the variability from the non-deterministic nature of the methods,
we generated synthetic data for each of the methods for each of the datasets 3 times with different
fixed random seeds. We ran the benchmark for each replication.
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Scripts for reproducing the generative model training and instructions for training commercial meth-
ods are included in the project repository.

It is possible that better performance could be achieved by investing more effort into parameter
tuning. However, due to our choice to not split the data, it was not clear how to optimize hyperpa-
rameters; therefore, we selected default hyperparameters for all methods (see Table [3)).

Table 5: Hyperparameter specification.

model hyperparameter value
embedding_dim 128
generator_dim (256, 256)
discriminator_dim (256, 256)
generator_lr 0.0002
generator_decay le-06
discriminator_Ir 0.0002
discriminator_decay le-06
batch_size 500
RCTGAN discriminator_steps 1
epochs 1000
pac 10
grand_parent True
field_transformers None
constraints None
rounding “auto”
min_value “auto”
max_value “auto”
locales None
verbose True
table_synthesizer ”GaussianCopulaSynthesizer”
SDV enforce_min_max_values True
enforce_rounding True
numerical_distributions {}
default_distribution “beta”
epochs 100
batch_size 8
train_size 0.95
output_max_length 512
early_stopping_patience 5
early_stopping_threshold 0
mask _rate 0
numeric_nparts 1
numeric_precision 4
REALTABFORMER numeric_max_len 10
evaluation_strategy “steps”
metric_for_best_model ”loss”
gradient_accumulation_steps 4
remove_unused_columns True
logging_steps 100
save_steps 100
eval_steps 100
load_best_model_at_end True
save_total_limit 6
optim ”adamw _torch”
Configuration presets Accuracy
Max sample size 100%
Model size Large
MOSTLYAI Batch size Auto
Flexible generation Off
Value protection Off
model ”synthetics/tabular-lstm”
G-LSTM type “gretel _tabular”
num_records_multiplier 1.0
model “synthetics/tabular-actgan”
G-ACTGAN type “gretel _tabular”
num_records_multiplier 1.0
num_clusters 50
parent_scale 1.0
classifier_scale 1.0
num_timesteps 2000
batch_size 4096
layers_diffusion [512, 1024, 1024, 1024, 1024, 512]
iterations_diffusion 200000
CLAVADDPM Ir_diffusion 0.0006
weight_decay_diffusion le-05
scheduler_diffusion “cosine”
layers_classifier [128, 256, 512, 1024, 512, 256, 128]
iterations_classifier 20000
Ir_classifier 0.0001
dim_t 128
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C.3 MACHINE LEARNING UTILITY PIPELINES

To include the relational aspect of the data, we incorporate the data from all tables using appropriate
aggregations and table joins. For each dataset, we select the target column, which is most commonly
used for prediction, and transform it where appropriate. The code for the pipelines is available in
the benchmark repository: (URL anonymised and the work included as supplementary material).

For AirBnB we select Country Destination, the country of the user’s first booking. As this is a
highly imbalanced column, we simplify the task to determine whether a user will book a trip or not
(country_destination # NDF).

For the Rossmann dataset, the original target column is Sales. However, as the version of the dataset
we use does not contain it, we select the Customers column, describing the number of customers
visiting a store on a single day. Due to the size of the dataset, we aggregate the customer data to
predict the monthly average number of customers for each store.

In the Walmart dataset, the target column, Weekly Sales, represents the sales for an individual de-
partment each week. The predictive task involves forecasting these weekly department-wide sales
for each store.

For each dataset and generative method we fit multiple learners (XGBoost, Linear Regression, Ran-
dom Forest, Decision Tree, K-Nearest Neighbors, Support Vector Machine, Gaussian Naive Bayes
and Multi-Layer Perceptron). Each learner is trained twice, once on the original data and once on
the synthetic data and evaluated on the held-out test set. We then compare the performance of the
learners trained on the real and synthetic data.

Additionally, we also evaluate the generative models’ ability to preserve the ranking of the learners
and the rankings of features between the real and synthetic data. The test data is obtained from the
rows unused during subsampling of the datasets. For the Rossmann and Walmart datasets we select
the data for the next month after subsampling (November 2014 and January 2012 respectively). For
the AirBnB dataset we randomly sample 2000 users that meet the same criteria as the training set
(having at most 50 sessions).

On the Rossmann dataset we first join the Store and Historical tables based on the foreign keys,
we then drop the State Holiday column which is constant in the training set and the Day of Week
column as we aggregate the data by month. We then one hot encode the categorical columns and
aggregate the data by Store, Month and Year. In this way we obtain the expected value for each of
the store’s numerical attributes and the expected frequencies for each column. Lastly, we impute the
missing values with zeroes.

On the AirBnB dataset we first drop the Date of First Booking column as it can be used to perfectly
predict the target. We then fill the missing numerical values with zeroes. We aggregate the average
session duration and count the number of sessions for each user. We then add these values to the
columns in the user table and use zeroes for the users with zero logged sessions. As described
previously, we convert the country destination to a binary attribute, indicating whether a user made
a reservation or not. This is mainly done due to the target column having a highly imbalanced
distribution, which was an issue for all of the generative methods.

On the Walmart Dataset we simply join the Department and Store tables based on the Store id. We
then merge it with the Features table on the Store id and Date columns. We then aggregate the data
by Store and Date to obtain average Weekly sales for a store across all departments.

D ADDITIONAL EXPERIMENTS

D.1 SHORTCOMINGS OF LOGISTIC DETECTION

As explained in Section [2.2.3] a significant limitation of LD is its inability to capture interactions
between columns. It can thus assign a perfect fidelity score to a dataset that is completely corrupted.
In this section, we empirically show this shortcoming. We conduct the experiment by selecting a
table from each dataset (with the exception of CORA in which no table has two columns, which are
not primary or relational keys). We first select the parent table Stores and split in half to simulate
the original table and a perfectly generated (by the underlying DGP) synthetic table. We then copy
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the ”generated” table and randomly shuffle values in each column, completely ruining the fidelity of
the dataset, while keeping the marginal distributions intact. We then evaluate the perfectly generated
and shuffled datasets using LD and DD using XGBoost. The results are visualized in Figure 6]
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Figure 6: Issues with logistic detection. For each dataset, we simulate a perfectly generated table
by splitting the original table in half. We copy one part of the table and shuffle the values in each
column and thus completely ruin the fidelity of the table. While the DD metric using an XGBoost
classifier can almost perfectly segment the corrupted rows, logistic regression assigns both of the
datasets the same score.

Notably LD assigns both versions of the dataset the same score, labeling them indistinctive from
the original data. If the fidelity aspect of interest would be solely the marginal distributions, the
LD results would be more appropriate than those of DD using XGBoost (as marginals are identical
in both datasets). However, given that we are interested in single-table fidelity, our experiment
showcases a fundamental shortcoming of LD as a measure of single-table fidelity.

D.2 DISCRIMINATIVE DETECTION AS A DATA COPYING DIAGNOSTIC

In this section we investigate how discriminative detection can be used to diagnose data copying. We
also demonstrate how the classifier performance commonly reported in LD (2 - max(AUC, %) -1
masks this issue. As in the previous experiment we simulate a perfect synthetic generating a dataset
by splitting the original table in half. However, instead of introducing corruption into the second
half, we create an exact copy of the original data (i.e., the first half). The commonly used LD
implementation fails to detect data copying and assigns the copied data a perfect score. In contrast,
DD successfully detects data copying as accuracy drops significantly below 50%.

We then examine the behaviour of DD when only a portion of the data is copied. We keep a portion
of the dataset as an identical copy and sample the rest of the values from the “perfectly generated”
half. For most of the datasets, even when a relatively low percentage of the data is copied, DD
detects the duplication. We showcase the results in Figure

D.3 FIDELITY - UTILITY CORRELATION

We examine the relationship between fidelity and utility metrics. We compute the average utility
score for each ML model used in the utility task. We then compare those with the fidelity score for
discriminative detection with aggregation using an XGBoost model and logistic detection. We pair
the average utility score with the detection accuracy for each generative method for each of the three
replications. We then use bootstrap to estimate the correlation using 10, 000 replications for both
fidelity metrics. We report the results in Table|[6]
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Figure 7: Detecting data copying with DD. The left plot demonstrates how the error estimation of
LD (2 - max(AUC, %) — 1) masks data copying, while DD detects it across all datasets. In the right
plot, we observe how copying only a fraction of the original data affects DD accuracy, with accuracy
consistently decreasing as more data is duplicated.

Dataset p(DDAxgp,U) p(LD,U) PDDA — PLD
Rossmann —0.61 —0.33 —0.28(—0.43,—-0.13)
Walmart —0.417 0.03  —0.45(—0.78,—0.07)
Airbnb —0.45 —0.52 0.07(0.02,0.07)
Total —0.535 —0.457 —0.08(—0.22,0.06)

Table 6: Detection - utility score correlation comparison for DD with aggregation when using
XGBoost and logistic detection. The estimated correlation for both models is negative, indicating
an inverse relationship between a higher detection score (lower fidelity) and higher utility score. On
average the utility score for DDA is lower than for LD indicating a stronger relationship.

On two of the tested datasets the utility score for DDA is lower than for LD implying a stronger re-
lationship, with the exception being the Airbnb dataset. On this dataset, most methods struggle with
generating the marginal distributions, resulting in both metrics achieving a high detection accuracy
(99.71+0.1% and 96.1 £ 2 %respectively). LD achieves a significantly lower accuracy on RCTGAN
(74 £ 0.4 % as opposed to 98 £ 0.03 %). As RCTGAN scores best in utility, this causes a slightly
higher correlation for LD.

D.4 WEIGHTED MODEL & FEATURE RANKING

As mentioned in Section[4.6]in a practical scenario one is more interested in a subset of the evaluated
models and feature importances. When evaluating the utility of a generative method it makes sense
to penalize the switches between unimportant features less. For this reason we also compute the
weighted Kendall’s 7 alongside the Spearman and Kendall’s 7 rank correlation. Tables[7]and [§]show
the difference in model and feature selection scores when using the weighted metric.

D.5 COMPARISON WITH SINGLE-TABLE METHODS

In our single-column and single-table benchmarks, we include five state-of-the-art tabular genera-
tive methods included in the Synthcity library: Bayesian Networks (BN) (Ankan & Pandal |2015),
Conditional Tabular GAN (CTGAN) (Xu et al., [2019), Tabular Diffusion Denoising Probabilistic
Model (TabDDPM) (Kotelnikov et al.| [2022), RQ-Neural Spine Flows (NFLOW) (Durkan et al.,
2019)), and Tabular Variational Autoencoder (TVAE) (Xu et al.,|2019). We use hyperparameters that
were used in the single-table evaluation of these methods by |Hansen et al.| (2023).
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Table 7: Model Rank: Spearman vs. 7 vs. Weighted 7

Dataset ~ Method Spearman Kendall Weighted
SDV —043+0.03 —-0.29+£0.03 —0.08=+0.02

RCTGAN 0.88+0.01 0.71+£0.01 0.80 £ 0.01
REALTABE. 0.40 £0.01 0.36 £0.01 0.49 £0.02

AirBnB  MOSTLYAI 098 +0.01 093+0.02 0.95+0.01
GRE-ACTGAN 0.69 +0.01 0.57+£0.01 0.68 £0.01
GRE-LSTM 0.64 +£0.01 0.43+0.01 0.71£0.01
CLAVADDPM 0.42 +0.02 0.29+£0.02 0.18 £ 0.005

SDV 0.0 £0.02 0.056+£0.02 —-0.37£0.01

RCTGAN 0.54+0.04 043+0.03 0.78+0.03
REALTABF. —0.04 £0.03 0.05+0.02 0.53 £0.02

Rossmann MOSTLYAI 0.07 +£0.02 0.05+£0.02 —0.44 4+ 0.02
G-ACTGAN —-0.75£0.04 —0.62+0.03 0.35+0.01

G-LSTM —0.36 £0.04 —-0.24+£0.03 —0.26+0.03
CLAVADDPM 0.46 +0.03 0.41 +£0.02 0.70 £0.01

SDV 0.68 £ 0.02 0.52+£0.02 0.93 £0.02

RCTGAN 0.11+£0.04 0.14 +£0.03 0.58 £0.03
REALTABFE. —0.43£0.03 —-0.33+0.02 0.1+0.01

Walmart MOSTLYAI 0.18 £0.04 0.05+0.03 0.1+0.01
G-ACTGAN —0.11+0.03 —0.14+£0.02 0.36 +0.02

G-LSTM 0.75+0.05 0.62+0.04 0.48 £0.02

CLAVADDPM 0.30 £0.04 0.22 +£0.03 0.41+0.01

Table 8: Features Rank: Spearman vs. 7 vs. Weighted

Dataset  Method Spearman Kendall Weighted
SDV 0.01+£0.01 0.01+£0.01 0.11£0.01

RCTGAN 0.01+0.01 0.01£0.01 0.62 £ 0.00
REALTABF. 0.0+0.01 0.0+0.01 0.42+0.01

AirBnB  MOSTLYAI 0.09+£0.01 0.07+0.01 0.74+0.003
GRE-ACTGAN  0.09 +£0.01 0.06 £ 0.01 0.66 = 0.00
GRE-LSTM —0.04 £0.01 —0.02+0.01 0.53 £0.01
CLAVADDPM 0.03 £0.01 0.02+0.01 0.7+0.003

SDV —0.28+0.02 -0.18+£0.02 —0.11+0.02

RCTGAN 0.16 £ 0.03 0.16 £0.02 0.38 £0.01
REALTABF. —0.37£0.02 —0.25+£0.01 0.31£0.02

Rossmann MOSTLYAI 0.23 £0.02 0.16 £0.01 0.09 £0.02
G-ACTGAN 0.13 £0.03 0.15+0.02 0.3+0.03

G-LSTM 0.31£0.02 0.26+0.02 -0.28+0.02
CLAVADDPM 0.28 +0.02 0.20£0.02 0.67+0.01

SDV 0.14 £ 0.03 0.08+0.02 —-0.17+0.03

RCTGAN 0.31£0.02 0.21+0.01 0.27£0.03
REALTABFE. 0.24+0.02 0.12+0.02  —0.140.02

Walmart ~ MOSTLYAI —0.24 £0.03 —-0.16 £0.02 0.29+0.03
G-ACTGAN —-0.31£0.02 —0.3£0.02 0.17£0.03

G-LSTM 0.15£0.02 0.08£0.02 0.36£0.02

CLAVADDPM 0.124+0.02 0.094+0.02 —-0.09£0.01

The results for single-column synthesis are shown in Table 0] We observe that the methods for
relational data synthesis perform comparably to the tabular generative methods.

As expected, the performance of the methods degrades when modeling individual tables, which can
be seen in Table[I0] Here we observe a similar drop in performance for relational and single-table
methods, with the methods that generated marginal distributions well also achieving better results in
modeling whole tables.

We note that some of the methods either timed out (generation time was longer than 48 hours) or
were not able to generate all of the tables of a particular dataset so they are not included in the
Table Q] or Table
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Table 9: Single-Column Results. We report the number of times the method failed the fidelity test.
There are three numbers for each combination, one for each replication. The number in parentheses
is the total number of eligible columns for the corresponding metric.

Statistical Distance Detection
Dataset Method X KS Hel. 1S TV Was. LD XGB
SDV 15, 15, 15 (15) 5,5,5(5) 13,13,13(20) 13,13,13(20) 14,14,14(20) 0,0,0(5) 19,19,19(20) 20, 20, 20 (20)
RCTGAN 15,15 1515 5.550) 6.6, 6(20) 7.6, 6 (20) 9,10,920) _ 0,0,0(5) 18,19, 18(20) 20, 19, 20 (20)
REALTABE. 15,15 1515 5.44(3) 15,14, 1520) 15,14, 1520) 15,15, 14(20) 3,2,3(@) 19,15,16(20) 20, 17, 16 (20)
MOSTLYAT 12,9,8(15) 3,1,005 7,5,520) 7,5,520) 7,5,520) 0,0,0(5) 15,12, 11(20) 15, 11, 10(20)
G-ACTGAN 414,155  5.550) 2,2, 1(20) 2,2, 1(20) 6.6,7(20) _0,0,1(5) 18, 18,18(20) 19, 19, 20 (20)
AirBiB G-LSTM 15,15 1515 5.3,50) 1,1,1(20) 1,1,120) 2.2,3(200 _0,0,0(3) 17,15, 17(20) 18, I8, 19 (20)
CLAVADDPM 8,7, 8 (15) 3.3,305) 1,1,1(20) 1,1,120) LL1I20) LLIG) 66520 3,8,7 (20)
BN 9,9,9(15) 3.3,30) 7.7,7(20) 7.7,7(20) 7.7,720)  0,0,0(5) 12,12, 12(20) 14, 14, T4 (20)
CTGAN 15, 15, 15 (15) 55,505 8, 8,8(20) 8, 8,8 (20) 9, 10, 8 (20) 0,0,0(5) 19,18, 18(20) 19,20,20 (20)
DDPM 15,15, 1315 5.540) 2.5,2(20) 2.2,2(20) 3,5,3(20) 0,0,0(5) 17,18,16(20) 19,20, I3 (20)
NFLOW 15,15, 15(15)  5.5,5(5) 18,18, 13(20) 18,18, 13(20) 18,18, 14(20) 3,3,1(5) 19,19, 18 (20) 20, 20, 20 (20)
TVAE 4, 14,14(15) 5,555 8,8.820) 3.8,820) 3.8.80200 0,0,0(3 18,18, 18(20) 19, 19, 19(20)
SDV 7.7.70) 77,71 7.7.7(16) 7.7.7(16) 77,7060  LII(H  9,9.9(16) 14, 14, 14(16)
RCTGAN 6.6.609) 6.7.6(1) 1,0,0(16) 1,0,0(16) 2.2,3(16) _0,0,0(7) 10,11, 11(16) 12, 13, 12(16)
REALTABE. 7.3,39) 2,2,2(7) 2.3,2(16) 2.3,2(16) 33,2060  L11()  7.6,4(16) 3,6,5 (16)
MOSTLYAT 7,5,500) 2,2,2(7) 2.4,2(16) 2,4,2(16) 353060 LLI() 67706 6.9,8(16)
G-ACTGAN 7.6,609) 7.7.6 (1) 1,0, 1(16) 1,0, 1(16) 2,3.2(06) _0,0,0(7) 9,11,7(16) 1T, 13, 13(16)
Rossmann _GLST™M 6.6.609) 3.3,3(1) 0,0,3(16) 0,0,3(16) 0,0,5(16) 0,0.1(7) 9,8, 10(16) 10, 12, 11 (16)
CLAVADDPM 0,0,1(9) 35.6,5(7) 2.2,2(16) 2.1,2(16) 3.3,3(16) _0,0,0(7) _ 3,3,5(16) 6,6,7(16)
BN 0,0,009 77,7 2.2,2(16) 2.2,2(16) 333060  0,0,0(7) 1,1,1(16) 7.7,7(16)
CTGAN 5.7.409) 7.7.7(D 3,3.3(16) 3,3.3(16) 35,416 0,0,00)  7.8,7(16) 11,13, 11(16)
DDPM 6,6,6(9) 7,7,7(7) 4,4,3(16) 4,4,3(16) 4,5,4(16) 1,2,2(7) 9,9,7(16) 13,13, 13 (16)
NFLOW 7.8.69) 7.7.6(7) 6.6,8(16) 6.6,7(16) 8.8,8(16)  LI1,1(7) 10,1L,8(16) 14,15, 13(16)
TVAE 6.6,609) 77,7 3,3,3(16) 3,3,3(16) 3.3,3(16) 0,0,0(7) §,8,8(16) 12,12, 12(16)
SDV 1,4,4(4) 8, 10,8 (13) 2,2,2(17) 2,2,2(17) 33307 LL1(3) 87807 1,16, 17(17)
RCTGAN 3,324 11,10,9 (13) 1,1, 1(7) 1,0,1(7) 1,1,1(7) 0,0,0 (13) 0,8,9(17) 15,16, 15(17)
REALTABE. 3.3,3d) 6.9, 11(13) 1,4, 4(17) 7,4, 4(17) 1,6,7(17)  2,2.2(13) TILIT(A7) 12,12, 14(17)
MOSTLYAT 7.3.3@) 3,3.3(13) 3.2,2(17) 3.2.2(017) 33307 0,003 55507 9.7, 7(17)
G-ACTGAN LL2@® ILIL1233)  LLI{D LIL,T(7) 33,207  0,0,013) 6,6, 1007 14, 14, 14(17)
Walmart G-LSTM 2,2,1(4) 2,2,2(13) 1,1, 1(7) L1, 17 1,1,1(7) 0,0,0 (13) 4,4,3(7) 4,4,30d7)
CLAVADDPM _ 1,1,1(d) 2.4,2(13) 0,0,0(17) 0,0,0(17) 0,0,0(17) 0,0,0(13) 1.5,2(17) 35.4,5(17)
BN L,L,1@ 1,4,4(13) 0,0,0(17) 0,0,0(17) 0,0,0(7) 0,0,0(13) 2,2,2(7) 10,10, 10(7)
CTGAN 3,3, 1(4) 1, 12,9 (13) LI, 1(17) LI, 1(17) 2,2, 1(17) 0,0,0(13) 10,10,7(17) 14,14, 13 (17)
DDPM 1,I,1(49) 11, 11, 11 (I13) 8,8,8(17) 7,7,707) 8,8,8(17) 7,7,7(3) 9,9,9(17) 13,13, 13(17)
NFLOW 3.2,2d) 3.8, 8(13) L1, 1(07) LIT(7) 22,27 0,0,0(13) 8,9,9(17) 13,13, 12(17)
TVAE 2.2,2@) 12,12,12(3) LILI(D) LIT(7) 22,207  0,0,003)  6,6,6(07) 14,14, 14 (17)
SDV 3,3,3(3) 1,1,1(3) 2,2,2(6) 2,2,2(6) 2,2,2(6) 0,0,0(3) 3,3,3(6) 6,6,6(6)
RCTGAN 1,0,1(3) 3,2,203) 0,0,0(6) 0,0,0(6) 0,0,0(6) 0,0,0(3) 1,3,1(6) 3,2,4(6)
MOSTLYAT 2.2.20) L1 2.2,2(6) 2.2,2(6) 2.2,2(6) 0,0,003) 3.3,2(6) 3,3,3(6)
G-ACTGAN LI,1T03) 3.3.30) 0,0,0(6) 0,0,0(6) 0,0,0(6) 0,0,003) 3.3.3(6) 1,4,4(6)
Biodeg G-LSTM 3,3,3(3) 0,0,0(3) 2,2,0(6) 2,2,0(6) 2,2,1(6) 0,0,0(3) 5,5,3(6) 3,3,3(6)
. BN 2,2,203) LIL,T(®B) 2,2,2(6) 2,2,2(6) 2,2,2(6) 0,0,0(3) 2,2,2(6) 3,3,3(6)
CTGAN 3.3,30) 3.3,30) 2.3,3(6) 2.3,3(6) 3,5,3(6) 0,0,003) 5.6,5(0) 6.6,6(0)
DDPM 2.2.20) LLIO) 0,0,0(6) 0,0,0(6) 0,0,0(6) 0,0,003) 2.2,2(6) 3.5,5(0)
NFLOW 3,2.30) 22,20 2.2,2(6) 2.2,2(6) 3.2,3(6) 0.0,003) 7.4,4(6) 6.5.6(6)
TVAE 3,3,303) 3,3,303) 2,2,2(6) 2,2,2(6) 2,2,2(6) 0,0,0(3) 55,51 6,6,6(6)
RCTGAN 3.4,4(7) 3.6,6(7) 2.2,2(14) 2.2,2(14) 3.3,3(4  0,0,0(7) 8,10,9(14 9, 1L, 10(14)
MOSTLYAT 3.2.3(7) 14,20 3.3.3(19) 3.3.3(14) 333049  LLI() 65409 6.8,5(14)
MovieLens ~G-ACTGAN () 6.6,7() 0,0,0(14) 0,0,0(14) 0,0,0(14 __0,0,0(7) _ 9,9,9(14) 10, 10, 10 (14)
CLAVADDPM 2,2,2(7) 0,0,0 (7) 0,0,0(14) 0,0,0(14) 0,0,0 (14) 0,0,0(7) 3,3,2(14) 2,3,2(149)
DDPM 3,3,3(7) 2,2,2(7) 5,5,5(14) 5,5,5(14) 5,5,5(14) 2,2,2(7) 5,5,5(14) 5,5,5(14)
SDV 2.2.200) . LLIQ LLIQ LLIQ B 2.2.20) 22,20
RCTGAN 0,0,002) 5 0,0,002) 0,0,002) 0,0,002) - 0,0,002) 0,0,02)
G-ACTGAN L1.1Q) B L1102 LI1Q) LI1Q) . LLTQ) L1
G-LSTM 2,2,2(2) - LI,T(2) 1,1,1(2) 2,1,1(2) - 2,1,2(2) 2,1,2(2)
CORA BN LI,1T0Q) B LLTQ) LLTQ) LLIQ B LLIQ LLIQ
CTGAN 2,220 5 2.2,200) 22,200 22,200 B 22,200 22,200
DDPM LLIQ) . LL1(2) LLIQ) LLIQ) . LL1Q) LL1Q2)
NFLOW 2.2.200) . LLTQ2) LILTQ) 2.2,22) B 2.2.20) 2,220
TVAE 2.2.200) B LLTQ) LLTQ) LLIQ B 2.2.20) 22,20
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Table 10: Single-Table Results. We report the number of times the method failed the fidelity test.
There are three numbers for each combination, one for each replication. The number in parentheses
is the total number of eligible tables for the corresponding metric. Note that REALTABFORMER
does not support non-linear relational data (Biodegradability, CORA, MovieLens). CLAVADDPM
is unable to model datasets with multiple foreign keys between pairs of tables (Biodegradability,
CORA). SDV (timeout) and G-LSTM (missing tables) failed for the IMDB MovieLens dataset.
MOSTLYAI (failed job) failed for the CORA dataset.

Dataset Method MM]])) 1stancePCD Det[i:f)tlon <GB

SDV 0,0,0(2 0,0,0(1) 2,2,2(2) 2,2,2(2)

RCTGAN 0,0,0(2 0,0,0(1) 2,2,2(2) 2,2,2(2)
REALTABFE. 2,1,12 LL,1() 21,12 2,1,1Q2)
MOSTLYAI 0,0,02) 0,0,0(1) 2,2,2(2) 2,2,2(2
G-ACTGAN LI,IQ LIL,I() 2,222 2,2,2(Q2)

AirBnB G-LSTM 0,1,02) 0,0, 1(1) 2,2,2(2) 2,2,2(2)
CLAVADDPM 1,1,1(2) L L1() 2,220 2.2,2(2)

BN 0,0,0(2) 0 0,0 22,22 2,2,2(2)

CTGAN 0,,0(2 0,0,0(1) 2,2,2(2) 2,2,2(2)

DDPM 0,1,02) L, 1,0() 2,2,2(2) 2,2,2(2)

NFLOW LI,IQ) LIL,I() 2,222 2,2,2(Q2)

TVAE 0,0,02) 0,0,0(1) 2,2,2(2) 2,2,2(2)

SDV ,LI,12 0,0,0(2 2,2,2(2) 2,2,2(Q2)

RCTGAN ,LI,0O2) 0,0,02 2,2,2(2) 2,2,2(2)
REALTABE 2,2,2(2) 0,0,0(2) 2,2,2(2) 2,2,2(2)
MOSTLYAI LI,LI2 00,02 1,2,2(12) 2,2,2(2)
G-ACTGAN 0,0,02 0,0,02) 2,2,2(2) 2,2,2(2)

Rossmann G-LSTM 0,,LT1(2 0,0,02 2,2,2(2) 1,2,1(2
CLAVADDPM 0,0,0(2) 0,0,0(2) 1,0,1(2) 2,2,2(2)

BN 0,0,02) 0,0,02 I1,I,1(2) 2,2,2(2)

CTGAN 1,0,02) 0,0,0(2) 2,2,2(2) 2,2,2(2)

DDPM LLIQ 01,12 22202 2220

NFLOW ,2,12 0,0,02 2,2,212) 2,2,2(2)

TVAE 0,0,02 0,0,02) 2,2,2(2) 2,2,2(2)

SDV 2,2,2(3) 2,2,2(2) 3,3,333) 3,3,3(3)

RCTGAN 2,2,13) L 1,112 3,2,23) 3,3,3Q3)
REALTABE. 2,2,23) L1,12) 2,323 22,20
MOSTLYAI 2,1,13) 2,2,212) 3,2,23) 3,3,303)
G-ACTGAN ,LI,IGR L1,1(2 2,223 3,3,20)

Walmart G-LSTM 0,0,03 00,02 11,13 1,1,1(3)
CLAVADDPM 0,0,03) 0,0,0(2) 1,2,1(3) 2,2,2(3)

BN 0,0,03 0,0,02 1,1,L13 2,2,2(3)

CTGAN ,LI,0(3) 0,0,0(2) 3,2,2(3) 3,3,3(3)

DDPM LI,IG3 1,I,L12 22,23 3,3,3(0)

NFLOW 01,13 L1,12) 2,223 2330

TVAE 0,0,03 00,02 1,1,13 3,3,303

SDV 0,0,0(1) 0,0,0(1) 3,3,34 4,4,4(4

RCTGAN 0,0,0(1) O, 1,1(1) o0,1,2(4 1,1,2(@)
MOSTLYAI 0,0,0(1) I,1,I1(I) 2,2,2(&% 3,3,3(4
G-ACTGAN 0,0,0(1) 0,0,0(1) 2,2,2(4 2,2,2(4

Biodeg G-LSTM 0,0,0(1) 0,0,0(1) 3,3,3(4 3,3,3(4)
’ BN 0,0,0(1) 0,0,0(1) 2,2,2(% 3,3,3(4
CTGAN 1,1,0(I) 0,0,0(1) 4,444 4,444

DDPM 0,0,0(1) 0,0,0(1) 2,2,2(% 3,3,3(%

NFLOW 0,0,0(1) 0,0,0(1) 3,3,3(4H 43,44

TVAE 0,0,0(1) 0,0,0(1) 4,444 4,444

RCTGAN 0,0,0(5 0,0,0122) 3,4,4(7) 5,550
MOSTLYAI 1,I,I(5) 0,0,02) 5,6,3(7) 6,6,6(7)

MovieLens G-ACTGAN 0,0,0(5 0,0,0(2) 5,54(7) 6,6,6(7)
CLAVADDPM 0,0,0(5) 0,0,02) 3,3,2(7) 2,2,2(7)

DDPM 2,2,2(5) 0,0,0 (2) 4,4,4(7) 4,4,4(7)

SDV - 2,2,212) 2,2,2(2)

RCTGAN - - 0,0,02) 0,0,0(2)
G-ACTGAN - - LI,L12) 1,1,1(2

G-LSTM - - 2,1,2(2) 2,1,2(2)

CORA BN - - LI,12) 1,I,1Q2
CTGAN - - 2,2,212) 2,2,2(2)

DDPM - - LI,L12) 1,1,1(2

NFLOW - - 2,2,212) 2,2,2(2)

TVAE - - 2,2,212) 2,2,2(2)
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