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Abstract
Realistic visual renderings of street-design scenarios are essential for public engage-
ment in active transportation planning. Traditional approaches are labor-intensive,
hindering collective deliberation and collaborative decision-making. While AI-
assisted generative design shows transformative potential by enabling rapid creation
of design scenarios, existing generative approaches typically require large amounts
of domain-specific training data and struggle to enable precise spatial variations of
design/configuration in complex street-view scenes. We introduce a multi-agent
system that edits and redesigns bicycle facilities directly on real-world street-view
imagery. The framework integrates lane localization, prompt optimization, de-
sign generation, and automated evaluation to synthesize realistic, contextually
appropriate designs. Experiments across diverse urban scenarios demonstrate that
the system can adapt to varying road geometries and environmental conditions,
consistently yielding visually coherent and instruction-compliant results. This
work establishes a foundation for applying multi-agent pipelines to transportation
infrastructure planning and facility design.

1 Introduction

Cycling is an environmentally friendly mode of transportation that also offers co-benefits such
as promoting personal health and reducing traffic congestion [11, 10, 5, 36]. However, bicycle
infrastructure development often requires extensive stakeholder consultations, during which road
users (e.g., cyclists, drivers, and pedestrians) articulate their needs and concerns. To facilitate these
deliberations, visual renderings of proposed street design scenarios are widely used in practice as
tools for collective reflection and collaborative decision-making. Traditionally, these visuals are
created with graphic design software (e.g., Adobe Photoshop and SketchUp) [1, 4, 48] prior to an
extensive user survey. While effective, these tools are time-consuming and demand specialized
expertise, making it difficult to customize and dynamically adjust street design images in response to
various user feedback, thereby hindering agile scenario iteration and limiting their utility in dynamic
public engagement contexts that involve complex trade-offs in allocating road space [3, 37, 17, 27].

Recent advances in Generative AI (GenAI), particularly image-generation models, demonstrate
significant potential to support scenario ideation and facilitate collaborative decision-making across
domains such as industrial design, architecture, and site planning. [41, 9, 55, 12, 17, 27, 26]. Existing
GenAI-based scenario design has leveraged post-training methods on domain-specific imagery [47,
38, 8, 15, 29, 30], which necessitates large, curated datasets and significant computational resources.
More recently, the state-of-the-art models such as GPT-image-1 [42, 44] have made it feasible to
apply off-the-shelf systems directly to design scenarios without task-specific retraining. These
models provide strong text-to-image and image-to-image capabilities, enabling the rapid creation
of immersive, design-oriented bicycle-infrastructure visualizations from urban imagery, particularly
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Figure 1: Overview of our multi-agent system for bicycle-infrastructure design. The system
comprises a Locator, Prompt Optimization, Design Generation, and Evaluation agent that processes
street-view imagery to generate bike-lane designs. Green arrows and plus signs denote intermediate
operations on agents’ output within the workflow.

street-view imagery. However, research on customizing these models for street infrastructure design,
particularly at the site level, remains largely underexplored. Key limitations include: (i) inadequate
reasoning about spatial and relational structure within visual inputs; (ii) semantic misinterpretation
of user instructions; (iii) weak adherence to complex instructions that with multiple constraints
specified; and (iv) inconsistent outputs and occasional hallucinations [44, 53, 49]. These limitations
underscore that stand-alone image generation is insufficient for bicycle-infrastructure scenario design,
pointing to the need for a more structured framework that situates state-of-the-art models within a
more comprehensive workflow.

To leverage cutting-edge GenAI models for bicycle infrastructure scenario design while addressing
the existing limitations, we propose a multi-agent system built on a state-of-the-art image generation
backbone, GPT-image-1 [42]. Given a user-defined prompt and street-view imagery, the generative
pipeline produces realistic bicycle facility design scenarios via four specialized agents that can tackle
each of the four limitations discussed above: (1) a Locator Agent that generates contextually accurate
descriptions of bike-lane positions using Multimodal Large Language Models (MLLMs), helping
image generation model capture spatial relations; (2) a Prompt Optimization Agent that refines user
prompts by integrating illustrative references along with the Locator’s contextual descriptions, thereby
reducing semantic misinterpretation. (3) a Design Generation Agent that decouples geometric and
design-pattern constraints via a cascading generation, yielding multiple candidate scenario designs.
(4) an Evaluation Agent that reranks candidate designs via CLIP similarity to a reference layout and
conducts a binary compliance check with reasoning MLLMs, surfacing the most instruction-aligned
outputs. Experimental results on street-view imagery collected from diverse road contexts show that
our pipeline consistently generates realistic, instruction-aligned, and spatially coherent designs. This
enables rapid creation of street-design scenarios and supports collective reflection and collaborative
decision-making in bicycle infrastructure planning and design.

The contributions of this work are threefold:

• We extend the applicability of generative AI in urban planning by integrating state-of-the-art
image-generation models for bicycle infrastructure design.

• We develop a multi-agent system that generates street infrastructure configurations with
high spatial accuracy and contextual relevance, while ensuring compliance with planning
guidelines.

• We design a pipeline that streamlines the design workflow, reducing complexity, expertise
requirements, and time cost in scenario generation.

2 Method

This section presents our proposed multi-agent system for bicycle infrastructure design. We begin
by describing the three agents for image editing and design generation, followed by the evaluation
agent responsible for selecting the best generated designs. The multi-agent pipeline can use any street
view image as input for the generation of street design scenarios. To demonstrate the scalability and
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widespread applicability of the proposed approach, here we use Google Street View imagery obtained
via the Google Street View API 1.

2.1 Image Editing Agents

Locator Agent Preliminary experiments and prior studies indicate that current image generation
models often lack the ability to accurately interpret and render the spatial configuration of street-scene
elements in street-view imagery [44]. As a result, directly prompting these models often fails to
reliably locate existing bicycle infrastructure or depict it in accordance with the given instructions. To
address this limitation, we design a Locator Agent powered by GPT-o3, a state-of-the-art reasoning
MLLM [43]. The agent analyzes street-view images and generates detailed, structured descriptions of
bike-lane features, including lane markings/paint, patterns, widths, and relative positions to reference
objects (e.g., “adjacent to the sidewalk”). If no bike lane is present, the image is excluded from
downstream processing. These precise descriptions serve as contextual anchors for subsequent
generation steps, improving spatial accuracy in the synthesized images and reducing ambiguity in the
location description of user-defined instructions.

Prompt Optimization Agent Prior work has demonstrated that the quality of synthesized images
depends strongly on prompt formulation, and that in-context learning for prompt generation can
substantially improve results [19, 56]. Motivated by these findings, we design the Prompt Optimiza-
tion Agent. We begin by manually drafting a series of candidate prompts to identify the description
format that best enables the model to understand the task and produce satisfactory results. Our
Exploratory experiments indicate that a structured template, comprising an overall lane description,
detailed left/right boundary specifications, and explicit constraints, yields the most reliable outputs.
Based on this template, we prepare several high-quality examples to serve as in-context references,
integrate user-specific instructions, and prompt a GPT-4.5 model to automatically generate the final
image-generation prompt (An illustrative example is in Appendix F). The generated prompt is then
concatenated with the structured bike-lane descriptions from the Locator Agent or other further
requirements, ensuring that the image generation model receives a clear, precise, and contextually
rich instruction set for modifying bicycle infrastructure.

Design Generation Agent Building on prior findings that image generation models often struggle
to faithfully render all specified elements in complex, compositional prompts [13, 23, 22, 7], we seek
to enhance the robustness of the generation process. To this end, the Design Generation Agent adopts
a two-step cascading strategy. In the first step, the model is prompted solely to edit existing bike
lanes or add new ones as clearly highlighted regions in the street-view image. In the second step, we
apply our final optimized prompt, augmented with an explicit statement that the highlighted regions
represent bike lanes, to produce diverse modifications such as standard marked lanes, buffered lanes,
and colored-surface lanes for improved visibility and safety. For each scenario, the agent generates 5
to 10 candidates, forming a diverse pool for the Evaluator Agent to assess and select the most suitable
synthesized designs.

2.2 Evaluator Agent

Recent work has reported that redundant environmental noise within images can undermine the
effectiveness of CLIP embeddings [45] for similarity assessment. Such noise, originating from
elements like vehicles, pedestrians, and buildings, can interfere with embedding computations,
thereby reducing the accuracy of embedding-based evaluations [28]. To address this limitation, we
design a segmentation-based preprocessing stage to remove environmental noise from the synthesized
designs. Specifically, we manually annotated bicycle lane regions in a representative subset of
synthesized designs (including unsatisfactory generations) to construct a training set. We then fine-
tuned a YOLO-v11 segmentation model [25] to achieve precise bicycle infrastructure segmentation
under diverse urban conditions. The resulting model generates binary masks that isolate the bicycle
infrastructure regions, with all non-relevant areas masked out using a uniform color, effectively
eliminating extraneous visual content.

Following segmentation, CLIP embeddings were computed on the isolated bicycle infrastructure
regions, and the cosine similarity between each candidate and a designated reference design was

1https://developers.google.com/streetview
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Figure 2: Generated bicycle-lane designs across diverse urban contexts. Each row shows the
original street-view scene (left) and eight variations generated by our multi-agent pipeline, one per
predefined design scenario (DS1–DS8; DS = design scenario).

calculated for re-ranking. Only the top three most similar candidates were advanced to the second-
stage evaluation. In this stage, each candidate image, along with its corresponding prompt, was
passed to GPT-o3 [43], which was tasked with determining whether the design complied with the
specified requirements stated in the final optimized prompt. GPT-o3 produced binary suitability
judgments for each candidate. This two-stage evaluation process ensured that the final selected design
exhibited full adherence to the specified design criteria.

3 Main Result
Based on common configurations of bicycle facilities in real-world urban environments, we define
eight representative bikeway design scenarios. These scenarios encompass a range of widely used
treatments, including standard marked lanes, buffered lanes providing separation from vehicle traffic,
and colored-surface lanes to improve visual saliency and safety awareness. The detailed definitions
and corresponding visual examples for each design scenario are provided in Appendix B.

Figure 2 presents the AI-enabled street design scenarios generated by our proposed multi-agent
pipeline. The generated designs span a variety of urban scenarios, including dense city streets,
suburban roads, highways, and complex intersections. These qualitative results demonstrate that
our pipeline can consistently embed different lane patterns into diverse street-view contexts while
maintaining correct spatial alignment with the roadway and preserving overall scene realism. Even
in challenging conditions, such as complex backgrounds or partial occlusions, the generated lanes
remain visually distinct and contextually appropriate. Notably, several scenarios (including a highway
context) were deliberately designed as counterfactual cases to challenge the pipeline’s ability to gen-
erate bicycle infrastructure in less conventional or unfavorable settings. Despite these challenges, our
approach is able to produce satisfactory and contextually coherent results. Furthermore, Appendix B
reports results from cross-model comparisons and ablation studies, which justify our choice of the
backbone model and demonstrate the individual contributions of each module of the multi-agent
system to generation accuracy

Desgin Scenario 1 2 3 4 5 6 7 8

Eval Acc. (%) 95.5 96.5 97.0 95.5 96.0 95.5 97.0 96.5
Table 1: Accuracy of the Evaluator Agent in correctly selecting the candidate.

In addition, to assess the accuracy of the Evaluator Agent in determining whether a candidate design
adheres to the final optimized prompt, we conducted a human evaluation on a street-view test set that
was never used in model training. The results, presented in Table 1, show that the Evaluator Agent

4



can consistently and accurately select the most suitable candidate across all eight design scenarios,
achieving accuracies above 95%. These findings further demonstrate the robustness and effectiveness
of our method.

4 Conclusion

In this work, we present a multi-agent framework for bicycle infrastructure design that integrates
advanced image generation models with reasoning MLLMs. The system decomposes the design
process into several steps through specialized agents, enabling context-aware and spatially accurate
modifications to street-view imagery. Both qualitative and quantitative evaluation results demonstrate
that our approach can robustly produce accurate, contextually appropriate, and visually realistic
bicycle infrastructure designs. By integrating advanced AI systems into the street design workflow,
our method offers a promising tool to support bicycle infrastructure planning and facilitate design.
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A Related Work
A.1 AI-assisted Generative Design in Urban Planning

Established methods have sophisticatedly integrated the image generation model into the design
of urban planning. Wijnands et al. [57] used unpaired GAN-based image translation on large
Google Street View datasets stratified by population health, augmenting streetscapes to reveal
actionable design cues—more green space, wider footpaths/sidewalks, fewer fences, and greater
frontage compactness—informing healthier street and sidewalk design. Ito et al. [24] quantifies
the bias in car-mounted street-view imagery and introduces a GAN-based translation framework
to convert road-center views into cyclist/sidewalk perspectives, aligning semantic indicators so
bikeability/walkability assessments better inform bikeway and streetscape design. Rajagopal et
al. [46] similarly use CycleGAN to convert simple annotated road layouts into lifelike street-level
images, enabling rapid prototyping of bike lane designs. Calleo et al. [6] employ a Real-Time Spatial
Delphi method combined with GAN-based image synthesis to produce photorealistic street redesign
visuals, significantly aiding stakeholder communication.

Arrabi et al. [2] propose a two-stage, geometry-preserving ground-to-aerial synthesis pipeline (BEV
layout prediction from a street photo, then text-conditioned diffusion) to generate realistic overhead
imagery that can aid transportation/streetscape planning. Zhang et al. [58] introduce a 3D diffusion
approach conditioned on BEV layouts to generate large, unbounded urban scenes as semantic
occupancy maps (and renderable images), enabling rapid what-if exploration of road-network design
options. Hu et al. [21] develop a human-perception-guided prompt-tuning framework that locally edits
street-view images with Stable Diffusion to simulate urban-renewal interventions and quantitatively
boost perceived safety/beauty/liveliness—useful for previewing streetscape or bike-corridor upgrades.

Collectively, these studies demonstrate the promise of generative AI for urban and streetscape
visualization, but they are ill-suited for bicycle-infrastructure design. In particular, they still face
notable limitations, such as insufficient spatial immersion and fine-grained environmental cues
to convey the on-road cyclist experience, or high computational costs and labor-intensive data
preparation for generative models. In addition, the overall design workflow remains cumbersome,
requiring extensive manual adjustments and cross-disciplinary coordination among human experts.

A.2 Multi-agent system for Image Editing

Recent developments favor multi-agent systems to enhance complex image editing capabilities. Gupta
et al. [16] introduce VisProg, which demonstrated how an LLM-based single-agent planner could
decompose intricate editing tasks, highlighting the benefits of agent-driven task segmentation but
constrained by reliance on a single controller. Hang et al. [18] proposed Collaborative Competitive
Agents (CCA), employing two generators and a discriminator in an iterative feedback loop, where gen-
erators compete yet collaboratively improve via shared feedback, significantly enhancing robustness
for complex multi-step edits. Venkatesh et al. introduce CREA [54], which employed distinct role-
based agents (e.g., Creative Director, Art Critic) to iteratively refine images creatively, significantly
outperforming single-prompt diffusion models by achieving greater output diversity and semantic
alignment through a collaborative, human-like creative process. Xie et al. [52] adopted a modular
multi-agent approach for foreground-aware editing tasks, assigning dedicated agents for foreground
semantics, object integrity, and background consistency. This system notably enhanced image quality
and control compared to end-to-end models. EmoAgent [39] tackled affective image manipulation by
emulating cognitive painting workflows through planning, execution, and critique agents, significantly
enhancing emotional expression and editing interpretability. Marmot [51] employed specialized
agents post-generation to correct object count, attributes, and spatial arrangement, substantially
improving alignment with textual descriptions. Multi-Agent Collaboration-based Compositional
Diffusion (MCCD) [34] similarly used multimodal LLMs to parse prompts into object-specific agents,
integrating regional outputs through hierarchical diffusion to achieve precise control and improved
compositional consistency.

Collectively, these works establish multi-agent image editing as a mature and effective paradigm:
role-specialized agents, LLM planners, and collaborative/competitive feedback reliably decompose
complex edits, improve semantic alignment, and enhance robustness over single-prompt baselines.
Building on this consensus, we tailor a coordinated agentic architecture to bicycle infrastructure
scenario design, aligning agents with domain needs, so that modified scenario design to street-view
imagery can be produced consistently.
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B Street View Image Collection

To ensure that our proposed approach is widely applicable across diverse road environments, we
sampled 150 road segments and intersections by considering several main factors (e.g., type of bike
facility, speed limit, and neighborhood environment). The sampled locations include both locations
that already contain visible bicycle infrastructure and locations without it, but with road layouts
suitable for adding new bike lanes. This selection covers a diverse range of urban contexts, including
residential neighborhoods, suburban corridors, central business districts, highways, and intersections.

Based on the coordinates of the sampled locations, we use the Google Street View API 2 to retrieve
static street-view images from multiple horizontal viewing angles, while keeping both pitch and field
of view fixed to capture an eye-level perspective. This ensures coverage of different forward-looking
viewpoints even when the street orientation and traffic direction are uncertain. All images are obtained
at a resolution of 1024×1024 pixels to align with the input requirements of the downstream image
generation backbone. We further perform a quality control stage in which human experts review all
captured views for each location and select the most suitable image. The chosen images are those that
provide a clear view of the carriageway, sidewalk, or curb reference lines, and any existing bicycle
lane markings when present. This curated set of high-quality street-view images forms the foundation
for all subsequent stages of our pipeline, ensuring consistent and contextually rich inputs for the
Locator, Prompt Optimization, and Design Generation agents.

C Model Evaluation and Validation

In this section, we justify our selection of the backbone model and assess the effectiveness of each
component in the multi-agent generation pipeline through corresponding qualitative evaluations.

C.1 Generation Backbone Comparison

In this section, we compare our image generation backbone, GPT-image-1, with the state-of-the-art
open-source image generation model, Stable Diffusion 3.5 [50], demonstrating the rationale of
backbone selection. We focus on three design scenarios, Design Scenario 1, Design Scenario 6,
and Design Scenario 7 (Please see Table 2), because these designs are among the most frequently
implemented in contemporary urban cycling infrastructure and are explicitly emphasized in widely
used design guidelines such as the NACTO Urban Bikeway Design Guide [40]. To ensure that
observed performance differences are attributable solely to the generative models rather than content
variability, we standardize the experimental conditions: for each design scenario, all models receive
the exact same input street-view photograph and identical textual prompt. The only variable is the
generative backbone, GPT-image-1 versus the three latest Stable Diffusion models, Stable Diffusion
3.5 variants (Stable Diffusion 3.5 Large, Stable Diffusion 3.5 Large Turbo, and Stable Diffusion 3.5
Medium), allowing us to directly attribute output differences to model-specific handling of spatial
and semantic constraints.

Figures 3,4, and 5 present qualitative comparisons under identical input photographs and textual
prompts, covering the three most commonly implemented bikeway typologies as emphasized in
widely used design guidelines [40]. Furthermore, to ensure that observed performance differences
are attributable solely to the generative models rather than content variability, we standardize the
experimental conditions: for each design scenario, all models receive the exact same input street-view
photograph and identical textual prompt. From the qualitative comparison, we find that GPT-image-1
consistently adheres to the prompt with high fidelity, preserving all background elements while
making precise, localized edits to the bicycle infrastructure. In Figure 3, the model modifies the
current bike lane into a green-painted bike lane that follows road geometry and perspective, with
bicycle glyphs correctly scaled, oriented, and positioned. In Figure 4, it generates a buffered lane of
appropriate width and perspective without altering adjacent lane markings or roadside objects. In
Figure 5, it accurately places a protected lane with bollards while maintaining occlusion relationships
with visual elements. These results demonstrate strong semantic alignment between the textual
description and visual output, with minor changes to unrelated scene content.

2https://developers.google.com/streetview
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Figure 3: Qualitative comparison of Desgin Scenario 1 outputs generated by GPT-image-1 and
three Stable Diffusion 3.5 variants (Stable Diffusion 3.5 Large (SD3.5-L), Stable Diffusion 3.5 Large
Turbo(SD3.5-L-T), and Stable Diffusion 3.5 Medium(SD3.5-M).

In contrast, the Stable Diffusion 3.5 variants (Large, Large Turbo, and Medium; SD3.5-L/SD3.5-L-
T/SD3.5-M) exhibit recurrent failure modes despite visually realistic textures. The core limitation is
twofold: these models neither reliably internalize where bicycle infrastructure must be placed relative
to road elements, nor do they strictly follow our prompt to modify highly specialized, position-
dependent details. Concretely, we observe (i) topological errors: lanes crossing the centerline,
appearing on the parking side, or breaking at junctions; (ii) metric/perspectival inconsistencies: lanes
rendered with an approximately constant image-space width rather than shrinking with depth, and
buffers whose width varies along the road direction; (iii) symbolography mistakes: bicycle glyphs and
arrows with incorrect orientation, spacing, or lane offset; (iv) occlusion/layering violations: painted
lanes rendered over vehicles or barriers instead of behind them; and (v) unintended scene rewriting:
hallucinated buildings or altered road geometry, i.e., background replacement (cf. Figs.3, 4, and5).
These design scenarios suggest weak inductive bias for structured layout and scene topology: the
models optimize global realism but lack mechanisms to enforce local, prompt-governed geometric
constraints and strict background preservation demanded by infrastructure editing. Mitigation via
Stable-diffusion-based fine-tuning is pragmatic but typically requires large, curated, domain-specific
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Figure 4: Qualitative comparison of Desgin Scenario 6 outputs generated by GPT-image-1 and
three Stable Diffusion 3.5 variants (Stable Diffusion 3.5 Large (SD3.5-L), Stable Diffusion 3.5 Large
Turbo(SD3.5-L-T), and Stable Diffusion 3.5 Medium(SD3.5-M).

datasets and task-specialized conditioning signals, which are resource-intensive and, for this narrowly
scoped editing task, have conflict over our research motivation [59]. Accordingly, we center our
evaluation on GPT-image-1 and do not extend to additional Stable-diffusion-based variants.

C.2 Ablation Study

In this section, we perform an ablation study by applying our pipeline to selected examples while
deliberately removing specific agents to assess the individual contribution and effectiveness of each
component.

Locator Agent Removal Figure 6 compares generation results with and without the Locator Agent.
When the Locator Agent is removed, the system loses the ability to correctly identify the spatial
position of the bicycle lane. As shown in the right column, the model frequently misinterprets traffic
lanes as bike lanes, leading to misplaced green surfacing or lane markings in the center of the road
rather than adjacent to the curb. In several cases, the generation process also introduces unintended
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Figure 5: Qualitative comparison of Desgin Scenario 7 outputs generated by GPT-image-1 and
three Stable Diffusion 3.5 variants (Stable Diffusion 3.5 Large (SD3.5-L), Stable Diffusion 3.5 Large
Turbo(SD3.5-L-T), and Stable Diffusion 3.5 Medium(SD3.5-M).

alterations to non-bike-lane areas, such as partially removing or replacing parking zones, which
changes road elements unrelated to the intended design. In contrast, the full pipeline (left column)
produces bike lanes that are correctly aligned with the curb and preserve other roadway features,
demonstrating the crucial role of accurate localization in ensuring spatially correct and contextually
consistent designs.

Prompt Optimization Removal Figure 7 shows that removing the Prompt Optimization Agent
causes the system to rely on raw user prompts, which are often ambiguous or too terse. Without
structured disambiguation, the generator hallucinates details and fails to realize the intended design
scenario: in the first case, the simplest “two parallel lines” lane is mis-rendered with double lines as its
boundary, and in another design, color spill appears outside the lane region (e.g., green paint bleeding
into the travel lane or shoulder). We also observe missing or incorrect elements: buffers/hatching
omitted or placed on the wrong side, symbols misaligned with the roadway direction, and inconsistent
continuity along the lane. These errors stem from the model having to infer side, width, buffer type,
and coloring from under-specified text, which typically demands substantial manual prompt tweaking
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Figure 6: Effect of removing the Locator Agent. Each row shows an original street-view image
(left), the generation result with the full pipeline (middle), and the result after removing the Locator
Agent (right).

and trial-and-error. The Prompt Optimization Agent mitigates these failures by converting user intent
into a structured, context-aware prompt (with explicit side, width/buffer specification, coloring rules,
and “edit-only within highlighted region” constraints) and by injecting in-context exemplars. This
reduces ambiguity, stabilizes design scenario realization, and keeps the output aligned with both the
guideline and the user’s intention.

Image Generation Auxiliary Step Removal Figure 8 contrasts the full pipeline (middle) with a
variant that omits the first step that generates a highlight region first, where we normally convert the
target lane area into a highlighted pre-edit region and then synthesize the final bike lane from that
highlight. Without this visual scaffold, the generator must infer both localization and styling from
text alone. As shown in the right column, this leads to systematic loss of width control (lanes become
too wide/narrow or taper inconsistently), over-stretching along the curb that spills into parking or
shoulders, and perspective-inconsistent strips that look unrealistic. We also observe design scenario
non-compliance, such as diagonal hatching or buffers being omitted or flipped. The highlight-first
step acts as an explicit spatial prior, a geometry-aware, human-interpretable cue (not a hard mask) that
fixes the lane’s extent and approximate width before style details are rendered. Removing it forces
the model to resolve location, width, and elements directly from ambiguous prompts, amplifying
hallucinations and causing the final design to deviate from the guidelines.

Necessity of Evaluator Agent Figure 9 shows five independent generations from the same street-
view image and prompt. Because the generator is stochastic and lacks hard spatial constraints,
first-pass results are often unreliable and vary substantially across attempts: lane width drifts, curb
alignment shifts, buffers/hatching appear or disappear, bollard count and spacing fluctuate, and green
surfacing occasionally bleeds beyond the intended region. Some attempts violate the prescribed
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Figure 7: Effect of removing the Prompt Optimization Agent. Each row shows an original
street-view image (left), the generation result with the full pipeline (middle), and the result after
removing the Prompt Optimization Agent (right).

design scenario or roadway context. This sample-level variance is an inherent limitation of current
image generators, not a prompt formatting issue, and makes “one-shot” use impractical.

Our pipeline, therefore, produces a candidate pool and relies on the Evaluator Agent to mitigate this
variance, first ranking candidates on lane-region similarity to the reference design, then verifying
guideline and instruction compliance with multimodal reasoning. Removing the evaluator would
propagate inconsistent or noncompliant designs; with it, the system consistently selects the most
suitable outcome from noisy generations.

D Human Evaluation Framework

While the use of MLLMs to assess generation correctness is well established [14, 35, 32, 33, 31],
we evaluate our multi-agent bicycle infrastructure design pipeline via a stepwise, human-in-the-loop
protocol and a design-quality assessment framework informed by prior work advocating staged
generation with expert oversight and end-outcome metrics (realism, instruction adherence) [20],
adapted to the specific requirements of bicycle-lane design and background preservation.

Human-in-the-loop Our workflow comprises four stages. First, during location description gener-
ation, we verify that the automatically produced textual description covers existing bicycle infras-
tructure while respecting established road layout(e.g., parking zone and traffic lane), and we edit
the description where necessary. Second, in prompt optimization, we translate design objectives
and constraints into verifiable clauses (e.g., “do not alter the background”) and iterate until both the
generation is effective and approval is obtained from human experts. Third, when converting the
existing bicycle infrastructure into a highlight region, we check the spatial precision of the region
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Figure 8: Effect of removing the auxiliary step in Image Generation Agent. Each row shows an
original street-view image (left), the generation result with the full pipeline (middle), and the result
after removing the auxiliary step (right).

Figure 9: Effect of removing the auxiliary step in Image Generation Agent. Each row shows an
original street-view image (left), the generation result with the full pipeline (middle), and the result
after removing the auxiliary step (right).

and adjust boundaries to prevent leakage into the base scene if needed by re-generation. Fourth,
in evaluator-agent selection, an evaluator agent nominates the best design from a candidate pool,
while experts independently select their own top choice; disagreements trigger targeted upstream
revisions (stages 1–3) before re-selection, ensuring expert control at the critical decision points. This
step-by-step review-and-iterate design implements human guidance throughout the pipeline to avoid
misalignment with the established design guidelines.
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Final design quality assessment To complement the Evaluator Agent accuracy reported in Ta-
ble 1, we conduct a human evaluation of the final bicycle-infrastructure design (the agent-selected,
expert-approved output) along two axes: Visual fidelity and Instruction compliance. These axes
explicitly target quality aspects that generic image metrics miss, especially hallucinations and subtle
lane–background inconsistencies.

(i) Visual fidelity. We assess whether the edited bicycle infrastructure is realistic and seamlessly
integrated into its context without unintended modifications outside the designated highlight region.
Raters assign 1–5 Likert scores to three criteria—(i) lane plausibility (appropriate width, curvature
continuity, geometric smoothness and connectivity), (ii) scene integration (consistent perspective,
shading/shadows, reflections, and material/texture blending), and (iii) background preservation
(absence of edits beyond the highlight, no semantic drift in roads, sidewalks, or street furniture).
We aggregate these into a weighted composite score. The rubric is designed to capture common
generative failure modes, including but not limited to: geometric artifacts (jagged edges, broken
continuity), photometric/texture inconsistencies (incorrect shadows, tiling, color cast), perspective
mismatch, improper occlusions (painted markings over vehicles/pedestrians), and background drift
(unintended changes to non-highlighted regions).

(ii) Instruction compliance. We translate the optimized prompt into a requirement checklist com-
prising hard constraints (e.g., lane width, marking style) and soft constraints (e.g., “do not alter
non-highlight background”). For each item, raters mark satisfied/unsatisfied, yielding a binary com-
pliance vector and an overall compliance rate. We also collect a global 1–5 Likert judgment of prompt
adherence. Any hallucinated or out-of-spec elements, such as spurious crosswalks/barriers, invented
curb geometry, or contradictory markings, are counted as violations. Omissions of required features
are likewise treated as non-compliance.

Furthermore, we treat expert judgment as the gold standard; we collapse the two-axis rubric to a
single accuracy metric: a case is counted as correct iff it (i) meets the pre-specified Visual-Fidelity
acceptance threshold (e.g., composite ≥ 4/5 with no background-change flag), and (ii) satisfies all
hard instruction constraints (and at least the minimum soft-constraint level defined in the checklist).
Accuracy is then reported as the proportion of test cases that satisfy these acceptance criteria.

In conclusion, our evaluation framework centers expert oversight at critical stages and evaluates the
final design against human-defined standards of visual fidelity and instruction compliance, adapting
stepwise, human-guided practices from generative urban design to the bicycle-lane setting.

E Limitations

Despite the effectiveness of the proposed multi-agent framework, several limitations remain. First, the
current system still cannot fully guarantee pixel-level accuracy in representing spatial relationships
within the generated designs. While the generated bike lanes are generally aligned with the intended
roadway regions, fine-grained positional accuracy is not always achieved, particularly in complex
street layouts. Second, the correctness rate of a single generation pass remains relatively low, requiring
multiple candidate generations before a satisfactory result is obtained. This increases computational
cost and latency in the design workflow. Finally, the pipeline still involves a substantial degree
of human intervention, especially manual image selection during data preparation. Reducing this
reliance on human involvement is essential for improving automation and scalability in future work.

Design Scenario Left boundary Right boundary
1 No buffer; direct adjacency to moving lane No buffer; direct adjacency to parked cars
2 No buffer; direct adjacency to moving lane 3 ft white-painted buffer
3 No buffer; direct adjacency to moving lane 1.5 ft buffer with bollards
4 No buffer; direct adjacency to moving lane 1.5 ft buffer with armadillo lane dividers
5 No buffer; direct adjacency to moving lane No buffer; direct edge (no separator)
6 3 ft white-painted buffer No buffer; direct edge (no separator)
7 1.5 ft buffer with bollards No buffer; direct edge (no separator)
8 1.5 ft buffer with armadillo lane dividers No buffer; direct edge (no separator)

Table 2: Design Scenario specifications for our experiments.
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F Prompts

Prompt of Locator Agent

System Prompt
You are a helpful vision assistant to identify the bike lane from the image and describe its location
accurately.

User Prompt
Your task is to describe precisely the physical location and boundaries of the primary bike lane shown
on the right side of the roadway in the provided image in sentences. Typically, bike lanes are defined
clearly by white lines on both sides; however, boundary variations exist, and it is possible that one side
of the bike lane may instead be marked by a buffer zone (e.g., a painted area with diagonal stripes), a
curb, sidewalk edge, or physical separators like bollards or raised barriers. If either the left or right
boundary is a buffer zone or another physical separator, treat that separator as part of the bike lane in
your description. In this task, you should specifically detail that, in most cases, the primary bike lane
is bordered by two parallel white lines: one white line forming the left boundary separating it from
motor-vehicle lanes, and another white line forming the right boundary separating it from parking
cars, sidewalks, or curbs. Clearly note the exact placement relative to these adjacent roadway features.

Figure 10: Prompt used in Locator Agent to request GPT-o3 to describe the physical location and
boundaries of the bicycle infrastructure from an image.
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Prompt of Prompt Optimization Agent

System Prompt
You are an expert prompt optimizer. Your job is to transform a draft prompt about depicting or
updating bicycle infrastructure in roadway images into a precise, unambiguous, self-contained
instruction for an image-generation or editing model. Preserve the user’s intent exactly; remove
ambiguity; standardize terminology; and keep constraints measurable and consistent. Explicitly
specify: (a) lane position on the right-hand side of the road; (b) lane width with units; (c) surface
color policy (green vs. standard road surface); (d) left and right boundaries. Define the left boundary
as the continuous solid white line separating the bike lane from motor-vehicle lanes; define the right
boundary as either a continuous solid white line or a clearly marked buffer zone (diagonal white
stripes) and, if present, any physical separators (e.g., bollards) should be described as part of the
boundary, not within the lane. If the user forbids green paint, clearly say “No green paint.” If the user
requires a fully green lane, require that the green area is strictly contained between two continuous
solid white lines. Do not invent parameters not present in the user input; when information is missing,
keep statements general while matching the style of the examples. Write in clear imperative voice.
Output only the optimized prompt—no commentary, headings, or quotes.

User Prompt
##Example 1##
The area currently painted green with two white boundary lines represents the existing bike lane.
Your task is to clearly depict an updated bike lane that is approximately 6 feet wide, fully painted
green, strictly contained between two prominent, continuous, solid white boundary lines. Ensure
these white boundary lines clearly define the left and right edges of the green bike lane area,
positioned along the right-hand side of the road. Do not allow any green paint to extend beyond the
white boundary lines.

##Example 2##
The area currently painted green with two white boundary lines represents the existing bike lane.
Clearly depict an updated bike lane approximately 6 feet wide, located along the right-hand side of
the road. Do not paint the updated bike lane green; use the standard road surface color only. Clearly
mark both boundaries of the bike lane: 1) Left boundary: a prominent, continuous solid white line. 2)
Right boundary: a clearly marked narrow buffer zone adjacent to the bike lane, filled with prominent
diagonal white stripes, and bounded on both sides by solid white lines. Ensure the updated bike lane
is clearly defined by the solid white lines on both sides, distinctly separate from the striped buffer
zone on its right side. No green paint should be applied.

##Example 3##
The area currently painted green with two white boundary lines represents the existing bike lane.
Clearly depict an updated bike lane approximately 4 feet wide, located along the right-hand side of
the road. Do not paint the updated bike lane green; use the standard road surface color only. Clearly
mark both boundaries of the updated bike lane: 1) Left boundary: a prominent, continuous solid
white line. 2) Right boundary: a clearly marked narrow buffer zone adjacent to the bike lane, filled
with prominent diagonal white stripes, bounded on both sides by solid white lines, and distinctly
featuring vertical red-and-white striped bollards placed at regular intervals. Ensure the updated bike
lane is clearly defined by the solid white lines on both sides, distinctly separate from the striped
buffer zone and bollards on its right side. No green paint should be applied.

Rewrite the {USER_PROMPT} into a single optimized prompt that follows the System Prompt
and mirrors the style of the In-Context Examples. Preserve all stated constraints; make boundary
definitions explicit (left vs. right); avoid contradictions; and keep the output concise (preferably ≤
130 words). Output only the optimized prompt.

Figure 11: In-context learning prompt of Prompt Optimization Agent.
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Prompt of auxiliary step in Design Generation Agent

System Prompt
You are a helpful assistant for precise roadway image editing. Follow instructions exactly, maintain
visual realism (perspective, lighting, shadows), and avoid adding elements not requested. Preserve
the legibility of traffic-control devices and do not alter objects unless explicitly instructed.

User Prompt
Edit the entire existing bike-lane corridor on the right side of the road into a {COLOR}-painted lane.
Treat the corridor as the current bike-lane surface plus any immediately adjacent buffer zones or
physical separators that belong to the lane configuration. Keep the lane strictly contained between
two continuous solid white boundary lines (left and right). Apply the following:
– Boundaries: ensure both left and right boundaries are prominent, continuous solid white lines that
follow roadway curvature. Do not let any {COLOR} paint cross, touch, or bleed over these lines.
– Buffer zones: if a narrow striped buffer exists adjacent to the lane, replace its interior stripes with a
uniform {COLOR} infill, but retain the solid white lines that bound the buffer as the lane’s outer
edges.
– Physical separators: keep bollards, armadillos, curbs, or raised barriers intact and unpainted; they
should remain visually above the {COLOR} base and aligned along the boundary. Do not recolor or
remove them.
– Exclusions: exclude painted street names, arrows, lane labels, and crosswalk markings from
recoloring. Do not extend the {COLOR} paint into motor-vehicle lanes, parking spaces, sidewalks,
or curbs.
– Consistency: preserve road texture and lighting, respect occlusions (vehicles, pedestrians), and keep
the lane’s original footprint (do not widen or narrow).
– Output: deliver a clean, continuous {COLOR}-painted lane on the right side of the road, strictly
bounded by solid white lines, with all exclusions observed.

Figure 12: Prompt of auxiliary step in Design Generation Agent
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Prompt of Evaluator Agent

System Prompt
You are a strict binary evaluator for roadway images. Examine the candidate image (and the provided
reference image, if any) and decide whether it shows a bike lane located on the right side of the
road that satisfies all features listed in the User Prompt. Minor visual variations (e.g., perspective,
lighting, small width deviations) are acceptable only if each required feature is clearly present and
recognizable. If any required feature is missing, ambiguous, occluded, or contradicted, respond no.
Output format: a single lowercase word, exactly yes or no. Do not add punctuation, spaces,
explanations, or any other text.

User Prompt
Answer ONLY yes or no:
Does the image show a bike lane on the right side of the road with the following key features? Minor
variations are allowed, but all features should be clearly recognizable:
1. Left Boundary:
– Narrow buffer zone adjacent to the bike lane.
– Buffer zone bounded by solid white lines on both sides.
– Prominent diagonal white stripes filling the buffer zone.
– Rounded, semi-flexible rubber lane dividers (“armadillos”) placed centrally and evenly spaced
within the buffer zone. Dividers should be dome-shaped, black with white reflective stripes.
2. Right Boundary:
– Prominent continuous solid white line marking the right-hand edge of the bike lane.

The image should closely match the reference image provided, clearly depicting both boundary
conditions. Answer no if these conditions are not sufficiently met.

Figure 13: An example of a prompt for evaluation used in Evaluator Agent.
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