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ABSTRACT

Network traffic classification with pre-training has achieved promising results, yet
existing methods fail to represent cross-packet context, protocol-aware structure,
and flow-level behaviors in traffic. To address these challenges, this paper rethinks
traffic representation and proposes Flowlet-based pre-training for network analy-
sis. First, we introduce Flowlet and Field Tokenization that segments traffic into
semantically coherent units. Second, we design a Protocol Stack Alignment Em-
bedding Layer that explicitly encodes multi-layer protocol semantics. Third, we
develop two pre-training tasks motivated by Flowlet to enhance both intra-packet
field understanding and inter-flow behavioral learning. Experimental results show
that FlowletFormer significantly outperforms existing methods in classification
accuracy, few-shot learning and traffic representation. Moreover, by integrating
domain-specific network knowledge, FlowletFormer shows better comprehension
of the principles of network transmission (e.g., stateful connections of TCP), pro-
viding a more robust and trustworthy framework for traffic analysis.

1 INTRODUCTION

Network traffic refers to data transmitted across networks, including the exchange of packets and
other forms of device communication. It consists of both payload and metadata that provide crit-
ical insights into network behavior. Monitoring and analyzing traffic is essential for both network
management and security (Papadogiannaki & Ioannidis, 2022; Tang et al., 2020), enabling network
operators to effectively tailor resource allocation, ensure quality of service, and detect malicious
activities (Gutterman et al., 2019; Hu et al., 2023; Mao et al., 2019).

Recently, pre-training methods (He et al., 2020; Zhao et al., 2023; Lin et al., 2022; Zhou et al.,
2025) have achieved superior performance in traffic classification tasks. These approaches pretrain
models on large volumes of unlabeled data to learn generalizable representations, which can then be
fine-tuned on smaller labeled datasets for specific classification tasks.

However, despite achieving promising accuracy on given datasets, existing pre-training models for
traffic classification still have significant limitations.

First, to balance the limited information in a single packet with the excessive length of entire flows,
existing methods often design packet windows as model inputs to preserve more session context
across packets. However, some designs reduce the window to a single packet, making it difficult
to capture contextual semantics, while others adopt a fixed first-N packet window, which is overly
rigid, hinders the modeling of intra-packet structures, and fails to cover diverse network behaviors,
as shown in Figure 1a. These limitations reduce the model’s ability to generalize across different
traffic patterns.

Second, existing methods often mechanically apply NLP and CV techniques to traffic representa-
tion, such as encoding packets into 4-hex tokens with subword tokenization or reshaping flows into
square images. However, these representations overlook the structural of traffic, including proto-
col field boundaries, hierarchical semantics, and sequential dependencies. As shown in Figure 1b,
the similarity of the word embedding reveals the limited ability of the model to capture semantics,
making it difficult for network operators to obtain reliable insights and interpretable representations.
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Figure 1: Preliminary Analysis. (a) The CDF of Packets per Packet Window. (b) Cosine Similarity
of Word Embeddings. The star marks the specific similarity between ports 80 and 8080. (c) Results
on Field Understanding Task (Prediction of Sequence Numbers). More details show in Appendix A

Third, due to the above limitations, existing pre-training tasks struggle to capture diverse traffic
behavior patterns and show clear constraints in capturing semantics cross packets. We design a
field understanding task that predicts key header fields of packets within a flow (here is sequence
number) to evaluate whether models truly capture traffic behavior patterns. Figure 1c shows that
existing methods still face considerable difficulty in understanding context within a flow, which
makes their performance on downstream tasks less reliable.

To address these challenges, we propose FlowletFormer, a BERT-based pre-training model for
network traffic analysis. Specifically, we make the following contributions:

1) We introduce Flowlet as a coherent behavioral unit that aggregates packets within a logical inter-
action. We further design Field Tokenization to convert each flowlet into semantically meaningful
tokens based on protocol header fields.

2) We propose a Protocol Stack Alignment-Based Embedding Layer that explicitly encodes the
hierarchical semantics of network protocols, enabling the model to distinguish fields across protocol
boundaries and better capture protocol-specific behaviors.

3) We design two novel pre-training tasks motivated by our novel traffic representation. The Masked
Field Model enhances field-level semantic understanding by predicting selectively masked critical
protocol fields. The Flowlet Prediction Task captures logical interactions by modeling relations
between Flowlets, such as HTTP requests and disconnections.

We evaluate FlowletFormer on 8 public datasets, achieving state-of-the-art performance on 7 of
them, with over 6% F1 improvement on 4 datasets. Moreover, field understanding tasks and word
analogies similarity analysis we propose demonstrate that FlowletFormer not only achieves higher
accuracy but also better captures protocol semantics and traffic behavior than existing methods. Our
code is available at https://anonymous.4open.science/r/FlowletFormer-CC81.

2 RELATED WORK

2.1 TRAFFIC CLASSIFICATION

Traffic classification has evolved rapidly over the past decade as networks have grown more com-
plex and management demands have increased. Early approaches relied on packet- and flow-level
statistics or rule matching, such as packet size and inter-arrival times, but these methods (Roesch,
1999; Zuev & Moore, 2005) became ineffective in encrypted environments where observable pat-
terns are concealed. Classical machine learning methods (Taylor et al., 2016; Al-Naami et al., 2016;
Panchenko et al., 2016; Sommer & Paxson, 2010) introduced classifiers such as decision trees, ran-
dom forests, and SVMs, leveraging statistical summaries of flow metrics and protocol-specific char-
acteristics. While more effective than rules, they depended heavily on feature engineering and expert
knowledge. Deep learning later enabled the direct learning of high-dimensional representations from
raw data. Lotfollahi et al. (2020) proposed a DNN that bypasses manual feature extraction, and sub-
sequent work applied CNNs, RNNs, and GNNs to traffic classification (Sirinam et al., 2018; Liu
et al., 2019; Shen et al., 2021; Schuster et al., 2017; Zhang et al., 2020). These models achieved
strong accuracy but typically required large labeled datasets, which are costly and difficult to obtain
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in practice. Moreover, traffic classification in ML and DL relies heavily on high-quality labeled
datasets. Traffic data is inherently sensitive, and public datasets often contain various quality issues,
such as noisy or unreliable labels (Liu et al., 2022; Engelen et al., 2021). Training on such datasets
may cause models to pick up underspecification problems, including shortcut learning, overfitting to
training artifacts, or learning spurious correlations, which harms their generalization (Jacobs et al.,
2022; Arp et al., 2022).

2.2 PRE-TRAINING METHODS

Due to its strong sequence modeling capability, the Transformer architecture (Vaswani, 2017) has
been widely applied to network traffic classification. PERT (He et al., 2020), ET-BERT (Lin et al.,
2022), TrafficFormer (Zhou et al., 2025), and PTU adopt the BERT architecture (Devlin et al.,
2019) for traffic analysis, while FlowMAE (Hang et al., 2023) and YaTC (Zhao et al., 2023) em-
ploy masked autoencoders (He et al., 2022). Researchers have also explored other Transformer
variants, such as T5 (Raffel et al., 2020; Wang et al., 2024a; Zhao et al., 2025) and graph-based
Transformers (Van Langendonck et al., 2024). Beyond Transformers, Wang et al. (2024b) introduce
the Mamba architecture for more efficient traffic analysis. Zhao et al. (2025) also revealed shortcut
learnings and pitfalls of current pretraining method, including implicit flow IDs, encrypted payload,
and an unfrozen encoder.

In addition to model architectures, traffic representation is a crucial component of pre-training
pipelines. Raw traffic must first be transformed into a fixed format before being fed into a model.
Existing approaches typically segment flows into flow segment (e.g., packets, first-N packets, or
bursts), serialize these units into 4-hex strings with subword tokenization, or reshape them into
structured two-dimensional matrices for training. However, these representations often misalign
with the inherent characteristics of network traffic, making it difficult for pre-training methods to
capture semantics, protocol structures, and sequential dependencies. This highlights the need for a
new traffic representation and a corresponding pre-training model that better align with the nature
of network traffic.

3 FLOWLETFORMER

FlowletFormer introduces a novel framework that enables the model to capture fine-grained network
behaviors and hierarchical semantics in traffic. It incorporates three key components: a new traffic
representation named flowlet and field tokenization, a protocol stack alignment embedding layer to
encode hierarchical structures, and two pre-training tasks tailored to flowlets.

Figure 2: Flowlet and Field Tokenization.

3.1 FLOWLET AND FIELD TOKENIZATION

Current pre-training models often repurpose NLP-based representations and tokenization for net-
work traffic, overlooking its distinct structure and semantics. To address this, we propose Flowlet
and Field Tokenization. A flowlet aggregates consecutive packets within a flow based on inter-
arrival times, while field tokenization encodes each flowlet into tokens according to protocol header
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boundaries. Together, they form a bridge between raw traffic and model inputs through three steps:
Flow Construction, Flowlet Generation, and Field Tokenization, as illustrated in Figure 2.

Flow Construction. Raw traffic is unordered and often mixes multiple protocols, which makes
pattern learning difficult. To impose semantic structure, we group packets using identical five-
tuples and construct flows according to the relevant RFCs (Postel, 1981b; Eddy, 2022; Postel, 1980;
1981a). More details are provided in the Appendix B.

Flowlet Generation. Consider a flow F consisting of a sequence of n packets, denoted as F =
{pkt1, pkt2, . . . , pktn}. Each packet pkti has an arrival timestamp τi. The objective of Flowlet
Generation is to segment this flow into multiple flowlets based on Inter-Arrival Time (IAT) between
consecutive packets.

Let us define the IAT between consecutive packets as ti = τi−τi−1 for i ∈ 2, 3, . . . , n. We introduce
a dynamic threshold θi to determine flowlet boundaries, which is adaptively adjusted based on the
historical IATs. Let Wi denote the IAT window up to the i-th packet. The threshold is calculated as:

θi =
1

|Wi|
∑

t∈Wi

t (1)

For each flowlet Fj = {pkta, pkta+1, . . . , pktb}, the inter-arrival times within the flowlet satisfy:

ti ≤ θi−1, ∀i ∈ {a+ 1, . . . , b}. (2)

If pktb is the last packet of flowlet Fj , and pktb+1 is the first packet of flowlet Fj+1, then:

tb+1 > θb. (3)

The algorithm begins by constructing the first flowlet from the first packet and then processes the
remaining packets sequentially. When i > 3 and the current IAT ti exceeds the threshold θi−1, a new
flowlet boundary is created. Otherwise, the packet is added to the current flowlet. The algorithm
continuously updates the window Wi and adjusts the threshold accordingly to adapt to changing
network conditions. The pseudocode is provided in the Algorithm 1.

Under this construction, flowlets serve as flow segments and coherent behavioral units, grouping
packets that belong to the same logical interaction (e.g., an HTTP request–response or a media
stream). By leveraging IAT to emphasize temporal correlations, flowlets ensure that packets trans-
mitted within the same time frame are analyzed together.

Field Tokenization. We transform Flowlets into tokens that suitable for model input. For each
packet in the flowlet, we first extract the raw bit sequences. Field tokenization then splits the
sequence according to the lengths of protocol header fields, encoding the sequence into multiple
hexadecimal tokens (e.g. 4 5 00 0034 ...). For fields longer than two bytes and payload,
we split them into multiple 4-digit hexadecimal tokens to ensure uniformity and consistency in the
model input format.

In this work, we adopt word-based tokenization (Mielke et al., 2021) rather than subword methods
(Chung et al., 2016; Sennrich et al., 2016; Luong & Manning, 2016), such as BPE (Sennrich et al.,
2016; Gage, 1994) or WordPiece (Wu et al., 2016). The motivation is that, we treat protocol
header fields as the morpheme (smallest semantic units) in traffic, similar to individual characters in
Chinese. In such languages, each character is a complete and indivisible unit of meaning. Likewise,
each protocol field inherently carries distinct and atomic semantics, and therefore should not be
further split or processed with subword tokenization.

The maximum vocabulary size, denoted as |V |, is 65,812. This includes all possible tokens: 1-hex
tokens (16 values), 2-hex tokens (256 values), 4-hex tokens (65,536 values), and five special tokens
([CLS], [SEP], [PAD], [MASK], [UNK]).

3.2 MODEL ARCHITECTURE

FlowletFormer adopts a BERT-based model architecture (Devlin et al., 2019), which consists of two
modules: an Embedding Module and a Transformer Encoder Module, as illustrated in Figure 3.

Embedding Module. Most existing pre-training models for traffic classification directly adopt the
embedding designs for NLP, including token, position, and segment embedding. However, directly
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Figure 3: The flowchart of the FlowletFormer.

using these embeddings may overlook the unique characteristics of traffic. Unlike natural language,
traffic exhibits a layered protocol structure with distinct forms of alignment and distribution.

Thus, we introduce a Protocol Stack Alignment-Based Embedding Layer into the existing em-
bedding module. This embedding layer is specifically designed for traffic data and explicitly encodes
the protocol layer associated with each token. In particular, this embedding distinguishes between
the network layer, transport layer, and application layer based on the TCP/IP model (Kurose &
Ross, 2001), and assigns each token an embedding corresponding to its protocol layer.

This design captures the semantic differences between different protocol layers. The model can
not only process tokens based on their positions and sequential order, but also understand their
functional roles within the protocol layer. This enables a hierarchical representation of traffic.

Finally, the embedding dimension is set to D = 768 and the input tokens are calculated by the sum
of each embedding layer:

Einput = Etoken +Eposition +Esegment +Eprotocol (4)

Transformer Encoder Module. FlowletFormer is built on the BERT-Based architecture and con-
tains 12 transformer encoder layers, each with 12 multi-head self-attention heads and a position-wise
feedforward network. Residual connections and layer normalization throughout the model ensure
stable training and faster convergence. The total number of parameters is approximately 110 million.
The number of input tokens is 512, and the dimension of each token is 768.

3.3 PRE-TRAINING METHOD

We introduce two novel pre-training tasks explicitly tailored to flowlet and field tokenization: the
Masked Field Model (MFM) and the Flowlet Prediction Task (FPT). These tasks are motivated
by our novel traffic representation. The MFM leverages field tokenization to capture protocol-level
semantics, while the FPT relies on IAT-based flowlets to model relationships between behaviorally
coherent units.

Masked Field Model. The masked modeling task randomly masks tokens and predicts the masked.
Previous studies typically use this task to learn context and dependencies. However, in network traf-
fic, the context and dependencies carried by different tokens vary in importance. Random masking
may not fully capture the structural characteristics of traffic. To address this, we design a Masked
Field Model specifically for key fields. Instead of masking tokens uniformly at random, our ap-
proach focuses on protocol header fields that carry strong semantic and structural information.

During pre-training, 15% of the input tokens are masked. Half of these masked tokens are randomly
selected from the field tokens mentioned in Table 11, while the other half are randomly selected from

5
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the remaining tokens. For the masked tokens, we replace them with the token [MASK], a random
token, or leave them unchanged with probabilities of 80 %, 10 %, and 10 %, respectively.

For masked tokens, FlowletFormer must predict the token based on the context during pre-training.
The loss function used is the cross-entropy loss, as shown in Equation 5.

LMFM = −
∑N

i=1
mi log(m̂i) (5)

Flowlet Prediction Task. Flowlet is generated based on the IAT between packets, which makes
Flowlet more aligned with real network interactions, providing a better representation of network
behavior and traffic patterns. For example, in a file download activity, a flow may represent the
entire process of downloading the file, while each Flowlet reflects specific behavior phases within
the network interaction, such as the request phase, download phase, and disconnection phase.

To better capture the diverse patterns in traffic, we introduce the Flowlet Prediction Task to predict
the relationships between Flowlets. During pre-training, we sample a pair of flowlets (FA, FB) and
form the pre-training instance. The pair is then drawn uniformly from three scenarios: FB is either
the immediate successor of FA in the same flow (Ordered), the immediate predecessor (Swapped),
or from a different flow. This design forces the model to learn intra-flow continuity, reverse-order
dynamics, and clear separation of unrelated flowlets.

Unlike tasks based on individual packet or burst (Lin et al., 2022; Zhou et al., 2025), this task
shifts the focus from individual packets to the relationships between behaviorally coherent Flowlets.
Its goal is to capture the temporal and behavioral patterns of network traffic beyond the low-level
semantics of individual packets.

Finally, the flowlet prediction task uses cross-entropy as the loss function, as shown in Equation 6.

LFPT = −
∑N

i=1
yi log(ŷi) (6)

Overall, the final pre-training objective is the sum of the two losses mentioned above, defined as:

L = LMFM + LFPT (7)

3.4 FINE-TUNING METHOD

FlowletFormer acquires generalizable knowledge during pre-training, learning diverse traffic pat-
terns rather than being restricted to a single task. This broader understanding improves its transfer-
ability across different downstream applications.

During fine-tuning, we train the entire model architecture (Unfrozen) so that the model can effec-
tively adapt to task-specific requirements. However, if we train only the classification head and keep
the pretrained encoder Frozen, the model suffers a sharp performance drop when the downstream
task contains traffic types that did not appear during pre-training. The unfrozen model is able to
continue learning unseen traffic patterns while preserving its general representations.

4 EXPERIMENT

4.1 EXPERIMENT SETUP

Pre-training Dataset. In this work, approximately 30GB of unlabeled raw traffic data is used for
pre-training. The dataset was sourced from three main repositories: ISCX-VPN2016 (NonVPN)
(Draper-Gil et al., 2016), CIC-IDS2017 (Monday) (Sharafaldin et al., 2018), and the WIDE back-
bone dataset (January 1, 2024) (Cho et al., 2000). As shown in Table 12, these datasets encompass a
significant variety of network application scenarios and protocols, such as web browsing with HTTP,
file downloads with FTP, email with SMTP, and video streaming with QUIC.

During pre-training dataset construction, we consistently extract 64 consecutive bytes from the be-
ginning of the IP layer of each packet as the model input, in order to cover key information from the
IP layer and above.
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Fine-tuning Dataset. We employ 8 datasets for fine-tuning, corresponding to 7 different down-
stream tasks, including Service Type Identification (ISCX-VPN (Service) (Draper-Gil et al.,
2016) and ISCX-Tor2016 (Lashkari et al., 2017)), Application Classification (ISCX-VPN (App)
(Draper-Gil et al., 2016)), Website Fingerprinting (CSTNET-TLS (Lin et al., 2022)), Browser
Classification (Browser (Liu et al., 2019)), Malware Classification (USTC-TFC (Wang et al.,
2017)), Malicious Traffic Classification (CIC-IDS2017 (Sharafaldin et al., 2018)), and IoT Clas-
sification (CIC-IoT2022 (Dadkhah et al., 2022)).

During fine-tuning dataset construction, we select the first five packets of each flow and extract 64
bytes starting from the IP layer of each packet. To mitigate potential biases, we further anonymize
the packets by applying IP Address&Port randomization and TCP timestamp adjustments.

Evaluation Metrics. We adopt accuracy (AC), precision (PR), recall (RC), and F1 score as evalua-
tion metrics. Further implementation details can be found in Appendix C.

4.2 COMPARISON WITH STATE-OF-THE-ART METHODS

We compare FlowletFormer with various baselines and state-of-the-art methods. AppScanner (Tay-
lor et al., 2016) and CUMUL (Panchenko et al., 2016) are based on ML models. FSNet (Liu et al.,
2019) and GraphDapp (Shen et al., 2021) use DL models for traffic classification. ET-BERT (Lin
et al., 2022), YaTC (Zhao et al., 2023) and TrafficFormer (Zhou et al., 2025) are pre-training meth-
ods. All pre-training methods are trained on the same pre-training and fine-tuning datasets,
and the reported results are averaged over multiple runs.

As shown in Table 1 and 2, FlowletFormer outperforms all methods on 7 datasets. Especially in the
Service Type Identification (VPN, Tor) task, FlowletFormer attains an F1 score of 94% and 84%,
outperforming the second-best methods(YaTC and AppScanner) by 6% and 9%, respectively. Even
in the Malware Classification Task, FlowletFormer is only 0.1% lower than the best performing
method (TrafficFormer) in F1 score. The results demonstrate that FlowletFormer adapts well to var-
ious traffic classification tasks and holds promise for enhancing network management and security.

Table 1: Comparison Results on ISCXVPN2016, ISCX-Tor2016, and CSTNET-TLS 1.3.

Dataset ISCX-VPN(Service) ISCX-Tor2016 ISCX-VPN(APP) CSTNET-TLS
Metric AC PR RC F1 AC PR RC F1 AC PR RC F1 AC PR RC F1

AppScanner 0.8612 0.8678 0.8437 0.8520 0.8902 0.7715 0.7592 0.7598 0.7607 0.7036 0.6956 0.6815 0.7320 0.7129 0.6855 0.6916
CUMUL 0.6829 0.6747 0.6669 0.6657 0.7542 0.6471 0.6725 0.6332 0.5483 0.4442 0.4539 0.4298 0.5777 0.5336 0.5431 0.5313

FSNet 0.7679 0.7681 0.7614 0.7586 0.6705 0.5427 0.5435 0.5388 0.6576 0.5339 0.4957 0.4972 0.6537 0.5183 0.5199 0.4997
GraphDApp 0.6546 0.6270 0.6629 0.6363 0.7799 0.6168 0.6181 0.6155 0.4882 0.4143 0.4195 0.4055 0.6403 0.6017 0.5957 0.5931
ET-BERT 0.8756 0.8944 0.8525 0.8572 0.8225 0.7073 0.7375 0.7105 0.7964 0.7370 0.7013 0.7047 0.8047 0.7908 0.7777 0.7785

YaTC 0.9067 0.8991 0.8807 0.8877 0.8981 0.7384 0.7426 0.7212 0.8155 0.7599 0.7314 0.7340 0.8443 0.8404 0.8174 0.8197
TrafficFormer 0.8689 0.8605 0.8410 0.8373 0.8305 0.7100 0.6928 0.6932 0.8004 0.7690 0.7164 0.7221 0.7965 0.7867 0.7686 0.7675
FlowletFormer 0.9578 0.9539 0.9461 0.9493 0.9078 0.8411 0.8651 0.8463 0.8328 0.7859 0.7507 0.7553 0.8518 0.8506 0.8353 0.8377

Table 2: Comparison Results on Browser, USTC-TFC, CIC-IDS2017, and CIC-IoT2022.

Dataset Browser USTC-TFC CIC-IDS2017 CIC-IoT2022
Metric AC PR RC F1 AC PR RC F1 AC PR RC F1 AC PR RC F1

AppScanner 0.5965 0.5990 0.5926 0.5846 0.8357 0.8220 0.8478 0.8195 0.8752 0.9034 0.8964 0.8947 0.8506 0.8625 0.7780 0.8001
CUMUL 0.5028 0.5004 0.4990 0.4968 0.7341 0.5696 0.6518 0.5833 0.8374 0.7065 0.7337 0.7131 0.6693 0.6322 0.6479 0.6239

FSNet 0.5415 0.5559 0.5537 0.5358 0.8010 0.8177 0.8294 0.8093 0.8262 0.8405 0.8532 0.8447 0.8255 0.8158 0.8018 0.7835
GraphDApp 0.3991 0.4031 0.4067 0.4010 0.8443 0.8114 0.8198 0.8010 0.8721 0.8716 0.8527 0.8562 0.6422 0.5729 0.5900 0.5759
ET-BERT 0.4650 0.3979 0.4650 0.2680 0.9713 0.9746 0.9713 0.9715 0.8867 0.8898 0.8867 0.8830 0.8516 0.8139 0.8146 0.8088

YaTC 0.5360 0.5469 0.5371 0.5285 0.9717 0.9725 0.9716 0.9712 0.9156 0.9350 0.9156 0.9064 0.8374 0.8331 0.8095 0.8085
TrafficFormer 0.4750 0.5690 0.4750 0.2352 0.9758 0.9777 0.9758 0.9758 0.8894 0.8994 0.8894 0.8841 0.8678 0.8396 0.8337 0.8297
FlowletFormer 0.7083 0.7755 0.7083 0.6932 0.9742 0.9761 0.9742 0.9741 0.9200 0.9440 0.9200 0.9109 0.9177 0.8919 0.8820 0.8808

4.3 ABLATION STUDY

To evaluate the contribution of different components in FlowletFormer, we conduct an ablation
study. Specifically, we systematically remove key components, including flowLet and field tok-
enization, the MFM, the FPT, the protocol embedding layer, and the pre-training stage. As shown
in Table 3, each component contributes to the overall performance of FlowletFormer. Removing FL
reduces F1 score from 0.7553 to 0.7085, and removing the MFM or the FPT lowers F1 to 0.7341 and
0.7057, respectively. These clear drops confirm their importance in capturing structural and contex-
tual semantics. The FT and PE provides a modest yet consistent gain, suggesting its effectiveness in
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modeling hierarchical semantics. Notably, removing the pre-training stage causes the most perfor-
mance drop, highlighting the necessity of pre-training. More results are shown in Appendix D.

4.4 FEW-SHOT ANALYSIS

To further assess the effectiveness and robustness of FlowletFormer under few-shot conditions, we
conduct experiments with varying data proportions. Specifically, we use the full dataset as the refer-
ence and randomly sample 40%, 20%, and 10% of the available data for few-shot training. Our few-
shot evaluation on ISCX-VPN-App reveals FlowletFormer’s superior data efficiency. Its maintains
F1 scores of 0.8009 (40% data), 0.6224 (20%), and 0.5813 (10%). Notably, while supervised meth-
ods (e.g., CUMUL/FSNet) exhibit catastrophic performance under data scarcity, our pre-training
framework maintains performance through the traffic representation model, as evidenced in Table 4.
More results are shown in Appendix E.

Table 3: Ablation Study on ISCXVPN(APP).
FL: Flowlet and Field Tokenization, FT: Field
Tokenization, MFM: Masked Field Model, FPT:
Flowlet Prediction Task, PE: Protocol Embed-
ding Layer, and PT: Pre-Training

Method AC PR RC F1

w/o FL 0.7872 0.7555 0.6988 0.7085
w/o FT 0.7994 0.7670 0.7319 0.7396

w/o MFM 0.8146 0.7604 0.7257 0.7341
w/o FPT 0.8055 0.7370 0.7021 0.7057
w/o PE 0.8298 0.7530 0.7348 0.7229
w/o PT 0.4043 0.2689 0.2678 0.2365

FlowletFormer 0.8328 0.7859 0.7507 0.7553

Table 4: Few-shot Analysis (F1 Score) on IS-
CXVPN(APP).

Size 100% 40% 20% 10%

AppScanner 0.6815 0.4382 0.5320 0.2222
CUMUL 0.4298 0.3081 0.2673 0.1550

FSNet 0.4972 0.4795 0.4752 0.2738
GraphDApp 0.4055 0.2427 0.2203 0.1944
ET-BERT 0.7047 0.6465 0.5728 0.4631

YaTC 0.7340 0.6489 0.5939 0.1805
TrafficFormer 0.7221 0.6085 0.5404 0.4320
FlowletFormer 0.7553 0.8009 0.6224 0.5813

4.5 FIELD UNDERSTANDING TASK

We introduce multiple Field Understanding Tasks to assess whether the model comprehends gen-
eral traffic patterns. These tasks require the model to predict key header fields within a packet in
a given flow. Specifically, we evaluate the comprehension of the model in four tasks: the Flow
Direction Inference task masks the source/destination IP as well as the source/destination ports,
assessing the model’s ability to infer packet direction between entities based on contextual clues
without direct address information; the Transport Protocol Recognition task focuses on mask-
ing the protocol field in the IP header, testing the model’s ability to identify the transport layer
protocol (e.g., TCP, UDP, ICMP); the Sequence Awareness task masks the sequence number and
acknowledgment number within the TCP header, challenging the model to infer packet order and
flow continuity; the Connection Control Judgment task masks the flag fields in the TCP header,
which denote the state of the connection, and evaluates the model’s ability to infer control signals
like session establishment or termination.

These tasks evaluate the model’s ability to infer direction, protocol, sequence, and control, with
performance measured in three datasets: ISCX VPN, CICIDS2017, and USTC-TFC. As shown in
Table 5, FlowletFormer outperforms three models in all tasks. The model’s ability to effectively infer
Flow Direction, Transport Protocol, Sequence Awareness, and Connection Control across diverse
datasets demonstrates its strong capacity for understanding the complex behavior of network traffic.

Table 5: The Performance (Accuracy) of Pre-training Methods on Field Understanding Tasks.

Task Flow Direction Inference Transport Protocols Recognition Sequence Awareness Connection Control Judgement
Dataset VPN IDS TFC VPN IDS TFC VPN IDS TFC VPN IDS TFC

ET-BERT 0.4366 0.7096 0.7412 0.9681 0.9767 0.9981 0.4165 0.6937 0.6203 0.9041 0.9975 0.9985
YaTC 0.2617 0.3785 0.3138 0.1012 0.0858 0.0956 0.4483 0.6225 0.5080 0.4531 0.5383 0.3150

TrafficFormer 0.0164 0.1059 0.1128 0.6753 0.9067 0.8912 0.3659 0.5261 0.3652 0.3904 0.9983 0.9978
FlowletFormer 0.9313 0.9647 0.9196 1.0000 1.0000 1.0000 0.6987 0.7806 0.7579 0.9338 1.0000 1.0000

4.6 WORD ANALOGIES SIMILARITY ANALYSIS

In NLP, word analogy tasks assess a model’s ability to capture semantic relationships between words.
Through word analogy similarity analysis, we can validate whether a model has deeply understood
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the semantic relationships between words. Similarly, the port number analogy analysis can be used
to evaluate the pre-trained model1, assessing its understanding of the functional and semantic re-
lationships between network services. This capability reflects the model’s deep understanding of
traffic patterns acquired during pretraining, without any downstream fine-tuning.

We apply cosine similarities between the embeddings of port numbers produced by the pre-trained
model to examine the relationships among common HTTP–related ports (e.g., 80, 8080, 8000).
Comparing 4-hex token with our method (Table 6), we find that 4-hex token struggles to model port
similarities, while FlowletFormer effectively captures these relationships, enhancing traffic classifi-
cation performance. Appendix F provides more clarification.

Table 6: Port Number Analogy Cosine Similarity about Word Embedding and Input Embedding.

Port 80&8080 80&8000 8080&8000
Embedding Word Input Word Input Word Input

4-Hex Token -0.0768 0.1094 -0.0685 0.1331 0.0740 0.2438
Ours 0.0582 0.4019 0.0369 0.3993 0.0400 0.4289

4.7 FINE-TUNING METHOD

In the fine-tuning stage, we evaluated pre-training methods and compared their performance under
both Frozen and Unfrozen settings. The Frozen setup keeps the encoder parameters fixed and relies
solely on the general representations learned during pre-training, serving to assess the transferability
of pretrained knowledge. In contrast, the Unfrozen setup reflects the model’s ability to adapt to
downstream tasks, enabling it to further learn task-specific features and traffic patterns that did not
appear during pre-training. This comparison provides a more comprehensive assessment of the
model’s generalization.

Table 7 and 8 show that FlowletFormer remains stable under the Frozen setting, with the average F1
score dropping by only 4% across four datasets. This indicates that the model has already learned
transferable and general traffic patterns during pre-training. The exception is ISCX-Tor2016, where
the F1 score drops by about 40% because there is no Tor traffic in pre-training dataset, leaving
the model without the necessary prior knowledge when the encoder is frozen. In contrast, other
pre-training baselines perform poorly in the Frozen setting, suggesting that they learn little useful
generalizable representation.

Table 7: Frozen and Unfrozen Fine-tuning Results on ISCX and CSTNET.
ISCX-VPN(Service) ISCX-Tor2016 ISCX-VPN(APP) CSTNET-TLS

Frozen Unfrozen Frozen Unrozen Frozen Unfrozen Frozen Unfrozen

AC F1 AC F1 AC F1 AC F1 AC F1 AC F1 AC F1 AC F1

ET-BERT 0.3645 0.2843 0.8756 0.8572 0.4038 0.2549 0.8225 0.7105 0.4813 0.2944 0.7964 0.7047 0.2211 0.1365 0.8047 0.7785
YaTC 0.3333 0.1667 0.9067 0.8877 0.1706 0.0498 0.8981 0.7212 0.2533 0.1328 0.8155 0.7340 0.0137 0.0047 0.8443 0.8197

TrafficFormer 0.5778 0.4749 0.8689 0.8373 0.4801 0.3194 0.8305 0.6932 0.6272 0.5125 0.8004 0.7221 0.3880 0.3000 0.7965 0.7675
FlowletFormer 0.8645 0.8466 0.9578 0.9493 0.5632 0.3806 0.9078 0.8463 0.7893 0.7181 0.8328 0.7553 0.6151 0.5614 0.8518 0.8377

Table 8: Frozen and Unfrozen Fine-tuning Results on Browser, USTC-TFC and CIC.
Browser USTC-TFC CIC-IDS2017 CIC-IoT2022

Frozen Unfrozen Frozen Unfrozen Frozen Unfrozen Frozen Unfrozen

AC F1 AC F1 AC F1 AC F1 AC F1 AC F1 AC F1 AC F1

ET-BERT 0.3450 0.3310 0.4650 0.2680 0.6700 0.6427 0.9713 0.9715 0.5628 0.5507 0.8867 0.8830 0.4589 0.4069 0.8516 0.8088
YaTC 0.2500 0.1000 0.5360 0.5285 0.1846 0.0665 0.9717 0.9712 0.2211 0.1667 0.9156 0.9064 0.1923 0.1218 0.8374 0.8085

TrafficFormer 0.4233 0.4035 0.4750 0.2352 0.8104 0.8090 0.9758 0.9758 0.6589 0.6551 0.8894 0.8841 0.5850 0.5381 0.8678 0.8297
FlowletFormer 0.6583 0.6616 0.7083 0.6932 0.9563 0.9568 0.9742 0.9741 0.8778 0.8683 0.9200 0.9109 0.7969 0.7402 0.9177 0.8808

4.8 DEEP DIVE

We further conducted in-depth evaluations of the model. In this section, we use the CSTNET-TLS
dataset, as its large scale and diverse categories enable more accurate and reliable assessment.

1This is the model after pre-training but before fine-tuning, where port randomization has not been applied.
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Impact of Flowlet Threshold. Flowlets are segmented based on IAT. Despite a mean of 1.89
seconds, the distribution is highly skewed, with most intervals much shorter. Thus, we use 0.02s,
0.2s, 2.0s, and 10s as thresholds for flowlet segmentation. Figure 4a demonstrates that threshold
choice has a significant impact on downstream performance. A small threshold (e.g., 0.02s) makes
nearly half of the flowlets single-packet, while a large threshold (e.g., 10s) introduces noisy long-
range context. In contrast, adaptive thresholds better balance context richness and noise.

Impact of Masked Field Ratio. In the Masked Field Model, we select a certain proportion of
specific field tokens from the mask tokens for masking, and evaluate five ratios: 10%, 30%, 50%,
70%, and 90%. Figure 4b shows that masking a moderate proportion of field tokens improves
model performance, whereas excessive masking leads to performance degradation. This is because
the model focuses too heavily on key fields while neglecting other information of the traffic.

Impact of Corruption Traffic Data. We evaluate the model under traffic corruption scenarios that
may occur in real environments, considering four cases: (1) packet corruptions, (2) missing headers,
(3) packet loss, and (4) header corruptions. Figure 4c shows that the model remains robust in three
cases but struggles with missing headers, primarily because header loss disrupts the encoding of
protocol embedding layer. More details about Deep Dive are provided in Appendix G.
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Figure 4: Deep Dive on CSTNET-TLS. (a) Sensitivity of flowlet segmentation thresholds. (b) Sen-
sitivity of masked field ratio. (c) Results under different corruption scenarios.

4.9 COMPUTATIONAL COST AND COMPLEXITY

We analyze the time complexity of our method. Specifically, the complexity is: O(N × B × L ×
(S2 ·H + S ·H2)), where N is the number of training steps, B is the batch size, L is the number
of Transformer layers, S is the input sequence length, and H is the hidden size. We also measure
the end-to-end runtimes of FlowletFormer during different phases of the train. Table 9 summarizes
these results. The comparison results against other models are presented in the Appendix H.

Table 9: FlowletFormer: Computational Efficiency Across Different Phases.

Phase GPUs Time Unit/Granularity GPU Memory (GB)

Pre-training 6 42 h 75.67 s / 100 steps 28
Fine-tuning 1 1,153 s 57.65 s / epoch 17
Inference 1 – 150.04 samples/sec –

5 CONCLUSION

In this paper, we propose FlowletFormer, a BERT-based pre-training model designed for network
traffic analysis. By introducing a Coherent Behavior-Aware Traffic Representation Model, a Pro-
tocol Stack Alignment-Based Embedding Layer, and Field-Specific and Context-Aware Pretraining
Tasks, FlowletFormer effectively captures behavioral patterns, hierarchical protocol semantics, and
inter-packet contextual relationships among traffic data. The experimental results demonstrate its
superiority over existing methods in traffic classification.

FlowletFormer improves network traffic classification, but challenges remain. Future work includes
adapting to evolving traffic patterns, enhancing robustness against adversarial attacks, incorporating
multi-modal data, and optimizing computational efficiency for real-time deployment. Addressing
these issues will strengthen its role in network security and traffic classification.
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A PRELIMINARY ANALYSIS

We conduct three in-depth analyses to examine the limitations of existing method.

First, to balance the limited information in a single packet and the excessive length of complete
flows, existing methods commonly design packet window as intermediate inputs. The intention is
to retain more session context across packets while keeping the sequence length tractable for model
training. However, in practice, such packet window exhibit clear limitations. We compute the cumu-
lative distribution function (CDF) of the number of packets per window. On one hand, some packet
window degenerate into single-packet units, which essentially collapses the representation back to
the packet level and fails to capture any cross-packet semantics. For example, approximately 65%
of bursts consist of only a single packet. This suggests that the dataset contains a high proportion of
extremely short bursts, which limits the temporal context available for modeling. On the other hand,
strategies that adopt a fixed number of initial packets (e.g., first-N packet window) are overly rigid.
These approaches cannot flexibly adapt to flows of different lengths or interaction patterns, and they
ignore the variability in packet distributions across sessions.

Second, existing methods often adopt techniques from NLP and CV for traffic representation, such
as encoding packets into 4-hex tokens with subword tokenization or reshaping traffic data into square
images. However, these methods fail to align with the structure and semantics of network traffic. For
example, 4-hex tokenization ignores protocol field boundaries, and network protocols’ hierarchical
structure is overlooked, preventing the model from capturing distinct roles of different fields. We
also conducted a similarity analysis of the vocabularies in 4-hex token and our method, focusing
on the word embeddings of port 80 and 8080, which both represent HTTP services. While our
method correctly captures the semantic similarity between these ports, 4-hex token struggles to do
so, indicating its inability to model key network relationships. This highlights a critical limitation in
exist methods’ semantic understanding, which FlowletFormer addresses more effectively, improving
traffic classification tasks.

Third, as a result of the limitations discussed above, existing pretraining tasks often fail to effec-
tively capture the diverse patterns of network traffic behavior. These methods struggle to model
the semantics across packets, leading to significant constraints in their ability to learn and represent
complex network interactions. To evaluate this issue, we introduce a Field Understanding Task,
which aims to predict key header fields of packets within a flow (such as the sequence number).
This task evaluates whether current models can truly capture the underlying traffic behavior patterns
and understand the finer details of network communication. Field Understanding Tasks show that
existing methods still face substantial challenges in capturing the context within a flow. This inabil-
ity to fully grasp the flow-level semantics impacts the performance of these models on downstream
tasks, making their results less reliable for network traffic analysis and prediction. Our proposed
task provides a more effective way to evaluate the model’s understanding of flow-level interactions,
enhancing its ability to learn and generalize across various network behaviors.

B MORE DETAILS OF OUR METHOD

B.1 FLOW CONSTRUCTION

To construct semantically meaningful flows from raw packet data, we apply protocol-specific rules
according to standard practices outlined in RFCs and previous works. The flow construction pro-
cess is based on the five-tuple: srcIP, dstIP, srcPort, dstPort, protocol, with
additional considerations depending on the transport layer protocol.

We apply protocol-specific rules based on both packet semantics and timeout heuristics. As shown
in Table 10, different protocols adopt distinct termination and reinitialization criteria. For instance,
TCP flows are explicitly closed by a four-way handshake or reset flag, while UDP and ICMP rely
on timeout-based or field-change-based segmentation. These rules help segment raw traffic into
coherent flow units for downstream analysis.
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Table 10: Protocol-specific Rules for Flow Construction.

Protocol Flow Termination Condition New Flow Trigger

TCP
Four-way Handshake (FIN + FIN + ACK)
Connection Reset (RST packet)
Active Timeout (Flow duration exceeds 1800s)

New SYN + ACK Connection
Active Timeout Expiration

UDP Inactive Timeout (Flow duration exceeds 15s) Inactive Timeout Expiration

ICMP
Change in ICMP Type
Change in ICMP Code

Any change in Type or Code

Others Flow duration exceeds 1800 seconds Timeout Expiration

B.2 FLOWLET GENERATION

After flow construction, we perform the Flowlet Generation. We also describe it in Algorithm 1
The Flowlet Generation Algorithm dynamically partitions a flow into flowlets based on inter-packet
arrival time. It operates as follows:

• Initialization: For each network flow F = {pkt1, . . . , pktn} with timestamps
{τ1, . . . , τn}, we compute the average inter-arrival time of the first three packets, i.e.,
θ3 = 1

2 [(τ2−τ1)+(τ3−τ2)]. This value is used as the initial threshold θ for segmentation.
If n ≤ 3, the entire flow is treated as a single Flowlet.

• Segmentation: For each subsequent packet pkti (i > 3), we calculate the inter-arrival time
ti = τi− τi−1. If ti > θi−1, we create a segmentation: the previous packet pkti−1 ends the
current Flowlet Fj , and pkti begins a new one Fj+1. Otherwise, pkti is appended to the
current Fj .

• Threshold Update: After each decision, we update the threshold θi using all observed
inter-arrival times up to index i, i.e., θi = 1

|Wi|
∑

t∈Wi
t, where Wi is the window of past

IATs. This allows the threshold to adapt dynamically to local flow patterns.

This adaptive thresholding approach allows the segmentation process to adjust to diverse traffic
dynamics. For instance, traffic patterns such as HTTP request-response cycles or video stream-
ing often exhibit short bursts followed by longer silent gaps. By capturing such timing structures,
Flowlet segmentation enables the model to better align with the logical behavior units within net-
work communication, thus enhancing the semantic granularity of traffic representation.

Algorithm 1 Flowlet Generation

1: Input: Flow F = {pkt1, . . . , pktn} with arrival timestamps {τ1, . . . , τn}
2: Output: Flowlets {F1, . . . ,Fk}
3: Initialize: F ← {pkt1}, W ← ∅, flowlets← ∅
4: for i← 2 to n do
5: ti ← τi − τi−1

6: if i > 3 and ti > θi−1 then
7: Append F to flowlets
8: F ← {pkti}
9: else

10: Append pkti to F
11: end if
12: Append ti to W
13: θi ← 1

|W |
∑

t∈W t

14: end for
15: Append remaining F to flowlets

17
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B.3 KEY PROTOCOL HEADER FIELDS IN MASKED FIELD MODEL

Table 11 lists the key fields commonly found in standard network protocols. These fields carry rich
semantic and structural information that can be leveraged by traffic analysis models.

For example, fields such as port numbers and protocol types provide fundamental information about
the directionality and service type of a packet, helping models distinguish between client-server
roles or application types.

Sequence Number and Acknowledgment Number in the TCP header reflect the transmission order
and reliability mechanisms of the protocol, offering temporal cues to infer packet sequences and
session continuity.

The Total Length field, which indicates the size of an entire packet, has been demonstrated
to serve as an effective signature for encrypted traffic classification in prior studies Ede-
BCRDLCSP20FlowPrint, MillerHJT14.

Furthermore, TCP control flags (e.g., SYN, ACK, FIN, RST) encode connection state transitions
(e.g., handshake, termination), enabling models to learn flow dynamics and session boundaries.

Similarly, ICMP’s Type and Code fields identify message semantics (e.g., echo request/reply, desti-
nation unreachable), while the minimal set of fields in UDP (primarily source and destination ports)
still conveys important endpoint semantics.

Table 11: Key fields in common protocol.

Protocol Key Fields

IP Version, Total Length, Protocol, IPID

TCP Port Number, Sequence Number, Flag
Acknowledgment Number, Window Size

UDP Port Number

ICMP Type, Code

C MORE DETAILS IN EXPERIMENT SETUP

C.1 MORE DETAILS IN PRE-TRAINING DATASET CONSTRUCTION

We describe the data preprocessing pipeline used during the pre-training stage of FlowletFormer.

Flow Construction. We first parsed raw PCAP files to construct flows based on five-tuples and
protocol-specific rules which ensure semantically coherent flow boundaries. Each flow was saved
as an individual PCAP file for subsequent processing.

Flowlet Segmentation. To better reflect the temporal structure and traffic behavior from appli-
cation layer, we further segmented each flow into multiple flowlets. Specifically, we calculated
inter-packet arrival times (IATs) and initiated a new flowlet whenever the IAT exceeded a threshold.
This segmentation captures distinct behavioral units within each flow and enables the model to learn
fine-grained communication patterns.

Tokenization. For each packet in a flowlet, we removed the Ethernet header and retained the first 64
bytes starting from the network layer. These bytes were tokenized using Field Tokenization, where
individual fields in protocol headers (e.g., IP version, TTL, TCP flags) are identified and converted
into semantically meaningful tokens. This tokenization approach preserves protocol semantics while
producing a consistent and structured input format for the model.

Table 12 summarizes the pre-training datasets used in this work, including their sizes, number of
flows, and supported protocols.
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Table 12: Overview of Pre-training Datasets.

Dataset Size Flow Number Protocol

ISCX-VPN2016-NonVPN 10.4G 74,184 TLS1.2, SFTP, SSDP, SNMP, NTP, MDNS, HTTP, GQUIC...
CIC-IDS2017-Monday 11G 303,436 HTTP, HTTPS, FTP, SSH, email protocols...

WIDE-2024/1/1 9.6G 2,322,172 FTP, SSH, IPSec, HTTP, TLS1.2, TLS1.3, GRE, Email Protocol...

C.2 MORE DETAILS IN FINE-TUNING DATASET CONSTRUCTION

To ensure fair comparison and reproducibility, we describe the data preprocessing pipeline used
during the fine-tuning stage of FlowletFormer.

Data Collection and Filtering. We collected raw PCAP files corresponding to the eight downstream
tasks. Flows were constructed based on five-tuples (srcIP, dstIP, srcPort, dstPort, protocol), and each
flow was saved as a separate PCAP file.

Flows were then organized by traffic category. To facilitate manageable storage and training, large
files were split into smaller ones (approximately 1,000 packets each). Categories with fewer than 10
samples were discarded, and a maximum of 500 samples per class was retained to ensure balanced
representation.

Data Anonymization and Randomization. To mitigate the risk of shortcut learning and reduce the
model’s dependence on protocol-specific artifacts, we performed the following anonymization steps
on each flow:

• Replaced all IP addresses with randomly generated addresses;
• Randomized source and destination ports while preserving client/server roles;
• Adjusted TCP timestamps by introducing a random base time, but preserving the relative

inter-packet timing.

Tokenization. We selected the first five packets of each flow and converted their contents to input
tokens. Each packet was tokenized by retaining the first 64 tokens.

Table 13 provides an overview of all downstream tasks used for fine-tuning FlowletFormer, includ-
ing dataset names, number of flows, number of classes, and example labels.

Table 13: Overview of Fine-Tuning Tasks and Datasets.

Task Dataset Flow Number Class Number Label

Service Type Identification ISCX-VPN (Service) 1,500 6 VPN-Chat,VPN-Email,VPN-Ftp...
ISCX-Tor2016 2,922 8 Audio, Browsing, Chat...

Application Classification ISCX-VPN (App) 3,289 10 VPN-Youtube,VPN-Voipbuster,VPN-Vimeo...

Website Fingerprinting CSTNET-TLS 46,375 120 acm.org,adobe.com,alibaba.com...

Browser Classification Browser 2,000 4 Chrome,Firefox,Internet,UC

Malware Classification USTC-TFC 8,000 16 Miuref,FTP,Gmail...

Traffic Classification CIC-IDS2017 6,000 12 Benign,Botnet,DDoS...

IoT Classification CIC-IoT2022 4,931 12 Attack Flood,Idle,Interaction Audio...

C.3 MORE DETAILS IN IMPLEMENTATION

In this experiment, we employ multi-GPU parallel in pre-training. A total of six GPUs are used for
distributed training, with a batch size set to 16, resulting in an overall batch size of 96. The total
number of training steps is 200,000, with model checkpoints saved every 10,000 steps. The Adam
optimizer is chosen, with an initial learning rate of 2e-5 and a warm-up ratio of 0.1 to ensure stability
during the initial stages of training.

To maintain consistency with pre-training, the fine-tuning data is processed in the same input format
as the pre-training data. The packets in the flowlets are directly concatenated without [SEP] token
for separation, meaning all tokens share the same segment identifiers. During the fine-tuning stage,
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we select the first five packets of each network flow as the model input and extract the first 64
tokens following the Ethernet header of each packet. The dataset is split into train/validation/test
sets with an 8:1:1 ratio. The model was trained for up to 20 epochs on each dataset using the
AdamW optimizer with a learning rate of 6e-5, with early stopping triggered if the F1 score did not
improve for 4 consecutive epochs.

The proposed method is implemented using PyTorch 2.3.1 and UER (Zhao et al., 2019) and trained
on a server with 8 NVIDIA Tesla V100S GPUs.

To comprehensively evaluate the performance of classification models, we adopt widely used met-
rics, accuracy (AC), precision (PR), recall (RC), and F1 score (F1).

In our evaluation, precision, recall, and F1 score are macro-averaged to ensure equal consideration
of all classes regardless of their frequency.

D MORE ABLATION STUDY

To support the figures in the main text and further illustrate the robustness of our approach, we
provide complete numerical results of the ablation study across all eight downstream datasets, as
shown in Table 14 and Table 15.

To thoroughly investigate the contribution of each component in FlowletFormer, we conducted a
series of ablation experiments. The results in Table 14 and Table 15 report the performance of the
full model and various degraded versions, where specific modules were removed.

Impact of Flowlet and Field Tokenization (FL). Removing the Flowlet and Field Tokenization
module (w/o FL) led to significant performance drops on most datasets. In this variant, the traf-
fic representation and tokenization revert to the burst and BPE tokenization. For example, on the
ISCX-Tor2016 dataset, the accuracy decreased from 0.9078 to 0.8328 and the F1-score from 0.8463
to 0.6924. The effect is even more pronounced on the Browser dataset, where accuracy dropped
from 0.7083 to 0.3700 and F1-score from 0.6932 to 0.3099. These results highlight the critical role
of Flowlet segmentation and field-aware tokenization in capturing temporal dependencies and con-
textual coherence within sessions. By introducing Flowlets, the model learns to represent traffic in
a behavior-aware manner, which facilitates more robust classification of dynamic network flows.

Impact of Masked Field Model (MFM). The removal of the masked field modeling task (w/o
MFM) has dataset-specific effects. For instance, on the ISCX-VPN(Service) dataset, accuracy
dropped dramatically from 0.9578 to 0.5467, indicating that MFM plays a critical role in model-
ing datasets with rich and structured protocol field information. It likely helps the model capture
inter-field dependencies and learn which fields are important for traffic differentiation. In contrast,
datasets like CSTNET-TLS and CIC-IDS2017 showed less degradation, suggesting that those tasks
are less sensitive to fine-grained field semantics.

Impact of Flowlet Prediction Task (FPT). Removing the Flowlet Prediction Task (w/o FPT)
caused performance degradation across several datasets, though less severe than w/o FL or w/o
MFM. For example, in ISCX-Tor2016, accuracy dropped from 0.9078 to 0.8973 and F1-score from
0.8463 to 0.8052. This indicates that FPT serves as an effective auxiliary task, guiding the model
to learn patterns in the temporal evolution of traffic flows, which indirectly enhances downstream
classification.

Impact of Protocol Stack Alignment-Based Embedding (PE). The removal of the protocol em-
bedding layer (w/o PE) resulted in a consistent but relatively moderate drop across datasets. This
suggests that while PE enhances the model’s ability to capture protocol-layer semantics, it is not the
main performance bottleneck.

Impact of Pretraining (PT). Eliminating the pretraining stage (w/o PT) caused catastrophic per-
formance degradation on all datasets. For example, on ISCX-VPN(Service), accuracy fell from
0.9578 to 0.5467 and F1-score from 0.9493 to 0.3949. These results emphasize the essential role
of pretraining in learning generalizable traffic representations and initializing the model with better
parameter priors for downstream tasks.
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Table 14: Ablation study results on ISCXVPN2016, ISCX-Tor2016, and CSTNET-TLS 1.3
datasets. The abbreviations are explained as follows, FL: Flowlet and Field Tokenization, MFM:
Masked Field Model, FPT: Flowlet Prediction Task, PE: Protocol Stack Alignment-Based Embed-
ding Layer and PT: Pre-Training.

Dataset ISCX-VPN(Service) ISCX-Tor2016 ISCX-VPN(App) CSTNET-TLS

Metric AC PR RC F1 AC PR RC F1 AC PR RC F1 AC PR RC F1

w/o FL 0.9133 0.9077 0.8983 0.8995 0.8328 0.6978 0.6892 0.6924 0.7872 0.7555 0.6988 0.7085 0.8025 0.7943 0.7795 0.7820
w/o MFM 0.5467 0.5429 0.5323 0.4830 0.4505 0.1790 0.3300 0.2304 0.8146 0.7604 0.7257 0.7341 0.8051 0.8024 0.7853 0.7886
w/o FPT 0.9133 0.8936 0.9138 0.9010 0.8973 0.8088 0.8145 0.8052 0.8055 0.7370 0.7021 0.7057 0.8329 0.8344 0.8162 0.8171
w/o PE 0.9000 0.9087 0.8656 0.8804 0.8938 0.8251 0.8145 0.8165 0.8298 0.7530 0.7348 0.7229 0.8484 0.8404 0.8323 0.8325
w/o PT 0.5467 0.4278 0.4278 0.3949 0.1706 0.0213 0.1250 0.0364 0.4043 0.2689 0.2678 0.2365 0.7622 0.7602 0.7357 0.7358
FlowletFormer 0.9578 0.9539 0.9461 0.9493 0.9078 0.8411 0.8651 0.8463 0.8328 0.7859 0.7507 0.7553 0.8518 0.8506 0.8353 0.8377

Table 15: Ablation study results on Browser, USTC-TFC, CIC-IDS2017, and CIC-IoT2022 datasets.

Dataset Browser USTC-TFC CIC-IDS2017 CIC-IoT2022

Metric AC PR RC F1 AC PR RC F1 AC PR RC F1 AC PR RC F1

w/o FL 0.3700 0.2787 0.3700 0.3099 0.9600 0.9680 0.9600 0.9598 0.8850 0.8870 0.8850 0.8835 0.8401 0.7881 0.7936 0.7875
w/o MFM 0.6600 0.6006 0.6600 0.5976 0.9650 0.9723 0.9650 0.9653 0.4505 0.1790 0.3300 0.2304 0.8968 0.8506 0.8543 0.8473
w/o FPT 0.6850 0.7932 0.6850 0.6428 0.9663 0.9696 0.9663 0.9658 0.9044 0.8189 0.9114 0.8429 0.9049 0.8765 0.8788 0.8736
w/o PE 0.6800 0.7486 0.6800 0.6745 0.9650 0.9689 0.9650 0.9648 0.9044 0.8428 0.9098 0.8653 0.8988 0.8660 0.8593 0.8587
w/o PT 0.2700 0.3138 0.2700 0.1387 0.9563 0.9680 0.9562 0.9571 0.1706 0.0213 0.1250 0.0364 0.8664 0.8073 0.8174 0.8089
FlowletFormer 0.7083 0.7755 0.7083 0.6932 0.9742 0.9761 0.9742 0.9741 0.9200 0.9440 0.9200 0.9109 0.9177 0.8919 0.8820 0.8808

E MORE FEW-SHOT ANALYSIS

To evaluate the capability of FlowletFormer under data-scarce conditions, we conduct a few-shot
learning analysis. The results are reported in Table 16 and Table 17. As shown, FlowletFormer
achieves competitive performance under full supervision (100% training data). More importantly,
it consistently maintains relatively high F1-scores even when the amount of training data is signifi-
cantly reduced.

For example, on the ISCX-VPN(Service) dataset, FlowletFormer achieves an F1-score of 0.8106
using only 10% of the training data, significantly outperforming traditional models such as App-
Scanner and BIND. This indicates the strong generalization ability of FlowletFormer in few-shot
settings.

However, on the Browser dataset, the performance of FlowletFormer drops more substantially under
limited data, suggesting that the traffic patterns in this dataset are more complex and require more
data to learn effectively.

Table 16: Few-shot Analysis (F1-score) on ISCXVPN2016, ISCX-Tor2016, and CSTNET-TLS 1.3
datasets.

Dataset ISCX-VPN(Service) ISCX-Tor2016 ISCX-VPN(App) CSTNET-TLS

Size 100% 40% 20% 10% 100% 40% 20% 10% 100% 40% 20% 10% 100% 40% 20% 10%

AppScanner 0.8520 0.7512 0.6074 0.5065 0.7598 0.7456 0.6195 0.5401 0.6815 0.4382 0.5320 0.2222 0.6916 0.6416 0.5661 0.4018
CUMUL 0.6657 0.5244 0.3873 0.4511 0.6332 0.5749 0.5252 0.5775 0.4298 0.3081 0.2673 0.1550 0.5313 0.4598 0.3659 0.2982

FSNet 0.7586 0.8384 0.7078 0.3931 0.5388 0.5426 0.4080 0.5743 0.4972 0.4795 0.4752 0.2738 0.4997 0.7132 0.6662 0.5946
GraphDApp 0.6363 0.5713 0.6137 0.2762 0.6155 0.5780 0.4622 0.4895 0.4055 0.2427 0.2203 0.1944 0.5931 0.4948 0.4372 0.3303
ET-BERT 0.8572 0.3980 0.2450 0.2583 0.7105 0.4959 0.3749 0.3512 0.7047 0.6465 0.5728 0.4631 0.7785 0.7039 0.6117 0.4819

YaTC 0.8877 0.0801 0.0721 0.0947 0.7212 0.6587 0.4994 0.0721 0.7340 0.6489 0.5939 0.1805 0.8197 0.7538 0.6375 0.5040
TrafficFormer 0.8373 0.6827 0.5595 0.3909 0.6932 0.4989 0.3506 0.3674 0.7221 0.6085 0.5404 0.4320 0.7675 0.7084 0.6277 0.5660
FlowletFormer 0.9493 0.8956 0.7356 0.8106 0.8463 0.7829 0.7166 0.5917 0.7553 0.8009 0.6224 0.5813 0.8377 0.8171 0.7273 0.6249
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Table 17: Few-shot Analysis (F1-score) on Browser, USTC-TFC, CIC-IDS2017, and CIC-IoT2022
datasets.

Dataset Browser USTC-TFC CIC-IDS2017 CIC-IoT2022

Size 100% 40% 20% 10% 100% 40% 20% 10% 100% 40% 20% 10% 100% 40% 20% 10%

AppScanner 0.5846 0.3756 0.3524 0.1838 0.8195 0.7407 0.6799 0.5733 0.8947 0.8158 0.7924 0.7265 0.8001 0.6925 0.5149 0.4027
CUMUL 0.4968 0.3986 0.3742 0.1500 0.5833 0.4654 0.3753 0.3631 0.7131 0.5602 0.5031 0.4991 0.6239 0.5582 0.5479 0.2113

FSNet 0.5358 0.4364 0.4444 0.1852 0.8093 0.6406 0.5563 0.7091 0.8447 0.7558 0.7244 0.5827 0.7835 0.5518 0.6089 0.4857
GraphDApp 0.4010 0.3238 0.2484 0.2875 0.8010 0.7729 0.6429 0.5219 0.8562 0.8266 0.6106 0.6531 0.5759 0.4627 0.3642 0.1766
ET-BERT 0.2680 0.3616 0.2280 0.2500 0.9715 0.9669 0.9286 0.8950 0.8830 0.8764 0.7346 0.7405 0.8088 0.7349 0.5630 0.4338

YaTC 0.5285 0.4761 0.4176 0.1613 0.9712 0.9480 0.9655 0.9159 0.9064 0.8854 0.6714 0.5902 0.8085 0.7243 0.7665 0.0758
TrafficFormer 0.2352 0.1520 0.1645 0.1154 0.9758 0.9703 0.9406 0.9432 0.8841 0.8725 0.7622 0.6918 0.8297 0.7578 0.5437 0.5190
FlowletFormer 0.6932 0.6230 0.6553 0.3095 0.9741 0.9553 0.9457 0.9380 0.9109 0.8997 0.8610 0.8510 0.8808 0.8237 0.8180 0.6152

F MORE CLARIFICATION OF WORD ANALOGIES SIMILARITY ANALYSIS

To further clarify the purpose and design of the Word Analogies Similarity Analysis in Section 4.6,
we emphasize that this experiment is not a classification task, but rather a semantic probing analysis
inspired by methodologies from natural language processing.

In NLP, analogical reasoning tasks (e.g., “king - man + woman ≈ queen”) are commonly used to
evaluate whether pretrained language models capture meaningful token relationships. Following
this intuition, we designed an analogous probing task in the context of network traffic to examine
the semantic structure of token embeddings learned during pretraining.

Specifically, we selected three well-known HTTP-related port numbers (80, 8080, and 8000) and
analyzed their relative positions in the learned embedding space using cosine similarity. These ports
are commonly used for HTTP services and frequently co-occur in real-world traffic, thus forming a
semantically coherent unit.

Our experimental results show that FlowletFormer captures the semantic similarity between these
ports more accurately than baseline models. This suggests that the model has developed a deeper
understanding of protocol-layer semantics and is capable of organizing related concepts (e.g., similar
ports) in a meaningful embedding space.

G MORE DEEP DIVE

In the Deep Dive, we thoroughly analyze three key aspects: first, the impact of flowlet thresholds on
downstream task performance; second, the effect of the masked field ratio on model performance;
and finally, we evaluate the performance of FlowletFormer under traffic corruption scenarios.

G.1 IMPACT OF FLOWLET THRESHOLD

To analyze the impact of the threshold, we first examine the distribution of inter-arrival times (IATs).
The IATs exhibit a highly skewed distribution, with a mean of 1.89s and a large standard deviation of
36.56s. While the minimum and median values are extremely small (0 and 0.000138s, respectively),
the maximum reaches nearly 1800s, indicating a heavy-tailed pattern. The quantiles further highlight
this imbalance: 75% of IATs are below 0.0028s, 95% below 0.19s, and 99% below 10.22s, yet
the 99.9% quantile rises sharply to 594.11s. These statistics suggest that most packet arrivals are
separated by very short intervals, but a small fraction of large gaps dominate the tail, which makes
threshold selection particularly sensitive.

Therefore, we select 0.02s, 0.2s, 2.0s, and 10s as thresholds for sensitivity analysis. We plotted
the CDF of packets within Flowlets at different threshold values. As shown in Figure 5, when the
threshold is set to 0.02s, about 60% of the Flowlets contain only a single packet, while at a threshold
of 10s, only about 15% of the Flowlets contain one packet, representing two extreme cases.

We pre-trained FlowletFormer on datasets constructed with different flowlet thresholds and fine-
tuned it on the same downstream task datasets. As shown in Table 18, extreme threshold values per-
formed poorly, while moderate thresholds exhibited better performance, with our adaptive method
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Figure 5: The CDF of Packets within Flowlets at Different Threshold

achieving the best results. This suggests that an appropriate flowlet threshold strikes a balance
between capturing contextual information and suppressing noise, thereby enhancing model perfor-
mance. On the other hand, extreme thresholds either lead to the loss of contextual information or
introduce unnecessary noise, negatively impacting the model’s learning effectiveness. Our adaptive
method dynamically adjusts the threshold based on the actual data, allowing it to more accurately
capture key traffic patterns and ultimately improving performance on downstream tasks.

Table 18: Performance Comparison of FlowletFormer with Different Flowlet Thresholds

Threshold AC PR RC F1

Ours 0.8518 0.8506 0.8353 0.8377
0.02s 0.8419 0.7902 0.7633 0.7707
0.2s 0.8424 0.8445 0.8237 0.8265
2s 0.8454 0.8485 0.8264 0.8313
10s 0.8413 0.8346 0.8077 0.8104

G.2 IMPACT OF MASKED FIELD RATIO

In the Masked Field Model, we selectively mask a proportion of specific field tokens from the total
mask tokens. To assess the effect of this masking, we evaluate five different ratios: 10%, 30%, 50%,
70%, and 90%. Table 19 illustrates the relationship between the masking ratio and the performance
of the model. Our findings show that masking a moderate proportion of field tokens (e.g. 30%
to 50%) leads to improvements in model performance, as it allows the model to learn essential
traffic patterns while still retaining a reasonable amount of contextual information. However, as the
masking ratio increases, particularly beyond 70%, the performance of the model begins to degrade.
This decline occurs because an excessively high proportion of key field tokens are masked, causing
the model to focus too heavily on these crucial fields while ignoring other significant aspects of the
traffic data. Consequently, the model loses important context and inter-field relationships, which are
necessary for accurate traffic classification and understanding.

Table 19: Performance Comparison of FlowletFormer with Different Masked Field Ratio

Threshold AC PR RC F1

0.1 0.8318 0.8492 0.8177 0.8201
0.3 0.8467 0.8425 0.8286 0.8307

Ours(0.5) 0.8518 0.8506 0.8353 0.8377
0.7 0.8506 0.8393 0.8293 0.8313
0.9 0.8366 0.8385 0.8153 0.8186
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G.3 IMPACT OF CORRUPTION TRAFFIC DATA

We evaluate the model’s robustness in real-world traffic corruption scenarios that could occur in
practical network environments. Specifically, we examine four types of traffic corruption: (1) packet
corruption, (2) missing headers, (3) packet loss, and (4) header corruption. In type 1, we simulate
a scenario where 20% of the packets in the flow experience corruption, potentially due to network
interference or data transmission errors. In type 2, 20% of the packets lose their IP header, which is
crucial for routing information, causing a loss of important contextual data. Type 3 simulates packet
loss, where 20% of the packets are missing entirely, resulting in incomplete flow information. In type
4, 20% of the packet headers are corrupted, leading to potential misinterpretation of the protocol-
specific information.

Table 20: Impact of Corruption on FlowletFormer Performance

AC PR RC F1

Original 0.8518 0.8506 0.8353 0.8377
Corr. 1 0.8226 0.8218 0.8072 0.8068
Corr. 2 0.6826 0.7433 0.669 0.6852
Corr. 3 0.8154 0.8153 0.8017 0.8001
Corr. 4 0.784 0.7897 0.7693 0.7688

Table 20 demonstrates that the model remains robust and performs well in the three scenarios,
maintaining stable accuracy and effective traffic pattern learning. This robustness can be attributed
to the model’s ability to handle partial information, as it is still able to extract useful features from
the remaining valid packets and headers. However, the model struggles significantly with Method
2, where headers are missing. The absence of protocol headers disrupts the encoding process in
the protocol stack embedding layer, which is crucial for understanding the hierarchical structure
of network traffic. This causes a sharp decline in performance, as the model loses the ability to
interpret the flow’s structural context properly. Our analysis highlights that while the model can
handle some types of data corruption—such as packet corruption, packet loss, and partial header
loss—it struggles with complete header loss, which severely impacts its ability to learn from the
hierarchical structure of network protocols. This finding suggests that while the model is generally
robust to real-world imperfections in traffic data, it is essential to design more resilient mechanisms
for dealing with missing or corrupted headers, particularly in cases where the header plays a critical
role in interpreting the traffic semantics.

H MORE COMPUTATIONAL COST AND COMPLEXITY

Table 21 reports the full comparison of FlowletFormer against two baseline models (ET-BERT and
TrafficFormer) across the three experimental phases: pretraining (6 × V100 GPUs, 200 K steps),
fine-tuning (1 × V100 GPU, full epochs), and inference (throughput in samples/sec). All runs were
carried out under identical hardware and configuration settings to ensure a fair evaluation of runtime,
per-step/epoch granularity, and GPU memory usage.

Table 21: Computational efficiency comparison across pretraining, fine-tuning, and inference.

Phase Model GPUs Time Unit/Granularity GPU Memory (GB)

Pretraining
FlowletFormer 6 42 h 75.67 s / 100 steps 28

ET-BERT 6 41 h 73.87 s / 100 steps 28
TrafficFormer 6 45 h 82.00 s / 100 steps 28

Fine-tuning
FlowletFormer 1 1,153 s 57.65 s / epoch 17

ET-BERT 1 1,177 s 58.85 s / epoch 17
TrafficFormer 1 1,158 s 57.90 s / epoch 17

Inference
FlowletFormer 1 — 150.04 samples/sec —

ET-BERT 1 — 148.92 samples/sec —
TrafficFormer 1 — 150.45 samples/sec —

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

I LIMITATION

Though FlowletFormer achieves fine-grained behavioral analysis within each flowlet, it still has
several limitations.

First, the fixed maximum input length forces us to split long flows into shorter flowlets. While this
enables detailed study of intra-flow behaviors, it prevents the model from learning unified patterns
over entire long flows, which may be crucial for detecting certain sophisticated or slow-evolving
anomalies.

Second, our Field Tokenization treats each protocol field as an independent “word” analogous to
treating every single Chinese character as a separate token. Although this captures the finest-grained
units, it cannot model semantic entities that span multiple fields. In future work, we could adopt
Chinese word segmentation techniques to merge common adjacent fields into higher-level tokens

Third, because FlowletFormer is based on the BERT architecture, both pretraining and real-time
inference demand substantial GPU resources. This high computational and memory overhead may
limit deployment in resource-constrained environments or scenarios requiring very high throughput.

Lastly, despite introducing protocol-stack alignment and field-aware pretraining objectives, the in-
ternal decision process of FlowletFormer remains difficult to interpret and audit. This lack of trans-
parency can be problematic in high-security settings where explainability and trust are paramount.

J THE USE OF LARGE LANGUAGE MODELS (LLMS)

During the preparation of this manuscript, we employed a large language model (LLM) to assist
with language refinement. In the early stages, the LLM was used for grammar and spelling checks
as well as automatic corrections. At later stages, it was consulted to polish certain sentences for
improved clarity, readability, and academic style. All outputs were carefully reviewed and refined
by the authors. Importantly, the LLM was not used to generate ideas, conduct experiments, perform
analyses, or draw conclusions.

Broader Impacts While FlowletFormer can significantly enhance the accuracy of anomaly detec-
tion and threat mitigation, thereby contributing to more secure and reliable networks, it also carries
potential risks. On the positive side, better traffic classification aids in detecting malicious activities
(e.g., DDoS, malware propagation) and supports privacy-preserving analytics by filtering out sensi-
tive flows before further processing. On the negative side, the same techniques could be repurposed
for intrusive traffic monitoring or profiling of users, raising privacy and ethical concerns. To miti-
gate such risks, we advocate for transparent deployment policies, strict access controls, and regular
audits of model usage.
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