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Abstract

Training a modern machine learning architecture on a new task requires
extensive learning-rate tuning, which comes at a high computational cost.
Here we develop new adaptive learning rates that can be used with any
momentum method, and require less tuning to perform well. We first
develop MoMo, a Momentum Model based adaptive learning rate for SGD-M
(Stochastic gradient descent with momentum). MoMo uses momentum
estimates of the batch losses and gradients sampled at each iteration to
build a model of the loss function. Our model also makes use of any known
lower bound of the loss function by using truncation, e.g. most losses are
lower-bounded by zero. We then approximately minimize this model at
each iteration to compute the next step. We show how MoMo can be used
in combination with any momentum-based method, and showcase this by
developing MoMo-Adam - which is Adam with our new model-based adaptive
learning rate. Additionally, for losses with unknown lower bounds, we
develop on-the-fly estimates of a lower bound, that are incorporated in our
model. Through extensive numerical experiments, we demonstrate that
MoMo and MoMo-Adam improve over SGD-M and Adam in terms of accuracy
and robustness to hyperparameter tuning for training image classifiers
on MNIST, CIFAR10, CIFAR100, Imagenet, recommender systems on the
Criteo dataset, and a transformer model on the translation task IWSLT14.

1 Introduction

Training of a modern production-grade large neural network can cost over 1 million dollars
in compute. For instance, the cost for the Text-to-Text Transfer Transformer T5-model
(Raffel et al., 2020) is estimated to be more than 1.3 million dollars for a single run (Sharir
et al., 2020). What makes training models so expensive is that multiple runs are needed to
tune the hyperparameters, with arguably the most important parameter being the learning
rate. Indeed, finding a good learning-rate schedule plays a disproportionately large role in
the resulting test error of the model, with one extensive study showing that it was at least
as important as the choice of optimizer (Schmidt et al., 2021).

Here, we develop adaptive learning rates that can be used together with any momentum-based
method. To showcase our method, we apply our learning rates to SGD-M (Stochastic Gradient
Descent with momentum) and to Adam (Kingma & Ba, 2015), which gives the MoMo and
MoMo-Adam method, respectively. We make use of model-based stochastic optimization (Asi
& Duchi, 2019; Davis & Drusvyatskiy, 2019; Chadha et al., 2021), and leverage that loss
functions are bounded below (typically by zero) to derive our new MoMo (Model-based
Momentum) adaptive learning rate.

1.1 The Model-Based Approach

Consider the problem

min
x∈Rd

f(x), f(x) := Es∼D [f(x, s)] , (1)

where f(x, s) is a loss function, s is an input (mini-batch of data), and x are the parameters of
a model we are trying to fit to the data. We assume throughout that f(x, s) ≥ 0, which is the
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case for most loss functions1. We also assume that f(·, s) is continuously differentiable for all
s ∈ D, that there exists a solution x∗ to (1) and denote the optimal value by f∗ := f(x∗) ∈ R.

In our main algorithms MoMo and MoMo-Adam (Algorithms 1 and 2), we present adaptive
learning rates2 for SGD-M and Adam, respectively. To derive MoMo and MoMo-Adam, we use the
model-based viewpoint, which is often motivated by the Stochastic Proximal Point (SPP)
(Asi & Duchi, 2019; Davis & Drusvyatskiy, 2019) method. At each iteration, SPP samples
sk ∼ D, then trades-off minimizing f(x, sk) with not moving too far from the current iterate
xk. Given a learning rate αk > 0, this can be written as

xk+1 = argmin
x∈Rd

f(x, sk) +
1

2αk

∥∥x− xk
∥∥2 . (2)

Since this problem needs to be solved at every iteration, it needs to be fast to compute.
However, in general (2) is difficult to solve because f(x, sk) can be a highly nonlinear function.
Model-based methods replace f(x, sk) by a simple model mk(x) of the function (Asi & Duchi,
2019; Davis & Drusvyatskiy, 2019), and update according to

xk+1 = argmin
x∈Rd

mk(x) +
1

2αk

∥∥x− xk
∥∥2 . (3)

SGD can be formulated as a model-based method by choosing the model to be the linearization
of f(x, sk) around xk, that is

mk(x) = f(xk, sk) +
〈
∇f(xk, sk), x− xk

〉
. (4)

Using the above mk(x) in (3) gives the SGD update xk+1 = xk − αk∇f(xk, sk), see (Robbins
& Monro, 1951; Asi & Duchi, 2019).

Our main insight for developing the MoMo methods is that we should build a model directly
for f(x), and not f(x, sk), since our objective is to minimize f(x). To this end, we develop a
model mk(x) that is a good approximation of f(x) when x is close to xk, and such that (3)
has a simple closed form solution. Our model uses momentum estimates of past gradients
and loss values to build a model f(x). Finally, since the loss function is positive, we also
impose that our model be positive.

1.2 Background and Contributions

Momentum and model-based methods. The update formula of many stochastic
methods such as SGD can be interpreted by taking a proximal step with respect to a model
of the objective function (Asi & Duchi, 2019; Davis & Drusvyatskiy, 2019). Independently
of this, (heavy-ball) momentum (Polyak, 1964; Sebbouh et al., 2021) is incorporated into
many methods in order to boost performance.

Contributions. Here we give a new model-based interpretation of momentum, namely that
it can be motivated as a model of the objective function f(x) by averaging sampled loss
functions. This allows us to naturally combine momentum with other model-based techniques.
Lower bounds and truncated models. One of the main advantages of the model-based
viewpoint (Asi & Duchi, 2019; Davis & Drusvyatskiy, 2019) is that it illustrates how to use
knowledge of a lower bound of the function via truncation. Methods using this truncated
model are often easier to tune (Meng & Gower, 2023; Schaipp et al., 2023).

Contributions. By combining the model-based viewpoint of momentum with a truncated
model we arrive at our new MoMo method. Since we are interested in loss functions, we can
use zero as a lower bound estimate in many learning tasks. However, for some tasks such
as training transformers, the minimal loss is often non-zero. If the non-zero lower bound is
known, we can straightforwardly incorporate it into our model. For unknown lower bound

1We choose zero as a lower bound for simplicity, but any constant lower bound could be handled.
2Here the term adaptivity refers to a scalar learning rate that changes from one iteration to the

next by using easy-to-compute quantities. This is different from the notion of adaptivity used for
Adam or AdaGrad (Duchi et al., 2011), where the learning rate is different for each coordinate. We
refer to the latter meaning of adaptivity as preconditioning.

2



values we also develop new online estimates of a lower bound in Section 4. Our estimates
can be applied to any stochastic momentum-based method, and thus may be of independent
interest. Our main influence for this development was D-adaptation (Defazio & Mishchenko,
2023) which develops an online estimate of the distance to the solution.
Adaptive methods. In practice, tuning learning-rate schedules is intricate and compu-
tationally expensive. Adam (Kingma & Ba, 2015) and variants such as AdamW (Loshchilov
& Hutter, 2019), are often easier to tune and are now being used routinely to train DNNs
across a variety of tasks. This and the success of Adam have incentivised the development of
many new adaptive learning rates, including approaches based on coin-betting (Orabona &
Tommasi, 2017), variants of AdaGrad (Duchi et al., 2011; Defazio & Mishchenko, 2023), and
stochastic line search (Vaswani et al., 2019). Recent work also combines parameter-free coin
betting methods with truncated models (Chen et al., 2022).

Contributions. Our new adaptive learning rate can be combined with any momentum based
method, and even allows for a preconditioner to be used. For example, Adam is a momentum
method that makes use of a preconditioner. By using this viewpoint, together with a lower
bound, we derive MoMo-Adam, a variant of Adam that uses our adaptive learning rates.
Adaptive Polyak step sizes. For convex, non-smooth optimization, Polyak proposed
an adaptive step size using the current objective function value f(xk) and the optimal
value f∗ (Polyak, 1987). Recently, the Polyak step size has been adapted to the stochastic
setting (Berrada et al., 2020; Gower et al., 2021; Loizou et al., 2021; Orvieto et al., 2022).
For example, (Loizou et al., 2021) proposed

xk+1 = xk −min
{
γb,

f(xk,sk)−infz f(z,sk)
c∥∇f(xk,sk)∥2

}
∇f(xk, sk), (SPSmax)

called the SPSmax method, where c, γb > 0. The stochastic Polyak step size is closely related
to stochastic model-based proximal point methods as well as stochastic bundle methods (Asi
& Duchi, 2019; Paren et al., 2022; Schaipp et al., 2023).

Contributions. Our proposed method MoMo can be seen as an extension of the Polyak step
size that also incorporates momentum. This follows from the viewpoint of the Polyak step
size (Berrada et al., 2020; Paren et al., 2022; Schaipp et al., 2023) as a truncated model-based
method. In particular MoMo with no momentum is equal to SPSmax.
Numerical findings. We find that MoMo consistently improves the sensitivity with re-
spect to hyperparameter choice as compared to SGD-M for standard image classification
tasks including MNIST, CIFAR10, CIFAR100 and Imagenet. The same is true for MoMo-Adam
compared to Adam on encoder-decoder transformers on the translation task IWSLT14.

Furthermore, we observe that the adaptive learning rate of MoMo(-Adam) for some tasks
automatically performs a warm-up at the beginning of training and a decay in later iterations,
two techniques often used in order to improve training (Sun, 2020).

2 Model-Based Momentum Methods

Let us recall the SGD model in (4) which has two issues: First, it approximates a single
stochastic function f(x, sk), as opposed to the full loss f(x). Second, this model can be
negative even though our loss function is always positive. Here, we develop a model directly
for f(x), and not f(x, sk), which also takes into account lower bounds on the function value.

2.1 Model-Based Viewpoint of Momentum

Suppose we have sampled inputs s1, . . . , sk and past iterates x1, . . . , xk. We can use these
samples to build a better model of f(x) by averaging past function evaluations as follows

f(x) = Es∼D [f(x, s)] ≈ 1
ρk

k∑
j=1

ρj,kf(x, sj), (5)

where ρj,k ≥ 0 and ρk :=
∑k

j=1 ρj,k. Thus, the ρ−1
k ρj,k are a discrete probability

mass function over the previous samples. The issue with (5) is that it is expensive to
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evaluate f(x, sj) for j = 1, . . . , k, which we would need to do at every iteration. Instead,
we approximate each f(x, sj) by linearizing f(x, sj) around xj , the point it was last evaluated

f(x, sj) ≈ f(xj , sj) +
〈
∇f(xj , sj), x− xj

〉
, for j = 1, . . . , k. (6)

Using (5) and the linear approximations in (6) we can approximate f(x) as follows

f(x) ≈ 1
ρk

k∑
j=1

ρj,k
(
f(xj , sj) +

〈
∇f(xj , sj), x− xj

〉 )
= mk(x). (7)

If we use the above model mk(x) in (3), then the resulting update is SGD-M
xk+1 = xk − αk

ρk
dk, where dk :=

∑k
j=1 ρj,k∇f(xj , sj). (8)

This gives a new viewpoint of momentum. Next we incorporate a lower bound into this
model so that, much like the loss function, it cannot become negative.

2.2 Deriving MoMo

Since we know the loss is lower-bounded by zero, we will also impose a lower bound on the
model (7). Though we could use zero, we will use an estimate fk

∗ ≥ 0 of the lower bound to
allow for cases where f(x∗) may be far from zero. Imposing a lower bound of fk

∗ gives the
following model

f(x) ≈ max
{

1
ρk

∑k
j=1 ρj,k

(
f(xj , sj) +

〈
∇f(xj , sj), x− xj

〉 )
, fk

∗

}
=: mk(x). (9)

For overparametrized machine-learning models the minimum value f(x∗) is often close to
zero (Ma et al., 2018; Gower et al., 2021). Thus, choosing fk

∗ = 0 in every iteration will work
well (as we verify later in our experiments). For tasks where fk

∗ = 0 is too loose of a bound,
in Section 4 we develop an online estimate for fk

∗ based on available information. Using the
model (9), we can now define the proximal update

xk+1 = argmin
y∈Rd

mk(y) +
1

2αk
∥y − xk∥2. (10)

Because mk(y) is a simple piece-wise linear function, the update (10) has a closed form
solution, as we show in the following lemma (proof in Appendix C.1).

Lemma 2.1. [MoMo update] Let

dk :=

k∑
j=1

ρj,k∇f(xj , sj), f̄k :=

k∑
j=1

ρj,kf(x
j , sj), γk :=

k∑
j=1

ρj,k⟨∇f(xj , sj), x
j⟩. (11)

Using model (9), the closed form solution to (10) is

xk+1 = xk − τkdk, τk := min
{

αk

ρk
,

(
f̄k+⟨dk,x

k⟩−γk−ρkf
k
∗

)
+

∥dk∥2

}
. (12)

Finally, it remains to select the averaging coefficients ρj,k. Here we will use an exponentially
weighted average that places more weight on recent samples. Aside from working well in
practice on countless real-world examples, exponential averaging can be motivated through
the model-based interpretation. Recent iterates will most likely have gradients, and loss
values, that are closer to our current iterate xk. Thus we place more weight on recent iterates
i.e. ρj,k big for j close to k. We give two options for exponentially weighted averaging next.

2.3 The Coefficients ρj,k: To bias or not to bias

We now choose ρj,k ≥ 0 such that we can update f̄k, dk and γk in (11) on the fly, stor-
ing only two scalars and one vector, and with the same resulting iteration complexity as SGD-M.

Exponentially Weighted Average. Let β ∈ [0, 1). Starting with ρ1,1 = 1, and for k ≥ 2

define ρj,k = βρj,k−1 for j ≤ k − 1 and ρj,k = 1− β for j = k. Then, ρk =
∑k

j=1 ρj,k = 1 for
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Figure 1: Illustration of the MoMo model (blue curves) for two different loss functions with αk = 5.
Due to truncation, the new iterate of MoMo (blue point) is closer to the minimum than SGD-M (orange
point). The right plot shows how MoMo takes a small step when gradients are steep, whereas SGD-M
takes a large step and ends up far from the solution.

all k ∈ N and the quantities in (11) are exponentially weighted averages, see Lemma A.1. As
a consequence, we can update f̄k, dk and γk on the fly as given in lines 4–6 in Algorithm 1.
Combining update (12) and the fact that ρk = 1, we obtain Algorithm 1, which we call MoMo.

Algorithm 1: MoMo: Model-based Momentum
method.
1 Default settings: αk = 1, β = 0.9, (fk

∗ )k∈N = 0.

Input: x1 ∈ Rd, β ∈ [0, 1), αk > 0, (fk
∗ )k∈N ⊂ R

2 Init:f̄0 = f(x1, s1), d0 = ∇f(x1, s1),γ0 =
〈
d0, x

1
〉

3 for k = 1 to K − 1 do
4 f̄k = (1− β)f(xk, sk) + βf̄k−1

5 γk = (1− β)
〈
∇f(xk, sk), x

k
〉
+ βγk−1

6 dk = (1− β)∇f(xk, sk) + βdk−1

7 hk = f̄k +
〈
dk, x

k
〉
− γk

8 xk+1 = xk −min
{
αk,

(hk−fk
∗ )+

∥dk∥2

}
dk

Output: xK

Remark 2.2. The adaptive learn-
ing rate τk in (12) determines the
size of the step and can vary in each
iteration even if αk is constant. The
(user-specified) learning rate αk caps
the adaptive learning rate.

Remark 2.3 (Complexity). MoMo
has the same order iteration com-
plexity and memory footprint as
SGD-M. MoMo stores two additional
scalars γk and f̄k, as compared to
SGD-M, and has two additional O(d)
inner products lines 5 and 7, and
one O(d) vector norm on line 8.

For β = 0 (no momentum), we have γk = ⟨∇f(xk, sk), x
k⟩ = ⟨dk, xk⟩ and f̄k = f(xk, sk).

Consequently hk = f(xk, sk), and in this special case, MoMo is equivalent3 to (SPSmax).

Fig. 1 shows how the MoMo model (10) approximates a convex function (left) and a
non-convex function (right). The MoMo update xk+1

MoMo in Fig. 1 is closer to the minima (left)
and sometimes much closer (right) on non-convex problems, as compared the SGD-M update.
Averaging with Bias Correction. Alternatively, we can choose ρj,k = (1− β)βk−j for
j = 1, . . . , k, as it is used in Adam (Kingma & Ba, 2015). This gives ρk = 1− βk ̸= 1. We
discuss this choice for MoMo in Appendix A.1 and will use it later for MoMo-Adam.

3 Weight Decay and Preconditioning

Often weight decay is used in order to improve generalization (Zhang et al., 2019). Weight
decay is equivalent to adding a squared ℓ2-regularization to the objective function (Krogh &
Hertz, 1991), in other words, instead of (1) we solve minx∈Rd f(x) + λ

2 ∥x∥
2, where f(x) is

again the loss function. To include weight decay, we build a model mk for the loss f and
keep the ℓ2-regularization outside of the model. That is equation (10) is modified to

xk+1 = argmin
y∈Rd

mk(y) +
λ
2 ∥y∥2 + 1

2αk
∥y − xk∥2. (13)

3This equivalence requires setting γb ← αk, c← 1, and assuming fk
∗ = infz f(z, sk).
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Algorithm 2: MoMo-Adam: Adaptive learning rates for Adam
1 Default settings: αk = 10−2, (β1, β2) = (0.9, 0.999), ϵ = 10−8

Input: x1 ∈ Rd, β1, β2 ∈ [0, 1), ϵ > 0, αk > 0, λ ≥ 0, and (fk
∗ )k∈N ⊂ R.

2 Initialize: f̄0 = 0, d0 = 0, γ0 = 0, and v0 = 0.
3 for k = 1 to K − 1 do
4 gk = ∇f(xk, sk); dk = (1− β1)gk + β1dk−1

5 vk = β2vk−1 + (1− β2)(gk ⊙ gk)

6 Dk = Diag
(
ϵ1d +

√
vk/ (1− βk

2 )
)

7 f̄k = (1− β1)f(x
k, sk) + β1f̄k−1

8 γk = (1− β1)
〈
gk, x

k
〉
+ β1γk−1

9 τk = min
{
(1−βk

1 )
−1αk,

(
(1+λαk)(f̄k−γk−(1−βk

1 )f
k
∗ )+

〈
dk, x

k
〉 )

+

/
∥dk∥2D−1

k

}
10 xk+1 = 1

1+αkλ

[
xk − τkD

−1
k dk

]
Output: xK

Finally, the Euclidean norm may often not be best suited. Many popular methods such
as AdaGrad or Adam are based on using a preconditioner for the proximal step. Hence, we
allow for an arbitrary norm defined by a symmetric, positive definite matrix Dk ∈ Rd×d, i.e.
∥x∥2Dk

:= ⟨Dkx, x⟩. We can now use Dk to change the metric within our proximal method

xk+1 = argmin
y∈Rd

mk(y) +
λ
2 ∥y∥2Dk

+ 1
2αk
∥y − xk∥2Dk

. (14)

This update (14) enjoys the following closed form solution (proof in Appendix C.2).

Lemma 3.1. Using model (9), the closed form solution to (14) is given by

τk = min
{αk

ρk
,

(
(1 + αkλ)(f̄k − ρkf

k
∗ − γk) + ⟨dk, xk⟩

)
+

∥dk∥2D−1
k

}
, (15)

xk+1 = 1
1+αkλ

[
xk − τkD

−1
k dk

]
. (16)

Lemma 3.1 shows how to incorporate weight decay in MoMo: we replace Line 8 in Algorithm 1
by (16) with Dk = Id and ρk = 1. If β = 0 (no momentum) then MoMo with weight de-
cay recovers ProxSPS, the proximal version of the stochastic Polyak step (Schaipp et al., 2023).

Deriving MoMo-Adam. Using Lemma 3.1 we can obtain an Adam-version of MoMo by defining
Dk as the diagonal preconditioner of Adam. Let 1d be the d-dimensional vector of ones,
Diag(v) a diagonal matrix with diagonal entries v ∈ Rd, and ⊙ and

√
v the elementwise

multiplication and square-root operations. Denoting gk = ∇f(xk, sk), we choose

vk = (1− β2)vk−1 + β2(gk ⊙ gk), Dk = Diag(ϵ1d +
√
vk/(1− β2)k),

where β2 ∈ [0, 1), ϵ > 0. Using this preconditioner with Lemma 3.1 gives Algorithm 2, called
MoMo-Adam. Note that here we choose ρj,k = (1− β)βk−j (cf. Section 2.3) which gives the
standard averaging scheme of Adam. We focus on MoMo versions of SGD-M and Adam because
these are the two most widely used methods. However, from Lemma 3.1 we could easily
obtain a MoMo-version of different variations, such as Adabelief (Zhuang et al., 2020).

4 Estimating a Lower Bound
So far, we have assumed that lower-bound estimates (fk

∗ ) are given with fk
∗ = 0 being the

default. However, this might not be a tight estimate of f∗ (e.g. when training transformers).
In such situations, we derive an online estimate of the lower bound. In particular, for convex
functions we will derive a lower bound for an unbiased estimate of f(x∗) given by

f̄k
∗ := 1

ρk

∑k
j=1ρj,kf(x

∗, sj), where E
[
f̄k
∗
]
= f(x∗). (17)
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Though f̄k
∗ is not equal to f(x∗), it is an unbiased estimate since E [f(x∗, sj)] = f(x∗). It is

also a reasonable choice since we motivated our method using the analogous approximation
of f(x) in (5). Furthermore, if fk

∗ = f̄k
∗ then for any preconditioner and convex losses, an

iterate of MoMo can only decrease the distance to a given optimal point, as we show next.

Lemma 4.1. Let f(·, s) be convex for every s and let x∗ ∈ argminx∈Rd f(x). For the
iterates of the general MoMo update (cf. Lemma 3.1) with λ = 0 and fk

∗ = f̄k
∗ , it holds∥∥xk+1 − x∗∥∥2

Dk
≤

∥∥xk − x∗∥∥2
Dk
− τk(hk − ρkf̄

k
∗ )+. (18)

We use this monotonicity to derive a convergence theorem for MoMo in Theorem F.2. The
following lemma derives an estimate fk

∗ ≥ 0 for f̄k
∗ given in (17) by using readily available

information for any momentum-based method, such as Algorithm 2.

Lemma 4.2. Let f(x, s) be convex in x for all s ∈ D. Let xk be given by (16) with λ = 0.
Let ηk :=

∏k
j=2 λmin

(
D−1

j Dj−1

)
, and hk := f̄k + ⟨dk, xk⟩ − γk. We have f̄k

∗ ≥ fk+1
∗ where

fk+1
∗ := 1

2ηkτkρk

(∑k
j=1 2ηjτj

(
hj − 1

2τj ∥dj∥
2
D−1

j

)
−D2

1 − 2
∑k−1

j=1 ηjτjρj f̄
j
∗

)
where D1 :=

∥∥x1 − x∗
∥∥
D1

. Bootstrapping by using fk
∗ ≈ f̄k−1

∗ we have for k ≥ 2 that

fk+1
∗ = 1

ρk

(
hk − 1

2τk ∥dk∥
2
D−1

k

)
. (19)

To simplify the discussion, consider the case without a preconditioner, i.e. Dk = Id, thus
ηk = 1. First, note that fk+1

∗ depends on the initial distance to the solution D1, which we
do not know. Fortunately, D1 does not appear in the recursive update (19), because it only
appears in f1

∗ . We can circumvent this initial dependency by simply setting f1
∗ = 0.

We need one more precautionary measure, because we cannot allow the step size τk in (15)
to be zero. That is, by examining (15) we have to disallow that

(1 + αkλ)ρkf
k
∗ ≥ (1 + αkλ)(f

k
∗ − γk) + ⟨dk, xk⟩ =: hλ

k . (20)
Hence, in each iteration of MoMo or MoMo-Adam, we call the ResetStar routine in Algorithm 3
before the update of xk+1 that checks if this upper bound has been crossed, and if so,
resets fk

∗ to be sufficiently small. After updating xk+1, we update fk+1
∗ with EstimateStar

routine in Algorithm 4, according to Lemma 4.2. We call the respective methods MoMo∗ and
MoMo-Adam∗. For completeness, we give the full algorithm of MoMo∗ in Algorithm 6 in the
Appendix. We give an example of how the values of fk

∗ converge to f∗ in Appendix E.4.

Algorithm 3: ResetStar
Input: fk

∗ , αk, λ, ρk, h
λ
k

1 if (20) then
2 fk

∗ = max
{

1
2
[(1 + αkλ)ρk]

−1hλ
k , f

1
∗
}

Output: fk
∗

Algorithm 4: EstimateStar
Input: f̄k, x

k, γk, τk, dk,Dk, ρk
1 hk = f̄k + ⟨dk, xk⟩ − γk

2 fk+1
∗ = max

{
ρ−1
k (hk − 1

2
τk∥dk∥2D−1

k
, f1

∗
}

Output: fk+1
∗

5 Experiments

Our experiments will focus on the sensitivity with respect to choice of the learning rate
αk. Schmidt et al. (2021) showed that most optimization methods perform equally well
when being tuned. For practical use a tuning budget needs to be considered, and hence we
are interested in methods that require little or no tuning. Here we investigate how using
our MoMo adaptive learning rate can improve the stability of both SGD-M and Adam. To do
this, for each task and model, we do a learning-rate sweep for both SGD-M, Adam, MoMo and
MoMo-Adam and compare the resulting validation score for each learning rate.

For MoMo and MoMo-Adam, note that the effective step size (cf. (16)) has the form
τk = min{αk

ρk
, ζk} with ζk := 1

∥dk∥2

D
−1
k

(
(1 + αkλ)(f̄k − ρkf

k
∗ − γk) +

〈
dk, x

k
〉)

+
. (21)

We refer to Algorithm 1, Line 8 and Algorithm 2, Line 10 for the exact formula for MoMo
and MoMo-Adam (For MoMo we have that ρk = 1,Dk = Id). We will refer to αk as the
(user-specified) learning rate and to τk as the adaptive learning rate.
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5.1 Zero as Lower Bound

First, we compare the MoMo methods to SGD-M and Adam for problems where zero is a good
estimate of the optimal value f∗. In this section, we set fk

∗ = 0 for all k ∈ N for MoMo(-Adam).
Models and Datasets. We do the following tasks (more details in Appendix E.3).

• ResNet110 for CIFAR100, ResNet20, VGG16, and ViT for CIFAR10
• DLRM for Criteo Kaggle Display Advertising Challenge,
• MLP for MNIST: two hidden layers of size 100 and ReLU.

Parameter Settings. We use default choices for momentum parameter β = 0.9 for
MoMo and SGD-M, and (β1, β2) = (0.9, 0.999) for MoMo-Adam and Adam respectively. In the
experiments of this section, we always report averaged values over three seeds (five for DLRM).
Discussion. We run MoMo, MoMo-Adam, Adam and SGD-M, for a fixed number of epochs (cf.
Appendix E.3), using a constant learning rate αk = α0. The plots in Fig. 2 show the final
training loss (top) and accuracy on the validation set (bottom) of each method when varying
the learning rate α0. The training curves for the best runs can be found in Figs. E.1 and E.2.
For VGG16 for CIFAR10 and MLP for MNIST, the same plots can be found in Appendix E. We
observe that for small learning rates MoMo (MoMo-Adam) is identical to SGD-M (Adam). This is
expected, since for small α0, we have τk = α0 (see (21)).

For larger learning rates, we observe that MoMo and MoMo-Adam improve the training loss
and validation accuracy, but SGD-M and Adam decline in performance or even fail to converge.
Most importantly, MoMo(-Adam) consistently extends the range of “good” learning rates by over
one order of magnitude. Further, MoMo(-Adam) achieve the overall best validation accuracy
for all problems except DLRM and ViT, where the gap to the best score is minute and within
the standard deviation of running multiple seeds.

This advantage can be explained with the adaptivity of the step size of MoMo(-Adam). In
Fig. E.4a, we plot the adaptive term ζk (21) for MoMo on a ResNet20. For α0 ∈ [1, 10], we
observe that the effective learning rate τk is adaptive even though αk is constant. We observe
two phenomena: firstly, in Fig. E.4a MoMo is doing an automatic learning rate decay without
any user choice for a learning-rate schedule. Secondly, in the very first iterations, MoMo is
doing a warm-up of the learning rate as τk = ζk starts very small, but quickly becomes large.
Both dynamics of τk help to improve performance and stability. We also observe faster initial
training progress of MoMo(-Adam) (cf. Figs. E.1 and E.2).

For all of the above tasks, the (training) loss converges to values below 0.5. Next, we consider
two problems where the final training loss is significantly above zero. In such situations, we
find that MoMo methods with fk

∗ = 0 are less likely to make use of the adaptive term ζk. As
a consequence, MoMo with fk

∗ = 0 will yield little or no improvement. To see improvement,
we employ the online estimation of a lower bound for MoMo given in Lemma 4.2.

5.2 Online Lower Bound Estimation

We now consider image classification on Imagenet32/-1k and a transformer for German-
to-English translation. For both problems, the optimal value f∗ is far away from zero and
hence we use MoMo with a known estimate of f∗ or with the online estimation developed in
Section 4. Details on models and datasets are listed in Appendix E.3.
Imagenet Classification. We train a ResNet18 for Imagenet32 and give the resulting
validation accuracy in Fig. 3a for weight decay λ = 0. We show the results λ = 10−4 and
for Imagenet-1k in the appendix in Fig. E.5. We run MoMo(-Adam) first with constant lower
bound fk

∗ = 0 and an oracle value fk
∗ = 0.9. Further, we run MoMo(-Adam)∗ (indicated by the

suffix -star in the plots), (cf. Algorithm 6). We compare to SGD-M and AdamW as baseline.
For all methods, we use a constant learning rate αk = α0 and vary the value of α0.

First, observe that lower bound fk
∗ = 0 leads to similar performance as the baseline method

(in particular it is never worse). Next, observe that the tighter lower bound fk
∗ = 0.9 leads

to improvement for all learning rates. Finally, the online estimated lower bound widens
the range of learning rate with good accuracy by an order of magnitude and leads to small
improvements in top accuracy.
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(a) ResNet110 for CIFAR100
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(b) ResNet20 for CIFAR10
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(c) DLRM for Criteo

Figure 2: Training loss (top row) and validation accuracy (bottom row) after a fixed number of
epochs, for varying (constant) learning rate α0. Shaded area depicts two standard deviations.
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(a) ResNet18 for Imagenet32
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Figure 3: Validation accuracy over a range of learning rates α0. (a) Imagenet32 without weight
decay (λ = 0). (b) Left: IWSLT14 translation task with dropout 0.1 (plain) or 0.3 (dashed). Right:
Learning rate schedule (black) and adaptive step sizes (grey dots) of MoMo-Adam∗ for α0 = 5 ·10−2.

Transformer for German-to-English Translation. We consider the task of neural
machine translation from German to English by training an encoder-decoder transformer
architecture (Vaswani et al., 2017) on the IWSLT14 dataset. We run two settings, namely
dropout of 0.1 and 0.3. We fine-tune the hyperparameters of the baseline AdamW: for the
learning-rate schedule αk, we use a linear warm-up of 4000 iterations from zero to a given
value α0 followed by an inverse square-root decay (cf. Fig. 3b for an example curve and the
adaptive step sizes). All other parameter settings are given in Appendix E.3. MoMo-Adam∗
uses the same hyperparameter settings as AdamW.

Fig. 3b shows the BLEU score after 60 epochs when varying the initial learning rate α0:
MoMo-Adam∗ is on par or better than AdamW on the full range of initial learning rates and for
both dropout values. While the improvement is not as substantial as for previous examples,
we remark that for this particular task we compare to a fine-tuned configuration of AdamW.

6 Conclusion

We present MoMo and MoMo-Adam, adaptive learning rates for SGD-M and Adam. The main
conceptual insight is that momentum can be used to build a model of the loss by averaging
a stream of loss function values and gradients. Combined with truncating this average at
a known lower bound of the loss, we obtain the MoMo algorithms. This technique can be
applied potentially to other methods, for example variants of Adam.

We show examples where incorporating MoMo into SGD-M and Adam significantly reduces the
sensitivity to learning rate choice. This can be particularly helpful for practitioners who look
for good out-of-the-box optimization performance for new tasks.
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A Implementation details

A.1 Notes on the Averaging Coefficients
Lemma A.1. Let β ∈ [0, 1). Let ρ1,1 = 1, and for k ≥ 2 let

ρj,k =

{
βρj,k−1, j ≤ k − 1,

1− β, j = k.

Then,
∑k

j=1 ρj,k = 1 holds for all k ∈ N. Further, for an arbitrary sequence (uj)j∈N ⊂ Rm,
m ∈ N, consider the weighted sum

ūk :=

k∑
j=1

ρj,kuj .

Then, if ū0 := u1 it holds ūk = (1− β)uk + βūk−1 for all k ∈ N.

Proof. We prove that
∑k

j=1 ρj,k = 1 holds for all k ∈ N by induction. For the base case
k = 1, we have ρ1,1 = 1 by definition. Assuming that

∑k−1
j=1 ρj,k−1 = 1, we have

k∑
j=1

ρj,k = ρk,k +

k−1∑
j=1

ρj,k = 1− β + β

k−1∑
j=1

ρj,k−1 = 1− β + β = 1.

Consequently, we have ū1 = ρ11u1 = u1, and for k ≥ 2,

ūk =

k∑
j=1

ρj,kuj = (1− β)uk +

k−1∑
j=1

βρj,k−1uj = (1− β)uk + β

k−1∑
j=1

ρj,k−1uj

= (1− β)uk + βūk−1.

For the choice of ρj,k in Lemma A.1, unrolling the recursion, for k ≥ 2 we obtain the explicit
formula

ρj,k =

{
(1− β)βk−j , j ≥ 2

βk−1, j = 1.
(22)

Averaging with Bias Correction. Chosing ρj,k = (1− β)βk−j , we have ρj,k = βρj,k−1,
and ρk,k = 1 − β. Hence, we can update f̄k = (1 − β)f(xk, sk) + βf̄k−1 and analogously
for dk, γk. However, this choice does not satisfy

∑k
j=1 ρj,k = 1. Indeed using the geometric

series gives

ρk = (1− β)

k−1∑
j=0

βj = 1− βk.

This fact motivates scaling by the factor of 1− βk which was termed debiasing in Adam. This
alternative averaging scheme leads to a variant of MoMo with bias correction, presented in
Algorithm 5. As the two presented choices of ρj,k are very similar, we do not expect major
differences in their performance (cf. Remark A.2).

Remark A.2. Algorithm 5 differs from Algorithm 1 only in two steps: first, the quantities
f̄0, d0, γ0 are initialized at zero. Secondly, we use αk

1−βk instead of αk and (1 − βk)fk
∗

instead of fk
∗ in line (6). As β ∈ [0, 1), for late iteration number k, we can expect that

both methods behave very similarly.
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Algorithm 5: MoMo-Bias: Model-based Momentum with bias correction.
Defaults settings β = 0.9.
Input: x1 ∈ Rd, β ∈ [0, 1), αk > 0, (fk

∗ )k∈N ⊂ R.
1 Initialize: f̄0 = 0, d0 = 0 and γ0 = 0.
2 for k = 1 to K − 1 do
3 f̄k = (1− β)f(xk, sk) + βf̄k−1

4 dk = (1− β)∇f(xk, sk) + βdk−1

5 γk = (1− β)
〈
∇f(xk, sk), x

k
〉
+ βγk−1

6 xk+1 = xk −min
{ αk

1− βk
,
(f̄k − (1− βk)fk

∗ +
〈
dk, x

k
〉
− γk)+

∥dk∥2
}
dk.

Output: xK

A.2 Comparison of MoMo-Adam to AdamW

Algorithm 2 naturally compares to AdamW (Loshchilov & Hutter, 2019). Note that the update
of AdamW (in the notation of Algorithm 2) can be written as

xk+1 = (1− αkλ)x
k − αk

1− βk
1

D−1
k dk,

Compared to Algorithm 2, Line 10, the weight decay of AdamW is not done dividing the whole
expression by 1

1+αkλ
, but instead multiplying only xk with 1 − αkλ. This is a first-order

Taylor approximation (Zhuang et al., 2022): for α small it holds 1
1+αλ ≈ 1−αλ and α

1+αλ ≈ α.
If we would want to adapt this approximation, we could replace Line 10 with

xk+1 = (1− λαk)x
k −min

{ αk

1− βk
1

,

(
(1 + λαk)(f̄k − (1− βk

1 )f
k
∗ − γk) +

〈
dk, x

k
〉 )

+

∥dk∥2D−1
k

}
D−1

k dk.

(23)

However, the results of (Zhuang et al., 2022) suggest that this approximation has almost no
impact on the empirical performance.

A.3 MoMo∗

Here we give the complete pseudocode for MoMo∗, that is the MoMo method that uses the
estimator for fk

∗ given in Lemma 4.2.

Algorithm 6: MoMo∗: Adaptive learning rates and online estimation of f∗.
Input: x1 ∈ Rd, β ∈ [0, 1), αk > 0, f1

∗ ⊂ R.
1 Initialize: f̄0 = f(x1, s1), d0 = ∇f(x1, s1) and γ0 =

〈
d0, x

1
〉

2 for k = 1 to K − 1 do
3 f̄k = (1− β)f(xk, sk) + βf̄k−1

4 γk = (1− β)
〈
∇f(xk, sk), x

k
〉
+ βγk−1

5 dk = (1− β)∇f(xk, sk) + βdk−1

6 fk
∗ = ResetStar()

7 xk+1 = xk −min
{
αk,

(f̄k − fk
∗ +

〈
dk, x

k
〉
− γk)+

∥dk∥2
}
dk

8 fk+1
∗ = EstimateStar().

Output: xK

B Auxiliary Lemmas
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Lemma B.1. Let y0, a ∈ Rp with a ̸= 0 and c ∈ R. Let β > 0. The solution to

y+ = argmin
y

(
c+ ⟨a, y − y0⟩

)
+

:=h(y)

+
1

2β
∥y − y0∥2 (24)

is given by

y+ = y0 −min
{
β,

(c)+
∥a∥2

}
:=τ

a.

Moreover we have h(y+) =
(
c− τ∥a∥2

)
+

and

h(y+) = c− τ∥a∥2, if c ≥ 0. (25)

Proof. Clearly, the objective of (24) is strongly convex and therefore there exists a unique
solution. The (necessary and sufficient) first-order optimality condition is given by

0 = ta+ β−1(y+ − y0), t ∈ ∂(·)+(c+ ⟨a, y+ − y0⟩). (26)
We distinguish three cases:

(P1) Suppose c < 0. Then, y0 satisfies (26) with t = 0 and hence y+ = y0. In this case
τ = 0 and h(y+) = 0 = (c)+.

(P2) Let ȳ := y0− βa and assume c+ ⟨a, ȳ− y0⟩ > 0 ⇐⇒ c− β∥a∥2 > 0 ⇐⇒ c
∥a∥2 > β.

Then ȳ satisfies (26) with t = 1 and hence y+ = ȳ. As β > 0, hence c > 0 and τ = β.
As h(y+) = c+ ⟨a, y+ − y0⟩ = c− β∥a∥2, equation (25) holds.

(P3) If neither c < 0 nor c
∥a∥2 > β hold, then it must hold c+ ⟨a, y+− y0⟩ = 0. Then, the

optimality condition is 0 = ta+β−1(y+−y0) for some t ∈ [0, 1]. Hence, y+ = y0−tβa
and c+ ⟨a, y+ − y0⟩ = c− tβ∥a∥2 = 0 ⇐⇒ t = c

β∥a∥2 . As c ≥ 0 we have t ≥ 0 and
c

∥a∥2 ≤ β implies t ≤ 1. Hence, τ = c
∥a∥2 and c− τ∥a∥2 = c− c = 0, so (25) holds.

Lemma B.2. Let y0, a ∈ Rp with a ̸= 0 and c ∈ R. Let D ∈ Rp×p be a symmetric,
positive definite matrix. The solution to

y+ = argmin
y∈Rp

(
c+ ⟨a, y − y0⟩

)
+

:=h(y)

+
1

2α
∥y − y0∥2D +

λ

2
∥y∥2D (27)

is given by

y+ =
1

1 + λα

[
y0 −min

{
α,

(
(1 + λα)c− λα ⟨a, y0⟩

)
+

∥a∥2D−1

}
=:τ

D−1a

]
.

Furthermore
h(y+) =

(
c− λα

1 + λα
⟨a, y0⟩ −

τ

1 + λα
∥a∥2D−1

)
+
.

Proof. First we complete the squares as follows
λ

2
∥y∥2D +

1

2α
∥y − y0∥2D =

1

2α
∥y∥2(1+λα)D −

1

α
⟨y,Dy0⟩+ cst.(y)

=
1

2α
∥y∥2(1+λα)D −

1

α
⟨y, (1 + λα)D y0

1+λα ⟩+ cst.(y)

=
1

2α
∥y − 1

1+λαy0∥2(1+λα)D + cst.(y),
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where cst.(y) denotes terms that are constant in y. Using the above, (27) is equivalent to

y+ = argmin
y∈Rp

h(y) +
1

2α
∥y − 1

1+λαy0∥2(1+λα)D

= argmin
y∈Rp

(
c+ ⟨a, y − 1

1+λαy0⟩+
(

1
1+λα − 1

)
⟨a, y0⟩

)
+
+

1

2α
∥y − 1

1+λαy0∥2(1+λα)D.

Let ĉ := c +
(

1
1+λα − 1

)
⟨a, y0⟩ = c − λα

1+λα ⟨a, y0⟩ . With this definition, problem (27) is
equivalent to

y+ = argmin
y∈Rp

(
ĉ+ ⟨a, y − 1

1+λαy0⟩
)
+
+

1

2α
∥y − 1

1+λαy0∥2(1+λα)D.

Changing variables with z+ = D1/2y+, z = D1/2y, and z0 = D1/2y0 gives

z+ = argmin
z∈Rp

(
ĉ+ ⟨D−1/2a, z − 1

1+λαz0⟩
)
+
+

(1 + λα)

2α
∥z − 1

1+λαz0∥2.

Applying Lemma B.1 with y0 ← 1
1+λαz0, c← ĉ, a← D−1/2a, β ← α

1+λα gives

z+ =
1

1 + λα
z0 −min

{ α

1 + λα
,

(ĉ)+
∥a∥2D−1

}
D−1/2a.

Changing variables back using y+ = D−1/2z+, substituting ĉ = c − λα
1+λα ⟨a, y0⟩ and re-

arranging the above gives

y+ =
1

1 + λα
y0 −min

{ α

1 + λα
,

(
c− λα

1+λα ⟨a, y0⟩
)
+

∥a∥2D−1

}
D−1a

=
1

1 + λα

[
y0 −min

{
α,

(
(1 + λα)c− λα ⟨a, y0⟩

)
+

∥a∥2D−1

}
D−1a

]
. (28)

C Missing Proofs

C.1 Proof of Lemma 2.1
Lemma 2.1. [MoMo update] Let

dk :=

k∑
j=1

ρj,k∇f(xj , sj), f̄k :=

k∑
j=1

ρj,kf(x
j , sj), γk :=

k∑
j=1

ρj,k⟨∇f(xj , sj), x
j⟩. (11)

Using model (9), the closed form solution to (10) is

xk+1 = xk − τkdk, τk := min
{

αk

ρk
,

(
f̄k+⟨dk,x

k⟩−γk−ρkf
k
∗

)
+

∥dk∥2

}
. (12)

Proof. Recall problem (10) given by

xk+1 = argmin
y∈Rd

mk(y) +
1

2αk
∥y − xk∥2.

Introducing

hk :=

k∑
j=1

ρj,k[f(x
j , sj) + ⟨∇f(xj , sj), x

k − xj⟩] = f̄k + ⟨dk, xk⟩ − γk, (29)

we have that

mk(y) = max
{
ρ−1
k (hk + ⟨dk, y − xk⟩), fk

∗

}
=

(
ρ−1
k (hk + ⟨dk, y − xk⟩)− fk

∗

)
+
+ fk

∗ . (30)
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Using (30), dropping the constant term fk
∗ , and multiplying with ρk, problem (10) is

equivalent to

xk+1 = argmin
y∈Rd

(
hk + ⟨dk, y − xk⟩ − ρkf

k
∗

)
+
+

ρk
2αk
∥y − xk∥2.

Applying Lemma B.1 with β ← ρ−1
k αk, c ← hk − ρkf

k
∗ , a ← dk and y0 ← xk gives the

result.

C.2 Proof of Lemma 3.1
Lemma 3.1. Using model (9), the closed form solution to (14) is given by

τk = min
{αk

ρk
,

(
(1 + αkλ)(f̄k − ρkf

k
∗ − γk) + ⟨dk, xk⟩

)
+

∥dk∥2D−1
k

}
, (15)

xk+1 = 1
1+αkλ

[
xk − τkD

−1
k dk

]
. (16)

Proof. Recall problem (14) given by

xk+1 = argmin
y∈Rd

mk(y) +
1

2αk
∥y − xk∥2Dk

+
λ

2
∥y∥2Dk

.

We use again (30). Dropping the constant term fk
∗ , and multiplying with ρk, problem (14)

is equivalent to

xk+1 = argmin
y∈Rd

(
hk + ⟨dk, y − xk⟩ − ρkf

k
∗

)
+
+

ρk
2αk
∥y − xk∥2Dk

+
ρkλ

2
∥y∥2Dk

.

Now applying Lemma B.2 with y0 ← xk, a← dk, c← hk − ρkf
k
∗ , λ← ρkλ, α← ρ−1

k αk and
D← Dk, we obtain the result.

D Estimating a Lower Bound: Proofs and Alternatives

D.1 Proof of Lemma 4.2
Lemma 4.2. Let f(x, s) be convex in x for all s ∈ D. Let xk be given by (16) with λ = 0.
Let ηk :=

∏k
j=2 λmin

(
D−1

j Dj−1

)
, and hk := f̄k + ⟨dk, xk⟩ − γk. We have f̄k

∗ ≥ fk+1
∗ where

fk+1
∗ := 1

2ηkτkρk

(∑k
j=1 2ηjτj

(
hj − 1

2τj ∥dj∥
2
D−1

j

)
−D2

1 − 2
∑k−1

j=1 ηjτjρj f̄
j
∗

)
where D1 :=

∥∥x1 − x∗
∥∥
D1

. Bootstrapping by using fk
∗ ≈ f̄k−1

∗ we have for k ≥ 2 that

fk+1
∗ = 1

ρk

(
hk − 1

2τk ∥dk∥
2
D−1

k

)
. (19)

Proof. Consider the update (16) without weight decay, that is λ = 0, and switching the
index k → j, which is

xj+1 = xj − τjD
−1
j dj ,

where τj is the step size. Subtracting x∗ from both sides, taking norms and expanding the
squares we have that∥∥xj+1 − x∗∥∥2

Dj
=

∥∥xj − x∗∥∥2
Dj
− 2τj

〈
dj , x

j − x∗〉+ τ2j ∥dj∥2D−1
j

. (31)

Now let δj+1 := λmin

(
D−1

j+1Dj

)
and note that for every vector v ∈ Rd we have that

δj+1 ∥v∥2Dj+1
≤ ∥v∥2Dj

. (32)
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Indeed this follows since
∥v∥2Dj

= v⊤Djv = v⊤D
1/2
j+1

(
D

−1/2
j+1 DjD

−1/2
j+1

)
D

1/2
j+1v

≥ λmin

(
D−1

j+1Dj

)
∥v∥2Dj+1

= δj+1 ∥v∥2Dj+1
.

For simplicity, denote ∇fl = ∇f(xl, sl), fl = f(xl, sl). We have that〈
dj , x

j − x∗〉 =

j∑
l=1

ρl,j
〈
∇fl, xj − x∗〉

=

j∑
l=1

ρl,j
(〈
∇fl, xj − xl

〉
+

〈
∇fl, xl − x∗〉)

≥
j∑

l=1

ρl,j
(〈
∇fl, xj − xl

〉
+ fl − f(x∗, sl)

)
(by convexity of f(·, s))

= f̄j +
〈
dj , x

j
〉
− γj −

j∑
l=1

ρl,jf(x
∗, sl) = hj − ρj f̄

j
∗ . (33)

Using (32) together with (33) in (31) gives

δj+1

∥∥xj+1 − x∗∥∥2
Dj+1

≤
∥∥xj+1 − x∗∥∥2

Dj

=
∥∥xj − x∗∥∥2

Dj
− 2τj

〈
dj , x

j − x∗〉+ τ2j ∥dj∥2D−1
j

≤
∥∥xj − x∗∥∥2

Dj
− 2τj(hj − ρj f̄

j
∗ ) + τ2j ∥dj∥2D−1

j
. (34)

Now we will perform a weighted telescoping. We will multiply the above by ηj > 0 such that
δj+1ηj = ηj+1, thus ηj = η1

∏j
l=2 δl. Thus multiplying through by ηj we have that

ηj+1

∥∥xj+1 − x∗∥∥2
Dj+1

≤ ηj
∥∥xj − x∗∥∥2

Dj
− 2ηjτj(hj − ρj f̄

j
∗ ) + ηjτ

2
j ∥dj∥2D−1

j
.

Summing up from j = 1, . . . , k and telescoping we have that

0 ≤ ηk+1

∥∥xk+1 − x∗∥∥2
Dk+1

≤ η1
∥∥x1 − x∗∥∥2

D1
− 2

k∑
j=1

ηjτj(hj − ρj f̄
j
∗ ) +

k∑
j=1

ηjτ
2
j ∥dj∥2D−1

j
. (35)

Re-arranging the above, choosing η1 = 1 and isolating f̄k
∗ gives

2ηkτkρkf̄
k
∗ ≥ 2

k∑
j=1

ηjτjhj −
∥∥x1 − x∗∥∥2

D1
−

k∑
j=1

ηjτ
2
j ∥dj∥2D−1

j
− 2

k−1∑
j=1

ηjτjρj f̄
j
∗ .

Dividing through by 2ηkτkρk gives the main result. Finally the recurrence follows since, for
k ≥ 2 we have that

fk+1
∗ :=

2
∑k

j=1 ηjτjhj −
∥∥x1 − x∗

∥∥2
D1
−∑k

j=1 ηjτ
2
j ∥dj∥2D−1

j
− 2

∑k−1
j=1 ηjτjρj f̄

j
∗

2ηkτkρk

=
ηk−1τk−1ρk−1

ηkτkρk

2
∑k−1

j=1 ηjτjhj −
∥∥x1 − x∗

∥∥2
D1
−∑k−1

j=1 ηjτ
2
j ∥dj∥2D−1

j
− 2

∑k−2
j=1 ηjτjρj f̄

j
∗

2ηk−1τk−1ρk−1

=fk
∗

+
ηk−1τk−1ρk−1

ηkτkρk

2ηkτkhk − ηkτ
2
k ∥dk∥

2
D−1

k
− 2ηk−1τk−1ρk−1f̄

k−1
∗

2ηk−1τk−1ρk−1

=
2ηk−1τk−1ρk−1(f

k
∗ − f̄k−1

∗ )− ηkτ
2
k ∥dk∥

2
D−1

k
+ 2ηkτkhk

2ηkτkρk
.

Now bootstrapping by using fk
∗ ≈ f̄k−1

∗ gives the result.
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D.2 The Max Lower Bound

Here we derive an alternative estimate for the lower bound that does not require bootstrapping,
contrary to Lemma 4.2.

Lemma D.1. Let f(x, s) be convex in x for every sample s. Furthermore let x∗ ∈
argmin
x∈Rd

f(x). Consider xk are the iterates of (16) with λ = 0 and let

ηk =

k∏
j=2

λmin

(
D−1

j Dj−1

)
, f̄k

∗ :=
1

ρk

k∑
j=1

ρj,kf(x
∗, sj), hk = f̄k + ⟨dk, xk⟩ − γk.

It follows that

max
j=1,...,k

f̄ j
∗ ≥ fk+1

∗ :=
2
∑k

j=1 ηjτjhj −
∥∥x1 − x∗

∥∥2 −∑k
j=1 ηjτ

2
j ∥dj∥2D−1

j

2
∑k

j=1 ηjτjρj
. (36)

Furthermore we have the recurrence

fk+1
∗ =

fk
∗
∑k−1

j=1 ηjτjρj + ηkτk

(
hk − 1

2τk ∥dk∥
2
D−1

k

)
∑k

j=1 ηjτjρj
. (37)

In particular when Dk = Id for every k, then we have that ηk = 1 for all k.

Proof. From step (35) and re-arranging we have that

2
(

max
j=1,...,k

f̄ j
∗
)( k∑

j=1

ηjτjρj
)
≥ 2

( k∑
j=1

ηjτjρj
)
f̄ j
∗

≥ 2

k∑
j=1

ηjτjhj −
∥∥x1 − x∗∥∥2

D1
−

k∑
j=1

ηjτ
2
j ∥dj∥2D−1

j
.

If we now assume that f̄ j
∗ ≈ f(x∗) (or upper bounding f̄ j

∗ by a constant) then by substituting
in f(x∗), dividing through by

(∑k
j=1 ηjτjρj

)
gives the estimate

max
j=1,...,k

f̄ j
∗ ≥ fk+1

∗ :=
2
∑k

j=1 ηjτjhj −
∥∥x1 − x∗

∥∥2 −∑k
j=1 ηjτ

2
j ∥dj∥2D−1

j

2
∑k

j=1 ηjτjρj
.

Finally the recurrence follows since

fk+1
∗ =

2
∑k

j=1 ηjτjhj −
∥∥x1 − x∗

∥∥2
D1
−∑k

j=1 ηjτ
2
j ∥dj∥2D−1

j

2
∑k

j=1 ηjτjρj

=

∑k−1
j=1 ηjτjρj∑k
j=1 ηjτjρj

2
∑k−1

j=1 ηjτjhj −
∥∥x1 − x∗

∥∥2
D1
−∑k−1

j=1 ηjτ
2
j ∥dj∥2D−1

j

2
∑k−1

j=1 ηjτjρj

+
2ηkτkhk − ηkτ

2
k ∥dk∥

2
D−1

k

2
∑k

j=1 ηjτjρj

=
fk
∗
∑k−1

j=1 ηjτjρj + ηkτk

(
hk − 1

2τk ∥dk∥
2
D−1

k

)
∑k

j=1 ηjτjρj
.
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E Additional Information on Experiments

E.1 Additional Plots
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(a) ResNet110 for CIFAR100
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(b) ResNet20 for CIFAR10
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(c) VGG16 for CIFAR10

Figure E.1: Validation score over training, we plot, for each method, the three choices of α0

that lead to the best validation score (compare to Fig. 2).
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(c) VGG16 for CIFAR10

Figure E.2: Training loss over training, we plot, for each method, the three choices of α0

that lead to the best validation score.
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(b) ViT for CIFAR10
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(c) MLP for MNIST

Figure E.3: Training loss (top row) and validation accuracy (bottom row) after a fixed
number of epochs, for varying (constant) learning rate α0.
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(a) MoMo (b) MoMo-Adam

Figure E.4: ResNet20 for CIFAR10. Adaptive learning rate of MoMo (left) and MoMo-Adam
(right). The colored dots represent the term ζk in each iteration. The grey line represents the
user-specified learning rate αk/ρk (note that ρk = 1 for MoMo and ρk ≈ 1 except for the first
few iterations in MoMo-Adam). The minimum of the grey line and the dots is the adaptive
learning rate τk = min{αk

ρk
, ζk} in each iteration. The silver line with colored markers is the

median over the values of ζk in each epoch.

MoMo MoMo-Adam SGD-M Adam
ResNet110 for CIFAR100 65.21 ± 1.61 66.71 ± 0.31 60.28 ± 0.36 64.5 ± 1.14
ResNet20 for CIFAR10 89.07 ± 0.2 89.45 ± 0.17 86.27 ± 0.67 87.54 ± 0.26

ViT for CIFAR10 85.43 ± 0.19 85.81 ± 0.57 83.39 ± 0.28 86.02 ± 0.44
VGG16 for CIFAR10 90.64 ± 0.18 90.9 ± 0.17 89.81 ± 0.43 89.95 ± 0.67

MLP for MNIST 97.97 ± 0.08 97.96 ± 0.12 97.73 ± 0.12 97.75 ± 0.06
DLRM for Criteo 78.83 ± 0.038 78.98 ± 0.036 78.81 ± 0.041 79.05 ± 0.014

ResNet18 for Imagenet32 47.66∗ 47.54∗ 47.38 46.98
ResNet18 for Imagenet-1k 69.68 N/A 69.57 N/A

IWSLT14 (dp 0.1) N/A 33.63∗ N/A 32.56
IWSLT14 (dp 0.3) N/A 35.34∗ N/A 34.97

Table 1: Validation score (with one standard deviation) for the best learning rate choice for
each method among the ones displayed in Section 5. Symbol “∗" indicates usage of online
lower bound, otherwise MoMo(-Adam) used with fk

⋆ = 0. Bold indicates the best method (for
experiments with multiple seeds, we only mark in bold if the advantage is outside of standard
deviation).

E.2 Experimental Setup of Section 5.1

We set the momentum parameter β = 0.9 for MoMo and SGD-M, and (β1, β2) = (0.9, 0.999)
for MoMo-Adam and Adam respectively. We do not use weight decay, i.e. λ = 0.

For SGD-M we set the dampening parameter (in Pytorch) equal to the momentum parameter
0.9. Like this, SGD-M does an exponentially-weighted average of past gradients and hence is
comparable to MoMo for identical learning rate and momentum. Setting dampening = 0.9
is equivalent to running with dampening = 0 and a ten times smaller learning rate. For
all other hyperparameters we use the Pytorch default values for Adam and SGD-M (unless
explicitly stated otherwise).

E.3 Models and Datasets

ResNet for CIFAR (He et al., 2016)

Used for ResNet20 for CIFAR10 and ResNet110 for CIFAR100. We adapt the last layer
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Figure E.5: Left: Validation accuracy of a ResNet18 for Imagenet32 with weight decay
λ = 10−4. Right: Validation accuracy of a ResNet18 for Imagenet-1k, with standard
exponential learning rate schedule (decay factor 10 at epochs 30 and 60) and constant
learning rate schedule.

output size to {10, 100} according to the used dataset. We run 50 epochs for ResNet20
and 100 epochs for ResNet110.

Model https://github.com/akamaster/pytorch_resnet_cifar10/blob/master/resnet.py

VGG16 for CIFAR10 (Simonyan & Zisserman, 2015)

A deep network with 16 convolutional layers. We run 50 epochs.

Model https://github.com/chengyangfu/pytorch-vgg-cifar10/blob/master/vgg.py

ViT for CIFAR10 (Dosovitskiy et al., 2021)

A small vision transformer, based on the hyperparameter setting proposed in github.com/
kentaroy47/vision-transformers-cifar10. In particular, we set the patch size to four.
We run 200 epochs.

Model https://github.com/lucidrains/vit-pytorch

ResNet18 for Imagenet32 (He et al., 2016)

Imagenet32 is a downsampled version of Imagenet-1k to images of 32× 32 pixels. We
adapt the last layer output size to 1000. We run 45 epochs.

Model https://github.com/kuangliu/pytorch-cifar/blob/master/models/resnet.py

ResNet18 for Imagenet-1k (He et al., 2016)

We use both a constant learning rate and a schedule that decays the learning rate by 0.1
every 30 epochs. We run 90 epochs. Note that for SGD-M the decaying schedule with initial
learning rate of 0.1 is considered state-of-the-art. As we set dampening = 0.9, and this is
equivalent to dampening = 0 and a ten times smaller learning rate (see Appendix E.2), in
our plots the best score is displayed for initial learning rate of 1 accordingly.

Model pytorch.org/vision/main/models/generated/torchvision.models.resnet18.html

DLRM for Criteo (Jean-Baptiste Tien, 2014)

DLRM is an industry-scale model with over 300 million parameters. the Criteo dataset
contains approximately 46 million training samples. We run 300k iterations with batch
size 128.
Dataset https://kaggle.com/c/criteo-display-ad-challenge
Model https://github.com/facebookresearch/dlrm

IWSLT14 (Ott et al., 2019)

We use a transformer with six encoder and decoder blocks from fairseq. The training
loss is the cross-entropy loss with label smoothing of 0.1. We use weight decay of λ = 10−4

(although we noticed that weight decay does not influence the performance of MoMo-Adam),
momentum parameters (β1, β2) = (0.9, 0.98). We train for 60 epochs.
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Figure E.6: Illustrative example of online lower bound estimation. For all MoMo methods, we
initialize f1

∗ = −10. Left: Training loss for varying (constant) learning rate α0. Right: Value
of fk

∗ over training, one line corresponds to one choice of α0. We plot per method the four
values of α0 that lead to smallest training loss.

Model https://github.com/facebookresearch/fairseq

For each experiments, we list how long one training run approximately takes on the hardware
we use. Unless specified otherwise, we train on a single NVIDIA A100 GPU. ResNet110 for
CIFAR100 90 min, ResNet20 for CIFAR10 30 min, VGG16 for CIFAR10 30 min, MLP for MNIST
3 min, ResNet18 for Imagenet32 20 hours (on NVIDIA V100), Transformer for IWSLT14 3
hours.

E.4 Illustrative Example of Online Lower Bound Estimation

We show how our online estimation of fk
∗ , derived in Section 4 and Lemma 4.2, work for

a simple example. Consider a regression problem, with synthetic matrix A ∈ R200×10 and
b ∈ R200. We solve the problem minx∈R10

∑200
i=1

1
2∥a⊤i x − bi∥2, where ai are the rows of A.

The data is generated in a way such that there exists x̂ with b = Ax̂ and hence the optimal
value is f∗ = 0.

We now run MoMo(-Adam) with lower bound estimate fk
∗ = −10 in all iterations, and MoMo(-

Adam)∗ with initialization f1
∗ = −10. Clearly, this is not a tight estimate of the optimal value

f∗. From Fig. E.6a, we see that online estimation of fk
∗ , used in MoMo(-Adam)∗, improves

stability of the training compared to plain MoMo(-Adam) where a constant value fk
∗ = −10 is

used. From Fig. E.6b, we also see that the online values of fk
∗ converge to f∗ = 0.

F Convergence Analysis

Here we give another motivation for a variant of MoMo through convexity. We discovered this
interpretation of MoMo after reading the concurrent work (Wang et al., 2023).

For this alternative derivation of MoMo, first let τk ≥ 0 be a free parameter, and consider a
general momentum method with a preconditioner given by

dk =

k∑
j=1

ρj,k∇f(xj , sj),

xk+1 = xk − τkD
−1
k dk.

(38)

We can now view xk+1 as a function of τk, that is xk+1(τk). Ideally we would like to choose
τk so that xk+1 is as close as possible to the optimum solution x∗, that is to minimize
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∥∥xk+1(τk)− x∗
∥∥2
Dk

in τk. This is general not possible because we do not know x∗. But
if we assume that f(·, s) is a convex function, then we can minimize an upper bound of∥∥xk+1(τk)− x∗

∥∥2
Dk

with respect to τk. As we show next, this gives the adaptive term in the
learning rate of MoMo if fk

∗ = f̄k
∗ .

Lemma F.1. Let f(·, s) be convex for every s. Let hk := f̄k + ⟨dk, xk⟩ − γk where dk, f̄k,
and γk are defined in (11). Consider the iterates given by (38) and let x∗ ∈ argminx∈Rd f(x).
Then, we have the upper bound∥∥xk+1 − x∗∥∥2

Dk
≤

∥∥xk − x∗∥∥2
Dk
− 2τk(hk − ρkf̄

k
∗ ) + τ2k ∥dk∥2D−1

k
. (39)

The minimum of the right-hand side of (39), over the set τk ∈ R≥0, is attained at

τ̄k =
(hk − ρkf̄

k
∗ )+

∥dk∥2D−1
k

. (40)

Proof. Subtracting x∗ from both sides, taking norms and expanding the squares gives∥∥xk+1 − x∗∥∥2
Dk

=
∥∥xk − x∗∥∥2

Dk
− 2τk

〈
dk, x

k − x∗〉+ τ2k ∥dk∥2D−1
k

. (41)

Denote ∇fj := ∇f(xj , sj), fj := f(xj , sj). Now using that

〈
dk, x

k − x∗〉 =

k∑
j=1

ρj,k
〈
∇fj , xk − x∗〉

=

k∑
j=1

ρj,k
(〈
∇fj , xk − xj

〉
+

〈
∇fj , xj − x∗〉)

≥
k∑

j=1

ρj,k
(〈
∇fj , xk − xj

〉
+ fj − f(x∗, sj)

)
(by convexity of f(·, sj))

=
〈
dk, x

k
〉
− γk +

k∑
j=1

ρj,k(fj − f(x∗, sj)) = hk − ρkf̄
k
∗ . (42)

Using (42) in (41) gives∥∥xk+1 − x∗∥∥2
Dk

=
∥∥xk − x∗∥∥2

Dk
− 2τk

〈
dk, x

k − x∗〉+ τ2k ∥dk∥2D−1
k

≤
∥∥xk − x∗∥∥2

Dk
− 2τk(hk − ρkf̄

k
∗ ) + τ2k ∥dk∥2D−1

k
.

If we now minimize the right-hand side of the above in τk, but restricted to τk ≥ 0, we arrive
at (40).

Inequality (39) holds for any choice of τk ≥ 0 in (38), in particular for τk =

min{αk

ρk
,
(hk−ρkf̄

k
∗ )+

∥dk∥2

D
−1
k

}. This choice for τk is equal to MoMo for λ = 0 and fk
∗ = f̄k

∗ . As

a consequence, we we can prove a descent lemma for MoMo.

Lemma 4.1. Let f(·, s) be convex for every s and let x∗ ∈ argminx∈Rd f(x). For the
iterates of the general MoMo update (cf. Lemma 3.1) with λ = 0 and fk

∗ = f̄k
∗ , it holds∥∥xk+1 − x∗∥∥2

Dk
≤

∥∥xk − x∗∥∥2
Dk
− τk(hk − ρkf̄

k
∗ )+. (18)
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Proof. We again denote hk = f̄k + ⟨dk, xk⟩ − γk. First, assume τk =
(hk−ρkf̄

k
∗ )+

∥dk∥2

D
−1
k

. Inserting

this τk back in (39) we have that∥∥xk+1 − x∗∥∥2
Dk
≤

∥∥xk − x∗∥∥2
Dk
− 2

(hk − ρkf̄
k
∗ )+

∥dk∥2D−1
k

(hk − ρkf̄
k
∗ ) +

(hk − ρkf̄
k
∗ )

2
+

∥dk∥2D−1
k

=
∥∥xk − x∗∥∥2

Dk
− (hk − ρkf̄

k
∗ )

2
+

∥dk∥2D−1
k

=
∥∥xk − x∗∥∥2

Dk
− τk(hk − ρkf̄

k
∗ )+. (43)

Here we used that a(a)+ = (a)2+ for all a ∈ R.

If we have τk = αk

ρk
, then from (39) we get∥∥xk+1 − x∗∥∥2

Dk
≤

∥∥xk − x∗∥∥2
Dk

+
αk

ρk

[
− 2(hk − ρkf̄

k
∗ ) +

αk

ρk
∥dk∥2D−1

k

]
. (44)

Using that in this case αk

ρk
≤ (hk−ρkf̄

k
∗ )+

∥dk∥2

D
−1
k

and hence αk

ρk
∥dk∥2D−1

k
≤ (hk − ρkf̄

k
∗ )+. Further, it

must hold (hk − ρkf̄
k
∗ ) = (hk − ρkf̄

k
∗ )+ as αk > 0. We get∥∥xk+1 − x∗∥∥2

Dk
≤

∥∥xk − x∗∥∥2
Dk
− αk

ρk
(hk − ρkf̄

k
∗ )+

=
∥∥xk − x∗∥∥2

Dk
− τk(hk − ρkf̄

k
∗ )+ (τk =

αk

ρk
). (45)

Now, if τk = min{αk

ρk
,
(hk−ρkf̄

k
∗ )+

∥dk∥2

D
−1
k

}, either (43) or (45) is true, and hence we have

∥∥xk+1 − x∗∥∥2
Dk
≤

∥∥xk − x∗∥∥2
Dk
− τk(hk − ρkf̄

k
∗ )+.

We will need the following interpolation assumption:

f(x∗, s) = inf
x

f(x, s) = f∗ for all s ∈ D. (46)

The following theorem proves convergence of MoMo (Algorithm 1) with αk = +∞ under
interpolation, when the loss functions are convex, and the gradients are either locally bounded
or the gradients are continuous. This is an unusual result, since in the non-smooth setting,
one needs to assume the gradients or the iterates are globally bounded (Orabona, 2019;
Garrigos & Gower, 2023), or in the smooth setting (where the gradient is continuous) one
needs to assume globally Lipschitz gradients. Here we do not need these assumptions, and
instead, rely on interpolation.

Theorem F.2. Let f(·, s) be convex for every s and let x∗ ∈ argminx∈Rd f(x). Assume
that (46) holds. Let (xk) be the iterates of Algorithm 1 with fk

∗ = f∗, αk = +∞ for all
k ∈ N and assume that dk ̸= 0 for all k ∈ N. Define

B := {x | ∥x− x∗∥ < ∥x1 − x∗∥}.
Assume that G2 := maxx∈B E

[
∥∇f(x, s)∥2

]
<∞a. Then, it holds

min
k=1,...,K

E
[
f(xk)− f∗] ≤ G∥x1 − x∗∥√

K(1− β)
.

aBecause B is bounded, this is always satisfied if D is finite.

Proof. Recall that for Algorithm 1 it holds that ρk = 1, Dk = Id in Lemma 3.1. The key
quantity is hk := f̄k + ⟨dk, xk⟩ − γk. Let us denote gk = ∇f(xk, sk). Further, denote with
Fk the σ-algebra generated by {s1, . . . , sk−1}.
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Step 1. We first show by induction that hk − f∗ ≥ 0 for all k ∈ N. For k = 0 we have
h0 = f(x1, s1) ≥ f∗ due to (46). Now assume that hk−1 − f∗ ≥ 0. Rewrite as

hk = β
[
f̄k−1 + ⟨dk−1, x

k⟩ − γk−1

]
+ (1− β)

[
f(xk, sk) + ⟨gk, xk⟩ − ⟨gk, xk⟩

]
= β

[
f̄k−1 + ⟨dk−1, x

k−1⟩ − γk−1 + ⟨dk−1, x
k − xk−1⟩

]
+ (1− β)f(xk, sk)

= βhk−1 + β⟨dk−1, x
k − xk−1⟩+ (1− β)f(xk, sk).

Using the update rule xk = xk−1 − τk−1dk−1 in the above gives

hk = β(hk−1 − τk−1∥dk−1∥2) + (1− β)f(xk, sk). (47)

Recall that τk =
(hk−fk

∗ )+
∥dk∥2 due to αk = +∞. Hence,

τk−1∥dk−1∥2 = (hk−1 − fk−1
∗ )+ = (hk−1 − f∗)+ = hk−1 − f∗

where the last equality is the induction hypothesis. Re-arranging the above we get

hk−1 − τk−1∥dk−1∥2 = f∗. (48)

Plugging this equality into (47) gives

hk = βf∗ + (1− β)f(xk, sk) ≥ f∗,

due to β ∈ [0, 1) and f(xk, sk) ≥ f∗. This completes the induction, and we have further
shown that

hk − f∗ = (1− β)
(
f(xk, sk)− f∗). (49)

Step 2. Due to (46) and ρk = 1, it holds f̄∗
k = f∗ = fk

∗ . Hence, the assumptions of
Lemma 4.1 are satisfied and we can apply (18), which implies in particular that the iterates
(xk) are almost surely contained in the bounded set B. By assumption, we conclude that
E
[
∥gj∥2 | Fk

]
≤ G2 for all j ≤ k. Using Jensen for the discrete probability measure induced

by ρj,k, we have

∥dk∥2 = ∥
k∑

j=1

ρj,kgj∥2 ≤
k∑

j=1

ρj,k∥gj∥2.

Thus, we conclude for the conditional expectation that E
[
∥dk∥2 | Fk

]
≤ G2. By Step 1, we

have τk = hk−f∗

∥dk∥2 . We will use next that (x, y) 7→ x2/y is convex for x ∈ R, y > 0. From (43)
and applying conditional expectation, we have

E
[
∥xk+1 − x∗∥2 | Fk

]
≤ ∥xk − x∗∥2 − E

[
(hk − f∗)2

∥dk∥2
| Fk

]
≤ ∥xk − x∗∥2 − E [hk − f∗ | Fk]

2

E [∥dk∥2 | Fk]

(49)
= ∥xk − x∗∥2 − (1− β)2E

[
f(xk, sk)− f∗ | Fk

]2
E [∥dk∥2 | Fk]

≤ ∥xk − x∗∥2 − (1− β)2(f(xk)− f∗)2

G2
.

Step 3. Taking full expectation, using the law of total expectation, suming over k = 1, . . . ,K,
dividing by K and re-arranging gives

1

K

K∑
k=1

E
[
(f(xk)− f∗)2

]
≤ G2∥x1 − x∗∥2

K(1− β)2
. (50)
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Now, due to Jensen’s inequality we have E
[
(f(xk)− f∗)2

]
≥ E

[
f(xk)− f∗]2 and because

the square-root is concave, it holds

1

K

K∑
k=1

E
[
f(xk)− f∗] ≤

√√√√ 1

K

K∑
k=1

E [f(xk)− f∗]
2
.

Using the above together with (50), we obtain

min
k=1,...,K

E
[
f(xk)− f∗] ≤ 1

K

K∑
k=1

E
[
f(xk)− f∗] ≤ G∥x1 − x∗∥√

K(1− β)
.

The above result is basically identical to (Loizou et al., 2021, Thm. C.1), but also allowing
for momentum. We make two remarks: the best constant is clearly achieved by β = 0, i.e. no
momentum. While empirically, momentum helps in most cases, we can not show a theoretical
improvement at this time. Second, we do not need to assume bounded gradient norms as
done in (Loizou et al., 2021), because this follows from the descent property Lemma 4.1.
However, this improvement could be achieved analogously for the the proof of (Loizou et al.,
2021) based on our techniques.
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