
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

RETHINKING TRAFFIC REPRESENTATION:
PRE-TRAINING MODEL WITH FLOWLETS FOR TRAFFIC
CLASSIFICATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Network traffic classification with pre-training has achieved promising results, yet
existing methods fail to represent cross-packet context, protocol-aware structure,
and flow-level behaviors in traffic. To address these challenges, this paper rethinks
traffic representation and proposes Flowlet-based pre-training for network analy-
sis. First, we introduce Flowlet and Field Tokenization that segments traffic into
semantically coherent units. Second, we design a Protocol Stack Alignment Em-
bedding Layer that explicitly encodes multi-layer protocol semantics. Third, we
develop two pre-training tasks motivated by Flowlet to enhance both intra-packet
field understanding and inter-flow behavioral learning. Experimental results show
that FlowletFormer significantly outperforms existing methods in classification
accuracy, few-shot learning and traffic representation. Moreover, by integrating
domain-specific network knowledge, FlowletFormer shows better comprehension
of the principles of network transmission (e.g., stateful connections of TCP), pro-
viding a more robust and trustworthy framework for traffic analysis.

1 INTRODUCTION

Network traffic refers to data transmitted across networks, including the exchange of packets and
other forms of device communication. It consists of both payload and metadata that provide crit-
ical insights into network behavior. Monitoring and analyzing traffic is essential for both network
management and security (Papadogiannaki & Ioannidis, 2022; Tang et al., 2020), enabling network
operators to effectively tailor resource allocation, ensure quality of service, and detect malicious
activities (Gutterman et al., 2019; Hu et al., 2023; Mao et al., 2019).

Recently, pre-training methods (He et al., 2020; Zhao et al., 2023; Lin et al., 2022; Zhou et al.,
2025) have achieved superior performance in traffic classification tasks. These approaches pretrain
models on large volumes of unlabeled data to learn generalizable representations, which can then be
fine-tuned on smaller labeled datasets for specific classification tasks.

However, despite achieving promising accuracy on given datasets, existing pre-training models for
traffic classification still have significant limitations.

First, to balance the limited information in a single packet with the excessive length of entire flows,
existing methods often design packet windows as model inputs to preserve more session context
across packets. However, some designs reduce the window to a single packet, making it difficult
to capture contextual semantics, while others adopt a fixed first-N packet window, which is overly
rigid, hinders the modeling of intra-packet structures, and fails to cover diverse network behaviors,
as shown in Figure 1a. These limitations reduce the model’s ability to generalize across different
traffic patterns.

Second, existing methods often mechanically apply NLP and CV techniques to traffic representa-
tion, such as encoding packets into 4-hex tokens with subword tokenization or reshaping flows into
square images. However, these representations overlook the structural of traffic, including proto-
col field boundaries, hierarchical semantics, and sequential dependencies. As shown in Figure 1b,
the similarity of the word embedding reveals the limited ability of the model to capture semantics,
making it difficult for network operators to obtain reliable insights and interpretable representations.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

1 10 100
Packet Number

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

Pr
ob

ab
ili

ty

First 5 Packets
Burst
Ours

(a)

4-Hex Token Ours0.2

0.1

0.0

0.1

0.2

C
os

in
e

Si
m

ila
rit

y

(b)

ET-BERT YaTC TrafficFormer Ours0.0

0.2

0.4

0.6

0.8

A
cc

ur
ac

y

0.6203

0.5080

0.3652

0.7579

(c)
Figure 1: Preliminary Analysis. (a) The CDF of Packets per Packet Window. (b) Cosine Similarity
of Word Embeddings. The star marks the specific similarity between ports 80 and 8080. (c) Results
on Field Understanding Task (Prediction of Sequence Numbers). More details show in Appendix A

Third, due to the above limitations, existing pre-training tasks struggle to capture diverse traffic
behavior patterns and show clear constraints in capturing semantics cross packets. We design a
field understanding task that predicts key header fields of packets within a flow (here is sequence
number) to evaluate whether models truly capture traffic behavior patterns. Figure 1c shows that
existing methods still face considerable difficulty in understanding context within a flow, which
makes their performance on downstream tasks less reliable.

To address these challenges, we propose FlowletFormer, a BERT-based pre-training model for
network traffic analysis. Specifically, we make the following contributions:

1) We introduce Flowlet as a coherent behavioral unit that aggregates packets within a logical inter-
action. We further design Field Tokenization to convert each flowlet into semantically meaningful
tokens based on protocol header fields.

2) We propose a Protocol Stack Alignment-Based Embedding Layer that explicitly encodes the
hierarchical semantics of network protocols, enabling the model to distinguish fields across protocol
boundaries and better capture protocol-specific behaviors.

3) We design two novel pre-training tasks motivated by our novel traffic representation. The Masked
Field Model enhances field-level semantic understanding by predicting selectively masked critical
protocol fields. The Flowlet Prediction Task captures logical interactions by modeling relations
between Flowlets, such as HTTP requests and disconnections.

We evaluate FlowletFormer on 8 public datasets, achieving state-of-the-art performance on 7 of
them, with over 6% F1 improvement on 4 datasets. Moreover, field understanding tasks and word
analogies similarity analysis we propose demonstrate that FlowletFormer not only achieves higher
accuracy but also better captures protocol semantics and traffic behavior than existing methods. Our
code is available at https://anonymous.4open.science/r/FlowletFormer-CC81.

2 RELATED WORK

2.1 TRAFFIC CLASSIFICATION

Traffic classification has evolved rapidly over the past decade as networks have grown more com-
plex and management demands have increased. Early approaches relied on packet- and flow-level
statistics or rule matching, such as packet size and inter-arrival times, but these methods (Roesch,
1999; Zuev & Moore, 2005) became ineffective in encrypted environments where observable pat-
terns are concealed. Classical machine learning methods (Taylor et al., 2016; Al-Naami et al., 2016;
Panchenko et al., 2016; Sommer & Paxson, 2010) introduced classifiers such as decision trees, ran-
dom forests, and SVMs, leveraging statistical summaries of flow metrics and protocol-specific char-
acteristics. While more effective than rules, they depended heavily on feature engineering and expert
knowledge. Deep learning later enabled the direct learning of high-dimensional representations from
raw data. Lotfollahi et al. (2020) proposed a DNN that bypasses manual feature extraction, and sub-
sequent work applied CNNs, RNNs, and GNNs to traffic classification (Sirinam et al., 2018; Liu
et al., 2019; Shen et al., 2021; Schuster et al., 2017; Zhang et al., 2020). These models achieved
strong accuracy but typically required large labeled datasets, which are costly and difficult to obtain

2

https://anonymous.4open.science/r/FlowletFormer-CC81

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

in practice. Moreover, traffic classification in ML and DL relies heavily on high-quality labeled
datasets. Traffic data is inherently sensitive, and public datasets often contain various quality issues,
such as noisy or unreliable labels (Liu et al., 2022; Engelen et al., 2021). Training on such datasets
may cause models to pick up underspecification problems, including shortcut learning, overfitting to
training artifacts, or learning spurious correlations, which harms their generalization (Jacobs et al.,
2022; Arp et al., 2022).

2.2 PRE-TRAINING METHODS

Due to its strong sequence modeling capability, the Transformer architecture (Vaswani, 2017) has
been widely applied to network traffic classification. PERT (He et al., 2020), ET-BERT (Lin et al.,
2022), TrafficFormer (Zhou et al., 2025), and PTU adopt the BERT architecture (Devlin et al.,
2019) for traffic analysis, while FlowMAE (Hang et al., 2023) and YaTC (Zhao et al., 2023) em-
ploy masked autoencoders (He et al., 2022). Researchers have also explored other Transformer
variants, such as T5 (Raffel et al., 2020; Wang et al., 2024a; Zhao et al., 2025) and graph-based
Transformers (Van Langendonck et al., 2024). Beyond Transformers, Wang et al. (2024b) introduce
the Mamba architecture for more efficient traffic analysis. Zhao et al. (2025) also revealed shortcut
learnings and pitfalls of current pretraining method, including implicit flow IDs, encrypted payload,
and an unfrozen encoder.

In addition to model architectures, traffic representation is a crucial component of pre-training
pipelines. Raw traffic must first be transformed into a fixed format before being fed into a model.
Existing approaches typically segment flows into flow segment (e.g., packets, first-N packets, or
bursts), serialize these units into 4-hex strings with subword tokenization, or reshape them into
structured two-dimensional matrices for training. However, these representations often misalign
with the inherent characteristics of network traffic, making it difficult for pre-training methods to
capture semantics, protocol structures, and sequential dependencies. This highlights the need for a
new traffic representation and a corresponding pre-training model that better align with the nature
of network traffic.

3 FLOWLETFORMER

FlowletFormer introduces a novel framework that enables the model to capture fine-grained network
behaviors and hierarchical semantics in traffic. It incorporates three key components: a new traffic
representation named flowlet and field tokenization, a protocol stack alignment embedding layer to
encode hierarchical structures, and two pre-training tasks tailored to flowlets.

Figure 2: Flowlet and Field Tokenization.

3.1 FLOWLET AND FIELD TOKENIZATION

Current pre-training models often repurpose NLP-based representations and tokenization for net-
work traffic, overlooking its distinct structure and semantics. To address this, we propose Flowlet
and Field Tokenization. A flowlet aggregates consecutive packets within a flow based on inter-
arrival times, while field tokenization encodes each flowlet into tokens according to protocol header

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

boundaries. Together, they form a bridge between raw traffic and model inputs through three steps:
Flow Construction, Flowlet Generation, and Field Tokenization, as illustrated in Figure 2.

Flow Construction. Raw traffic is unordered and often mixes multiple protocols, which makes
pattern learning difficult. To impose semantic structure, we group packets using identical five-
tuples and construct flows according to the relevant RFCs (Postel, 1981b; Eddy, 2022; Postel, 1980;
1981a). More details are provided in the Appendix B.

Flowlet Generation. Consider a flow F consisting of a sequence of n packets, denoted as F =
{pkt1, pkt2, . . . , pktn}. Each packet pkti has an arrival timestamp τi. The objective of Flowlet
Generation is to segment this flow into multiple flowlets based on Inter-Arrival Time (IAT) between
consecutive packets.

Let us define the IAT between consecutive packets as ti = τi−τi−1 for i ∈ 2, 3, . . . , n. We introduce
a dynamic threshold θi to determine flowlet boundaries, which is adaptively adjusted based on the
historical IATs. Let Wi denote the IAT window up to the i-th packet. The threshold is calculated as:

θi =
1

|Wi|
∑

t∈Wi

t (1)

For each flowlet Fj = {pkta, pkta+1, . . . , pktb}, the inter-arrival times within the flowlet satisfy:

ti ≤ θi−1, ∀i ∈ {a+ 1, . . . , b}. (2)

If pktb is the last packet of flowlet Fj , and pktb+1 is the first packet of flowlet Fj+1, then:

tb+1 > θb. (3)

The algorithm begins by constructing the first flowlet from the first packet and then processes the
remaining packets sequentially. When i > 3 and the current IAT ti exceeds the threshold θi−1, a new
flowlet boundary is created. Otherwise, the packet is added to the current flowlet. The algorithm
continuously updates the window Wi and adjusts the threshold accordingly to adapt to changing
network conditions. The pseudocode is provided in the Algorithm 1.

Under this construction, flowlets serve as flow segments and coherent behavioral units, grouping
packets that belong to the same logical interaction (e.g., an HTTP request–response or a media
stream). By leveraging IAT to emphasize temporal correlations, flowlets ensure that packets trans-
mitted within the same time frame are analyzed together.

Field Tokenization. We transform Flowlets into tokens that suitable for model input. For each
packet in the flowlet, we first extract the raw bit sequences. Field tokenization then splits the
sequence according to the lengths of protocol header fields, encoding the sequence into multiple
hexadecimal tokens (e.g. 4 5 00 0034 ...). For fields longer than two bytes and payload,
we split them into multiple 4-digit hexadecimal tokens to ensure uniformity and consistency in the
model input format.

In this work, we adopt word-based tokenization (Mielke et al., 2021) rather than subword methods
(Chung et al., 2016; Sennrich et al., 2016; Luong & Manning, 2016), such as BPE (Sennrich et al.,
2016; Gage, 1994) or WordPiece (Wu et al., 2016). The motivation is that, we treat protocol
header fields as the morpheme (smallest semantic units) in traffic, similar to individual characters in
Chinese. In such languages, each character is a complete and indivisible unit of meaning. Likewise,
each protocol field inherently carries distinct and atomic semantics, and therefore should not be
further split or processed with subword tokenization.

The maximum vocabulary size, denoted as |V |, is 65,812. This includes all possible tokens: 1-hex
tokens (16 values), 2-hex tokens (256 values), 4-hex tokens (65,536 values), and five special tokens
([CLS], [SEP], [PAD], [MASK], [UNK]).

3.2 MODEL ARCHITECTURE

FlowletFormer adopts a BERT-based model architecture (Devlin et al., 2019), which consists of two
modules: an Embedding Module and a Transformer Encoder Module, as illustrated in Figure 3.

Embedding Module. Most existing pre-training models for traffic classification directly adopt the
embedding designs for NLP, including token, position, and segment embedding. However, directly

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 3: The flowchart of the FlowletFormer.

using these embeddings may overlook the unique characteristics of traffic. Unlike natural language,
traffic exhibits a layered protocol structure with distinct forms of alignment and distribution.

Thus, we introduce a Protocol Stack Alignment-Based Embedding Layer into the existing em-
bedding module. This embedding layer is specifically designed for traffic data and explicitly encodes
the protocol layer associated with each token. In particular, this embedding distinguishes between
the network layer, transport layer, and application layer based on the TCP/IP model (Kurose &
Ross, 2001), and assigns each token an embedding corresponding to its protocol layer.

This design captures the semantic differences between different protocol layers. The model can
not only process tokens based on their positions and sequential order, but also understand their
functional roles within the protocol layer. This enables a hierarchical representation of traffic.

Finally, the embedding dimension is set to D = 768 and the input tokens are calculated by the sum
of each embedding layer:

Einput = Etoken +Eposition +Esegment +Eprotocol (4)

Transformer Encoder Module. FlowletFormer is built on the BERT-Based architecture and con-
tains 12 transformer encoder layers, each with 12 multi-head self-attention heads and a position-wise
feedforward network. Residual connections and layer normalization throughout the model ensure
stable training and faster convergence. The total number of parameters is approximately 110 million.
The number of input tokens is 512, and the dimension of each token is 768.

3.3 PRE-TRAINING METHOD

We introduce two novel pre-training tasks explicitly tailored to flowlet and field tokenization: the
Masked Field Model (MFM) and the Flowlet Prediction Task (FPT). These tasks are motivated
by our novel traffic representation. The MFM leverages field tokenization to capture protocol-level
semantics, while the FPT relies on IAT-based flowlets to model relationships between behaviorally
coherent units.

Masked Field Model. The masked modeling task randomly masks tokens and predicts the masked.
Previous studies typically use this task to learn context and dependencies. However, in network traf-
fic, the context and dependencies carried by different tokens vary in importance. Random masking
may not fully capture the structural characteristics of traffic. To address this, we design a Masked
Field Model specifically for key fields. Instead of masking tokens uniformly at random, our ap-
proach focuses on protocol header fields that carry strong semantic and structural information.

During pre-training, 15% of the input tokens are masked. Half of these masked tokens are randomly
selected from the field tokens mentioned in Table 11, while the other half are randomly selected from

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

the remaining tokens. For the masked tokens, we replace them with the token [MASK], a random
token, or leave them unchanged with probabilities of 80 %, 10 %, and 10 %, respectively.

For masked tokens, FlowletFormer must predict the token based on the context during pre-training.
The loss function used is the cross-entropy loss, as shown in Equation 5.

LMFM = −
∑N

i=1
mi log(m̂i) (5)

Flowlet Prediction Task. Flowlet is generated based on the IAT between packets, which makes
Flowlet more aligned with real network interactions, providing a better representation of network
behavior and traffic patterns. For example, in a file download activity, a flow may represent the
entire process of downloading the file, while each Flowlet reflects specific behavior phases within
the network interaction, such as the request phase, download phase, and disconnection phase.

To better capture the diverse patterns in traffic, we introduce the Flowlet Prediction Task to predict
the relationships between Flowlets. During pre-training, we sample a pair of flowlets (FA, FB) and
form the pre-training instance. The pair is then drawn uniformly from three scenarios: FB is either
the immediate successor of FA in the same flow (Ordered), the immediate predecessor (Swapped),
or from a different flow. This design forces the model to learn intra-flow continuity, reverse-order
dynamics, and clear separation of unrelated flowlets.

Unlike tasks based on individual packet or burst (Lin et al., 2022; Zhou et al., 2025), this task
shifts the focus from individual packets to the relationships between behaviorally coherent Flowlets.
Its goal is to capture the temporal and behavioral patterns of network traffic beyond the low-level
semantics of individual packets.

Finally, the flowlet prediction task uses cross-entropy as the loss function, as shown in Equation 6.

LFPT = −
∑N

i=1
yi log(ŷi) (6)

Overall, the final pre-training objective is the sum of the two losses mentioned above, defined as:

L = LMFM + LFPT (7)

3.4 FINE-TUNING METHOD

FlowletFormer acquires generalizable knowledge during pre-training, learning diverse traffic pat-
terns rather than being restricted to a single task. This broader understanding improves its transfer-
ability across different downstream applications.

During fine-tuning, we train the entire model architecture (Unfrozen) so that the model can effec-
tively adapt to task-specific requirements. However, if we train only the classification head and keep
the pretrained encoder Frozen, the model suffers a sharp performance drop when the downstream
task contains traffic types that did not appear during pre-training. The unfrozen model is able to
continue learning unseen traffic patterns while preserving its general representations.

4 EXPERIMENT

4.1 EXPERIMENT SETUP

Pre-training Dataset. In this work, approximately 30GB of unlabeled raw traffic data is used for
pre-training. The dataset was sourced from three main repositories: ISCX-VPN2016 (NonVPN)
(Draper-Gil et al., 2016), CIC-IDS2017 (Monday) (Sharafaldin et al., 2018), and the WIDE back-
bone dataset (January 1, 2024) (Cho et al., 2000). As shown in Table 12, these datasets encompass a
significant variety of network application scenarios and protocols, such as web browsing with HTTP,
file downloads with FTP, email with SMTP, and video streaming with QUIC.

During pre-training dataset construction, we consistently extract 64 consecutive bytes from the be-
ginning of the IP layer of each packet as the model input, in order to cover key information from the
IP layer and above.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Fine-tuning Dataset. We employ 8 datasets for fine-tuning, corresponding to 7 different down-
stream tasks, including Service Type Identification (ISCX-VPN (Service) (Draper-Gil et al.,
2016) and ISCX-Tor2016 (Lashkari et al., 2017)), Application Classification (ISCX-VPN (App)
(Draper-Gil et al., 2016)), Website Fingerprinting (CSTNET-TLS (Lin et al., 2022)), Browser
Classification (Browser (Liu et al., 2019)), Malware Classification (USTC-TFC (Wang et al.,
2017)), Malicious Traffic Classification (CIC-IDS2017 (Sharafaldin et al., 2018)), and IoT Clas-
sification (CIC-IoT2022 (Dadkhah et al., 2022)).

During fine-tuning dataset construction, we select the first five packets of each flow and extract 64
bytes starting from the IP layer of each packet. To mitigate potential biases, we further anonymize
the packets by applying IP Address&Port randomization and TCP timestamp adjustments.

Evaluation Metrics. We adopt accuracy (AC), precision (PR), recall (RC), and F1 score as evalua-
tion metrics. Further implementation details can be found in Appendix C.

4.2 COMPARISON WITH STATE-OF-THE-ART METHODS

We compare FlowletFormer with various baselines and state-of-the-art methods. AppScanner (Tay-
lor et al., 2016) and CUMUL (Panchenko et al., 2016) are based on ML models. FSNet (Liu et al.,
2019) and GraphDapp (Shen et al., 2021) use DL models for traffic classification. ET-BERT (Lin
et al., 2022), YaTC (Zhao et al., 2023) and TrafficFormer (Zhou et al., 2025) are pre-training meth-
ods. All pre-training methods are trained on the same pre-training and fine-tuning datasets,
and the reported results are averaged over multiple runs.

As shown in Table 1 and 2, FlowletFormer outperforms all methods on 7 datasets. Especially in the
Service Type Identification (VPN, Tor) task, FlowletFormer attains an F1 score of 94% and 84%,
outperforming the second-best methods(YaTC and AppScanner) by 6% and 9%, respectively. Even
in the Malware Classification Task, FlowletFormer is only 0.1% lower than the best performing
method (TrafficFormer) in F1 score. The results demonstrate that FlowletFormer adapts well to var-
ious traffic classification tasks and holds promise for enhancing network management and security.

Table 1: Comparison Results on ISCXVPN2016, ISCX-Tor2016, and CSTNET-TLS 1.3.

Dataset ISCX-VPN(Service) ISCX-Tor2016 ISCX-VPN(APP) CSTNET-TLS
Metric AC PR RC F1 AC PR RC F1 AC PR RC F1 AC PR RC F1

AppScanner 0.8612 0.8678 0.8437 0.8520 0.8902 0.7715 0.7592 0.7598 0.7607 0.7036 0.6956 0.6815 0.7320 0.7129 0.6855 0.6916
CUMUL 0.6829 0.6747 0.6669 0.6657 0.7542 0.6471 0.6725 0.6332 0.5483 0.4442 0.4539 0.4298 0.5777 0.5336 0.5431 0.5313

FSNet 0.7679 0.7681 0.7614 0.7586 0.6705 0.5427 0.5435 0.5388 0.6576 0.5339 0.4957 0.4972 0.6537 0.5183 0.5199 0.4997
GraphDApp 0.6546 0.6270 0.6629 0.6363 0.7799 0.6168 0.6181 0.6155 0.4882 0.4143 0.4195 0.4055 0.6403 0.6017 0.5957 0.5931
ET-BERT 0.8756 0.8944 0.8525 0.8572 0.8225 0.7073 0.7375 0.7105 0.7964 0.7370 0.7013 0.7047 0.8047 0.7908 0.7777 0.7785

YaTC 0.9067 0.8991 0.8807 0.8877 0.8981 0.7384 0.7426 0.7212 0.8155 0.7599 0.7314 0.7340 0.8443 0.8404 0.8174 0.8197
TrafficFormer 0.8689 0.8605 0.8410 0.8373 0.8305 0.7100 0.6928 0.6932 0.8004 0.7690 0.7164 0.7221 0.7965 0.7867 0.7686 0.7675
FlowletFormer 0.9578 0.9539 0.9461 0.9493 0.9078 0.8411 0.8651 0.8463 0.8328 0.7859 0.7507 0.7553 0.8518 0.8506 0.8353 0.8377

Table 2: Comparison Results on Browser, USTC-TFC, CIC-IDS2017, and CIC-IoT2022.

Dataset Browser USTC-TFC CIC-IDS2017 CIC-IoT2022
Metric AC PR RC F1 AC PR RC F1 AC PR RC F1 AC PR RC F1

AppScanner 0.5965 0.5990 0.5926 0.5846 0.8357 0.8220 0.8478 0.8195 0.8752 0.9034 0.8964 0.8947 0.8506 0.8625 0.7780 0.8001
CUMUL 0.5028 0.5004 0.4990 0.4968 0.7341 0.5696 0.6518 0.5833 0.8374 0.7065 0.7337 0.7131 0.6693 0.6322 0.6479 0.6239

FSNet 0.5415 0.5559 0.5537 0.5358 0.8010 0.8177 0.8294 0.8093 0.8262 0.8405 0.8532 0.8447 0.8255 0.8158 0.8018 0.7835
GraphDApp 0.3991 0.4031 0.4067 0.4010 0.8443 0.8114 0.8198 0.8010 0.8721 0.8716 0.8527 0.8562 0.6422 0.5729 0.5900 0.5759
ET-BERT 0.4650 0.3979 0.4650 0.2680 0.9713 0.9746 0.9713 0.9715 0.8867 0.8898 0.8867 0.8830 0.8516 0.8139 0.8146 0.8088

YaTC 0.5360 0.5469 0.5371 0.5285 0.9717 0.9725 0.9716 0.9712 0.9156 0.9350 0.9156 0.9064 0.8374 0.8331 0.8095 0.8085
TrafficFormer 0.4750 0.5690 0.4750 0.2352 0.9758 0.9777 0.9758 0.9758 0.8894 0.8994 0.8894 0.8841 0.8678 0.8396 0.8337 0.8297
FlowletFormer 0.7083 0.7755 0.7083 0.6932 0.9742 0.9761 0.9742 0.9741 0.9200 0.9440 0.9200 0.9109 0.9177 0.8919 0.8820 0.8808

4.3 ABLATION STUDY

To evaluate the contribution of different components in FlowletFormer, we conduct an ablation
study. Specifically, we systematically remove key components, including flowLet and field tok-
enization, the MFM, the FPT, the protocol embedding layer, and the pre-training stage. As shown
in Table 3, each component contributes to the overall performance of FlowletFormer. Removing FL
reduces F1 score from 0.7553 to 0.7085, and removing the MFM or the FPT lowers F1 to 0.7341 and
0.7057, respectively. These clear drops confirm their importance in capturing structural and contex-
tual semantics. The FT and PE provides a modest yet consistent gain, suggesting its effectiveness in

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

modeling hierarchical semantics. Notably, removing the pre-training stage causes the most perfor-
mance drop, highlighting the necessity of pre-training. More results are shown in Appendix D.

4.4 FEW-SHOT ANALYSIS

To further assess the effectiveness and robustness of FlowletFormer under few-shot conditions, we
conduct experiments with varying data proportions. Specifically, we use the full dataset as the refer-
ence and randomly sample 40%, 20%, and 10% of the available data for few-shot training. Our few-
shot evaluation on ISCX-VPN-App reveals FlowletFormer’s superior data efficiency. Its maintains
F1 scores of 0.8009 (40% data), 0.6224 (20%), and 0.5813 (10%). Notably, while supervised meth-
ods (e.g., CUMUL/FSNet) exhibit catastrophic performance under data scarcity, our pre-training
framework maintains performance through the traffic representation model, as evidenced in Table 4.
More results are shown in Appendix E.

Table 3: Ablation Study on ISCXVPN(APP).
FL: Flowlet and Field Tokenization, FT: Field
Tokenization, MFM: Masked Field Model, FPT:
Flowlet Prediction Task, PE: Protocol Embed-
ding Layer, and PT: Pre-Training

Method AC PR RC F1

w/o FL 0.7872 0.7555 0.6988 0.7085
w/o FT 0.7994 0.7670 0.7319 0.7396

w/o MFM 0.8146 0.7604 0.7257 0.7341
w/o FPT 0.8055 0.7370 0.7021 0.7057
w/o PE 0.8298 0.7530 0.7348 0.7229
w/o PT 0.4043 0.2689 0.2678 0.2365

FlowletFormer 0.8328 0.7859 0.7507 0.7553

Table 4: Few-shot Analysis (F1 Score) on IS-
CXVPN(APP).

Size 100% 40% 20% 10%

AppScanner 0.6815 0.4382 0.5320 0.2222
CUMUL 0.4298 0.3081 0.2673 0.1550

FSNet 0.4972 0.4795 0.4752 0.2738
GraphDApp 0.4055 0.2427 0.2203 0.1944
ET-BERT 0.7047 0.6465 0.5728 0.4631

YaTC 0.7340 0.6489 0.5939 0.1805
TrafficFormer 0.7221 0.6085 0.5404 0.4320
FlowletFormer 0.7553 0.8009 0.6224 0.5813

4.5 FIELD UNDERSTANDING TASK

We introduce multiple Field Understanding Tasks to assess whether the model comprehends gen-
eral traffic patterns. These tasks require the model to predict key header fields within a packet in
a given flow. Specifically, we evaluate the comprehension of the model in four tasks: the Flow
Direction Inference task masks the source/destination IP as well as the source/destination ports,
assessing the model’s ability to infer packet direction between entities based on contextual clues
without direct address information; the Transport Protocol Recognition task focuses on mask-
ing the protocol field in the IP header, testing the model’s ability to identify the transport layer
protocol (e.g., TCP, UDP, ICMP); the Sequence Awareness task masks the sequence number and
acknowledgment number within the TCP header, challenging the model to infer packet order and
flow continuity; the Connection Control Judgment task masks the flag fields in the TCP header,
which denote the state of the connection, and evaluates the model’s ability to infer control signals
like session establishment or termination.

These tasks evaluate the model’s ability to infer direction, protocol, sequence, and control, with
performance measured in three datasets: ISCX VPN, CICIDS2017, and USTC-TFC. As shown in
Table 5, FlowletFormer outperforms three models in all tasks. The model’s ability to effectively infer
Flow Direction, Transport Protocol, Sequence Awareness, and Connection Control across diverse
datasets demonstrates its strong capacity for understanding the complex behavior of network traffic.

Table 5: The Performance (Accuracy) of Pre-training Methods on Field Understanding Tasks.

Task Flow Direction Inference Transport Protocols Recognition Sequence Awareness Connection Control Judgement
Dataset VPN IDS TFC VPN IDS TFC VPN IDS TFC VPN IDS TFC

ET-BERT 0.4366 0.7096 0.7412 0.9681 0.9767 0.9981 0.4165 0.6937 0.6203 0.9041 0.9975 0.9985
YaTC 0.2617 0.3785 0.3138 0.1012 0.0858 0.0956 0.4483 0.6225 0.5080 0.4531 0.5383 0.3150

TrafficFormer 0.0164 0.1059 0.1128 0.6753 0.9067 0.8912 0.3659 0.5261 0.3652 0.3904 0.9983 0.9978
FlowletFormer 0.9313 0.9647 0.9196 1.0000 1.0000 1.0000 0.6987 0.7806 0.7579 0.9338 1.0000 1.0000

4.6 WORD ANALOGIES SIMILARITY ANALYSIS

In NLP, word analogy tasks assess a model’s ability to capture semantic relationships between words.
Through word analogy similarity analysis, we can validate whether a model has deeply understood

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

the semantic relationships between words. Similarly, the port number analogy analysis can be used
to evaluate the pre-trained model1, assessing its understanding of the functional and semantic re-
lationships between network services. This capability reflects the model’s deep understanding of
traffic patterns acquired during pretraining, without any downstream fine-tuning.

We apply cosine similarities between the embeddings of port numbers produced by the pre-trained
model to examine the relationships among common HTTP–related ports (e.g., 80, 8080, 8000).
Comparing 4-hex token with our method (Table 6), we find that 4-hex token struggles to model port
similarities, while FlowletFormer effectively captures these relationships, enhancing traffic classifi-
cation performance. Appendix F provides more clarification.

Table 6: Port Number Analogy Cosine Similarity about Word Embedding and Input Embedding.

Port 80&8080 80&8000 8080&8000
Embedding Word Input Word Input Word Input

4-Hex Token -0.0768 0.1094 -0.0685 0.1331 0.0740 0.2438
Ours 0.0582 0.4019 0.0369 0.3993 0.0400 0.4289

4.7 FINE-TUNING METHOD

In the fine-tuning stage, we evaluated pre-training methods and compared their performance under
both Frozen and Unfrozen settings. The Frozen setup keeps the encoder parameters fixed and relies
solely on the general representations learned during pre-training, serving to assess the transferability
of pretrained knowledge. In contrast, the Unfrozen setup reflects the model’s ability to adapt to
downstream tasks, enabling it to further learn task-specific features and traffic patterns that did not
appear during pre-training. This comparison provides a more comprehensive assessment of the
model’s generalization.

Table 7 and 8 show that FlowletFormer remains stable under the Frozen setting, with the average F1
score dropping by only 4% across four datasets. This indicates that the model has already learned
transferable and general traffic patterns during pre-training. The exception is ISCX-Tor2016, where
the F1 score drops by about 40% because there is no Tor traffic in pre-training dataset, leaving
the model without the necessary prior knowledge when the encoder is frozen. In contrast, other
pre-training baselines perform poorly in the Frozen setting, suggesting that they learn little useful
generalizable representation.

Table 7: Frozen and Unfrozen Fine-tuning Results on ISCX and CSTNET.
ISCX-VPN(Service) ISCX-Tor2016 ISCX-VPN(APP) CSTNET-TLS

Frozen Unfrozen Frozen Unrozen Frozen Unfrozen Frozen Unfrozen

AC F1 AC F1 AC F1 AC F1 AC F1 AC F1 AC F1 AC F1

ET-BERT 0.3645 0.2843 0.8756 0.8572 0.4038 0.2549 0.8225 0.7105 0.4813 0.2944 0.7964 0.7047 0.2211 0.1365 0.8047 0.7785
YaTC 0.3333 0.1667 0.9067 0.8877 0.1706 0.0498 0.8981 0.7212 0.2533 0.1328 0.8155 0.7340 0.0137 0.0047 0.8443 0.8197

TrafficFormer 0.5778 0.4749 0.8689 0.8373 0.4801 0.3194 0.8305 0.6932 0.6272 0.5125 0.8004 0.7221 0.3880 0.3000 0.7965 0.7675
FlowletFormer 0.8645 0.8466 0.9578 0.9493 0.5632 0.3806 0.9078 0.8463 0.7893 0.7181 0.8328 0.7553 0.6151 0.5614 0.8518 0.8377

Table 8: Frozen and Unfrozen Fine-tuning Results on Browser, USTC-TFC and CIC.
Browser USTC-TFC CIC-IDS2017 CIC-IoT2022

Frozen Unfrozen Frozen Unfrozen Frozen Unfrozen Frozen Unfrozen

AC F1 AC F1 AC F1 AC F1 AC F1 AC F1 AC F1 AC F1

ET-BERT 0.3450 0.3310 0.4650 0.2680 0.6700 0.6427 0.9713 0.9715 0.5628 0.5507 0.8867 0.8830 0.4589 0.4069 0.8516 0.8088
YaTC 0.2500 0.1000 0.5360 0.5285 0.1846 0.0665 0.9717 0.9712 0.2211 0.1667 0.9156 0.9064 0.1923 0.1218 0.8374 0.8085

TrafficFormer 0.4233 0.4035 0.4750 0.2352 0.8104 0.8090 0.9758 0.9758 0.6589 0.6551 0.8894 0.8841 0.5850 0.5381 0.8678 0.8297
FlowletFormer 0.6583 0.6616 0.7083 0.6932 0.9563 0.9568 0.9742 0.9741 0.8778 0.8683 0.9200 0.9109 0.7969 0.7402 0.9177 0.8808

4.8 DEEP DIVE

We further conducted in-depth evaluations of the model. In this section, we use the CSTNET-TLS
dataset, as its large scale and diverse categories enable more accurate and reliable assessment.

1This is the model after pre-training but before fine-tuning, where port randomization has not been applied.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Impact of Flowlet Threshold. Flowlets are segmented based on IAT. Despite a mean of 1.89
seconds, the distribution is highly skewed, with most intervals much shorter. Thus, we use 0.02s,
0.2s, 2.0s, and 10s as thresholds for flowlet segmentation. Figure 4a demonstrates that threshold
choice has a significant impact on downstream performance. A small threshold (e.g., 0.02s) makes
nearly half of the flowlets single-packet, while a large threshold (e.g., 10s) introduces noisy long-
range context. In contrast, adaptive thresholds better balance context richness and noise.

Impact of Masked Field Ratio. In the Masked Field Model, we select a certain proportion of
specific field tokens from the mask tokens for masking, and evaluate five ratios: 10%, 30%, 50%,
70%, and 90%. Figure 4b shows that masking a moderate proportion of field tokens improves
model performance, whereas excessive masking leads to performance degradation. This is because
the model focuses too heavily on key fields while neglecting other information of the traffic.

Impact of Corruption Traffic Data. We evaluate the model under traffic corruption scenarios that
may occur in real environments, considering four cases: (1) packet corruptions, (2) missing headers,
(3) packet loss, and (4) header corruptions. Figure 4c shows that the model remains robust in three
cases but struggles with missing headers, primarily because header loss disrupts the encoding of
protocol embedding layer. More details about Deep Dive are provided in Appendix G.

0.02 0.2 2 10 Ours
Threshold (s)

0.75

0.77

0.79

0.81

0.83

F1
 S

co
re

0.7707

0.8265 0.8313

0.8104

0.8377

(a)

0.1 0.3 0.7 0.9 0.5(Ours)
Mask Field Ratio

0.75

0.77

0.79

0.81

0.83

F1
 S

co
re

0.8201
0.8307 0.8313

0.8186

0.8377

(b)

Corr. 1 Corr. 2 Corr. 3 Corr. 4 Clean
Corruption Method

0.65

0.70

0.75

0.80

0.85

F1
 S

co
re

0.8068

0.6852

0.8001

0.7688

0.8377

(c)

Figure 4: Deep Dive on CSTNET-TLS. (a) Sensitivity of flowlet segmentation thresholds. (b) Sen-
sitivity of masked field ratio. (c) Results under different corruption scenarios.

4.9 COMPUTATIONAL COST AND COMPLEXITY

We analyze the time complexity of our method. Specifically, the complexity is: O(N × B × L ×
(S2 ·H + S ·H2)), where N is the number of training steps, B is the batch size, L is the number
of Transformer layers, S is the input sequence length, and H is the hidden size. We also measure
the end-to-end runtimes of FlowletFormer during different phases of the train. Table 9 summarizes
these results. The comparison results against other models are presented in the Appendix H.

Table 9: FlowletFormer: Computational Efficiency Across Different Phases.

Phase GPUs Time Unit/Granularity GPU Memory (GB)

Pre-training 6 42 h 75.67 s / 100 steps 28
Fine-tuning 1 1,153 s 57.65 s / epoch 17
Inference 1 – 150.04 samples/sec –

5 CONCLUSION

In this paper, we propose FlowletFormer, a BERT-based pre-training model designed for network
traffic analysis. By introducing a Coherent Behavior-Aware Traffic Representation Model, a Pro-
tocol Stack Alignment-Based Embedding Layer, and Field-Specific and Context-Aware Pretraining
Tasks, FlowletFormer effectively captures behavioral patterns, hierarchical protocol semantics, and
inter-packet contextual relationships among traffic data. The experimental results demonstrate its
superiority over existing methods in traffic classification.

FlowletFormer improves network traffic classification, but challenges remain. Future work includes
adapting to evolving traffic patterns, enhancing robustness against adversarial attacks, incorporating
multi-modal data, and optimizing computational efficiency for real-time deployment. Addressing
these issues will strengthen its role in network security and traffic classification.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Khaled Al-Naami, Swarup Chandra, Ahmad Mustafa, Latifur Khan, Zhiqiang Lin, Kevin W.
Hamlen, and Bhavani Thuraisingham. Adaptive encrypted traffic fingerprinting with bi-
directional dependence. In Stephen Schwab, William K. Robertson, and Davide Balzarotti (eds.),
Proceedings of the 32nd Annual Conference on Computer Security Applications, ACSAC 2016,
Los Angeles, CA, USA, December 5-9, 2016, pp. 177–188. ACM, 2016.

Daniel Arp, Erwin Quiring, Feargus Pendlebury, Alexander Warnecke, Fabio Pierazzi, Christian
Wressnegger, Lorenzo Cavallaro, and Konrad Rieck. Dos and don’ts of machine learning in
computer security. In 31st USENIX Security Symposium (USENIX Security 22), pp. 3971–3988,
2022.

Kenjiro Cho, Koushirou Mitsuya, and Akira Kato. Traffic data repository at the WIDE project. In
Proceedings of the Freenix Track: 2000 USENIX Annual Technical Conference, June 18-23, 2000,
San Diego, CA, USA, pp. 263–270. USENIX, 2000.

Junyoung Chung, Kyunghyun Cho, and Yoshua Bengio. A character-level decoder without explicit
segmentation for neural machine translation. CoRR, abs/1603.06147, 2016.

Sajjad Dadkhah, Hassan Mahdikhani, Priscilla Kyei Danso, Alireza Zohourian, Kevin Anh Truong,
and Ali A. Ghorbani. Towards the development of a realistic multidimensional iot profiling
dataset. In 19th Annual International Conference on Privacy, Security & Trust, PST 2022, Fred-
ericton, NB, Canada, August 22-24, 2022, pp. 1–11. IEEE, 2022.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of
deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and
Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019,
Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186.
Association for Computational Linguistics, 2019.

Gerard Draper-Gil, Arash Habibi Lashkari, Mohammad Saiful Islam Mamun, and Ali A. Ghor-
bani. Characterization of encrypted and VPN traffic using time-related features. In Olivier Camp,
Steven Furnell, and Paolo Mori (eds.), Proceedings of the 2nd International Conference on In-
formation Systems Security and Privacy, ICISSP 2016, Rome, Italy, February 19-21, 2016, pp.
407–414. SciTePress, 2016.

Wesley Eddy. Rfc 9293: Transmission control protocol (tcp), 2022.

Gints Engelen, Vera Rimmer, and Wouter Joosen. Troubleshooting an intrusion detection dataset:
the cicids2017 case study. In 2021 IEEE Security and Privacy Workshops (SPW), pp. 7–12. IEEE,
2021.

Philip Gage. A new algorithm for data compression. C Users J., 12(2):23–38, February 1994. ISSN
0898-9788.

Craig Gutterman, Katherine Guo, Sarthak Arora, Xiaoyang Wang, Les Wu, Ethan Katz-Bassett,
and Gil Zussman. Requet: real-time qoe detection for encrypted youtube traffic. In Michael
Zink, Laura Toni, and Ali C. Begen (eds.), Proceedings of the 10th ACM Multimedia Systems
Conference, MMSys 2019, Amherst, MA, USA, June 18-21, 2019, pp. 48–59. ACM, 2019.

Zijun Hang, Yuliang Lu, Yongjie Wang, and Yi Xie. Flow-mae: Leveraging masked autoencoder
for accurate, efficient and robust malicious traffic classification. In Proceedings of the 26th Inter-
national Symposium on Research in Attacks, Intrusions and Defenses, pp. 297–314, 2023.

Hong Ye He, Zhi Guo Yang, and Xiang Ning Chen. PERT: payload encoding representation from
transformer for encrypted traffic classification. In 2020 ITU Kaleidoscope: Industry-Driven Dig-
ital Transformation, Kaleidoscope, Ha Noi, Vietnam, December 7-11, 2020, pp. 1–8. IEEE, 2020.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked au-
toencoders are scalable vision learners. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 16000–16009, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Xiaoyan Hu, Wenjie Gao, Guang Cheng, Ruidong Li, Yuyang Zhou, and Hua Wu. Toward early and
accurate network intrusion detection using graph embedding. IEEE Trans. Inf. Forensics Secur.,
18:5817–5831, 2023.

Arthur S Jacobs, Roman Beltiukov, Walter Willinger, Ronaldo A Ferreira, Arpit Gupta, and Lisan-
dro Z Granville. Ai/ml for network security: The emperor has no clothes. In Proceedings of
the 2022 ACM SIGSAC Conference on Computer and Communications Security, pp. 1537–1551,
2022.

James F. Kurose and Keith W. Ross. Computer networking - a top-down approach featuring the
internet. Addison-Wesley-Longman, 2001. ISBN 978-0-201-47711-5.

Arash Habibi Lashkari, Gerard Draper-Gil, Mohammad Saiful Islam Mamun, and Ali A. Ghorbani.
Characterization of tor traffic using time based features. In Paolo Mori, Steven Furnell, and Olivier
Camp (eds.), Proceedings of the 3rd International Conference on Information Systems Security
and Privacy, ICISSP 2017, Porto, Portugal, February 19-21, 2017, pp. 253–262. SciTePress,
2017.

Xinjie Lin, Gang Xiong, Gaopeng Gou, Zhen Li, Junzheng Shi, and Jing Yu. ET-BERT: A contextu-
alized datagram representation with pre-training transformers for encrypted traffic classification.
In Frédérique Laforest, Raphaël Troncy, Elena Simperl, Deepak Agarwal, Aristides Gionis, Ivan
Herman, and Lionel Médini (eds.), WWW ’22: The ACM Web Conference 2022, Virtual Event,
Lyon, France, April 25 - 29, 2022, pp. 633–642. ACM, 2022.

Chang Liu, Longtao He, Gang Xiong, Zigang Cao, and Zhen Li. Fs-net: A flow sequence network
for encrypted traffic classification. In 2019 IEEE Conference on Computer Communications,
INFOCOM 2019, Paris, France, April 29 - May 2, 2019, pp. 1171–1179. IEEE, 2019.

Lisa Liu, Gints Engelen, Timothy Lynar, Daryl Essam, and Wouter Joosen. Error prevalence in
nids datasets: A case study on cic-ids-2017 and cse-cic-ids-2018. In 2022 IEEE Conference on
Communications and Network Security (CNS), pp. 254–262. IEEE, 2022.

Mohammad Lotfollahi, Mahdi Jafari Siavoshani, Ramin Shirali Hossein Zade, and Mohammd-
sadegh Saberian. Deep packet: a novel approach for encrypted traffic classification using deep
learning. Soft Comput., 24(3):1999–2012, 2020.

Minh-Thang Luong and Christopher D. Manning. Achieving open vocabulary neural machine trans-
lation with hybrid word-character models. CoRR, abs/1604.00788, 2016.

Hongzi Mao, Malte Schwarzkopf, Shaileshh Bojja Venkatakrishnan, Zili Meng, and Mohammad
Alizadeh. Learning scheduling algorithms for data processing clusters. In Jianping Wu and
Wendy Hall (eds.), Proceedings of the ACM Special Interest Group on Data Communication,
SIGCOMM 2019, Beijing, China, August 19-23, 2019, pp. 270–288. ACM, 2019.

Sabrina J Mielke, Zaid Alyafeai, Elizabeth Salesky, Colin Raffel, Manan Dey, Matthias Gallé, Arun
Raja, Chenglei Si, Wilson Y Lee, Benoı̂t Sagot, et al. Between words and characters: A brief
history of open-vocabulary modeling and tokenization in nlp. arXiv preprint arXiv:2112.10508,
2021.

Andriy Panchenko, Fabian Lanze, Jan Pennekamp, Thomas Engel, Andreas Zinnen, Martin Henze,
and Klaus Wehrle. Website fingerprinting at internet scale. In 23rd Annual Network and Dis-
tributed System Security Symposium, NDSS 2016, San Diego, California, USA, February 21-24,
2016. The Internet Society, 2016.

Eva Papadogiannaki and Sotiris Ioannidis. A survey on encrypted network traffic analysis applica-
tions, techniques, and countermeasures. ACM Comput. Surv., 54(6):123:1–123:35, 2022.

Jon Postel. Rfc 0768: User datagram protocol, 1980.

Jon Postel. Rfc 792: Internet control message protocol darpa internet program protocol specification,
1981a.

Jon Postel. Internet protocol. Technical report, 1981b.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Martin Roesch. Snort: Lightweight intrusion detection for networks. In David W. Parter (ed.),
Proceedings of the 13th Conference on Systems Administration (LISA-99), Seattle, WA, USA,
November 7-12, 1999, pp. 229–238. USENIX, 1999.

Roei Schuster, Vitaly Shmatikov, and Eran Tromer. Beauty and the burst: Remote identification of
encrypted video streams. In Engin Kirda and Thomas Ristenpart (eds.), 26th USENIX Security
Symposium, USENIX Security 2017, Vancouver, BC, Canada, August 16-18, 2017, pp. 1357–
1374. USENIX Association, 2017.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics, ACL 2016, August 7-12, 2016, Berlin, Germany, Volume 1: Long Papers. The Asso-
ciation for Computer Linguistics, 2016.

Iman Sharafaldin, Arash Habibi Lashkari, and Ali A. Ghorbani. Toward generating a new intrusion
detection dataset and intrusion traffic characterization. In Paolo Mori, Steven Furnell, and Olivier
Camp (eds.), Proceedings of the 4th International Conference on Information Systems Security
and Privacy, ICISSP 2018, Funchal, Madeira - Portugal, January 22-24, 2018, pp. 108–116.
SciTePress, 2018.

Meng Shen, Jinpeng Zhang, Liehuang Zhu, Ke Xu, and Xiaojiang Du. Accurate decentralized
application identification via encrypted traffic analysis using graph neural networks. IEEE Trans.
Inf. Forensics Secur., 16:2367–2380, 2021.

Payap Sirinam, Mohsen Imani, Marc Juarez, and Matthew Wright. Deep fingerprinting: Under-
mining website fingerprinting defenses with deep learning. In David Lie, Mohammad Mannan,
Michael Backes, and XiaoFeng Wang (eds.), Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2018, Toronto, ON, Canada, October 15-19,
2018, pp. 1928–1943. ACM, 2018.

Robin Sommer and Vern Paxson. Outside the closed world: On using machine learning for network
intrusion detection. In 31st IEEE Symposium on Security and Privacy, SP 2010, 16-19 May 2010,
Berleley/Oakland, California, USA, pp. 305–316. IEEE Computer Society, 2010.

Ruming Tang, Zheng Yang, Zeyan Li, Weibin Meng, Haixin Wang, Qi Li, Yongqian Sun, Dan Pei,
Tao Wei, Yanfei Xu, and Yan Liu. Zerowall: Detecting zero-day web attacks through encoder-
decoder recurrent neural networks. In 39th IEEE Conference on Computer Communications,
INFOCOM 2020, Toronto, ON, Canada, July 6-9, 2020, pp. 2479–2488. IEEE, 2020.

Vincent F. Taylor, Riccardo Spolaor, Mauro Conti, and Ivan Martinovic. Appscanner: Automatic
fingerprinting of smartphone apps from encrypted network traffic. In IEEE European Symposium
on Security and Privacy, EuroS&P 2016, Saarbrücken, Germany, March 21-24, 2016, pp. 439–
454. IEEE, 2016.

Louis Van Langendonck, Ismael Castell-Uroz, and Pere Barlet-Ros. Towards a graph-based foun-
dation model for network traffic analysis. In Proceedings of the 3rd GNNet Workshop on Graph
Neural Networking Workshop, pp. 41–45, 2024.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Qineng Wang, Chen Qian, Xiaochang Li, Ziyu Yao, Gang Zhou, and Huajie Shao. Lens: A founda-
tion model for network traffic, 2024a. URL https://arxiv.org/abs/2402.03646.

Tongze Wang, Xiaohui Xie, Wenduo Wang, Chuyi Wang, Youjian Zhao, and Yong Cui. Netmamba:
Efficient network traffic classification via pre-training unidirectional mamba. In 2024 IEEE 32nd
International Conference on Network Protocols (ICNP), pp. 1–11. IEEE, 2024b.

13

https://arxiv.org/abs/2402.03646

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Wei Wang, Ming Zhu, Xuewen Zeng, Xiaozhou Ye, and Yiqiang Sheng. Malware traffic classi-
fication using convolutional neural network for representation learning. In 2017 International
Conference on Information Networking, ICOIN 2017, Da Nang, Vietnam, January 11-13, 2017,
pp. 712–717. IEEE, 2017.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff Klingner, Apurva Shah, Melvin John-
son, Xiaobing Liu, Łukasz Kaiser, Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa,
Keith Stevens, George Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa,
Alex Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, and Jeffrey Dean. Google’s neu-
ral machine translation system: Bridging the gap between human and machine translation, 2016.
URL https://arxiv.org/abs/1609.08144.

Jielun Zhang, Fuhao Li, Feng Ye, and Hongyu Wu. Autonomous unknown-application filtering and
labeling for dl-based traffic classifier update. In 39th IEEE Conference on Computer Communi-
cations, INFOCOM 2020, Toronto, ON, Canada, July 6-9, 2020, pp. 397–405. IEEE, 2020.

Ruijie Zhao, Mingwei Zhan, Xianwen Deng, Yanhao Wang, Yijun Wang, Guan Gui, and Zhi Xue.
Yet another traffic classifier: A masked autoencoder based traffic transformer with multi-level flow
representation. In Brian Williams, Yiling Chen, and Jennifer Neville (eds.), Thirty-Seventh AAAI
Conference on Artificial Intelligence, AAAI 2023, Thirty-Fifth Conference on Innovative Appli-
cations of Artificial Intelligence, IAAI 2023, Thirteenth Symposium on Educational Advances in
Artificial Intelligence, EAAI 2023, Washington, DC, USA, February 7-14, 2023, pp. 5420–5427.
AAAI Press, 2023.

Yuqi Zhao, Giovanni Dettori, Matteo Boffa, Luca Vassio, and Marco Mellia. The sweet danger of
sugar: Debunking representation learning for encrypted traffic classification. In Proceedings of
the ACM SIGCOMM 2025 Conference, pp. 296–310, 2025.

Zhe Zhao, Hui Chen, Jinbin Zhang, Xin Zhao, Tao Liu, Wei Lu, Xi Chen, Haotang Deng, Qi Ju, and
Xiaoyong Du. UER: An open-source toolkit for pre-training models. pp. 241–246, November
2019.

Guangmeng Zhou, Xiongwen Guo, Zhuotao Liu, Tong Li, Qi Li, and Ke Xu. TrafficFormer: An
Efficient Pre-trained Model for Traffic Data . In 2025 IEEE Symposium on Security and Privacy
(SP), pp. 102–102. IEEE Computer Society, 2025. doi: 10.1109/SP61157.2025.00102.

Denis Zuev and Andrew W. Moore. Traffic classification using a statistical approach. In Constanti-
nos Dovrolis (ed.), Passive and Active Network Measurement, 6th International Workshop, PAM
2005, Boston, MA, USA, March 31 - April 1, 2005, Proceedings, 2005.

14

https://arxiv.org/abs/1609.08144

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

APPENDIX

CONTENTS OF APPENDIX

A Preliminary Analysis 16

B More Details of Our Method 16

B.1 Flow Construction . 16

B.2 Flowlet Generation . 17

B.3 Key Protocol Header Fields in Masked Field Model 18

C More Details in Experiment Setup 18

C.1 More Details in Pre-training Dataset Construction 18

C.2 More Details in Fine-tuning Dataset Construction 19

C.3 More Details in Implementation . 19

D More Ablation Study 20

E More Few-shot Analysis 21

F More Clarification of Word Analogies Similarity Analysis 22

G More Deep Dive 22

G.1 Impact of Flowlet Threshold . 22

G.2 Impact of Masked Field Ratio . 23

G.3 Impact of Corruption Traffic Data . 24

H More Computational Cost and Complexity 24

I Limitation 25

J The Use of Large Language Models (LLMs) 25

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A PRELIMINARY ANALYSIS

We conduct three in-depth analyses to examine the limitations of existing method.

First, to balance the limited information in a single packet and the excessive length of complete
flows, existing methods commonly design packet window as intermediate inputs. The intention is
to retain more session context across packets while keeping the sequence length tractable for model
training. However, in practice, such packet window exhibit clear limitations. We compute the cumu-
lative distribution function (CDF) of the number of packets per window. On one hand, some packet
window degenerate into single-packet units, which essentially collapses the representation back to
the packet level and fails to capture any cross-packet semantics. For example, approximately 65%
of bursts consist of only a single packet. This suggests that the dataset contains a high proportion of
extremely short bursts, which limits the temporal context available for modeling. On the other hand,
strategies that adopt a fixed number of initial packets (e.g., first-N packet window) are overly rigid.
These approaches cannot flexibly adapt to flows of different lengths or interaction patterns, and they
ignore the variability in packet distributions across sessions.

Second, existing methods often adopt techniques from NLP and CV for traffic representation, such
as encoding packets into 4-hex tokens with subword tokenization or reshaping traffic data into square
images. However, these methods fail to align with the structure and semantics of network traffic. For
example, 4-hex tokenization ignores protocol field boundaries, and network protocols’ hierarchical
structure is overlooked, preventing the model from capturing distinct roles of different fields. We
also conducted a similarity analysis of the vocabularies in 4-hex token and our method, focusing
on the word embeddings of port 80 and 8080, which both represent HTTP services. While our
method correctly captures the semantic similarity between these ports, 4-hex token struggles to do
so, indicating its inability to model key network relationships. This highlights a critical limitation in
exist methods’ semantic understanding, which FlowletFormer addresses more effectively, improving
traffic classification tasks.

Third, as a result of the limitations discussed above, existing pretraining tasks often fail to effec-
tively capture the diverse patterns of network traffic behavior. These methods struggle to model
the semantics across packets, leading to significant constraints in their ability to learn and represent
complex network interactions. To evaluate this issue, we introduce a Field Understanding Task,
which aims to predict key header fields of packets within a flow (such as the sequence number).
This task evaluates whether current models can truly capture the underlying traffic behavior patterns
and understand the finer details of network communication. Field Understanding Tasks show that
existing methods still face substantial challenges in capturing the context within a flow. This inabil-
ity to fully grasp the flow-level semantics impacts the performance of these models on downstream
tasks, making their results less reliable for network traffic analysis and prediction. Our proposed
task provides a more effective way to evaluate the model’s understanding of flow-level interactions,
enhancing its ability to learn and generalize across various network behaviors.

B MORE DETAILS OF OUR METHOD

B.1 FLOW CONSTRUCTION

To construct semantically meaningful flows from raw packet data, we apply protocol-specific rules
according to standard practices outlined in RFCs and previous works. The flow construction pro-
cess is based on the five-tuple: srcIP, dstIP, srcPort, dstPort, protocol, with
additional considerations depending on the transport layer protocol.

We apply protocol-specific rules based on both packet semantics and timeout heuristics. As shown
in Table 10, different protocols adopt distinct termination and reinitialization criteria. For instance,
TCP flows are explicitly closed by a four-way handshake or reset flag, while UDP and ICMP rely
on timeout-based or field-change-based segmentation. These rules help segment raw traffic into
coherent flow units for downstream analysis.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 10: Protocol-specific Rules for Flow Construction.

Protocol Flow Termination Condition New Flow Trigger

TCP
Four-way Handshake (FIN + FIN + ACK)
Connection Reset (RST packet)
Active Timeout (Flow duration exceeds 1800s)

New SYN + ACK Connection
Active Timeout Expiration

UDP Inactive Timeout (Flow duration exceeds 15s) Inactive Timeout Expiration

ICMP
Change in ICMP Type
Change in ICMP Code

Any change in Type or Code

Others Flow duration exceeds 1800 seconds Timeout Expiration

B.2 FLOWLET GENERATION

After flow construction, we perform the Flowlet Generation. We also describe it in Algorithm 1
The Flowlet Generation Algorithm dynamically partitions a flow into flowlets based on inter-packet
arrival time. It operates as follows:

• Initialization: For each network flow F = {pkt1, . . . , pktn} with timestamps
{τ1, . . . , τn}, we compute the average inter-arrival time of the first three packets, i.e.,
θ3 = 1

2 [(τ2−τ1)+(τ3−τ2)]. This value is used as the initial threshold θ for segmentation.
If n ≤ 3, the entire flow is treated as a single Flowlet.

• Segmentation: For each subsequent packet pkti (i > 3), we calculate the inter-arrival time
ti = τi− τi−1. If ti > θi−1, we create a segmentation: the previous packet pkti−1 ends the
current Flowlet Fj , and pkti begins a new one Fj+1. Otherwise, pkti is appended to the
current Fj .

• Threshold Update: After each decision, we update the threshold θi using all observed
inter-arrival times up to index i, i.e., θi = 1

|Wi|
∑

t∈Wi
t, where Wi is the window of past

IATs. This allows the threshold to adapt dynamically to local flow patterns.

This adaptive thresholding approach allows the segmentation process to adjust to diverse traffic
dynamics. For instance, traffic patterns such as HTTP request-response cycles or video stream-
ing often exhibit short bursts followed by longer silent gaps. By capturing such timing structures,
Flowlet segmentation enables the model to better align with the logical behavior units within net-
work communication, thus enhancing the semantic granularity of traffic representation.

Algorithm 1 Flowlet Generation

1: Input: Flow F = {pkt1, . . . , pktn} with arrival timestamps {τ1, . . . , τn}
2: Output: Flowlets {F1, . . . ,Fk}
3: Initialize: F ← {pkt1}, W ← ∅, flowlets← ∅
4: for i← 2 to n do
5: ti ← τi − τi−1

6: if i > 3 and ti > θi−1 then
7: Append F to flowlets
8: F ← {pkti}
9: else

10: Append pkti to F
11: end if
12: Append ti to W
13: θi ← 1

|W |
∑

t∈W t

14: end for
15: Append remaining F to flowlets

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

B.3 KEY PROTOCOL HEADER FIELDS IN MASKED FIELD MODEL

Table 11 lists the key fields commonly found in standard network protocols. These fields carry rich
semantic and structural information that can be leveraged by traffic analysis models.

For example, fields such as port numbers and protocol types provide fundamental information about
the directionality and service type of a packet, helping models distinguish between client-server
roles or application types.

Sequence Number and Acknowledgment Number in the TCP header reflect the transmission order
and reliability mechanisms of the protocol, offering temporal cues to infer packet sequences and
session continuity.

The Total Length field, which indicates the size of an entire packet, has been demonstrated
to serve as an effective signature for encrypted traffic classification in prior studies Ede-
BCRDLCSP20FlowPrint, MillerHJT14.

Furthermore, TCP control flags (e.g., SYN, ACK, FIN, RST) encode connection state transitions
(e.g., handshake, termination), enabling models to learn flow dynamics and session boundaries.

Similarly, ICMP’s Type and Code fields identify message semantics (e.g., echo request/reply, desti-
nation unreachable), while the minimal set of fields in UDP (primarily source and destination ports)
still conveys important endpoint semantics.

Table 11: Key fields in common protocol.

Protocol Key Fields

IP Version, Total Length, Protocol, IPID

TCP Port Number, Sequence Number, Flag
Acknowledgment Number, Window Size

UDP Port Number

ICMP Type, Code

C MORE DETAILS IN EXPERIMENT SETUP

C.1 MORE DETAILS IN PRE-TRAINING DATASET CONSTRUCTION

We describe the data preprocessing pipeline used during the pre-training stage of FlowletFormer.

Flow Construction. We first parsed raw PCAP files to construct flows based on five-tuples and
protocol-specific rules which ensure semantically coherent flow boundaries. Each flow was saved
as an individual PCAP file for subsequent processing.

Flowlet Segmentation. To better reflect the temporal structure and traffic behavior from appli-
cation layer, we further segmented each flow into multiple flowlets. Specifically, we calculated
inter-packet arrival times (IATs) and initiated a new flowlet whenever the IAT exceeded a threshold.
This segmentation captures distinct behavioral units within each flow and enables the model to learn
fine-grained communication patterns.

Tokenization. For each packet in a flowlet, we removed the Ethernet header and retained the first 64
bytes starting from the network layer. These bytes were tokenized using Field Tokenization, where
individual fields in protocol headers (e.g., IP version, TTL, TCP flags) are identified and converted
into semantically meaningful tokens. This tokenization approach preserves protocol semantics while
producing a consistent and structured input format for the model.

Table 12 summarizes the pre-training datasets used in this work, including their sizes, number of
flows, and supported protocols.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 12: Overview of Pre-training Datasets.

Dataset Size Flow Number Protocol

ISCX-VPN2016-NonVPN 10.4G 74,184 TLS1.2, SFTP, SSDP, SNMP, NTP, MDNS, HTTP, GQUIC...
CIC-IDS2017-Monday 11G 303,436 HTTP, HTTPS, FTP, SSH, email protocols...

WIDE-2024/1/1 9.6G 2,322,172 FTP, SSH, IPSec, HTTP, TLS1.2, TLS1.3, GRE, Email Protocol...

C.2 MORE DETAILS IN FINE-TUNING DATASET CONSTRUCTION

To ensure fair comparison and reproducibility, we describe the data preprocessing pipeline used
during the fine-tuning stage of FlowletFormer.

Data Collection and Filtering. We collected raw PCAP files corresponding to the eight downstream
tasks. Flows were constructed based on five-tuples (srcIP, dstIP, srcPort, dstPort, protocol), and each
flow was saved as a separate PCAP file.

Flows were then organized by traffic category. To facilitate manageable storage and training, large
files were split into smaller ones (approximately 1,000 packets each). Categories with fewer than 10
samples were discarded, and a maximum of 500 samples per class was retained to ensure balanced
representation.

Data Anonymization and Randomization. To mitigate the risk of shortcut learning and reduce the
model’s dependence on protocol-specific artifacts, we performed the following anonymization steps
on each flow:

• Replaced all IP addresses with randomly generated addresses;
• Randomized source and destination ports while preserving client/server roles;
• Adjusted TCP timestamps by introducing a random base time, but preserving the relative

inter-packet timing.

Tokenization. We selected the first five packets of each flow and converted their contents to input
tokens. Each packet was tokenized by retaining the first 64 tokens.

Table 13 provides an overview of all downstream tasks used for fine-tuning FlowletFormer, includ-
ing dataset names, number of flows, number of classes, and example labels.

Table 13: Overview of Fine-Tuning Tasks and Datasets.

Task Dataset Flow Number Class Number Label

Service Type Identification ISCX-VPN (Service) 1,500 6 VPN-Chat,VPN-Email,VPN-Ftp...
ISCX-Tor2016 2,922 8 Audio, Browsing, Chat...

Application Classification ISCX-VPN (App) 3,289 10 VPN-Youtube,VPN-Voipbuster,VPN-Vimeo...

Website Fingerprinting CSTNET-TLS 46,375 120 acm.org,adobe.com,alibaba.com...

Browser Classification Browser 2,000 4 Chrome,Firefox,Internet,UC

Malware Classification USTC-TFC 8,000 16 Miuref,FTP,Gmail...

Traffic Classification CIC-IDS2017 6,000 12 Benign,Botnet,DDoS...

IoT Classification CIC-IoT2022 4,931 12 Attack Flood,Idle,Interaction Audio...

C.3 MORE DETAILS IN IMPLEMENTATION

In this experiment, we employ multi-GPU parallel in pre-training. A total of six GPUs are used for
distributed training, with a batch size set to 16, resulting in an overall batch size of 96. The total
number of training steps is 200,000, with model checkpoints saved every 10,000 steps. The Adam
optimizer is chosen, with an initial learning rate of 2e-5 and a warm-up ratio of 0.1 to ensure stability
during the initial stages of training.

To maintain consistency with pre-training, the fine-tuning data is processed in the same input format
as the pre-training data. The packets in the flowlets are directly concatenated without [SEP] token
for separation, meaning all tokens share the same segment identifiers. During the fine-tuning stage,

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

we select the first five packets of each network flow as the model input and extract the first 64
tokens following the Ethernet header of each packet. The dataset is split into train/validation/test
sets with an 8:1:1 ratio. The model was trained for up to 20 epochs on each dataset using the
AdamW optimizer with a learning rate of 6e-5, with early stopping triggered if the F1 score did not
improve for 4 consecutive epochs.

The proposed method is implemented using PyTorch 2.3.1 and UER (Zhao et al., 2019) and trained
on a server with 8 NVIDIA Tesla V100S GPUs.

To comprehensively evaluate the performance of classification models, we adopt widely used met-
rics, accuracy (AC), precision (PR), recall (RC), and F1 score (F1).

In our evaluation, precision, recall, and F1 score are macro-averaged to ensure equal consideration
of all classes regardless of their frequency.

D MORE ABLATION STUDY

To support the figures in the main text and further illustrate the robustness of our approach, we
provide complete numerical results of the ablation study across all eight downstream datasets, as
shown in Table 14 and Table 15.

To thoroughly investigate the contribution of each component in FlowletFormer, we conducted a
series of ablation experiments. The results in Table 14 and Table 15 report the performance of the
full model and various degraded versions, where specific modules were removed.

Impact of Flowlet and Field Tokenization (FL). Removing the Flowlet and Field Tokenization
module (w/o FL) led to significant performance drops on most datasets. In this variant, the traf-
fic representation and tokenization revert to the burst and BPE tokenization. For example, on the
ISCX-Tor2016 dataset, the accuracy decreased from 0.9078 to 0.8328 and the F1-score from 0.8463
to 0.6924. The effect is even more pronounced on the Browser dataset, where accuracy dropped
from 0.7083 to 0.3700 and F1-score from 0.6932 to 0.3099. These results highlight the critical role
of Flowlet segmentation and field-aware tokenization in capturing temporal dependencies and con-
textual coherence within sessions. By introducing Flowlets, the model learns to represent traffic in
a behavior-aware manner, which facilitates more robust classification of dynamic network flows.

Impact of Masked Field Model (MFM). The removal of the masked field modeling task (w/o
MFM) has dataset-specific effects. For instance, on the ISCX-VPN(Service) dataset, accuracy
dropped dramatically from 0.9578 to 0.5467, indicating that MFM plays a critical role in model-
ing datasets with rich and structured protocol field information. It likely helps the model capture
inter-field dependencies and learn which fields are important for traffic differentiation. In contrast,
datasets like CSTNET-TLS and CIC-IDS2017 showed less degradation, suggesting that those tasks
are less sensitive to fine-grained field semantics.

Impact of Flowlet Prediction Task (FPT). Removing the Flowlet Prediction Task (w/o FPT)
caused performance degradation across several datasets, though less severe than w/o FL or w/o
MFM. For example, in ISCX-Tor2016, accuracy dropped from 0.9078 to 0.8973 and F1-score from
0.8463 to 0.8052. This indicates that FPT serves as an effective auxiliary task, guiding the model
to learn patterns in the temporal evolution of traffic flows, which indirectly enhances downstream
classification.

Impact of Protocol Stack Alignment-Based Embedding (PE). The removal of the protocol em-
bedding layer (w/o PE) resulted in a consistent but relatively moderate drop across datasets. This
suggests that while PE enhances the model’s ability to capture protocol-layer semantics, it is not the
main performance bottleneck.

Impact of Pretraining (PT). Eliminating the pretraining stage (w/o PT) caused catastrophic per-
formance degradation on all datasets. For example, on ISCX-VPN(Service), accuracy fell from
0.9578 to 0.5467 and F1-score from 0.9493 to 0.3949. These results emphasize the essential role
of pretraining in learning generalizable traffic representations and initializing the model with better
parameter priors for downstream tasks.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 14: Ablation study results on ISCXVPN2016, ISCX-Tor2016, and CSTNET-TLS 1.3
datasets. The abbreviations are explained as follows, FL: Flowlet and Field Tokenization, MFM:
Masked Field Model, FPT: Flowlet Prediction Task, PE: Protocol Stack Alignment-Based Embed-
ding Layer and PT: Pre-Training.

Dataset ISCX-VPN(Service) ISCX-Tor2016 ISCX-VPN(App) CSTNET-TLS

Metric AC PR RC F1 AC PR RC F1 AC PR RC F1 AC PR RC F1

w/o FL 0.9133 0.9077 0.8983 0.8995 0.8328 0.6978 0.6892 0.6924 0.7872 0.7555 0.6988 0.7085 0.8025 0.7943 0.7795 0.7820
w/o MFM 0.5467 0.5429 0.5323 0.4830 0.4505 0.1790 0.3300 0.2304 0.8146 0.7604 0.7257 0.7341 0.8051 0.8024 0.7853 0.7886
w/o FPT 0.9133 0.8936 0.9138 0.9010 0.8973 0.8088 0.8145 0.8052 0.8055 0.7370 0.7021 0.7057 0.8329 0.8344 0.8162 0.8171
w/o PE 0.9000 0.9087 0.8656 0.8804 0.8938 0.8251 0.8145 0.8165 0.8298 0.7530 0.7348 0.7229 0.8484 0.8404 0.8323 0.8325
w/o PT 0.5467 0.4278 0.4278 0.3949 0.1706 0.0213 0.1250 0.0364 0.4043 0.2689 0.2678 0.2365 0.7622 0.7602 0.7357 0.7358
FlowletFormer 0.9578 0.9539 0.9461 0.9493 0.9078 0.8411 0.8651 0.8463 0.8328 0.7859 0.7507 0.7553 0.8518 0.8506 0.8353 0.8377

Table 15: Ablation study results on Browser, USTC-TFC, CIC-IDS2017, and CIC-IoT2022 datasets.

Dataset Browser USTC-TFC CIC-IDS2017 CIC-IoT2022

Metric AC PR RC F1 AC PR RC F1 AC PR RC F1 AC PR RC F1

w/o FL 0.3700 0.2787 0.3700 0.3099 0.9600 0.9680 0.9600 0.9598 0.8850 0.8870 0.8850 0.8835 0.8401 0.7881 0.7936 0.7875
w/o MFM 0.6600 0.6006 0.6600 0.5976 0.9650 0.9723 0.9650 0.9653 0.4505 0.1790 0.3300 0.2304 0.8968 0.8506 0.8543 0.8473
w/o FPT 0.6850 0.7932 0.6850 0.6428 0.9663 0.9696 0.9663 0.9658 0.9044 0.8189 0.9114 0.8429 0.9049 0.8765 0.8788 0.8736
w/o PE 0.6800 0.7486 0.6800 0.6745 0.9650 0.9689 0.9650 0.9648 0.9044 0.8428 0.9098 0.8653 0.8988 0.8660 0.8593 0.8587
w/o PT 0.2700 0.3138 0.2700 0.1387 0.9563 0.9680 0.9562 0.9571 0.1706 0.0213 0.1250 0.0364 0.8664 0.8073 0.8174 0.8089
FlowletFormer 0.7083 0.7755 0.7083 0.6932 0.9742 0.9761 0.9742 0.9741 0.9200 0.9440 0.9200 0.9109 0.9177 0.8919 0.8820 0.8808

E MORE FEW-SHOT ANALYSIS

To evaluate the capability of FlowletFormer under data-scarce conditions, we conduct a few-shot
learning analysis. The results are reported in Table 16 and Table 17. As shown, FlowletFormer
achieves competitive performance under full supervision (100% training data). More importantly,
it consistently maintains relatively high F1-scores even when the amount of training data is signifi-
cantly reduced.

For example, on the ISCX-VPN(Service) dataset, FlowletFormer achieves an F1-score of 0.8106
using only 10% of the training data, significantly outperforming traditional models such as App-
Scanner and BIND. This indicates the strong generalization ability of FlowletFormer in few-shot
settings.

However, on the Browser dataset, the performance of FlowletFormer drops more substantially under
limited data, suggesting that the traffic patterns in this dataset are more complex and require more
data to learn effectively.

Table 16: Few-shot Analysis (F1-score) on ISCXVPN2016, ISCX-Tor2016, and CSTNET-TLS 1.3
datasets.

Dataset ISCX-VPN(Service) ISCX-Tor2016 ISCX-VPN(App) CSTNET-TLS

Size 100% 40% 20% 10% 100% 40% 20% 10% 100% 40% 20% 10% 100% 40% 20% 10%

AppScanner 0.8520 0.7512 0.6074 0.5065 0.7598 0.7456 0.6195 0.5401 0.6815 0.4382 0.5320 0.2222 0.6916 0.6416 0.5661 0.4018
CUMUL 0.6657 0.5244 0.3873 0.4511 0.6332 0.5749 0.5252 0.5775 0.4298 0.3081 0.2673 0.1550 0.5313 0.4598 0.3659 0.2982

FSNet 0.7586 0.8384 0.7078 0.3931 0.5388 0.5426 0.4080 0.5743 0.4972 0.4795 0.4752 0.2738 0.4997 0.7132 0.6662 0.5946
GraphDApp 0.6363 0.5713 0.6137 0.2762 0.6155 0.5780 0.4622 0.4895 0.4055 0.2427 0.2203 0.1944 0.5931 0.4948 0.4372 0.3303
ET-BERT 0.8572 0.3980 0.2450 0.2583 0.7105 0.4959 0.3749 0.3512 0.7047 0.6465 0.5728 0.4631 0.7785 0.7039 0.6117 0.4819

YaTC 0.8877 0.0801 0.0721 0.0947 0.7212 0.6587 0.4994 0.0721 0.7340 0.6489 0.5939 0.1805 0.8197 0.7538 0.6375 0.5040
TrafficFormer 0.8373 0.6827 0.5595 0.3909 0.6932 0.4989 0.3506 0.3674 0.7221 0.6085 0.5404 0.4320 0.7675 0.7084 0.6277 0.5660
FlowletFormer 0.9493 0.8956 0.7356 0.8106 0.8463 0.7829 0.7166 0.5917 0.7553 0.8009 0.6224 0.5813 0.8377 0.8171 0.7273 0.6249

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 17: Few-shot Analysis (F1-score) on Browser, USTC-TFC, CIC-IDS2017, and CIC-IoT2022
datasets.

Dataset Browser USTC-TFC CIC-IDS2017 CIC-IoT2022

Size 100% 40% 20% 10% 100% 40% 20% 10% 100% 40% 20% 10% 100% 40% 20% 10%

AppScanner 0.5846 0.3756 0.3524 0.1838 0.8195 0.7407 0.6799 0.5733 0.8947 0.8158 0.7924 0.7265 0.8001 0.6925 0.5149 0.4027
CUMUL 0.4968 0.3986 0.3742 0.1500 0.5833 0.4654 0.3753 0.3631 0.7131 0.5602 0.5031 0.4991 0.6239 0.5582 0.5479 0.2113

FSNet 0.5358 0.4364 0.4444 0.1852 0.8093 0.6406 0.5563 0.7091 0.8447 0.7558 0.7244 0.5827 0.7835 0.5518 0.6089 0.4857
GraphDApp 0.4010 0.3238 0.2484 0.2875 0.8010 0.7729 0.6429 0.5219 0.8562 0.8266 0.6106 0.6531 0.5759 0.4627 0.3642 0.1766
ET-BERT 0.2680 0.3616 0.2280 0.2500 0.9715 0.9669 0.9286 0.8950 0.8830 0.8764 0.7346 0.7405 0.8088 0.7349 0.5630 0.4338

YaTC 0.5285 0.4761 0.4176 0.1613 0.9712 0.9480 0.9655 0.9159 0.9064 0.8854 0.6714 0.5902 0.8085 0.7243 0.7665 0.0758
TrafficFormer 0.2352 0.1520 0.1645 0.1154 0.9758 0.9703 0.9406 0.9432 0.8841 0.8725 0.7622 0.6918 0.8297 0.7578 0.5437 0.5190
FlowletFormer 0.6932 0.6230 0.6553 0.3095 0.9741 0.9553 0.9457 0.9380 0.9109 0.8997 0.8610 0.8510 0.8808 0.8237 0.8180 0.6152

F MORE CLARIFICATION OF WORD ANALOGIES SIMILARITY ANALYSIS

To further clarify the purpose and design of the Word Analogies Similarity Analysis in Section 4.6,
we emphasize that this experiment is not a classification task, but rather a semantic probing analysis
inspired by methodologies from natural language processing.

In NLP, analogical reasoning tasks (e.g., “king - man + woman ≈ queen”) are commonly used to
evaluate whether pretrained language models capture meaningful token relationships. Following
this intuition, we designed an analogous probing task in the context of network traffic to examine
the semantic structure of token embeddings learned during pretraining.

Specifically, we selected three well-known HTTP-related port numbers (80, 8080, and 8000) and
analyzed their relative positions in the learned embedding space using cosine similarity. These ports
are commonly used for HTTP services and frequently co-occur in real-world traffic, thus forming a
semantically coherent unit.

Our experimental results show that FlowletFormer captures the semantic similarity between these
ports more accurately than baseline models. This suggests that the model has developed a deeper
understanding of protocol-layer semantics and is capable of organizing related concepts (e.g., similar
ports) in a meaningful embedding space.

G MORE DEEP DIVE

In the Deep Dive, we thoroughly analyze three key aspects: first, the impact of flowlet thresholds on
downstream task performance; second, the effect of the masked field ratio on model performance;
and finally, we evaluate the performance of FlowletFormer under traffic corruption scenarios.

G.1 IMPACT OF FLOWLET THRESHOLD

To analyze the impact of the threshold, we first examine the distribution of inter-arrival times (IATs).
The IATs exhibit a highly skewed distribution, with a mean of 1.89s and a large standard deviation of
36.56s. While the minimum and median values are extremely small (0 and 0.000138s, respectively),
the maximum reaches nearly 1800s, indicating a heavy-tailed pattern. The quantiles further highlight
this imbalance: 75% of IATs are below 0.0028s, 95% below 0.19s, and 99% below 10.22s, yet
the 99.9% quantile rises sharply to 594.11s. These statistics suggest that most packet arrivals are
separated by very short intervals, but a small fraction of large gaps dominate the tail, which makes
threshold selection particularly sensitive.

Therefore, we select 0.02s, 0.2s, 2.0s, and 10s as thresholds for sensitivity analysis. We plotted
the CDF of packets within Flowlets at different threshold values. As shown in Figure 5, when the
threshold is set to 0.02s, about 60% of the Flowlets contain only a single packet, while at a threshold
of 10s, only about 15% of the Flowlets contain one packet, representing two extreme cases.

We pre-trained FlowletFormer on datasets constructed with different flowlet thresholds and fine-
tuned it on the same downstream task datasets. As shown in Table 18, extreme threshold values per-
formed poorly, while moderate thresholds exhibited better performance, with our adaptive method

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

1 10 1000.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

Pr
ob

ab
ili

ty

0.02s
0.2s
2.0s
10s
Ours

Figure 5: The CDF of Packets within Flowlets at Different Threshold

achieving the best results. This suggests that an appropriate flowlet threshold strikes a balance
between capturing contextual information and suppressing noise, thereby enhancing model perfor-
mance. On the other hand, extreme thresholds either lead to the loss of contextual information or
introduce unnecessary noise, negatively impacting the model’s learning effectiveness. Our adaptive
method dynamically adjusts the threshold based on the actual data, allowing it to more accurately
capture key traffic patterns and ultimately improving performance on downstream tasks.

Table 18: Performance Comparison of FlowletFormer with Different Flowlet Thresholds

Threshold AC PR RC F1

Ours 0.8518 0.8506 0.8353 0.8377
0.02s 0.8419 0.7902 0.7633 0.7707
0.2s 0.8424 0.8445 0.8237 0.8265
2s 0.8454 0.8485 0.8264 0.8313
10s 0.8413 0.8346 0.8077 0.8104

G.2 IMPACT OF MASKED FIELD RATIO

In the Masked Field Model, we selectively mask a proportion of specific field tokens from the total
mask tokens. To assess the effect of this masking, we evaluate five different ratios: 10%, 30%, 50%,
70%, and 90%. Table 19 illustrates the relationship between the masking ratio and the performance
of the model. Our findings show that masking a moderate proportion of field tokens (e.g. 30%
to 50%) leads to improvements in model performance, as it allows the model to learn essential
traffic patterns while still retaining a reasonable amount of contextual information. However, as the
masking ratio increases, particularly beyond 70%, the performance of the model begins to degrade.
This decline occurs because an excessively high proportion of key field tokens are masked, causing
the model to focus too heavily on these crucial fields while ignoring other significant aspects of the
traffic data. Consequently, the model loses important context and inter-field relationships, which are
necessary for accurate traffic classification and understanding.

Table 19: Performance Comparison of FlowletFormer with Different Masked Field Ratio

Threshold AC PR RC F1

0.1 0.8318 0.8492 0.8177 0.8201
0.3 0.8467 0.8425 0.8286 0.8307

Ours(0.5) 0.8518 0.8506 0.8353 0.8377
0.7 0.8506 0.8393 0.8293 0.8313
0.9 0.8366 0.8385 0.8153 0.8186

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

G.3 IMPACT OF CORRUPTION TRAFFIC DATA

We evaluate the model’s robustness in real-world traffic corruption scenarios that could occur in
practical network environments. Specifically, we examine four types of traffic corruption: (1) packet
corruption, (2) missing headers, (3) packet loss, and (4) header corruption. In type 1, we simulate
a scenario where 20% of the packets in the flow experience corruption, potentially due to network
interference or data transmission errors. In type 2, 20% of the packets lose their IP header, which is
crucial for routing information, causing a loss of important contextual data. Type 3 simulates packet
loss, where 20% of the packets are missing entirely, resulting in incomplete flow information. In type
4, 20% of the packet headers are corrupted, leading to potential misinterpretation of the protocol-
specific information.

Table 20: Impact of Corruption on FlowletFormer Performance

AC PR RC F1

Original 0.8518 0.8506 0.8353 0.8377
Corr. 1 0.8226 0.8218 0.8072 0.8068
Corr. 2 0.6826 0.7433 0.669 0.6852
Corr. 3 0.8154 0.8153 0.8017 0.8001
Corr. 4 0.784 0.7897 0.7693 0.7688

Table 20 demonstrates that the model remains robust and performs well in the three scenarios,
maintaining stable accuracy and effective traffic pattern learning. This robustness can be attributed
to the model’s ability to handle partial information, as it is still able to extract useful features from
the remaining valid packets and headers. However, the model struggles significantly with Method
2, where headers are missing. The absence of protocol headers disrupts the encoding process in
the protocol stack embedding layer, which is crucial for understanding the hierarchical structure
of network traffic. This causes a sharp decline in performance, as the model loses the ability to
interpret the flow’s structural context properly. Our analysis highlights that while the model can
handle some types of data corruption—such as packet corruption, packet loss, and partial header
loss—it struggles with complete header loss, which severely impacts its ability to learn from the
hierarchical structure of network protocols. This finding suggests that while the model is generally
robust to real-world imperfections in traffic data, it is essential to design more resilient mechanisms
for dealing with missing or corrupted headers, particularly in cases where the header plays a critical
role in interpreting the traffic semantics.

H MORE COMPUTATIONAL COST AND COMPLEXITY

Table 21 reports the full comparison of FlowletFormer against two baseline models (ET-BERT and
TrafficFormer) across the three experimental phases: pretraining (6 × V100 GPUs, 200 K steps),
fine-tuning (1 × V100 GPU, full epochs), and inference (throughput in samples/sec). All runs were
carried out under identical hardware and configuration settings to ensure a fair evaluation of runtime,
per-step/epoch granularity, and GPU memory usage.

Table 21: Computational efficiency comparison across pretraining, fine-tuning, and inference.

Phase Model GPUs Time Unit/Granularity GPU Memory (GB)

Pretraining
FlowletFormer 6 42 h 75.67 s / 100 steps 28

ET-BERT 6 41 h 73.87 s / 100 steps 28
TrafficFormer 6 45 h 82.00 s / 100 steps 28

Fine-tuning
FlowletFormer 1 1,153 s 57.65 s / epoch 17

ET-BERT 1 1,177 s 58.85 s / epoch 17
TrafficFormer 1 1,158 s 57.90 s / epoch 17

Inference
FlowletFormer 1 — 150.04 samples/sec —

ET-BERT 1 — 148.92 samples/sec —
TrafficFormer 1 — 150.45 samples/sec —

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

I LIMITATION

Though FlowletFormer achieves fine-grained behavioral analysis within each flowlet, it still has
several limitations.

First, the fixed maximum input length forces us to split long flows into shorter flowlets. While this
enables detailed study of intra-flow behaviors, it prevents the model from learning unified patterns
over entire long flows, which may be crucial for detecting certain sophisticated or slow-evolving
anomalies.

Second, our Field Tokenization treats each protocol field as an independent “word” analogous to
treating every single Chinese character as a separate token. Although this captures the finest-grained
units, it cannot model semantic entities that span multiple fields. In future work, we could adopt
Chinese word segmentation techniques to merge common adjacent fields into higher-level tokens

Third, because FlowletFormer is based on the BERT architecture, both pretraining and real-time
inference demand substantial GPU resources. This high computational and memory overhead may
limit deployment in resource-constrained environments or scenarios requiring very high throughput.

Lastly, despite introducing protocol-stack alignment and field-aware pretraining objectives, the in-
ternal decision process of FlowletFormer remains difficult to interpret and audit. This lack of trans-
parency can be problematic in high-security settings where explainability and trust are paramount.

J THE USE OF LARGE LANGUAGE MODELS (LLMS)

During the preparation of this manuscript, we employed a large language model (LLM) to assist
with language refinement. In the early stages, the LLM was used for grammar and spelling checks
as well as automatic corrections. At later stages, it was consulted to polish certain sentences for
improved clarity, readability, and academic style. All outputs were carefully reviewed and refined
by the authors. Importantly, the LLM was not used to generate ideas, conduct experiments, perform
analyses, or draw conclusions.

Broader Impacts While FlowletFormer can significantly enhance the accuracy of anomaly detec-
tion and threat mitigation, thereby contributing to more secure and reliable networks, it also carries
potential risks. On the positive side, better traffic classification aids in detecting malicious activities
(e.g., DDoS, malware propagation) and supports privacy-preserving analytics by filtering out sensi-
tive flows before further processing. On the negative side, the same techniques could be repurposed
for intrusive traffic monitoring or profiling of users, raising privacy and ethical concerns. To miti-
gate such risks, we advocate for transparent deployment policies, strict access controls, and regular
audits of model usage.

25

	Introduction
	Related Work
	Traffic Classification
	Pre-training Methods

	FlowletFormer
	Flowlet and Field Tokenization
	Model Architecture
	Pre-training Method
	Fine-tuning Method

	Experiment
	Experiment Setup
	Comparison with State-of-the-Art Methods
	Ablation Study
	Few-shot Analysis
	Field Understanding Task
	Word Analogies Similarity Analysis
	Fine-tuning Method
	Deep Dive
	Computational Cost and Complexity

	Conclusion
	APPENDIX
	Preliminary Analysis
	More Details of Our Method
	Flow Construction
	Flowlet Generation
	Key Protocol Header Fields in Masked Field Model

	More Details in Experiment Setup
	More Details in Pre-training Dataset Construction
	More Details in Fine-tuning Dataset Construction
	More Details in Implementation

	More Ablation Study
	More Few-shot Analysis
	More Clarification of Word Analogies Similarity Analysis
	More Deep Dive
	Impact of Flowlet Threshold
	Impact of Masked Field Ratio
	Impact of Corruption Traffic Data

	More Computational Cost and Complexity
	Limitation
	The Use of Large Language Models (LLMs)

