

000 RETHINKING TRAFFIC REPRESENTATION: 001 002 PRE-TRAINING MODEL WITH FLOWLETS FOR TRAFFIC 003 CLASSIFICATION 004

006 **Anonymous authors**

007 Paper under double-blind review

011 ABSTRACT

013 Network traffic classification with pre-training has achieved promising results, yet
 014 existing methods fail to represent cross-packet context, protocol-aware structure,
 015 and flow-level behaviors in traffic. To address these challenges, this paper rethinks
 016 traffic representation and proposes Flowlet-based pre-training for network analy-
 017 sis. First, we introduce Flowlet and Field Tokenization that segments traffic into
 018 semantically coherent units. Second, we design a Protocol Stack Alignment Em-
 019 bedding Layer that explicitly encodes multi-layer protocol semantics. Third, we
 020 develop two pre-training tasks motivated by Flowlet to enhance both intra-packet
 021 field understanding and inter-flow behavioral learning. Experimental results show
 022 that FlowletFormer significantly outperforms existing methods in classification
 023 accuracy, few-shot learning and traffic representation. Moreover, by integrating
 024 domain-specific network knowledge, FlowletFormer shows better comprehension
 025 of the principles of network transmission (e.g., stateful connections of TCP), pro-
 026 viding a more robust and trustworthy framework for traffic analysis.

027 1 INTRODUCTION

030 Network traffic refers to data transmitted across networks, including the exchange of packets and
 031 other forms of device communication. It consists of both payload and metadata that provide crit-
 032 ical insights into network behavior. Monitoring and analyzing traffic is essential for both network
 033 management and security (Papadogiannaki & Ioannidis, 2022; Tang et al., 2020), enabling network
 034 operators to effectively tailor resource allocation, ensure quality of service, and detect malicious
 035 activities (Guterman et al., 2019; Hu et al., 2023; Mao et al., 2019).

036 Recently, pre-training methods (He et al., 2020; Zhao et al., 2023; Lin et al., 2022; Zhou et al.,
 037 2025) have achieved superior performance in traffic classification tasks. These approaches pretrain
 038 models on large volumes of unlabeled data to learn generalizable representations, which can then be
 039 fine-tuned on smaller labeled datasets for specific classification tasks.

040 However, despite achieving promising accuracy on given datasets, existing pre-training models for
 041 traffic classification still have significant limitations.

042 **First**, to balance the limited information in a single packet with the excessive length of entire flows,
 043 existing methods often design packet windows as model inputs to preserve more session context
 044 across packets. However, some designs reduce the window to a single packet, making it difficult
 045 to capture contextual semantics, while others adopt a fixed first-N packet window, which is overly
 046 rigid, hinders the modeling of intra-packet structures, and fails to cover diverse network behaviors,
 047 as shown in Figure 1a. These limitations reduce the model’s ability to generalize across different
 048 traffic patterns.

049 **Second**, existing methods often mechanically apply NLP and CV techniques to traffic representa-
 050 tion, such as encoding packets into 4-hex tokens with subword tokenization or reshaping flows into
 051 square images. However, these representations overlook the structural of traffic, including proto-
 052 col field boundaries, hierarchical semantics, and sequential dependencies. As shown in Figure 1b,
 053 the similarity of the word embedding reveals the limited ability of the model to capture semantics,
 making it difficult for network operators to obtain reliable insights and interpretable representations.

Figure 1: **Preliminary Analysis.** (a) The CDF of Packets per Packet Window. (b) Cosine Similarity of Word Embeddings. The star marks the specific similarity between ports 80 and 8080. (c) Results on Field Understanding Task (Prediction of Sequence Numbers). More details show in Appendix A

Third, due to the above limitations, existing pre-training tasks struggle to capture diverse traffic behavior patterns and show clear constraints in capturing semantics cross packets. We design a field understanding task that predicts key header fields of packets within a flow (here is sequence number) to evaluate whether models truly capture traffic behavior patterns. Figure 1c shows that existing methods still face considerable difficulty in understanding context within a flow, which makes their performance on downstream tasks less reliable.

To address these challenges, we propose **FlowletFormer**, a BERT-based pre-training model for network traffic analysis. Specifically, we make the following contributions:

- 1) We introduce **Flowlet** as a coherent behavioral unit that aggregates packets within a logical interaction. We further design **Field Tokenization** to convert each flowlet into semantically meaningful tokens based on protocol header fields.
- 2) We propose a **Protocol Stack Alignment-Based Embedding Layer** that explicitly encodes the hierarchical semantics of network protocols, enabling the model to distinguish fields across protocol boundaries and better capture protocol-specific behaviors.
- 3) We design two novel pre-training tasks motivated by our novel traffic representation. The **Masked Field Model** enhances field-level semantic understanding by predicting selectively masked critical protocol fields. The **Flowlet Prediction Task** captures logical interactions by modeling relations between Flowlets, such as HTTP requests and disconnections.

We evaluate FlowletFormer on 8 public datasets, achieving state-of-the-art performance on 7 of them, with over 6% F1 improvement on 4 datasets. Moreover, **field understanding tasks and word analogies similarity analysis** we propose demonstrate that FlowletFormer not only achieves higher accuracy but also better captures protocol semantics and traffic behavior than existing methods. Our code is available at <https://anonymous.4open.science/r/FlowletFormer-CC81>.

2 RELATED WORK

2.1 TRAFFIC CLASSIFICATION

Traffic classification has evolved rapidly over the past decade as networks have grown more complex and management demands have increased. Early approaches relied on packet- and flow-level statistics or rule matching, such as packet size and inter-arrival times, but these methods (Roesch, 1999; Zuev & Moore, 2005) became ineffective in encrypted environments where observable patterns are concealed. Classical machine learning methods (Taylor et al., 2016; Al-Naami et al., 2016; Panchenko et al., 2016; Sommer & Paxson, 2010) introduced classifiers such as decision trees, random forests, and SVMs, leveraging statistical summaries of flow metrics and protocol-specific characteristics. While more effective than rules, they depended heavily on feature engineering and expert knowledge. Deep learning later enabled the direct learning of high-dimensional representations from raw data. Lotfollahi et al. (2020) proposed a DNN that bypasses manual feature extraction, and subsequent work applied CNNs, RNNs, and GNNs to traffic classification (Sirinam et al., 2018; Liu et al., 2019; Shen et al., 2021; Schuster et al., 2017; Zhang et al., 2020). These models achieved strong accuracy but typically required large labeled datasets, which are costly and difficult to obtain

108 in practice. Moreover, traffic classification in ML and DL relies heavily on high-quality labeled
 109 datasets. Traffic data is inherently sensitive, and public datasets often contain various quality issues,
 110 such as noisy or unreliable labels (Liu et al., 2022; Engelen et al., 2021). Training on such datasets
 111 may cause models to pick up underspecification problems, including shortcut learning, overfitting to
 112 training artifacts, or learning spurious correlations, which harms their generalization (Jacobs et al.,
 113 2022; Arp et al., 2022).

114

115 2.2 PRE-TRAINING METHODS

116

117 Due to its strong sequence modeling capability, the Transformer architecture (Vaswani, 2017) has
 118 been widely applied to network traffic classification. PERT (He et al., 2020), ET-BERT (Lin et al.,
 119 2022), TrafficFormer (Zhou et al., 2025), and PTU adopt the BERT architecture (Devlin et al.,
 120 2019) for traffic analysis, while FlowMAE (Hang et al., 2023) and YaTC (Zhao et al., 2023) em-
 121 ploy masked autoencoders (He et al., 2022). Researchers have also explored other Transformer
 122 variants, such as T5 (Raffel et al., 2020; Wang et al., 2024a; Zhao et al., 2025) and graph-based
 123 Transformers (Van Langendonck et al., 2024). Beyond Transformers, Wang et al. (2024b) introduce
 124 the Mamba architecture for more efficient traffic analysis. Zhao et al. (2025) also revealed shortcut
 125 learnings and pitfalls of current pretraining method, including implicit flow IDs, encrypted payload,
 126 and an unfrozen encoder.

127

128 In addition to model architectures, traffic representation is a crucial component of pre-training
 129 pipelines. Raw traffic must first be transformed into a fixed format before being fed into a model.
 130 Existing approaches typically segment flows into flow segment (e.g., packets, first-N packets, or
 131 bursts), serialize these units into 4-hex strings with subword tokenization, or reshape them into
 132 structured two-dimensional matrices for training. However, these representations often misalign
 133 with the inherent characteristics of network traffic, making it difficult for pre-training methods to
 134 capture semantics, protocol structures, and sequential dependencies. This highlights the need for a
 135 new traffic representation and a corresponding pre-training model that better align with the nature
 136 of network traffic.

137

138 3 FLOWLETFORMER

139

140 FlowletFormer introduces a novel framework that enables the model to capture fine-grained network
 141 behaviors and hierarchical semantics in traffic. It incorporates three key components: a new traffic
 142 representation named flowlet and field tokenization, a protocol stack alignment embedding layer to
 143 encode hierarchical structures, and two pre-training tasks tailored to flowlets.

144

145

146

147

148

149

150

151

152

153

154

155 Figure 2: Flowlet and Field Tokenization.

156

157

158 3.1 FLOWLET AND FIELD TOKENIZATION

159

160

161

162 Current pre-training models often repurpose NLP-based representations and tokenization for net-
 163 work traffic, overlooking its distinct structure and semantics. To address this, we propose **Flowlet**
 164 and **Field Tokenization**. A flowlet aggregates consecutive packets within a flow based on inter-
 165 arrival times, while field tokenization encodes each flowlet into tokens according to protocol header

162 boundaries. Together, they form a bridge between raw traffic and model inputs through three steps:
 163 **Flow Construction**, **Flowlet Generation**, and **Field Tokenization**, as illustrated in Figure 2.

164
 165 **Flow Construction.** Raw traffic is unordered and often mixes multiple protocols, which makes
 166 pattern learning difficult. To impose semantic structure, we group packets using identical five-
 167 tuples and construct flows according to the relevant RFCs (Postel, 1981b; Eddy, 2022; Postel, 1980;
 168 1981a). More details are provided in the Appendix B.

169 **Flowlet Generation.** Consider a flow F consisting of a sequence of n packets, denoted as $F =$
 170 $\{pkt_1, pkt_2, \dots, pkt_n\}$. Each packet pkt_i has an arrival timestamp τ_i . The objective of Flowlet
 171 Generation is to segment this flow into multiple flowlets based on Inter-Arrival Time (IAT) between
 172 consecutive packets.

173 Let us define the IAT between consecutive packets as $t_i = \tau_i - \tau_{i-1}$ for $i \in 2, 3, \dots, n$. We introduce
 174 a dynamic threshold θ_i to determine flowlet boundaries, which is adaptively adjusted based on the
 175 historical IATs. Let W_i denote the IAT window up to the i -th packet. The threshold is calculated as:

$$\theta_i = \frac{1}{|W_i|} \sum_{t \in W_i} t \quad (1)$$

176 For each flowlet $\mathcal{F}_j = \{pkt_a, pkt_{a+1}, \dots, pkt_b\}$, the inter-arrival times within the flowlet satisfy:

$$t_i \leq \theta_{i-1}, \quad \forall i \in \{a+1, \dots, b\}. \quad (2)$$

177 If pkt_b is the last packet of flowlet \mathcal{F}_j , and pkt_{b+1} is the first packet of flowlet \mathcal{F}_{j+1} , then:

$$t_{b+1} > \theta_b. \quad (3)$$

178 The algorithm begins by constructing the first flowlet from the first packet and then processes the
 179 remaining packets sequentially. When $i > 3$ and the current IAT t_i exceeds the threshold θ_{i-1} , a new
 180 flowlet boundary is created. Otherwise, the packet is added to the current flowlet. The algorithm
 181 continuously updates the window W_i and adjusts the threshold accordingly to adapt to changing
 182 network conditions. The pseudocode is provided in the Algorithm 1.

183 Under this construction, flowlets serve as flow segments and coherent behavioral units, grouping
 184 packets that belong to the same logical interaction (e.g., an HTTP request-response or a media
 185 stream). By leveraging IAT to emphasize temporal correlations, flowlets ensure that packets trans-
 186 mitted within the same time frame are analyzed together.

187 **Field Tokenization.** We transform Flowlets into tokens that suitable for model input. For each
 188 packet in the flowlet, we first extract the raw bit sequences. Field tokenization then splits the
 189 sequence according to the lengths of protocol header fields, encoding the sequence into multiple
 190 hexadecimal tokens (e.g. 4 5 00 0034 ...). For fields longer than two bytes and payload,
 191 we split them into multiple 4-digit hexadecimal tokens to ensure uniformity and consistency in the
 192 model input format.

193 In this work, we adopt word-based tokenization (Mielke et al., 2021) rather than subword methods
 194 (Chung et al., 2016; Sennrich et al., 2016; Luong & Manning, 2016), such as BPE (Sennrich et al.,
 195 2016; Gage, 1994) or WordPiece (Wu et al., 2016). The motivation is that, we treat protocol
 196 header fields as the morpheme (smallest semantic units) in traffic, similar to individual characters in
 197 Chinese. In such languages, each character is a complete and indivisible unit of meaning. Likewise,
 198 each protocol field inherently carries distinct and atomic semantics, and therefore should not be
 199 further split or processed with subword tokenization.

200 The maximum vocabulary size, denoted as $|V|$, is 65,812. This includes all possible tokens: 1-hex
 201 tokens (16 values), 2-hex tokens (256 values), 4-hex tokens (65,536 values), and five special tokens
 202 ([CLS], [SEP], [PAD], [MASK], [UNK]).

203 3.2 MODEL ARCHITECTURE

204 FlowletFormer adopts a BERT-based model architecture (Devlin et al., 2019), which consists of two
 205 modules: an Embedding Module and a Transformer Encoder Module, as illustrated in Figure 3.

206 **Embedding Module.** Most existing pre-training models for traffic classification directly adopt the
 207 embedding designs for NLP, including token, position, and segment embedding. However, directly

Figure 3: The flowchart of the FlowletFormer.

using these embeddings may overlook the unique characteristics of traffic. Unlike natural language, traffic exhibits a layered protocol structure with distinct forms of alignment and distribution.

Thus, we introduce a **Protocol Stack Alignment-Based Embedding Layer** into the existing embedding module. This embedding layer is specifically designed for traffic data and explicitly encodes the protocol layer associated with each token. In particular, this embedding distinguishes between the network layer, transport layer, and application layer based on the TCP/IP model (Kurose & Ross, 2001), and assigns each token an embedding corresponding to its protocol layer.

This design captures the semantic differences between different protocol layers. The model can not only process tokens based on their positions and sequential order, but also understand their functional roles within the protocol layer. This enables a hierarchical representation of traffic.

Finally, the embedding dimension is set to $D = 768$ and the input tokens are calculated by the sum of each embedding layer:

$$\mathbf{E}_{\text{input}} = \mathbf{E}_{\text{token}} + \mathbf{E}_{\text{position}} + \mathbf{E}_{\text{segment}} + \mathbf{E}_{\text{protocol}} \quad (4)$$

Transformer Encoder Module. FlowletFormer is built on the BERT-Based architecture and contains 12 transformer encoder layers, each with 12 multi-head self-attention heads and a position-wise feedforward network. Residual connections and layer normalization throughout the model ensure stable training and faster convergence. The total number of parameters is approximately 110 million. The number of input tokens is 512, and the dimension of each token is 768.

3.3 PRE-TRAINING METHOD

We introduce two novel pre-training tasks explicitly tailored to flowlet and field tokenization: the **Masked Field Model (MFM)** and the **Flowlet Prediction Task (FPT)**. These tasks are motivated by our novel traffic representation. The MFM leverages field tokenization to capture protocol-level semantics, while the FPT relies on IAT-based flowlets to model relationships between behaviorally coherent units.

Masked Field Model. The masked modeling task randomly masks tokens and predicts the masked. Previous studies typically use this task to learn context and dependencies. However, in network traffic, the context and dependencies carried by different tokens vary in importance. Random masking may not fully capture the structural characteristics of traffic. To address this, we design a **Masked Field Model** specifically for key fields. Instead of masking tokens uniformly at random, our approach focuses on protocol header fields that carry strong semantic and structural information.

During pre-training, 15% of the input tokens are masked. Half of these masked tokens are randomly selected from the field tokens mentioned in Table 11, while the other half are randomly selected from

270 the remaining tokens. For the masked tokens, we replace them with the token [MASK], a random
 271 token, or leave them unchanged with probabilities of 80 %, 10 %, and 10 %, respectively.
 272

273 For masked tokens, FlowletFormer must predict the token based on the context during pre-training.
 274 The loss function used is the cross-entropy loss, as shown in Equation 5.
 275

$$\mathcal{L}_{\text{MFM}} = - \sum_{i=1}^N m_i \log(\hat{m}_i) \quad (5)$$

278 **Flowlet Prediction Task.** Flowlet is generated based on the IAT between packets, which makes
 279 Flowlet more aligned with real network interactions, providing a better representation of network
 280 behavior and traffic patterns. For example, in a file download activity, a flow may represent the
 281 entire process of downloading the file, while each Flowlet reflects specific behavior phases within
 282 the network interaction, such as the request phase, download phase, and disconnection phase.
 283

284 To better capture the diverse patterns in traffic, we introduce the Flowlet Prediction Task to predict
 285 the relationships between Flowlets. During pre-training, we sample a pair of flowlets ($\mathcal{F}_A, \mathcal{F}_B$) and
 286 form the pre-training instance. The pair is then drawn uniformly from three scenarios: \mathcal{F}_B is either
 287 the immediate successor of \mathcal{F}_A in the same flow (Ordered), the immediate predecessor (Swapped),
 288 or from a different flow. This design forces the model to learn intra-flow continuity, reverse-order
 289 dynamics, and clear separation of unrelated flowlets.
 290

291 Unlike tasks based on individual packet or burst (Lin et al., 2022; Zhou et al., 2025), this task
 292 shifts the focus from individual packets to the relationships between behaviorally coherent Flowlets.
 293 Its goal is to capture the temporal and behavioral patterns of network traffic beyond the low-level
 294 semantics of individual packets.
 295

296 Finally, the flowlet prediction task uses cross-entropy as the loss function, as shown in Equation 6.
 297

$$\mathcal{L}_{\text{FPT}} = - \sum_{i=1}^N y_i \log(\hat{y}_i) \quad (6)$$

298 Overall, the final pre-training objective is the sum of the two losses mentioned above, defined as:
 299

$$\mathcal{L} = \mathcal{L}_{\text{MFM}} + \mathcal{L}_{\text{FPT}} \quad (7)$$

300 3.4 FINE-TUNING METHOD

301 FlowletFormer acquires generalizable knowledge during pre-training, learning diverse traffic pat-
 302 terns rather than being restricted to a single task. This broader understanding improves its trans-
 303 ferability across different downstream applications.
 304

305 During fine-tuning, we train the entire model architecture (Unfrozen) so that the model can effec-
 306 tively adapt to task-specific requirements. However, if we train only the classification head and keep
 307 the pretrained encoder Frozen, the model suffers a sharp performance drop when the downstream
 308 task contains traffic types that did not appear during pre-training. The unfrozen model is able to
 309 continue learning unseen traffic patterns while preserving its general representations.
 310

311 4 EXPERIMENT

312 4.1 EXPERIMENT SETUP

313 **Pre-training Dataset.** In this work, approximately 30GB of unlabeled raw traffic data is used for
 314 pre-training. The dataset was sourced from three main repositories: ISCX-VPN2016 (NonVPN)
 315 (Draper-Gil et al., 2016), CIC-IDS2017 (Monday) (Sharafaldin et al., 2018), and the WIDE back-
 316 bone dataset (January 1, 2024) (Cho et al., 2000). As shown in Table 12, these datasets encompass a
 317 significant variety of network application scenarios and protocols, such as web browsing with HTTP,
 318 file downloads with FTP, email with SMTP, and video streaming with QUIC.
 319

320 During pre-training dataset construction, we consistently extract 64 consecutive bytes from the be-
 321 ginning of the IP layer of each packet as the model input, in order to cover key information from the
 322 IP layer and above.
 323

Fine-tuning Dataset. We employ 8 datasets for fine-tuning, corresponding to 7 different downstream tasks, including **Service Type Identification** (ISCX-VPN (Service)) (Draper-Gil et al., 2016) and ISCX-Tor2016 (Lashkari et al., 2017)), **Application Classification** (ISCX-VPN (App) (Draper-Gil et al., 2016)), **Website Fingerprinting** (CSTNET-TLS (Lin et al., 2022)), **Browser Classification** (Browser (Liu et al., 2019)), **Malware Classification** (USTC-TFC (Wang et al., 2017)), **Malicious Traffic Classification** (CIC-IDS2017 (Sharafaldin et al., 2018)), and **IoT Classification** (CIC-IoT2022 (Dadkhah et al., 2022)).

During fine-tuning dataset construction, we select the first five packets of each flow and extract 64 bytes starting from the IP layer of each packet. To mitigate potential biases, **we further anonymize the packets by applying IP Address&Port randomization and TCP timestamp adjustments.**

Evaluation Metrics. We adopt accuracy (AC), precision (PR), recall (RC), and F1 score as evaluation metrics. Further implementation details can be found in Appendix C.

4.2 COMPARISON WITH STATE-OF-THE-ART METHODS

We compare FlowletFormer with various baselines and state-of-the-art methods. AppScanner (Taylor et al., 2016) and CUMUL (Panchenko et al., 2016) are based on ML models. FSNet (Liu et al., 2019) and GraphDapp (Shen et al., 2021) use DL models for traffic classification. ET-BERT (Lin et al., 2022), YaTC (Zhao et al., 2023) and TrafficFormer (Zhou et al., 2025) are pre-training methods. **All pre-training methods are trained on the same pre-training and fine-tuning datasets, and the reported results are averaged over multiple runs.**

As shown in Table 1 and 2, FlowletFormer outperforms all methods on 7 datasets. Especially in the Service Type Identification (VPN, Tor) task, FlowletFormer attains an F1 score of 94% and 84%, outperforming the second-best methods(YaTC and AppScanner) by 6% and 9%, respectively. Even in the Malware Classification Task, FlowletFormer is only 0.1% lower than the best performing method (TrafficFormer) in F1 score. The results demonstrate that FlowletFormer adapts well to various traffic classification tasks and holds promise for enhancing network management and security.

Table 1: Comparison Results on ISCVPN2016, ISCX-Tor2016, and CSTNET-TLS 1.3.

Dataset	ISCX-VPN(Service)				ISCX-Tor2016				ISCX-VPN(APP)				CSTNET-TLS			
	AC	PR	RC	F1	AC	PR	RC	F1	AC	PR	RC	F1	AC	PR	RC	F1
AppScanner	0.8612	0.8678	0.8437	0.8520	0.8902	0.7715	0.7592	0.7598	0.7607	0.7036	0.6956	0.6815	0.7320	0.7129	0.6855	0.6916
CUMUL	0.6829	0.6747	0.6669	0.6657	0.7542	0.6471	0.6725	0.6332	0.5483	0.4442	0.4539	0.4298	0.5777	0.5336	0.5431	0.5313
FSNet	0.7679	0.7681	0.7614	0.7586	0.6705	0.5427	0.5435	0.5388	0.6576	0.5339	0.4957	0.4972	0.6537	0.5183	0.5199	0.4997
GraphDApp	0.6546	0.6270	0.6629	0.6363	0.7799	0.6168	0.6181	0.6155	0.4882	0.4143	0.4195	0.4055	0.6403	0.6017	0.5957	0.5931
ET-BERT	0.8756	0.8944	0.8525	0.8572	0.8225	0.7073	0.7375	0.7105	0.7964	0.7370	0.7013	0.7047	0.8047	0.7908	0.7777	0.7785
YaTC	0.9067	0.8991	0.8807	0.8877	0.8981	0.7384	0.7426	0.7212	0.8155	0.7599	0.7314	0.7340	0.8443	0.8404	0.8174	0.8197
TrafficFormer	0.8689	0.8605	0.8410	0.8373	0.8305	0.7100	0.6928	0.6932	0.8004	0.7690	0.7164	0.7221	0.7965	0.7867	0.7686	0.7675
FlowletFormer	0.9578	0.9539	0.9461	0.9493	0.9078	0.8411	0.8651	0.8463	0.8328	0.7859	0.7507	0.7553	0.8518	0.8506	0.8353	0.8377

Table 2: Comparison Results on Browser, USTC-TFC, CIC-IDS2017, and CIC-IoT2022.

Dataset	Browser				USTC-TFC				CIC-IDS2017				CIC-IoT2022			
	AC	PR	RC	F1												
AppScanner	0.5965	0.5990	0.5926	0.5846	0.8357	0.8220	0.8478	0.8195	0.8752	0.9034	0.8964	0.8947	0.8506	0.8625	0.7780	0.8001
CUMUL	0.5028	0.5004	0.4990	0.4968	0.7341	0.5696	0.6518	0.5833	0.8374	0.7065	0.7337	0.7131	0.6693	0.6322	0.6479	0.6239
FSNet	0.5415	0.5559	0.5537	0.5358	0.8010	0.8177	0.8294	0.8093	0.8262	0.8405	0.8532	0.8447	0.8255	0.8158	0.8018	0.7835
GraphDApp	0.3991	0.4031	0.4067	0.4010	0.8443	0.8114	0.8198	0.8010	0.8721	0.8716	0.8527	0.8562	0.6422	0.5729	0.5900	0.5759
ET-BERT	0.4650	0.3979	0.4650	0.2680	0.9713	0.9746	0.9713	0.9715	0.8867	0.8898	0.8867	0.8830	0.8516	0.8139	0.8146	0.8088
YaTC	0.5360	0.5469	0.5371	0.5285	0.9717	0.9725	0.9716	0.9712	0.9156	0.9350	0.9156	0.9064	0.8374	0.8331	0.8095	0.8085
TrafficFormer	0.4750	0.5690	0.4750	0.2352	0.9758	0.9777	0.9758	0.9758	0.8894	0.8994	0.8894	0.8841	0.8678	0.8396	0.8337	0.8297
FlowletFormer	0.7083	0.7755	0.7083	0.6932	0.9742	0.9761	0.9742	0.9741	0.9200	0.9440	0.9200	0.9109	0.9177	0.8919	0.8820	0.8808

4.3 ABLATION STUDY

To evaluate the contribution of different components in FlowletFormer, we conduct an ablation study. Specifically, we systematically remove key components, including flowLet and field tokenization, the MFM, the FPT, the protocol embedding layer, and the pre-training stage. As shown in Table 3, each component contributes to the overall performance of FlowletFormer. Removing FL reduces F1 score from 0.7553 to 0.7085, and removing the MFM or the FPT lowers F1 to 0.7341 and 0.7057, respectively. These clear drops confirm their importance in capturing structural and contextual semantics. The FT and PE provides a modest yet consistent gain, suggesting its effectiveness in

378 modeling hierarchical semantics. Notably, removing the pre-training stage causes the most performance drop, highlighting the necessity of pre-training. More results are shown in Appendix D.
 379
 380

381 4.4 FEW-SHOT ANALYSIS 382

383 To further assess the effectiveness and robustness of FlowletFormer under few-shot conditions, we
 384 conduct experiments with varying data proportions. Specifically, we use the full dataset as the refer-
 385 ence and randomly sample 40%, 20%, and 10% of the available data for few-shot training. Our few-
 386 shot evaluation on ISCX-VPN-App reveals FlowletFormer’s superior data efficiency. Its maintains
 387 F1 scores of 0.8009 (40% data), 0.6224 (20%), and 0.5813 (10%). Notably, while supervised meth-
 388 ods (e.g., CUMUL/FSNet) exhibit catastrophic performance under data scarcity, our pre-training
 389 framework maintains performance through the traffic representation model, as evidenced in Table 4.
 390 More results are shown in Appendix E.
 391

391 Table 3: Ablation Study on ISCXVPN(APP).

392 FL: Flowlet and Field Tokenization, **FT: Field**
 393 **Tokenization**, MFM: Masked Field Model, FPT:
 394 Flowlet Prediction Task, PE: Protocol Embed-
 395 ding Layer, and PT: Pre-Training

Method	AC	PR	RC	F1
w/o FL	0.7872	0.7555	0.6988	0.7085
w/o FT	0.7994	0.7670	0.7319	0.7396
w/o MFM	0.8146	0.7604	0.7257	0.7341
w/o FPT	0.8055	0.7370	0.7021	0.7057
w/o PE	0.8298	0.7530	0.7348	0.7229
w/o PT	0.4043	0.2689	0.2678	0.2365
FlowletFormer	0.8328	0.7859	0.7507	0.7553

403 4.5 FIELD UNDERSTANDING TASK 404

405 We introduce multiple **Field Understanding Tasks** to assess whether the model comprehends gen-
 406 eral traffic patterns. These tasks require the model to predict key header fields within a packet in
 407 a given flow. Specifically, we evaluate the comprehension of the model in four tasks: the **Flow**
 408 **Direction Inference** task masks the source/destination IP as well as the source/destination ports,
 409 assessing the model’s ability to infer packet direction between entities based on contextual clues
 410 without direct address information; the **Transport Protocol Recognition** task focuses on mask-
 411 ing the protocol field in the IP header, testing the model’s ability to identify the transport layer
 412 protocol (e.g., TCP, UDP, ICMP); the **Sequence Awareness** task masks the sequence number and
 413 acknowledgment number within the TCP header, challenging the model to infer packet order and
 414 flow continuity; the **Connection Control Judgment** task masks the flag fields in the TCP header,
 415 which denote the state of the connection, and evaluates the model’s ability to infer control signals
 416 like session establishment or termination.

417 These tasks evaluate the model’s ability to infer direction, protocol, sequence, and control, with
 418 performance measured in three datasets: ISCX VPN, CICIDS2017, and USTC-TFC. As shown in
 419 Table 5, FlowletFormer outperforms three models in all tasks. The model’s ability to effectively infer
 420 Flow Direction, Transport Protocol, Sequence Awareness, and Connection Control across diverse
 421 datasets demonstrates its strong capacity for understanding the complex behavior of network traffic.

422 Table 5: The Performance (Accuracy) of Pre-training Methods on Field Understanding Tasks.

Task	Flow Direction Inference			Transport Protocols Recognition			Sequence Awareness			Connection Control Judgement		
Dataset	VPN	IDS	TFC	VPN	IDS	TFC	VPN	IDS	TFC	VPN	IDS	TFC
ET-BERT	0.4366	0.7096	0.7412	0.9681	0.9767	0.9981	0.4165	0.6937	0.6203	0.9041	0.9975	0.9985
YaTC	0.2617	0.3785	0.3138	0.1012	0.0858	0.0956	0.4483	0.6225	0.5080	0.4531	0.5383	0.3150
TrafficFormer	0.0164	0.1059	0.1128	0.6753	0.9067	0.8912	0.3659	0.5261	0.3652	0.3904	0.9983	0.9978
FlowletFormer	0.9313	0.9647	0.9196	1.0000	1.0000	1.0000	0.6987	0.7806	0.7579	0.9338	1.0000	1.0000

428 4.6 WORD ANALOGIES SIMILARITY ANALYSIS 429

430 In NLP, word analogy tasks assess a model’s ability to capture semantic relationships between words.
 431 Through word analogy similarity analysis, we can validate whether a model has deeply understood

432 the semantic relationships between words. Similarly, the port number analogy analysis can be used
 433 to evaluate the pre-trained model¹, assessing its understanding of the functional and semantic
 434 relationships between network services. This capability reflects the model’s deep understanding of
 435 traffic patterns acquired during pretraining, without any downstream fine-tuning.

436 We apply cosine similarities between the embeddings of port numbers produced by the pre-trained
 437 model to examine the relationships among common HTTP-related ports (e.g., 80, 8080, 8000).
 438 Comparing 4-hex token with our method (Table 6), we find that 4-hex token struggles to model port
 439 similarities, while FlowletFormer effectively captures these relationships, enhancing traffic classifi-
 440 cation performance. Appendix F provides more clarification.

442 Table 6: Port Number Analogy Cosine Similarity about Word Embedding and Input Embedding.

Port Embedding	80&8080		80&8000		8080&8000	
	Word	Input	Word	Input	Word	Input
4-Hex Token	-0.0768	0.1094	-0.0685	0.1331	0.0740	0.2438
Ours	0.0582	0.4019	0.0369	0.3993	0.0400	0.4289

448 4.7 FINE-TUNING METHOD

450 In the fine-tuning stage, we evaluated pre-training methods and compared their performance under
 451 both Frozen and Unfrozen settings. The Frozen setup keeps the encoder parameters fixed and relies
 452 solely on the general representations learned during pre-training, serving to assess the transferability
 453 of pretrained knowledge. In contrast, the Unfrozen setup reflects the model’s ability to adapt to
 454 downstream tasks, enabling it to further learn task-specific features and traffic patterns that did not
 455 appear during pre-training. This comparison provides a more comprehensive assessment of the
 456 model’s generalization.

457 Table 7 and 8 show that FlowletFormer remains stable under the Frozen setting, with the average F1
 458 score dropping by only 4% across four datasets. This indicates that the model has already learned
 459 transferable and general traffic patterns during pre-training. The exception is ISCX-Tor2016, where
 460 the F1 score drops by about 40% because there is no Tor traffic in pre-training dataset, leaving
 461 the model without the necessary prior knowledge when the encoder is frozen. In contrast, other
 462 pre-training baselines perform poorly in the Frozen setting, suggesting that they learn little useful
 463 generalizable representation.

464 Table 7: Frozen and Unfrozen Fine-tuning Results on ISCX and CSTNET.

	ISCX-VPN(Service)				ISCX-Tor2016				ISCX-VPN(APP)				CSTNET-TLS			
	Frozen		Unfrozen		Frozen		Unfrozen		Frozen		Unfrozen		Frozen		Unfrozen	
	AC	F1	AC	F1	AC	F1	AC	F1	AC	F1	AC	F1	AC	F1	AC	F1
ET-BERT	0.3645	0.2843	0.8756	0.8572	0.4038	0.2549	0.8225	0.7105	0.4813	0.2944	0.7964	0.7047	0.2211	0.1365	0.8047	0.7785
YaTC	0.3333	0.1667	0.9067	0.8877	0.1706	0.0498	0.8981	0.7212	0.2533	0.1328	0.8155	0.7340	0.0137	0.0047	0.8443	0.8197
TrafficFormer	0.5778	0.4749	0.8689	0.8373	0.4801	0.3194	0.8305	0.6932	0.6272	0.5125	0.8004	0.7221	0.3880	0.3000	0.7965	0.7675
FlowletFormer	0.8645	0.8466	0.9578	0.9493	0.5632	0.3806	0.9078	0.8463	0.7893	0.7181	0.8328	0.7553	0.6151	0.5614	0.8518	0.8377

472 Table 8: Frozen and Unfrozen Fine-tuning Results on Browser, USTC-TFC and CIC.

	Browser				USTC-TFC				CIC-IDS2017				CIC-IoT2022			
	Frozen		Unfrozen													
	AC	F1														
ET-BERT	0.3450	0.3310	0.4650	0.2680	0.6700	0.6427	0.9713	0.9715	0.5628	0.5507	0.8867	0.8830	0.4589	0.4069	0.8516	0.8088
YaTC	0.2500	0.1000	0.5360	0.5285	0.1846	0.0665	0.9717	0.9712	0.2211	0.1667	0.9156	0.9064	0.1923	0.1218	0.8374	0.8085
TrafficFormer	0.4233	0.4035	0.4750	0.2352	0.8104	0.8090	0.9758	0.9758	0.6589	0.6551	0.8894	0.8841	0.5850	0.5381	0.8678	0.8297
FlowletFormer	0.6583	0.6616	0.7083	0.6932	0.9563	0.9568	0.9742	0.9741	0.8778	0.8683	0.9200	0.9109	0.7969	0.7402	0.9177	0.8808

481 4.8 DEEP DIVE

482 We further conducted in-depth evaluations of the model. In this section, we use the CSTNET-TLS
 483 dataset, as its large scale and diverse categories enable more accurate and reliable assessment.

484
 485 ¹This is the model after pre-training but before fine-tuning, where port randomization has not been applied.

486
Impact of Flowlet Threshold. Flowlets are segmented based on IAT. Despite a mean of 1.89
487 seconds, the distribution is highly skewed, with most intervals much shorter. Thus, we use 0.02s,
488 0.2s, 2.0s, and 10s as thresholds for flowlet segmentation. Figure 4a demonstrates that threshold
489 choice has a significant impact on downstream performance. A small threshold (e.g., 0.02s) makes
490 nearly half of the flowlets single-packet, while a large threshold (e.g., 10s) introduces noisy long-
491 range context. In contrast, adaptive thresholds better balance context richness and noise.

492
Impact of Masked Field Ratio. In the Masked Field Model, we select a certain proportion of
493 specific field tokens from the mask tokens for masking, and evaluate five ratios: 10%, 30%, 50%,
494 70%, and 90%. Figure 4b shows that masking a moderate proportion of field tokens improves
495 model performance, whereas excessive masking leads to performance degradation. This is because
496 the model focuses too heavily on key fields while neglecting other information of the traffic.

497
Impact of Corruption Traffic Data. We evaluate the model under traffic corruption scenarios that
498 may occur in real environments, considering four cases: (1) packet corruptions, (2) missing headers,
499 (3) packet loss, and (4) header corruptions. Figure 4c shows that the model remains robust in three
500 cases but struggles with missing headers, primarily because header loss disrupts the encoding of
501 protocol embedding layer. More details about Deep Dive are provided in Appendix G.

502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513 Figure 4: Deep Dive on CSTNET-TLS. (a) Sensitivity of flowlet segmentation thresholds. (b) Sen-
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539

4.9 COMPUTATIONAL COST AND COMPLEXITY

We analyze the time complexity of our method. Specifically, the complexity is: $\mathcal{O}(N \times B \times L \times (S^2 \cdot H + S \cdot H^2))$, where N is the number of training steps, B is the batch size, L is the number of Transformer layers, S is the input sequence length, and H is the hidden size. We also measure the end-to-end runtimes of FlowletFormer during different phases of the train. Table 9 summarizes these results. The comparison results against other models are presented in the Appendix H.

540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813

540 REFERENCES
541

- 542 Khaled Al-Naami, Swarup Chandra, Ahmad Mustafa, Latifur Khan, Zhiqiang Lin, Kevin W.
543 Hamlen, and Bhavani Thuraisingham. Adaptive encrypted traffic fingerprinting with bi-
544 directional dependence. In Stephen Schwab, William K. Robertson, and Davide Balzarotti (eds.),
545 *Proceedings of the 32nd Annual Conference on Computer Security Applications, ACSAC 2016,*
546 *Los Angeles, CA, USA, December 5-9, 2016*, pp. 177–188. ACM, 2016.
- 547 Daniel Arp, Erwin Quiring, Feargus Pendlebury, Alexander Warnecke, Fabio Pierazzi, Christian
548 Wressnegger, Lorenzo Cavallaro, and Konrad Rieck. Dos and don’ts of machine learning in
549 computer security. In *31st USENIX Security Symposium (USENIX Security 22)*, pp. 3971–3988,
550 2022.
- 551 Kenjiro Cho, Koushirou Mitsuya, and Akira Kato. Traffic data repository at the WIDE project. In
552 *Proceedings of the Freenix Track: 2000 USENIX Annual Technical Conference, June 18-23, 2000,*
553 *San Diego, CA, USA*, pp. 263–270. USENIX, 2000.
- 554 Junyoung Chung, Kyunghyun Cho, and Yoshua Bengio. A character-level decoder without explicit
555 segmentation for neural machine translation. *CoRR*, abs/1603.06147, 2016.
- 557 Sajjad Dadkhah, Hassan Mahdikhani, Priscilla Kyei Danso, Alireza Zohourian, Kevin Anh Truong,
558 and Ali A. Ghorbani. Towards the development of a realistic multidimensional iot profiling
559 dataset. In *19th Annual International Conference on Privacy, Security & Trust, PST 2022, Fred-
560 ericton, NB, Canada, August 22-24, 2022*, pp. 1–11. IEEE, 2022.
- 561 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of
562 deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and
563 Thamar Solorio (eds.), *Proceedings of the 2019 Conference of the North American Chapter of the
564 Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019,*
565 *Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers)*, pp. 4171–4186.
566 Association for Computational Linguistics, 2019.
- 567 Gerard Draper-Gil, Arash Habibi Lashkari, Mohammad Saiful Islam Mamun, and Ali A. Ghor-
568 bani. Characterization of encrypted and VPN traffic using time-related features. In Olivier Camp,
569 Steven Furnell, and Paolo Mori (eds.), *Proceedings of the 2nd International Conference on In-
570 formation Systems Security and Privacy, ICISSP 2016, Rome, Italy, February 19-21, 2016*, pp.
571 407–414. SciTePress, 2016.
- 573 Wesley Eddy. Rfc 9293: Transmission control protocol (tcp), 2022.
- 574 Gints Engelen, Vera Rimmer, and Wouter Joosen. Troubleshooting an intrusion detection dataset:
575 the cicids2017 case study. In *2021 IEEE Security and Privacy Workshops (SPW)*, pp. 7–12. IEEE,
576 2021.
- 578 Philip Gage. A new algorithm for data compression. *C Users J.*, 12(2):23–38, February 1994. ISSN
579 0898-9788.
- 581 Craig Gutterman, Katherine Guo, Sarthak Arora, Xiaoyang Wang, Les Wu, Ethan Katz-Bassett,
582 and Gil Zussman. Request: real-time qoe detection for encrypted youtube traffic. In Michael
583 Zink, Laura Toni, and Ali C. Begen (eds.), *Proceedings of the 10th ACM Multimedia Systems
584 Conference, MMSys 2019, Amherst, MA, USA, June 18-21, 2019*, pp. 48–59. ACM, 2019.
- 585 Zijun Hang, Yuliang Lu, Yongjie Wang, and Yi Xie. Flow-mae: Leveraging masked autoencoder
586 for accurate, efficient and robust malicious traffic classification. In *Proceedings of the 26th Inter-
587 national Symposium on Research in Attacks, Intrusions and Defenses*, pp. 297–314, 2023.
- 588 Hong Ye He, Zhi Guo Yang, and Xiang Ning Chen. PERT: payload encoding representation from
589 transformer for encrypted traffic classification. In *2020 ITU Kaleidoscope: Industry-Driven Dig-
590 ital Transformation, Kaleidoscope, Ha Noi, Vietnam, December 7-11, 2020*, pp. 1–8. IEEE, 2020.
- 591 Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked au-
593 toencoders are scalable vision learners. In *Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition*, pp. 16000–16009, 2022.

- 594 Xiaoyan Hu, Wenjie Gao, Guang Cheng, Ruidong Li, Yuyang Zhou, and Hua Wu. Toward early and
 595 accurate network intrusion detection using graph embedding. *IEEE Trans. Inf. Forensics Secur.*,
 596 18:5817–5831, 2023.
- 597 Arthur S Jacobs, Roman Beltiukov, Walter Willinger, Ronaldo A Ferreira, Arpit Gupta, and Lisan-
 598 dro Z Granville. Ai/ml for network security: The emperor has no clothes. In *Proceedings of*
 599 *the 2022 ACM SIGSAC Conference on Computer and Communications Security*, pp. 1537–1551,
 600 2022.
- 601 James F. Kurose and Keith W. Ross. *Computer networking - a top-down approach featuring the*
 602 *internet*. Addison-Wesley-Longman, 2001. ISBN 978-0-201-47711-5.
- 603 Arash Habibi Lashkari, Gerard Draper-Gil, Mohammad Saiful Islam Mamun, and Ali A. Ghorbani.
 604 Characterization of tor traffic using time based features. In Paolo Mori, Steven Furnell, and Olivier
 605 Camp (eds.), *Proceedings of the 3rd International Conference on Information Systems Security*
 606 *and Privacy, ICISSP 2017, Porto, Portugal, February 19-21, 2017*, pp. 253–262. SciTePress,
 607 2017.
- 608 Xinjie Lin, Gang Xiong, Gaopeng Gou, Zhen Li, Junzheng Shi, and Jing Yu. ET-BERT: A contextu-
 609 alized datagram representation with pre-training transformers for encrypted traffic classification.
 610 In Frédérique Laforest, Raphaël Troncy, Elena Simperl, Deepak Agarwal, Aristides Gionis, Ivan
 611 Herman, and Lionel Médini (eds.), *WWW '22: The ACM Web Conference 2022, Virtual Event,*
 612 *Lyon, France, April 25 - 29, 2022*, pp. 633–642. ACM, 2022.
- 613 Chang Liu, Longtao He, Gang Xiong, Zigang Cao, and Zhen Li. Fs-net: A flow sequence network
 614 for encrypted traffic classification. In *2019 IEEE Conference on Computer Communications,*
 615 *INFOCOM 2019, Paris, France, April 29 - May 2, 2019*, pp. 1171–1179. IEEE, 2019.
- 616 Lisa Liu, Gints Engelen, Timothy Lynar, Daryl Essam, and Wouter Joosen. Error prevalence in
 617 nids datasets: A case study on cic-ids-2017 and cse-cic-ids-2018. In *2022 IEEE Conference on*
 618 *Communications and Network Security (CNS)*, pp. 254–262. IEEE, 2022.
- 619 Mohammad Lotfollahi, Mahdi Jafari Siavoshani, Ramin Shirali Hossein Zade, and Mohammad-
 620 sadegh Saberian. Deep packet: a novel approach for encrypted traffic classification using deep
 621 learning. *Soft Comput.*, 24(3):1999–2012, 2020.
- 622 Minh-Thang Luong and Christopher D. Manning. Achieving open vocabulary neural machine trans-
 623 lation with hybrid word-character models. *CoRR*, abs/1604.00788, 2016.
- 624 Hongzi Mao, Malte Schwarzkopf, Shaileshh Bojja Venkatakrishnan, Zili Meng, and Mohammad
 625 Alizadeh. Learning scheduling algorithms for data processing clusters. In Jianping Wu and
 626 Wendy Hall (eds.), *Proceedings of the ACM Special Interest Group on Data Communication,*
 627 *SIGCOMM 2019, Beijing, China, August 19-23, 2019*, pp. 270–288. ACM, 2019.
- 628 Sabrina J Mielke, Zaid Alyafeai, Elizabeth Salesky, Colin Raffel, Manan Dey, Matthias Gallé, Arun
 629 Raja, Chenglei Si, Wilson Y Lee, Benoît Sagot, et al. Between words and characters: A brief
 630 history of open-vocabulary modeling and tokenization in nlp. *arXiv preprint arXiv:2112.10508*,
 631 2021.
- 632 Andriy Panchenko, Fabian Lanze, Jan Pennekamp, Thomas Engel, Andreas Zinnen, Martin Henze,
 633 and Klaus Wehrle. Website fingerprinting at internet scale. In *23rd Annual Network and Dis-
 634 tributed System Security Symposium, NDSS 2016, San Diego, California, USA, February 21-24,*
 635 *2016*. The Internet Society, 2016.
- 636 Eva Papadogiannaki and Sotiris Ioannidis. A survey on encrypted network traffic analysis applica-
 637 tions, techniques, and countermeasures. *ACM Comput. Surv.*, 54(6):123:1–123:35, 2022.
- 638 Jon Postel. Rfc 0768: User datagram protocol, 1980.
- 639 Jon Postel. Rfc 792: Internet control message protocol darpa internet program protocol specification,
 640 1981a.
- 641 Jon Postel. Internet protocol. Technical report, 1981b.

- 648 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
 649 Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
 650 transformer. *Journal of machine learning research*, 21(140):1–67, 2020.
- 651
- 652 Martin Roesch. Snort: Lightweight intrusion detection for networks. In David W. Parter (ed.),
 653 *Proceedings of the 13th Conference on Systems Administration (LISA-99), Seattle, WA, USA,*
 654 *November 7-12, 1999*, pp. 229–238. USENIX, 1999.
- 655
- 656 Roei Schuster, Vitaly Shmatikov, and Eran Tromer. Beauty and the burst: Remote identification of
 657 encrypted video streams. In Engin Kirda and Thomas Ristenpart (eds.), *26th USENIX Security*
 658 *Symposium, USENIX Security 2017, Vancouver, BC, Canada, August 16-18, 2017*, pp. 1357–
 659 1374. USENIX Association, 2017.
- 660
- 661 Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with
 662 subword units. In *Proceedings of the 54th Annual Meeting of the Association for Computational*
 663 *Linguistics, ACL 2016, August 7-12, 2016, Berlin, Germany, Volume 1: Long Papers*. The Asso-
 664 ciation for Computer Linguistics, 2016.
- 665
- 666 Iman Sharafaldin, Arash Habibi Lashkari, and Ali A. Ghorbani. Toward generating a new intrusion
 667 detection dataset and intrusion traffic characterization. In Paolo Mori, Steven Furnell, and Olivier
 668 Camp (eds.), *Proceedings of the 4th International Conference on Information Systems Security*
 669 *and Privacy, ICISSP 2018, Funchal, Madeira - Portugal, January 22-24, 2018*, pp. 108–116.
 SciTePress, 2018.
- 670
- 671 Meng Shen, Jinpeng Zhang, Liehuang Zhu, Ke Xu, and Xiaojiang Du. Accurate decentralized
 672 application identification via encrypted traffic analysis using graph neural networks. *IEEE Trans.*
 673 *Inf. Forensics Secur.*, 16:2367–2380, 2021.
- 674
- 675 Payap Sirinam, Mohsen Imani, Marc Juarez, and Matthew Wright. Deep fingerprinting: Under-
 676 mining website fingerprinting defenses with deep learning. In David Lie, Mohammad Mannan,
 677 Michael Backes, and XiaoFeng Wang (eds.), *Proceedings of the 2018 ACM SIGSAC Conference*
 678 *on Computer and Communications Security, CCS 2018, Toronto, ON, Canada, October 15-19,*
 2018, pp. 1928–1943. ACM, 2018.
- 679
- 680 Robin Sommer and Vern Paxson. Outside the closed world: On using machine learning for network
 681 intrusion detection. In *31st IEEE Symposium on Security and Privacy, SP 2010, 16-19 May 2010,*
 682 *Berkeley/Oakland, California, USA*, pp. 305–316. IEEE Computer Society, 2010.
- 683
- 684 Ruming Tang, Zheng Yang, Zeyan Li, Weibin Meng, Haixin Wang, Qi Li, Yongqian Sun, Dan Pei,
 685 Tao Wei, Yanfei Xu, and Yan Liu. Zerowall: Detecting zero-day web attacks through encoder-
 686 decoder recurrent neural networks. In *39th IEEE Conference on Computer Communications,*
 687 *INFOCOM 2020, Toronto, ON, Canada, July 6-9, 2020*, pp. 2479–2488. IEEE, 2020.
- 688
- 689 Vincent F. Taylor, Riccardo Spolaor, Mauro Conti, and Ivan Martinovic. Appscanner: Automatic
 690 fingerprinting of smartphone apps from encrypted network traffic. In *IEEE European Symposium*
 691 *on Security and Privacy, EuroS&P 2016, Saarbrücken, Germany, March 21-24, 2016*, pp. 439–
 692 454. IEEE, 2016.
- 693
- 694 Louis Van Langendonck, Ismael Castell-Uroz, and Pere Barlet-Ros. Towards a graph-based foun-
 695 dation model for network traffic analysis. In *Proceedings of the 3rd GNNet Workshop on Graph*
 696 *Neural Networking Workshop*, pp. 41–45, 2024.
- 697
- 698 A Vaswani. Attention is all you need. *Advances in Neural Information Processing Systems*, 2017.
- 699
- 700 Qineng Wang, Chen Qian, Xiaochang Li, Ziyu Yao, Gang Zhou, and Huajie Shao. Lens: A foun-
 701 dation model for network traffic, 2024a. URL <https://arxiv.org/abs/2402.03646>.
- 702
- 703 Tongze Wang, Xiaohui Xie, Wenduo Wang, Chuyi Wang, Youjian Zhao, and Yong Cui. Netmamba:
 704 Efficient network traffic classification via pre-training unidirectional mamba. In *2024 IEEE 32nd*
 705 *International Conference on Network Protocols (ICNP)*, pp. 1–11. IEEE, 2024b.

- 702 Wei Wang, Ming Zhu, Xuwen Zeng, Xiaozhou Ye, and Yiqiang Sheng. Malware traffic classi-
 703 fication using convolutional neural network for representation learning. In *2017 International*
 704 *Conference on Information Networking, ICOIN 2017, Da Nang, Vietnam, January 11-13, 2017*,
 705 pp. 712–717. IEEE, 2017.
- 706 Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi, Wolfgang Macherey,
 707 Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff Klingner, Apurva Shah, Melvin John-
 708 son, Xiaobing Liu, Łukasz Kaiser, Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa,
 709 Keith Stevens, George Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa,
 710 Alex Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, and Jeffrey Dean. Google’s neu-
 711 ral machine translation system: Bridging the gap between human and machine translation, 2016.
 712 URL <https://arxiv.org/abs/1609.08144>.
- 713 Jielun Zhang, Fuhao Li, Feng Ye, and Hongyu Wu. Autonomous unknown-application filtering and
 714 labeling for dl-based traffic classifier update. In *39th IEEE Conference on Computer Communi-
 715 cations, INFOCOM 2020, Toronto, ON, Canada, July 6-9, 2020*, pp. 397–405. IEEE, 2020.
- 716 Ruijie Zhao, Mingwei Zhan, Xianwen Deng, Yanhao Wang, Yijun Wang, Guan Gui, and Zhi Xue.
 717 Yet another traffic classifier: A masked autoencoder based traffic transformer with multi-level flow
 718 representation. In Brian Williams, Yiling Chen, and Jennifer Neville (eds.), *Thirty-Seventh AAAI*
 719 *Conference on Artificial Intelligence, AAAI 2023, Thirty-Fifth Conference on Innovative Appli-
 720 cations of Artificial Intelligence, IAAI 2023, Thirteenth Symposium on Educational Advances in
 721 Artificial Intelligence, EAAI 2023, Washington, DC, USA, February 7-14, 2023*, pp. 5420–5427.
 722 AAAI Press, 2023.
- 723 Yuqi Zhao, Giovanni Dettori, Matteo Boffa, Luca Vassio, and Marco Mellia. The sweet danger of
 724 sugar: Debunking representation learning for encrypted traffic classification. In *Proceedings of
 725 the ACM SIGCOMM 2025 Conference*, pp. 296–310, 2025.
- 726 Zhe Zhao, Hui Chen, Jinbin Zhang, Xin Zhao, Tao Liu, Wei Lu, Xi Chen, Haotang Deng, Qi Ju, and
 727 Xiaoyong Du. UER: An open-source toolkit for pre-training models. pp. 241–246, November
 728 2019.
- 729 Guangmeng Zhou, Xiongwen Guo, Zhuotao Liu, Tong Li, Qi Li, and Ke Xu. TrafficFormer: An
 730 Efficient Pre-trained Model for Traffic Data . In *2025 IEEE Symposium on Security and Privacy
 731 (SP)*, pp. 102–102. IEEE Computer Society, 2025. doi: 10.1109/SP61157.2025.00102.
- 732 Denis Zuev and Andrew W. Moore. Traffic classification using a statistical approach. In Constanti-
 733 nos Dovrolis (ed.), *Passive and Active Network Measurement, 6th International Workshop, PAM
 734 2005, Boston, MA, USA, March 31 - April 1, 2005, Proceedings*, 2005.
- 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755

756	APPENDIX	
757		
758	CONTENTS OF APPENDIX	
759		
760		
761	A Preliminary Analysis	16
762		
763	B More Details of Our Method	16
764	B.1 Flow Construction	16
765		
766	B.2 Flowlet Generation	17
767		
768	B.3 Key Protocol Header Fields in Masked Field Model	18
769		
770	C More Details in Experiment Setup	18
771	C.1 More Details in Pre-training Dataset Construction	18
772		
773	C.2 More Details in Fine-tuning Dataset Construction	19
774		
775	C.3 More Details in Implementation	19
776		
777	D More Ablation Study	20
778		
779	E More Few-shot Analysis	21
780		
781	F More Clarification of Word Analogies Similarity Analysis	22
782		
783	G More Deep Dive	22
784	G.1 Impact of Flowlet Threshold	22
785		
786	G.2 Impact of Masked Field Ratio	23
787		
788	G.3 Impact of Corruption Traffic Data	24
789		
790	H More Computational Cost and Complexity	24
791		
792	I Limitation	25
793		
794	J The Use of Large Language Models (LLMs)	25
795		
796		
797		
798		
799		
800		
801		
802		
803		
804		
805		
806		
807		
808		
809		

810 A PRELIMINARY ANALYSIS
811
812813 We conduct three in-depth analyses to examine the limitations of existing method.
814815 **First**, to balance the limited information in a single packet and the excessive length of complete
816 flows, existing methods commonly design packet window as intermediate inputs. The intention is
817 to retain more session context across packets while keeping the sequence length tractable for model
818 training. However, in practice, such packet window exhibit clear limitations. We compute the cumu-
819 lative distribution function (CDF) of the number of packets per window. On one hand, some packet
820 window degenerate into single-packet units, which essentially collapses the representation back to
821 the packet level and fails to capture any cross-packet semantics. For example, approximately 65%
822 of bursts consist of only a single packet. This suggests that the dataset contains a high proportion of
823 extremely short bursts, which limits the temporal context available for modeling. On the other hand,
824 strategies that adopt a fixed number of initial packets (e.g., first- N packet window) are overly rigid.
825 These approaches cannot flexibly adapt to flows of different lengths or interaction patterns, and they
826 ignore the variability in packet distributions across sessions.
827828 **Second**, existing methods often adopt techniques from NLP and CV for traffic representation, such
829 as encoding packets into 4-hex tokens with subword tokenization or reshaping traffic data into square
830 images. However, these methods fail to align with the structure and semantics of network traffic. For
831 example, 4-hex tokenization ignores protocol field boundaries, and network protocols' hierarchical
832 structure is overlooked, preventing the model from capturing distinct roles of different fields. We
833 also conducted a similarity analysis of the vocabularies in 4-hex token and our method, focusing
834 on the word embeddings of port 80 and 8080, which both represent HTTP services. While our
835 method correctly captures the semantic similarity between these ports, 4-hex token struggles to do
836 so, indicating its inability to model key network relationships. This highlights a critical limitation in
837 exist methods' semantic understanding, which FlowletFormer addresses more effectively, improving
838 traffic classification tasks.
839840 **Third**, as a result of the limitations discussed above, existing pretraining tasks often fail to effec-
841 tively capture the diverse patterns of network traffic behavior. These methods struggle to model
842 the semantics across packets, leading to significant constraints in their ability to learn and represent
843 complex network interactions. To evaluate this issue, we introduce a **Field Understanding Task**,
844 which aims to predict key header fields of packets within a flow (such as the sequence number).
845 This task evaluates whether current models can truly capture the underlying traffic behavior patterns
846 and understand the finer details of network communication. Field Understanding Tasks show that
847 existing methods still face substantial challenges in capturing the context within a flow. This inabil-
848 ity to fully grasp the flow-level semantics impacts the performance of these models on downstream
849 tasks, making their results less reliable for network traffic analysis and prediction. Our proposed
850 task provides a more effective way to evaluate the model's understanding of flow-level interactions,
851 enhancing its ability to learn and generalize across various network behaviors.
852853 B MORE DETAILS OF OUR METHOD
854
855856 B.1 FLOW CONSTRUCTION
857
858859 To construct semantically meaningful flows from raw packet data, we apply protocol-specific rules
860 according to standard practices outlined in RFCs and previous works. The flow construction pro-
861 cess is based on the five-tuple: `srcIP`, `dstIP`, `srcPort`, `dstPort`, `protocol`, with
862 additional considerations depending on the transport layer protocol.
863864 We apply protocol-specific rules based on both packet semantics and timeout heuristics. As shown
865 in Table 10, different protocols adopt distinct termination and reinitialization criteria. For instance,
866 TCP flows are explicitly closed by a four-way handshake or reset flag, while UDP and ICMP rely
867 on timeout-based or field-change-based segmentation. These rules help segment raw traffic into
868 coherent flow units for downstream analysis.
869

864
865
866
Table 10: **Protocol-specific Rules for Flow Construction.**
867

Protocol	Flow Termination Condition	New Flow Trigger
TCP	Four-way Handshake (FIN + FIN + ACK) Connection Reset (RST packet) Active Timeout (Flow duration exceeds 1800s)	New SYN + ACK Connection Active Timeout Expiration
UDP	Inactive Timeout (Flow duration exceeds 15s)	Inactive Timeout Expiration
ICMP	Change in ICMP Type Change in ICMP Code	Any change in Type or Code
Others	Flow duration exceeds 1800 seconds	Timeout Expiration

875
876
877 B.2 FLOWLET GENERATION
878879 After flow construction, we perform the Flowlet Generation. We also describe it in Algorithm 1
880 The Flowlet Generation Algorithm dynamically partitions a flow into flowlets based on inter-packet
881 arrival time. It operates as follows:

- **Initialization:** For each network flow $F = \{\text{pkt}_1, \dots, \text{pkt}_n\}$ with timestamps $\{\tau_1, \dots, \tau_n\}$, we compute the average inter-arrival time of the first three packets, i.e., $\theta_3 = \frac{1}{2}[(\tau_2 - \tau_1) + (\tau_3 - \tau_2)]$. This value is used as the initial threshold θ for segmentation. If $n \leq 3$, the entire flow is treated as a single Flowlet.
- **Segmentation:** For each subsequent packet pkt_i ($i > 3$), we calculate the inter-arrival time $t_i = \tau_i - \tau_{i-1}$. If $t_i > \theta_{i-1}$, we create a segmentation: the previous packet pkt_{i-1} ends the current Flowlet \mathcal{F}_j , and pkt_i begins a new one \mathcal{F}_{j+1} . Otherwise, pkt_i is appended to the current \mathcal{F}_j .
- **Threshold Update:** After each decision, we update the threshold θ_i using all observed inter-arrival times up to index i , i.e., $\theta_i = \frac{1}{|W_i|} \sum_{t \in W_i} t$, where W_i is the window of past IATs. This allows the threshold to adapt dynamically to local flow patterns.

895
896 This adaptive thresholding approach allows the segmentation process to adjust to diverse traffic
897 dynamics. For instance, traffic patterns such as HTTP request-response cycles or video streaming
898 often exhibit short bursts followed by longer silent gaps. By capturing such timing structures,
899 Flowlet segmentation enables the model to better align with the logical behavior units within net-
900 work communication, thus enhancing the semantic granularity of traffic representation.901
902 **Algorithm 1** Flowlet Generation

903 1: **Input:** Flow $F = \{\text{pkt}_1, \dots, \text{pkt}_n\}$ with arrival timestamps $\{\tau_1, \dots, \tau_n\}$
904 2: **Output:** Flowlets $\{\mathcal{F}_1, \dots, \mathcal{F}_k\}$
905 3: **Initialize:** $\mathcal{F} \leftarrow \{\text{pkt}_1\}$, $W \leftarrow \emptyset$, $\text{flowlets} \leftarrow \emptyset$
906 4: **for** $i \leftarrow 2$ to n **do**
907 5: $t_i \leftarrow \tau_i - \tau_{i-1}$
908 6: **if** $i > 3$ **and** $t_i > \theta_{i-1}$ **then**
909 7: Append \mathcal{F} to flowlets
910 8: $\mathcal{F} \leftarrow \{\text{pkt}_i\}$
911 9: **else**
912 10: Append pkt_i to \mathcal{F}
913 11: **end if**
914 12: Append t_i to W
915 13: $\theta_i \leftarrow \frac{1}{|W|} \sum_{t \in W} t$
916 14: **end for**
917 15: Append remaining \mathcal{F} to flowlets

918 B.3 KEY PROTOCOL HEADER FIELDS IN MASKED FIELD MODEL
919920 Table 11 lists the key fields commonly found in standard network protocols. These fields carry rich
921 semantic and structural information that can be leveraged by traffic analysis models.
922923 For example, fields such as port numbers and protocol types provide fundamental information about
924 the directionality and service type of a packet, helping models distinguish between client-server
925 roles or application types.
926927 Sequence Number and Acknowledgment Number in the TCP header reflect the transmission order
928 and reliability mechanisms of the protocol, offering temporal cues to infer packet sequences and
929 session continuity.
930931 The Total Length field, which indicates the size of an entire packet, has been demonstrated
932 to serve as an effective signature for encrypted traffic classification in prior studies Ede-
933 BCRDLCSP20FlowPrint, MillerHJT14.
934935 Furthermore, TCP control flags (e.g., SYN, ACK, FIN, RST) encode connection state transitions
936 (e.g., handshake, termination), enabling models to learn flow dynamics and session boundaries.
937938 Similarly, ICMP’s Type and Code fields identify message semantics (e.g., echo request/reply, desti-
939 nation unreachable), while the minimal set of fields in UDP (primarily source and destination ports)
940 still conveys important endpoint semantics.
941942 Table 11: Key fields in common protocol.
943944

Protocol	Key Fields
IP	Version, Total Length, Protocol, IPID
TCP	Port Number, Sequence Number, Flag Acknowledgment Number, Window Size
UDP	Port Number
ICMP	Type, Code

945 C MORE DETAILS IN EXPERIMENT SETUP
946947 C.1 MORE DETAILS IN PRE-TRAINING DATASET CONSTRUCTION
948949 We describe the data preprocessing pipeline used during the pre-training stage of FlowletFormer.
950951 **Flow Construction.** We first parsed raw PCAP files to construct flows based on five-tuples and
952 protocol-specific rules which ensure semantically coherent flow boundaries. Each flow was saved
953 as an individual PCAP file for subsequent processing.
954955 **Flowlet Segmentation.** To better reflect the temporal structure and traffic behavior from appli-
956 cation layer, we further segmented each flow into multiple flowlets. Specifically, we calculated
957 inter-packet arrival times (IATs) and initiated a new flowlet whenever the IAT exceeded a threshold.
958 This segmentation captures distinct behavioral units within each flow and enables the model to learn
959 fine-grained communication patterns.
960961 **Tokenization.** For each packet in a flowlet, we removed the Ethernet header and retained the first 64
962 bytes starting from the network layer. These bytes were tokenized using Field Tokenization, where
963 individual fields in protocol headers (e.g., IP version, TTL, TCP flags) are identified and converted
964 into semantically meaningful tokens. This tokenization approach preserves protocol semantics while
965 producing a consistent and structured input format for the model.
966967 Table 12 summarizes the pre-training datasets used in this work, including their sizes, number of
968 flows, and supported protocols.
969

972
973
974
975 Table 12: Overview of Pre-training Datasets.
976
977

Dataset	Size	Flow Number	Protocol
ISCX-VPN2016-NonVPN	10.4G	74,184	TLS1.2, SFTP, SSDP, SNMP, NTP, MDNS, HTTP, GQUIC...
CIC-IDS2017-Monday	11G	303,436	HTTP, HTTPS, FTP, SSH, email protocols...
WIDE-2024/1/1	9.6G	2,322,172	FTP, SSH, IPsec, HTTP, TLS1.2, TLS1.3, GRE, Email Protocol...

978
979 C.2 MORE DETAILS IN FINE-TUNING DATASET CONSTRUCTION
980981 To ensure fair comparison and reproducibility, we describe the data preprocessing pipeline used
982 during the fine-tuning stage of FlowletFormer.983 **Data Collection and Filtering.** We collected raw PCAP files corresponding to the eight downstream
984 tasks. Flows were constructed based on five-tuples (srcIP, dstIP, srcPort, dstPort, protocol), and each
985 flow was saved as a separate PCAP file.986 Flows were then organized by traffic category. To facilitate manageable storage and training, large
987 files were split into smaller ones (approximately 1,000 packets each). Categories with fewer than 10
988 samples were discarded, and a maximum of 500 samples per class was retained to ensure balanced
989 representation.990 **Data Anonymization and Randomization.** To mitigate the risk of shortcut learning and reduce the
991 model’s dependence on protocol-specific artifacts, we performed the following anonymization steps
992 on each flow:

- 993
-
- 994
- Replaced all IP addresses with randomly generated addresses;
 - Randomized source and destination ports while preserving client/server roles;
 - Adjusted TCP timestamps by introducing a random base time, but preserving the relative
995 inter-packet timing.

996 **Tokenization.** We selected the first five packets of each flow and converted their contents to input
997 tokens. Each packet was tokenized by retaining the first 64 tokens.1000 Table 13 provides an overview of all downstream tasks used for fine-tuning FlowletFormer, includ-
1001 ing dataset names, number of flows, number of classes, and example labels.
10031004
1005 Table 13: Overview of Fine-Tuning Tasks and Datasets.
1006

Task	Dataset	Flow Number	Class Number	Label
Service Type Identification	ISCX-VPN (Service) ISCX-Tor2016	1,500 2,922	6 8	VPN-Chat,VPN-Email,VPN-Ftp... Audio, Browsing, Chat...
Application Classification	ISCX-VPN (App)	3,289	10	VPN-Youtube,VPN-Voipbuster,VPN-Vimeo...
Website Fingerprinting	CSTNET-TLS	46,375	120	acm.org,adobe.com,alibaba.com...
Browser Classification	Browser	2,000	4	Chrome,Firefox,Internet,UC
Malware Classification	USTC-TFC	8,000	16	Miuref,FTP,Gmail...
Traffic Classification	CIC-IDS2017	6,000	12	Benign,Botnet,DDoS...
IoT Classification	CIC-IoT2022	4,931	12	Attack_Flood,Idle,Interaction_Audio...

1016
1017 C.3 MORE DETAILS IN IMPLEMENTATION
10181019 In this experiment, we employ multi-GPU parallel in pre-training. A total of six GPUs are used for
1020 distributed training, with a batch size set to 16, resulting in an overall batch size of 96. The total
1021 number of training steps is 200,000, with model checkpoints saved every 10,000 steps. The Adam
1022 optimizer is chosen, with an initial learning rate of 2e-5 and a warm-up ratio of 0.1 to ensure stability
1023 during the initial stages of training.1024 To maintain consistency with pre-training, the fine-tuning data is processed in the same input format
1025 as the pre-training data. The packets in the flowlets are directly concatenated without [SEP] token
for separation, meaning all tokens share the same segment identifiers. During the fine-tuning stage,

1026 we select the first five packets of each network flow as the model input and extract the first 64
 1027 tokens following the Ethernet header of each packet. The dataset is split into train/validation/test
 1028 sets with an 8:1:1 ratio. The model was trained for up to 20 epochs on each dataset using the
 1029 AdamW optimizer with a learning rate of 6e-5, with early stopping triggered if the F1 score did not
 1030 improve for 4 consecutive epochs.

1031 The proposed method is implemented using PyTorch 2.3.1 and UER (Zhao et al., 2019) and trained
 1032 on a server with 8 NVIDIA Tesla V100S GPUs.

1033 To comprehensively evaluate the performance of classification models, we adopt widely used met-
 1034 rics, accuracy (AC), precision (PR), recall (RC), and F1 score (F1).

1035 In our evaluation, precision, recall, and F1 score are macro-averaged to ensure equal consideration
 1036 of all classes regardless of their frequency.

1037

1038 D MORE ABLATION STUDY

1039 To support the figures in the main text and further illustrate the robustness of our approach, we
 1040 provide complete numerical results of the ablation study across all eight downstream datasets, as
 1041 shown in Table 14 and Table 15.

1042 To thoroughly investigate the contribution of each component in **FlowletFormer**, we conducted a
 1043 series of ablation experiments. The results in Table 14 and Table 15 report the performance of the
 1044 full model and various degraded versions, where specific modules were removed.

1045

1046 Impact of Flowlet and Field Tokenization (FL). Removing the Flowlet and Field Tokenization
 1047 module (w/o FL) led to significant performance drops on most datasets. In this variant, the traf-
 1048 fic representation and tokenization revert to the burst and BPE tokenization. For example, on the
 1049 ISCX-Tor2016 dataset, the accuracy decreased from 0.9078 to 0.8328 and the F1-score from 0.8463
 1050 to 0.6924. The effect is even more pronounced on the Browser dataset, where accuracy dropped
 1051 from 0.7083 to 0.3700 and F1-score from 0.6932 to 0.3099. These results highlight the critical role
 1052 of Flowlet segmentation and field-aware tokenization in capturing temporal dependencies and con-
 1053 textual coherence within sessions. By introducing Flowlets, the model learns to represent traffic in
 1054 a behavior-aware manner, which facilitates more robust classification of dynamic network flows.

1055

1056 Impact of Masked Field Model (MFM). The removal of the masked field modeling task (w/o
 1057 MFM) has dataset-specific effects. For instance, on the ISCX-VPN(Service) dataset, accuracy
 1058 dropped dramatically from 0.9578 to 0.5467, indicating that MFM plays a critical role in model-
 1059 ing datasets with rich and structured protocol field information. It likely helps the model capture
 1060 inter-field dependencies and learn which fields are important for traffic differentiation. In contrast,
 1061 datasets like CSTNET-TLS and CIC-IDS2017 showed less degradation, suggesting that those tasks
 1062 are less sensitive to fine-grained field semantics.

1063

1064 Impact of Flowlet Prediction Task (FPT). Removing the Flowlet Prediction Task (w/o FPT)
 1065 caused performance degradation across several datasets, though less severe than w/o FL or w/o
 1066 MFM. For example, in ISCX-Tor2016, accuracy dropped from 0.9078 to 0.8973 and F1-score from
 1067 0.8463 to 0.8052. This indicates that FPT serves as an effective auxiliary task, guiding the model
 1068 to learn patterns in the temporal evolution of traffic flows, which indirectly enhances downstream
 1069 classification.

1070

1071 Impact of Protocol Stack Alignment-Based Embedding (PE). The removal of the protocol em-
 1072 bedding layer (w/o PE) resulted in a consistent but relatively moderate drop across datasets. This
 1073 suggests that while PE enhances the model’s ability to capture protocol-layer semantics, it is not the
 1074 main performance bottleneck.

1075

1076 Impact of Pretraining (PT). Eliminating the pretraining stage (w/o PT) caused catastrophic per-
 1077 formance degradation on all datasets. For example, on ISCX-VPN(Service), accuracy fell from
 1078 0.9578 to 0.5467 and F1-score from 0.9493 to 0.3949. These results emphasize the essential role
 1079 of pretraining in learning generalizable traffic representations and initializing the model with better
 parameter priors for downstream tasks.

1080 Table 14: **Ablation study results on ISCXVPN2016, ISCX-Tor2016, and CSTNET-TLS 1.3**
1081 **datasets.** The abbreviations are explained as follows, FL: Flowlet and Field Tokenization, MFM:
1082 Masked Field Model, FPT: Flowlet Prediction Task, PE: Protocol Stack Alignment-Based Embed-
1083 ding Layer and PT: Pre-Training.

1085 Dataset	1086 ISCX-VPN(Service)				1087 ISCX-Tor2016				1088 ISCX-VPN(App)				1089 CSTNET-TLS			
1085 Metric	1086 AC	1086 PR	1086 RC	1086 F1	1087 AC	1087 PR	1087 RC	1087 F1	1088 AC	1088 PR	1088 RC	1088 F1	1089 AC	1089 PR	1089 RC	1089 F1
w/o FL	0.9133	0.9077	0.8983	0.8995	0.8328	0.6978	0.6892	0.6924	0.7872	0.7555	0.6988	0.7085	0.8025	0.7943	0.7795	0.7820
w/o MFM	0.5467	0.5429	0.5323	0.4830	0.4505	0.1790	0.3300	0.2304	0.8146	0.7604	0.7257	0.7341	0.8051	0.8024	0.7853	0.7886
w/o FPT	0.9133	0.8936	0.9138	0.9010	0.8973	0.8088	0.8145	0.8052	0.8055	0.7370	0.7021	0.7057	0.8329	0.8344	0.8162	0.8171
w/o PE	0.9000	0.9087	0.8656	0.8804	0.8938	0.8251	0.8145	0.8165	0.8298	0.7530	0.7348	0.7229	0.8484	0.8404	0.8323	0.8325
w/o PT	0.5467	0.4278	0.4278	0.3949	0.1706	0.0213	0.1250	0.0364	0.4043	0.2689	0.2678	0.2365	0.7622	0.7602	0.7357	0.7358
FlowletFormer	0.9578	0.9539	0.9461	0.9493	0.9078	0.8411	0.8651	0.8463	0.8328	0.7859	0.7507	0.7553	0.8518	0.8506	0.8353	0.8377

1092
1093 Table 15: Ablation study results on Browser, USTC-TFC, CIC-IDS2017, and CIC-IoT2022 datasets.
1094

1095 Dataset	1096 Browser				1097 USTC-TFC				1098 CIC-IDS2017				1099 CIC-IoT2022			
1095 Metric	1096 AC	1096 PR	1096 RC	1096 F1	1097 AC	1097 PR	1097 RC	1097 F1	1098 AC	1098 PR	1098 RC	1098 F1	1099 AC	1099 PR	1099 RC	1099 F1
w/o FL	0.3700	0.2787	0.3700	0.3099	0.9600	0.9680	0.9600	0.9598	0.8850	0.8870	0.8850	0.8835	0.8401	0.7881	0.7936	0.7875
w/o MFM	0.6600	0.6006	0.6600	0.5976	0.9650	0.9723	0.9650	0.9653	0.4505	0.1790	0.3300	0.2304	0.8968	0.8506	0.8543	0.8473
w/o FPT	0.6850	0.7932	0.6850	0.6428	0.9663	0.9696	0.9663	0.9658	0.9044	0.8189	0.9114	0.8429	0.9049	0.8765	0.8788	0.8736
w/o PE	0.6800	0.7486	0.6800	0.6745	0.9650	0.9689	0.9650	0.9648	0.9044	0.8428	0.9098	0.8653	0.8988	0.8660	0.8593	0.8587
w/o PT	0.2700	0.3138	0.2700	0.1387	0.9563	0.9680	0.9562	0.9571	0.1706	0.0213	0.1250	0.0364	0.8664	0.8073	0.8174	0.8089
FlowletFormer	0.7083	0.7755	0.7083	0.6932	0.9742	0.9761	0.9742	0.9741	0.9200	0.9440	0.9200	0.9109	0.9177	0.8919	0.8820	0.8808

E MORE FEW-SHOT ANALYSIS

1103
1104 To evaluate the capability of FlowletFormer under data-scarce conditions, we conduct a few-shot
1105 learning analysis. The results are reported in Table 16 and Table 17. As shown, FlowletFormer
1106 achieves competitive performance under full supervision (100% training data). More importantly,
1107 it consistently maintains relatively high F1-scores even when the amount of training data is signifi-
1108 cantly reduced.

1109 For example, on the ISCX-VPN(Service) dataset, FlowletFormer achieves an F1-score of 0.8106
1110 using only 10% of the training data, significantly outperforming traditional models such as App-
1111 Scanner and BIND. This indicates the strong generalization ability of FlowletFormer in few-shot
1112 settings.

1113 However, on the Browser dataset, the performance of FlowletFormer drops more substantially under
1114 limited data, suggesting that the traffic patterns in this dataset are more complex and require more
1115 data to learn effectively.

1121 Table 16: Few-shot Analysis (F1-score) on ISCXVPN2016, ISCX-Tor2016, and CSTNET-TLS 1.3
1122 datasets.

1124 Dataset	1125 ISCX-VPN(Service)				1126 ISCX-Tor2016				1127 ISCX-VPN(App)				1128 CSTNET-TLS			
1124 Size	1125 100%	1125 40%	1125 20%	1125 10%	1126 100%	1126 40%	1126 20%	1126 10%	1127 100%	1127 40%	1127 20%	1127 10%	1128 100%	1128 40%	1128 20%	1128 10%
AppScanner	0.8520	0.7512	0.6074	0.5065	0.7598	0.7456	0.6195	0.5401	0.6815	0.4382	0.5320	0.2222	0.6916	0.6416	0.5661	0.4018
CUMUL	0.6657	0.5244	0.3873	0.4511	0.6332	0.5749	0.5252	0.5775	0.4298	0.3081	0.2673	0.1550	0.5313	0.4598	0.3659	0.2982
FSNet	0.7586	0.8384	0.7078	0.3931	0.5388	0.5426	0.4080	0.5743	0.4972	0.4795	0.4752	0.2738	0.4997	0.7132	0.6662	0.5946
GraphDApp	0.6363	0.5713	0.6137	0.2762	0.6155	0.5780	0.4622	0.4895	0.4055	0.2427	0.2203	0.1944	0.5931	0.4948	0.4372	0.3303
ET-BERT	0.8572	0.3980	0.2450	0.2583	0.7105	0.4959	0.3749	0.3512	0.7047	0.6465	0.5728	0.4631	0.7785	0.7039	0.6117	0.4819
YaTC	0.8877	0.0801	0.0721	0.0947	0.7212	0.6587	0.4994	0.0721	0.7340	0.6489	0.5939	0.1805	0.8197	0.7538	0.6375	0.5040
TrafficFormer	0.8373	0.6827	0.5595	0.3909	0.6932	0.4989	0.3506	0.3674	0.7221	0.6085	0.5404	0.4320	0.7675	0.7084	0.6277	0.5660
FlowletFormer	0.9493	0.8956	0.7356	0.8106	0.8463	0.7829	0.7166	0.5917	0.7553	0.8009	0.6224	0.5813	0.8377	0.8171	0.7273	0.6249

1134 Table 17: Few-shot Analysis (F1-score) on Browser, USTC-TFC, CIC-IDS2017, and CIC-IoT2022
 1135 datasets.

1136	Dataset	Browser				USTC-TFC				CIC-IDS2017				CIC-IoT2022			
1137	Size	100%	40%	20%	10%	100%	40%	20%	10%	100%	40%	20%	10%	100%	40%	20%	10%
1139	AppScanner	0.5846	0.3756	0.3524	0.1838	0.8195	0.7407	0.6799	0.5733	0.8947	0.8158	0.7924	0.7265	0.8001	0.6925	0.5149	0.4027
1140	CUMUL	0.4968	0.3986	0.3742	0.1500	0.5833	0.4654	0.3753	0.3631	0.7131	0.5602	0.5031	0.4991	0.6239	0.5582	0.5479	0.2113
1141	FSNet	0.5358	0.4364	0.4444	0.1852	0.8093	0.6406	0.5563	0.7091	0.8447	0.7558	0.7244	0.5827	0.7835	0.5518	0.6089	0.4857
1142	GraphDApp	0.4010	0.3238	0.2484	0.2875	0.8010	0.7729	0.6429	0.5219	0.8562	0.8266	0.6106	0.6531	0.5759	0.4627	0.3642	0.1766
1143	ET-BERT	0.2680	0.3616	0.2280	0.2500	0.9715	0.9669	0.9286	0.8950	0.8830	0.8764	0.7346	0.7405	0.8088	0.7349	0.5630	0.4338
1144	YaTC	0.5285	0.4761	0.4176	0.1613	0.9712	0.9480	0.9655	0.9159	0.9064	0.8854	0.6714	0.5902	0.8085	0.7243	0.7665	0.0758
1145	TrafficFormer	0.2352	0.1520	0.1645	0.1154	0.9758	0.9703	0.9406	0.9432	0.8841	0.8725	0.7622	0.6918	0.8297	0.7578	0.5437	0.5190
1146	FlowletFormer	0.6932	0.6230	0.6553	0.3095	0.9741	0.9553	0.9457	0.9380	0.9109	0.8997	0.8610	0.8510	0.8808	0.8237	0.8180	0.6152

F MORE CLARIFICATION OF WORD ANALOGIES SIMILARITY ANALYSIS

To further clarify the purpose and design of the **Word Analogies Similarity Analysis** in Section 4.6, we emphasize that this experiment is not a classification task, but rather a semantic probing analysis inspired by methodologies from natural language processing.

In NLP, analogical reasoning tasks (e.g., “*king - man + woman ≈ queen*”) are commonly used to evaluate whether pretrained language models capture meaningful token relationships. Following this intuition, we designed an analogous probing task in the context of network traffic to examine the semantic structure of token embeddings learned during pretraining.

Specifically, we selected three well-known HTTP-related port numbers (**80**, **8080**, and **8000**) and analyzed their relative positions in the learned embedding space using cosine similarity. These ports are commonly used for HTTP services and frequently co-occur in real-world traffic, thus forming a semantically coherent unit.

Our experimental results show that FlowletFormer captures the semantic similarity between these ports more accurately than baseline models. This suggests that the model has developed a deeper understanding of protocol-layer semantics and is capable of organizing related concepts (e.g., similar ports) in a meaningful embedding space.

G MORE DEEP DIVE

In the Deep Dive, we thoroughly analyze three key aspects: first, the impact of flowlet thresholds on downstream task performance; second, the effect of the masked field ratio on model performance; and finally, we evaluate the performance of FlowletFormer under traffic corruption scenarios.

G.1 IMPACT OF FLOWLET THRESHOLD

To analyze the impact of the threshold, we first examine the distribution of inter-arrival times (IATs). The IATs exhibit a highly skewed distribution, with a mean of 1.89s and a large standard deviation of 36.56s. While the minimum and median values are extremely small (0 and 0.000138s, respectively), the maximum reaches nearly 1800s, indicating a heavy-tailed pattern. The quantiles further highlight this imbalance: 75% of IATs are below 0.0028s, 95% below 0.19s, and 99% below 10.22s, yet the 99.9% quantile rises sharply to 594.11s. These statistics suggest that most packet arrivals are separated by very short intervals, but a small fraction of large gaps dominate the tail, which makes threshold selection particularly sensitive.

Therefore, we select 0.02s, 0.2s, 2.0s, and 10s as thresholds for sensitivity analysis. We plotted the CDF of packets within Flowlets at different threshold values. As shown in Figure 5, when the threshold is set to 0.02s, about 60% of the Flowlets contain only a single packet, while at a threshold of 10s, only about 15% of the Flowlets contain one packet, representing two extreme cases.

We pre-trained FlowletFormer on datasets constructed with different flowlet thresholds and fine-tuned it on the same downstream task datasets. As shown in Table 18, extreme threshold values performed poorly, while moderate thresholds exhibited better performance, with our adaptive method

Figure 5: The CDF of Packets within Flowlets at Different Threshold

achieving the best results. This suggests that an appropriate flowlet threshold strikes a balance between capturing contextual information and suppressing noise, thereby enhancing model performance. On the other hand, extreme thresholds either lead to the loss of contextual information or introduce unnecessary noise, negatively impacting the model’s learning effectiveness. Our adaptive method dynamically adjusts the threshold based on the actual data, allowing it to more accurately capture key traffic patterns and ultimately improving performance on downstream tasks.

Table 18: Performance Comparison of FlowletFormer with Different Flowlet Thresholds

Threshold	AC	PR	RC	F1
Ours	0.8518	0.8506	0.8353	0.8377
0.02s	0.8419	0.7902	0.7633	0.7707
0.2s	0.8424	0.8445	0.8237	0.8265
2s	0.8454	0.8485	0.8264	0.8313
10s	0.8413	0.8346	0.8077	0.8104

G.2 IMPACT OF MASKED FIELD RATIO

In the Masked Field Model, we selectively mask a proportion of specific field tokens from the total mask tokens. To assess the effect of this masking, we evaluate five different ratios: 10%, 30%, 50%, 70%, and 90%. Table 19 illustrates the relationship between the masking ratio and the performance of the model. Our findings show that masking a moderate proportion of field tokens (e.g. 30% to 50%) leads to improvements in model performance, as it allows the model to learn essential traffic patterns while still retaining a reasonable amount of contextual information. However, as the masking ratio increases, particularly beyond 70%, the performance of the model begins to degrade. This decline occurs because an excessively high proportion of key field tokens are masked, causing the model to focus too heavily on these crucial fields while ignoring other significant aspects of the traffic data. Consequently, the model loses important context and inter-field relationships, which are necessary for accurate traffic classification and understanding.

Table 19: Performance Comparison of FlowletFormer with Different Masked Field Ratio

Threshold	AC	PR	RC	F1
0.1	0.8318	0.8492	0.8177	0.8201
0.3	0.8467	0.8425	0.8286	0.8307
Ours(0.5)	0.8518	0.8506	0.8353	0.8377
0.7	0.8506	0.8393	0.8293	0.8313
0.9	0.8366	0.8385	0.8153	0.8186

1242 G.3 IMPACT OF CORRUPTION TRAFFIC DATA
1243

1244 We evaluate the model’s robustness in real-world traffic corruption scenarios that could occur in
1245 practical network environments. Specifically, we examine four types of traffic corruption: (1) packet
1246 corruption, (2) missing headers, (3) packet loss, and (4) header corruption. In type 1, we simulate
1247 a scenario where 20% of the packets in the flow experience corruption, potentially due to network
1248 interference or data transmission errors. In type 2, 20% of the packets lose their IP header, which is
1249 crucial for routing information, causing a loss of important contextual data. Type 3 simulates packet
1250 loss, where 20% of the packets are missing entirely, resulting in incomplete flow information. In type
1251 4, 20% of the packet headers are corrupted, leading to potential misinterpretation of the protocol-
1252 specific information.

1253 Table 20: Impact of Corruption on FlowletFormer Performance
1254

	AC	PR	RC	F1
Original	0.8518	0.8506	0.8353	0.8377
Corr. 1	0.8226	0.8218	0.8072	0.8068
Corr. 2	0.6826	0.7433	0.669	0.6852
Corr. 3	0.8154	0.8153	0.8017	0.8001
Corr. 4	0.784	0.7897	0.7693	0.7688

1262 Table 20 demonstrates that the model remains robust and performs well in the three scenarios,
1263 maintaining stable accuracy and effective traffic pattern learning. This robustness can be attributed
1264 to the model’s ability to handle partial information, as it is still able to extract useful features from
1265 the remaining valid packets and headers. However, the model struggles significantly with Method
1266 2, where headers are missing. The absence of protocol headers disrupts the encoding process in
1267 the protocol stack embedding layer, which is crucial for understanding the hierarchical structure
1268 of network traffic. This causes a sharp decline in performance, as the model loses the ability to
1269 interpret the flow’s structural context properly. Our analysis highlights that while the model can
1270 handle some types of data corruption—such as packet corruption, packet loss, and partial header
1271 loss—it struggles with complete header loss, which severely impacts its ability to learn from the
1272 hierarchical structure of network protocols. This finding suggests that while the model is generally
1273 robust to real-world imperfections in traffic data, it is essential to design more resilient mechanisms
1274 for dealing with missing or corrupted headers, particularly in cases where the header plays a critical
1275 role in interpreting the traffic semantics.

1276 H MORE COMPUTATIONAL COST AND COMPLEXITY
1277

1278 Table 21 reports the full comparison of FlowletFormer against two baseline models (ET-BERT and
1279 TrafficFormer) across the three experimental phases: pretraining (6 × V100 GPUs, 200 K steps),
1280 fine-tuning (1 × V100 GPU, full epochs), and inference (throughput in samples/sec). All runs were
1281 carried out under identical hardware and configuration settings to ensure a fair evaluation of runtime,
1282 per-step/epoch granularity, and GPU memory usage.

1283 Table 21: Computational efficiency comparison across pretraining, fine-tuning, and inference.
1284

Phase	Model	GPUs	Time	Unit/Granularity	GPU Memory (GB)
Pretraining	FlowletFormer	6	42 h	75.67 s / 100 steps	28
	ET-BERT	6	41 h	73.87 s / 100 steps	28
	TrafficFormer	6	45 h	82.00 s / 100 steps	28
Fine-tuning	FlowletFormer	1	1,153 s	57.65 s / epoch	17
	ET-BERT	1	1,177 s	58.85 s / epoch	17
	TrafficFormer	1	1,158 s	57.90 s / epoch	17
Inference	FlowletFormer	1	—	150.04 samples/sec	—
	ET-BERT	1	—	148.92 samples/sec	—
	TrafficFormer	1	—	150.45 samples/sec	—

1296

I LIMITATION

1297
1298 Though FlowletFormer achieves fine-grained behavioral analysis within each flowlet, it still has
1299 several limitations.1300 First, the fixed maximum input length forces us to split long flows into shorter flowlets. While this
1301 enables detailed study of intra-flow behaviors, it prevents the model from learning unified patterns
1302 over entire long flows, which may be crucial for detecting certain sophisticated or slow-evolving
1303 anomalies.1304 Second, our Field Tokenization treats each protocol field as an independent “word” analogous to
1305 treating every single Chinese character as a separate token. Although this captures the finest-grained
1306 units, it cannot model semantic entities that span multiple fields. In future work, we could adopt
1307 Chinese word segmentation techniques to merge common adjacent fields into higher-level tokens1308
1309 Third, because FlowletFormer is based on the BERT architecture, both pretraining and real-time
1310 inference demand substantial GPU resources. This high computational and memory overhead may
1311 limit deployment in resource-constrained environments or scenarios requiring very high throughput.1312 Lastly, despite introducing protocol-stack alignment and field-aware pretraining objectives, the in-
1313 ternal decision process of FlowletFormer remains difficult to interpret and audit. This lack of trans-
1314 parency can be problematic in high-security settings where explainability and trust are paramount.1315
1316

J THE USE OF LARGE LANGUAGE MODELS (LLMs)

1317
1318 During the preparation of this manuscript, we employed a large language model (LLM) to assist
1319 with language refinement. In the early stages, the LLM was used for grammar and spelling checks
1320 as well as automatic corrections. At later stages, it was consulted to polish certain sentences for
1321 improved clarity, readability, and academic style. All outputs were carefully reviewed and refined
1322 by the authors. Importantly, the LLM was not used to generate ideas, conduct experiments, perform
1323 analyses, or draw conclusions.1324
1325 **Broader Impacts** While FlowletFormer can significantly enhance the accuracy of anomaly detec-
1326 tion and threat mitigation, thereby contributing to more secure and reliable networks, it also carries
1327 potential risks. On the positive side, better traffic classification aids in detecting malicious activities
1328 (e.g., DDoS, malware propagation) and supports privacy-preserving analytics by filtering out sensi-
1329 tive flows before further processing. On the negative side, the same techniques could be repurposed
1330 for intrusive traffic monitoring or profiling of users, raising privacy and ethical concerns. To miti-
1331 gate such risks, we advocate for transparent deployment policies, strict access controls, and regular
1332 audits of model usage.