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ABSTRACT

Automated anomaly detection in medical images can significantly reduce human
effort in disease diagnosis. Owing to the complexity in modeling anomalies and
the high cost of manual annotation by domain experts, a typical technique in the
current literature is to employ only data from healthy subjects to derive the model
for normal images and then to detect anomalies as outliers to this model. In many
real applications, mixed datasets with both normal and potential abnormal images
(e.g., images of patients with confirmed diseases) are abundant. This paper poses
the research question of how to improve anomaly detection by using an unanno-
tated set of mixed images of both normal and anomalous samples (in addition to a
set of normal images from healthy subjects). We propose a novel one-directional
image-to-image translation method named A2B-GAN, which learns to translate
any images to only normal images (hence “one-directional”). This alleviates the
requirement of direct cycle consistency of existing unpaired image-to-image trans-
lation methods, which is unattainable with unannotated data. Once the translation
is learned, we generate a difference map for any given image by subtracting its
translated output. Regions of significant responses in the difference map corre-
spond to potential anomalies (if any). In terms of average AUC, our A2B-GAN
outperforms the state-of-the-art methods by 0.1 points (approximately 16.25%) on
two medical imaging datasets: COVID-19 detection and Cardiomegaly detection
by utilizing an unannotated set mixed with anomalies. Our code is available for
public release upon the paper decision.

1 INTRODUCTION

Supervised learning from a large annotated dataset is becoming easier (He et al., 2015; Esteva et al.,
2017), thanks to deep neural networks. For problems like anomaly detection (e.g., rare disease
detection in medical images), however, it may often be very difficult to obtain a large enough set
of annotated anomalous samples, making it impractical to rely on supervised learning for the task.
Therefore, many recent anomaly detection methods typically learn only from the normal images of
healthy patients (Chen & Konukoglu, 2018; Schlegl et al., 2017; 2019; Alex et al., 2017; Zenati
et al., 2018a;b; Akcay et al., 2018; Gherbi et al., 2019; Roth et al., 2021; Defard et al., 2021). In
practice, unannotated anomalous samples are usually available and what is missing is the elaborated
annotation. For example, we may easily obtain a dataset that contains many anomalous samples
because of the underlying patients have the confirmed pathology (although typically it is unknown
which images are anomalous and where the anomalies are in an image). In other words, besides
the set of normal images, we may assume the availability of a mixed dataset with both normal
and potential abnormal images. In this research, we seek the answer to the question: How can we
utilize such an unannotated mixed dataset, in addition to the set of normal images, to improve the
performance of anomaly detection?

Answer to such question has been explored in the distant past for lesion detection in vascular CT im-
ages using SVM (Zuluaga et al., 2011). Differently, aiming to achieve a more generalized solution,
we have developed a novel one-directional unpaired image-to-image translation network, termed
A2B-GAN, based on Generative Adversarial Network (Goodfellow et al., 2014; 2020) (GAN). Ex-
isting unpaired image-to-image translation methods (Liu et al., 2017; Shen & Liu, 2017; Yi et al.,
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Figure 1: Overview of the proposed anomaly detection method. At training stage, our proposed
A2B-GAN learns to generate healthy images utilizing an unannotated dataset mixed with both
healthy and potential diseased/anomalous images, in addition to, a set of healthy images. At testing
stage, we translate any given image to a corresponding healthy image using the trained A2B-GAN.
Then we subtract the output image from the input image, which reveals the presence of an anomaly.

2017; Zhu et al., 2017a;b; Choi et al., 2018; Mejjati et al., 2018; Zhang et al., 2018; He et al.,
2019; Liu et al., 2019; Zhao et al., 2020) usually require performing both anomalous-to-normal and
normal-to-anomalous translation to ensure cycle-consistency (Zhu et al., 2017a); or the anomalous
and normal images to be known as a prior during training. The challenge of the anomaly detec-
tion scenario in this study is that it is impossible to translate a normal image back to an anomalous
one because annotated anomalous images are unavailable. To address this challenge, A2B-GAN
employs two important properties for improving anomaly detection: (1) unpaired image-to-image
translation; and (2) one-directional image-to-image translation. To achieve these two properties,
we introduce a novel reconstruction loss that ensures effective cycle-consistency. Unlike traditional
cycle-consistency loss (Zhu et al., 2017a), our reconstruction loss utilizes learned attention-masks
to generate the reconstructed images for cycle-consistency. Since all the image manipulation for
backward-cycle occurs using basic mathematical operations, there is no need for image annotation.
An overview of the proposed approach is illustrated in Figure 1.

Through extensive experiments, we demonstrate that A2B-GAN on average outperforms exist-
ing state-of-the-art anomaly detection methods ALAD (Zenati et al., 2018b), f-AnoGAN (Schlegl
et al., 2019), Ganomaly (Akcay et al., 2018), PatchCore (Roth et al., 2021), and PaDiM (Defard
et al., 2021) by significant margin on two medical imaging datasets: COVID-19 and Cardiomegaly
detection. This performance is attributed to A2B-GAN’s capability of utilizing unannoted dis-
eased/anomalous images at training time. In summary, we make the following contributions:

• We introduce a novel one-directional unpaired image-to-image translation method for
anomaly detection.

• We propose a novel anomaly detection method to utilize unannotated anomalous images.

• We develop a novel reconstruction loss for ensuring cycle-consistency without requiring
annotated inputs.

• With two challenging medical datasets, we perform extensive experiments comparing the
proposed method against the state-of-the-art anomaly detection methods, and we report
significant performance improvements and provide detailed analysis.

• We provide quantitative and qualitative results on a simulated anomaly detection method
to ease the readers’ analysis without medical expertise.

2 RELATED WORK

Our work is closely related to GAN-based anomaly detection and image-to-image translation.
Hence, we review and contrast relevant existing efforts on these tasks with the proposed A2B-GAN.
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2.1 ANOMALY DETECTION

In general, the existing GAN-based anomaly detection methods (Chen & Konukoglu, 2018; Schlegl
et al., 2017; 2019; Alex et al., 2017; Zenati et al., 2018a;b; Akcay et al., 2018; Gherbi et al., 2019)
explore various strategies for learning from only healthy/normal images. These methods try to learn
the healthy images’ manifold so that their decoder can reconstruct healthy images only at test time.
Hence, the diseased/anomalous images are reconstructed as healthy images. The difference between
the input-output images reveals the presence of anomalies. We elaborate a few examples below.

Chen & Konukoglu (2018) use an adversarial autoencoder to learn healthy data distribution. The
anomalies are identified by feeding a diseased image to the trained autoencoder, followed by sub-
tracting the reconstructed diseased image from the input image.

The method proposed by Schlegl et al. (2017) adversarially learns a decoder model to generate
healthy images from random noise vectors in the latent space. At test time, the method maps a
new image to the latent space by iteratively updating the latent vector. If the new image is healthy,
then the method is expected to find the exact latent vector that reconstructs the input image. As a
result, the difference between the input and the reconstructed image is negligible. If the new image
is diseased, then the method is expected to find a latent vector that produces a healthy image closest
to the diseased image. This leads to a higher difference between the input and the reconstructed
images, indicating an anomaly. The authors propose an anomaly score, which is a weighted average
of the reconstruction error and the discrimination score from the discriminator network.

The above method has been made faster in Schlegl et al. (2019) via an encoder network for mapping
the input images to the latent space in a single pass. Similarly, Alex et al. (2017) use a GAN to
learn a generative model of healthy data. To identify anomalies, they scan an image pixel-by-pixel
and feed the scanned crops to the trained GAN discriminator. An anomaly map is then constructed
by putting together the anomaly scores given by the discriminator. Zenati et al. (2018a;b) utilize
BiGAN (Donahue et al., 2016) to learn the mapping of normal images by training an encoder and
a decoder network jointly. Like most methods, they also utilize the reconstruction error as the
anomaly score. In the same spirit, Akcay et al. (2018) train an autoencoder using only normal
images. The autoencoder is supervised using both image-level L1 distance and adversarial loss.
An additional encoder is also trained to map the images reconstructed by the autoencoder back to
its latent space. A different approach proposed by Gherbi et al. (2019) trains an encoder network
to map normal images to a Gaussian distribution and abnormal images to out-of-distribution using
adversarial learning. Then the anomalies are detected using Mahalanobis distance in the latent space.
Please note that this method requires annotated anomalous images at training time.

Though methodologically dissimilar, we have incorporated PatchCore (Roth et al., 2021) and
PaDiM (Defard et al., 2021) into our list of baselines since they are top performing anomaly de-
tection methods in natural imaging datasets like MVTec AD (Bergmann et al., 2019; 2021). Both of
these methods utilize a memory bank of nominal features from an ImageNet (Deng et al., 2009)
pre-trained model. PaDiM converts these features into a matrix of Gaussian parameters (mean
and covariance). At the test time, PaDiM extracts feature vectors of each test images as done at
training stage. Then anomaly detections are performed based-on the Mahalanobis distance of the
feature vectors from the pre-computed Gaussian parameters’ matrix. On the other hand, PatchCore
downsamples its memory bank of neighborhood-aware patch-level features using greedy coreset
subsampling. Finally, an image is predicted as anomalous if any one of the patches in the image is
anomalous according to the scoring system.

In contrast to these approaches, our method learns from unannotated diseased/anomalous images
mixed with healthy/normal images and performs better anomaly detection (results in section 4).

2.2 IMAGE-TO-IMAGE TRANSLATION

Plenty works have been done on GAN-based image-to-image translation (Isola et al., 2017; Kim
et al., 2017; Ledig et al., 2017; Liu et al., 2017; Shen & Liu, 2017; Yi et al., 2017; Zhu et al.,
2017a;b; Choi et al., 2018; Mejjati et al., 2018; Zhang et al., 2018; He et al., 2019; Liu et al., 2019;
Nizan & Tal, 2020). While Pix2Pix (Isola et al., 2017) is among the first to do so, it requires input-
output image pairs to train. CycleGAN (Zhu et al., 2017a) revolutionizes unpaired image-to-image
translation by introducing cycle-consistency. It suggests that if an image of a horse is forward-
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Figure 2: Overview of a single training iteration of the proposed A2B-GAN. Detailed training pro-
cess is described in section 3 and hyper-parameters for all applications are provided in section 4.4.

translated to an image of a zebra, then backward-translating the image of that zebra should result in
the original horse image. Utilizing this concept at training time, CycleGAN tries to keep the appear-
ance of the horse and the zebra the same except the skin color. CycleGAN utilizes two generator
networks to realize the concept. At the training, first, one generator is used to translate input images
(horses) to the output images (zebras), and then another generator is used to translate the output
images (zebras) back to input images (horses). Note that we are required to know the annotations
of the images (horse/zebra) in either case. Though the cycle-consistency concept is important for
unpaired image-to-image translation between diseased and healthy images, we cannot directly use
CycleGAN in our work as we do not have annotated diseased images in anomaly detection.

Most recent unpaired image-to-image translation methods (Liu et al., 2017; Shen & Liu, 2017; Yi
et al., 2017; Zhu et al., 2017a;b; Choi et al., 2018; Mejjati et al., 2018; Zhang et al., 2018; He et al.,
2019; Liu et al., 2019; Zhao et al., 2020), irrespective of utilization of cycle-consistency, require
image annotations. For example, Shen & Liu (2017) utilize two generators for translating images
of human faces between a pair of facial attributes. Mejjati et al. (2018) propose an attention-based
approach that performs image-to-image translation like CycleGAN with additional two networks
for generating attention maps. Instead of using multiple networks for each domain translation pair,
methods like StarGAN (Choi et al., 2018), AttGAN (He et al., 2019), STGAN (Liu et al., 2019), and
Fixed-Point GAN (Rahman Siddiquee et al., 2019) utilize one generator network that takes the target
images’ annotation as input. Therefore, this line of works is also unsuitable for our purpose. A re-
cent ensemble-based method (Nizan & Tal, 2020) proposes an alternative to cycle-consistency (Zhu
et al., 2017a) for improved unpaired image-to-image translation. This method can perform image-
to-image translation without knowing the annotations for diseased/anomalous images. However,
this method requires at least two generator networks and four discriminator networks, and thus it is
computationally expensive while being difficult to train.

In contrast, the proposed A2B-GAN method utilizes only one generator and one discriminator net-
work. It satisfies the cycle-consistency requirement through a novel reconstruction loss that does not
need annotation for the diseased/anomalous images. We will show that our A2B-GAN outperforms
existing leading anomaly detection methods in section 4 while achieving image-to-image translation
performance comparable to existing methods (more in Appendix A).

3 A2B-GAN: THE PROPOSED APPROACH

3.1 NETWORK ARCHITECTURE

The proposed A2B-GAN consists of a discriminator network and a generator network. The dis-
criminator network follows PatchGAN (Isola et al., 2017; Li & Wand, 2016; Zhu et al., 2017a)
architecture and is similar to the ones used in Choi et al. (2018); Rahman Siddiquee et al. (2019).
Our discriminator distinguish whether the input image is a real or a fake (generated) healthy image.
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The generator network takes both diseased and healthy images without knowing their labels and
translates them to only healthy images. We denote the mixed dataset containing both diseased and
health images as A and the dataset containing only healthy images as B. We denote the gener-
ated images mimicking the distribution of set A and B as A′ and B′, respectively. The generator
network does not generate the A′ and B′ images directly; rather, it generates intermediate healthy
images Bint and masks M . The masks’ values are in the range [0 – 1], where 0 denotes a back-
ground pixel, and 1 denotes a foreground pixel. Then we produce the final generated image B′
following Equation 1.

B′ = Bint ×M +A× (1−M) (1)

Similarly, A′ is generated following Equation 2.

A′ = A×M +Bint × (1−M) (2)

Note that an image in the setA can be either diseased or healthy. If it is diseased, we expect the mask
M to activate the diseased region as foreground; otherwise, we expect M to be empty. It is worth
noting the similarity between Equation 2 and the cycle-consistency concept introduced in (Zhu et al.,
2017a). Since the proposed method is controlling the image generation, partially, by the mask M , it
neither requires a label nor an additional generator network for the image in A to generate back to
A′ (Figure 2). As the generator network translates the input images to a single direction, we call the
proposed method a one-directional image-to-image translation method and thus named A2B-GAN.
This particular property lets us utilize an unannotated mixed dataset during the training stage.

3.2 TRAINING

Figure 2 depicts the detailed training methodology of A2B-GAN. We train the generator and the
discriminator network, alternatively, like any GAN models. At each training step, we update the
weights of the generator once for every two weight updates of the discriminator network. We repeat
this for many iterations until convergence.

We train the discriminator to treat the real healthy images, B, as real and any images generated by
the generator to be fake. Therefore, the adversarial loss for the discriminator is defined in Equation 3.

LD
adv = Ex∈A[Dreal/fake(G(x))]− Ex∈B [Dreal/fake(x)] (3)

Here, G(x) denotes the output of the generator and is obtained by Equation 1. Dreal/fake(x) de-
notes the output of the discriminator network. We have revised adversarial loss (Equation 3) based
on the Wasserstein GAN (Arjovsky et al., 2017) objective by adding a gradient penalty (Gulrajani
et al., 2017) with weight λgp to stabilize the training, which is defined as

LD
adv = Ex∈A[Dreal/fake(G(x))]− Ex∈B [Dreal/fake(x)]

+ λgp Ex̂[(||Ox̂Dreal/fake(x̂)||2 − 1)
2
]

(4)

The objective of the generator is to take any image as input and generate a healthy image corre-
sponding to the input image. To be specific, if the input image is a healthy image, the generator is
expected to behave like an autoencoder and produce the same input image as output. If the input is
a diseased image, the generator should remove anomalous parts and produce a healthy image in the
output. The adversarial loss for the generator is defined in Equation 5.

LG
adv = −

∑
x∈{A,B}

Ex[Dreal/fake(G(x))] (5)

For the known healthy image set, B, the generator should behave like an autoencoder. Therefore,
we apply an identity loss for these images. It is defined in Equation 6.
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Lid = Ex∈B [||Gint(x)− x||1] (6)

Here, Gint denotes the generated image before applying the mask (Bint in Figure 2). Since we
train A2B-GAN using unpaired images we add a reconstruction loss (Equation 7) to ensure that the
generated images are close to the input images.

Lrec = Ex∈A,y∈A′ [||x− y||1] (7)

We have adopted the focus loss from (Nizan & Tal, 2020) to control the size of the mask. The focus
loss is defined by Equation 8.

Lf = λfs(

n∑
i=1

Mi/n)
2 + λfz

1

n

n∑
i=1

1

|Mi − 0.5|+ ε
(8)

Here, n denotes the number of pixels in the mask M and Mi denotes a pixel in it. The first com-
ponent controls the size of the mask and the second component forces the values to be close to 0/1.
λfs and λfz are relative weights of these components, respectively.

Combining all losses, the final full objective function for the discriminator and generator can be
described by Equation 9 and Equation 10, respectively.

LD = LD
adv (9)

LG = LG
adv + λrecLrec + λidLid + λfLf (10)

where λrec, λid, and λf determine the relative importance of the reconstruction loss. identity loss,
and focus loss, respectively.

3.3 DETECTING ANOMALIES

Figure 1 provides an overview of the proposed anomaly detection method. Given an unannotated
mixed dataset containing a mixture of both diseased and healthy images A and another dataset
containing only healthy imagesB, we train the A2B-GAN as described in section 3.2. Once trained,
we first translate each of the test images to healthy images, and then we subtract the generated
healthy images from the input images. Ideally, we expect the resultant difference images to show
the diseased regions if the input is a diseased image; otherwise, we expect the difference image to be
empty. Therefore, we detect the presence of the disease by checking the activations of the difference
images. Please note that the difference images indicate the presence of the disease/anomaly, as well
as, serve as localization maps of the disease/anomaly.

4 EXPERIMENTS AND RESULTS

Baselines. We have compared the proposed A2B-GAN with 5 state-of-the-art anomaly detection
methods. We have selected these methods as they are the most recent. Among them, ALAD (Zenati
et al., 2018b), f-AnoGAN (Schlegl et al., 2019), and Ganomaly (Akcay et al., 2018) are method-
ologically the closest to the proposed A2B-GAN. We have excluded other methodologically similar
works such as EGBAD (Zenati et al., 2018a) and AnoGAN (Schlegl et al., 2017) from our baseline
list since ALAD and f-AnoGAN are improved versions of these methods, respectively. However,
we have included PatchCore (Roth et al., 2021) and PaDiM (Defard et al., 2021), though method-
ologically different than the proposed A2B-GAN, as they are top-performing methods for novelty
detection in natural image dataset like MVTec AD (Bergmann et al., 2019; 2021). A methodological
comparison among these methods has been discussed in section 2.1.

Evaluation. We have compared the proposed A2B-GAN for anomaly detection with the baseline
methods using AUC score from the receiver operating characteristic (ROC) curve. To get the pre-
diction score for A2B-GAN, we subtract the input image from their translated images first. Then we
take the mean value of the resultant difference image. For the baseline methods, we use the anomaly
score generation method proposed by their corresponding authors.
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Methods COVID-19 Cardiomegaly Average
ALAD 0.5802 0.5286 0.5544
PatchCore 0.5200 *0.5999 0.5600
PaDiM 0.5400 *0.6034 0.5717
Ganomaly 0.5840 0.6300 0.6070
f-AnoGAN 0.6382 0.5987 0.6185
A2B-GAN (Ours) 0.8364 0.6015 0.7190

Table 1: Summary of the anomaly detection results. We have compared the proposed A2B-
GAN with existing state-of-the-art anomaly detection methods, ALAD (Zenati et al., 2018b),
Ganomaly (Akcay et al., 2018), f-AnoGAN (Schlegl et al., 2019), PatchCore (Roth et al., 2021),
and PaDiM (Defard et al., 2021) using AUC metric on 2 medical imaging datasets. The best results
are shown in bold and the second best results are underlined. PatchCore and PaDiM throw out-of-
memory error for Cardiomegaly dataset on our 500GB machine. Therefore, we have run them on a
smaller subset of the Cardiomegaly dataset. These results are shown with an asterisk. On average,
the proposed A2B-GAN performs better than all the baseline methods.

Figure 3: Qualitative results of COVID-19 and Cardiomegaly detection by A2B-GAN. As seen,
A2B-GAN has resulted high response in the difference maps both for COVID-19 and Cardiomegaly
positive samples. In contrast, the difference maps of the negative samples are almost empty.

4.1 COVID-19 DETECTION

Dataset. We have utilized the COVIDx dataset from Wang et al. (2020). The original dataset
contains a train and a test set. The train set has 15,464 Chest X-rays, of which 1,670 are COVID-19
positive, and 13,794 are COVID-19 negative. In contrast, the test set has 200 Chest X-rays, of which
100 are positive, and the rest of the 100 are negative. For our training set, we have randomly taken
10,031 negative images for the known healthy image set. For the mixed unannotated training set,
we have randomly taken 3,663 negative images from the rest and 1,570 COVID-19 positive images.

Results. The 2nd column in Table 1 summarizes the COVID-19 detection results. As seen, A2B-
GAN achieves COVID-19 detection AUC of 0.8364 outperforming all the baseline methods by a
large margin. The best performing baseline method, f-AnoGAN (Schlegl et al., 2019), achieves
an AUC score of only 0.6382 which is 0.1982 points lower than the proposed A2B-GAN. Other
GAN-based approaches ALAD (Zenati et al., 2018b) and Ganomaly (Akcay et al., 2018) achieve
similar AUC scores: 0.5802 and 0.5840, respectively. Interestingly, the top-performing methods in
natural image dataset (MVTec AD) perform the worst in COVID-19 detection. PatchCore (Roth
et al., 2021) achieves an AUC score of 0.5200 and PaDiM (Defard et al., 2021) achieves 0.5400
only. Note that PatchCore has the highest detection score in MVTec AD dataset at the time of
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writing this manuscript yet achieves the lowest COVID-19 detection score. We believe it is due to
the fact that PatchCore and PaDiM was designed to achieve best anomaly detection scores in natural
image datasets like MVTec AD. Therefore, the necessity of more anomaly detection methods for
medical imaging domain such as the proposed A2B-GAN is obvious. Qualitative results of COVID-
19 detection by A2B-GAN have been provided in Figure 3.

4.2 CARDIOMEGALY DETECTION

Datasets. We have utilized the ChestX-ray8 dataset (Wang et al., 2017) for this experiment. We have
used only Posterior Anterior (PA) images from the dataset. There are 39,302 PA healthy (negative
samples) X-rays and 1,563 PA X-rays with Cardiomegaly (positive samples) in the dataset. We split
these images into train and test set. The test set contains 301 positive and 7,589 negative samples.
For the train set, we randomly select 20,657 negative samples for the known healthy image set. From
the rest of the X-rays, we randomly select 2,111 negative images and 905 positive images for the
mixed unannotated training set. Please note that PaDiM (Defard et al., 2021) and PatchCore (Roth
et al., 2021) were initially unable to run on Cardiomegaly dataset due to the out-of-memory error
on our 500GB machine. Therefore, we had to reduce the number of negative samples in our healthy
image set from 20,657 to 10,000 only for these two methods.

Results. The 3rd column of Table 1 summarizes the Cardiomegaly detection results. Ganomaly (Ak-
cay et al., 2018) achieves the best Cardiomegaly detection AUC score of 0.6300. PaDiM (De-
fard et al., 2021) secures second place with an AUC score of 0.6034. The proposed A2B-GAN
places third with a score of 0.6015 which is only 0.03 points lower than the best performing
method, Ganomaly. However, A2B-GAN, compared to Ganomaly, achieved 0.2524 points higher in
COVID-19 detection. The difference in AUC between A2B-GAN and PaDiM is insignificant. The
other baseline methods ALAD (Zenati et al., 2018b), f-AnoGAN (Schlegl et al., 2019), and Patch-
Core (Roth et al., 2021) achieve Cardiomegaly detection AUC score of 0.5286, 0.5987, and 0.5999,
respectively. Qualitative results of Cardiomegaly detection by A2B-GAN are available in Figure 3.

4.3 SIMULATED ANOMALY DETECTION

Analysing the qualitative results in medical imaging can be challenging for the readers without
the domain knowledge. Realizing the fact, we have incorporated experiments on this simple but
instructive simulated anomaly detection dataset.

Datasets. We have utilized the CelebA dataset (Liu et al., 2015) for this experiment. We have
made an image anomalous by randomly selecting a 40 × 40 square area and replacing the color
of all the pixels in that area by their mean. The simulated dataset is split into training and test
set. The training set contains randomly selected 5,000 normal images which we call the known
healthy set. 3,500 images from the rest of the normal images and 1,500 anomalous images have
been randomly selected for the mixed unannotated training set. The test set contains 2,500 normal
and 2,500 anomalous images.

Results. Figure 4 provides qualitative results on the simulated anomaly detection by A2B-GAN.
As seen, the proposed A2B-GAN tries to interpolate facial attributes in the anomalous region while
keeping the normal images unchanged. From the Figure 4, it is also evident that difference maps can
be employed to detect, as well as, localize the anomalous regions. Quantitatively, PaDiM (Defard
et al., 2021) performs the best on this dataset achieving an AUC score of 0.9609. The proposed
A2B-GAN places second with an AUC score of 0.8002 which is 0.1607 lower than PaDiM. Please
note that the proposed A2B-GAN scored 0.2964 points higher than PaDiM in COVID-19 detection.
It is also noteworthy that PaDiM performs well only on the simulated dataset which confirms its
state-of-art performance in natural imaging domain. However, it performs poorly on the two med-
ical imaging datasets. In contrast, the proposed A2B-GAN performs consistently well on all three
datasets. The other baseline methods ALAD, Ganomaly, f-AnoGAN, and PatchCore achieved AUC
score of 0.5417, 0.5880, 0.5969, and 0.7549, respectively

4.4 IMPLEMENTATION DETAILS

We have resized the input images to 256×256 for the experiments on COVID-19 and Cardiomegaly
detection datasets in section 4.1 and section 4.2, respectively. For the Simulated Anomaly dataset
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Figure 4: Qualitative results of the simulated anomaly detection by A2B-GAN. The red arrows point
the locations of the anomalies. As seen, the difference maps for the anomalous images activate the
anomalous locations. In contrast, the difference maps appear empty for the normal images.

in section 4.3, we have resized the images to 128× 128. We have set λgp = 10, λid = 1, λrec = 1, λf
= 0.1, and λfz = 1 for all the experiments. The value of λfs has been set to 0.001 for the simulated
anomaly detection and 1 for COVID-19 and Cardiomegaly detection. For all experiments, we have
used a batch-size of 16. We trained the models for 400,000 iterations. We have used Adam optimizer
with a learning rate of 1e−4. The learning rate has been decayed for the last 100,000 iterations in
all training settings. Once trained, we have picked the best model using Fréchet inception distance
(FID) (Heusel et al., 2017; Seitzer, 2020).

4.5 DISCUSSION

Using FID for selecting model is a bottleneck for the proposed method. We found FID did not pick
the model with the best AUC score. If the best models produced by A2B-GAN were selected then the
AUC score would be 0.8398 instead of 0.8364 for COVID-19 detection, 0.6383 instead of 0.6015 for
Cardiomegaly detection, and 0.8571 instead of 0.8002 for simulated anomaly detection. Therefore,
the proposed A2B-GAN has potential to perform better when an improved metric is available in an
unsupervised scenario or a tiny annotated validation set is available in a semi-supervised setting.

5 CONCLUSION

We have introduced a novel one-directional unpaired image-to-image translation method for
anomaly detection, named A2B-GAN. We have devised a methodology to utilize an unannotated
mixed dataset with both normal and anomalous images during the training of the proposed A2B-
GAN. It has been possible due to the proposed novel reconstruction loss that ensures effective
cycle-consistency without requiring input image annotations. Our extensive evaluation has demon-
strated that the proposed A2B-GAN’s superiority over the existing state-of-the-art anomaly detection
methods. The superior performance is attributed to A2B-GAN’s capability of utilizing unannotated
anomalous images at training time.
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Thomas Schlegl, Philipp Seeböck, Sebastian M Waldstein, Georg Langs, and Ursula Schmidt-
Erfurth. f-anogan: Fast unsupervised anomaly detection with generative adversarial networks.
Medical Image Analysis, 2019. 1, 2, 3, 6, 7, 8

Maximilian Seitzer. pytorch-fid: FID Score for PyTorch. https://github.com/mseitzer/
pytorch-fid, August 2020. Version 0.1.1. 9

11

https://github.com/mseitzer/pytorch-fid
https://github.com/mseitzer/pytorch-fid


Under review as a conference paper at ICLR 2022

Wei Shen and Rujie Liu. Learning residual images for face attribute manipulation. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 4030–4038, 2017. 1, 3, 4

Linda Wang, Zhong Qiu Lin, and Alexander Wong. Covid-net: a tailored deep convolutional neural
network design for detection of covid-19 cases from chest x-ray images. Scientific Reports, 10
(1):19549, Nov 2020. ISSN 2045-2322. doi: 10.1038/s41598-020-76550-z. URL https:
//doi.org/10.1038/s41598-020-76550-z. 7

Xiaosong Wang, Yifan Peng, Le Lu, Zhiyong Lu, Mohammadhadi Bagheri, and Ronald M Sum-
mers. Chestx-ray8: Hospital-scale chest x-ray database and benchmarks on weakly-supervised
classification and localization of common thorax diseases. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 2097–2106, 2017. 8

Zili Yi, Hao (Richard) Zhang, Ping Tan, and Minglun Gong. Dualgan: Unsupervised dual learning
for image-to-image translation. In ICCV, pp. 2868–2876, 2017. 1, 3, 4

Houssam Zenati, Chuan Sheng Foo, Bruno Lecouat, Gaurav Manek, and Vijay Ramaseshan Chan-
drasekhar. Efficient gan-based anomaly detection. arXiv preprint arXiv:1802.06222, 2018a. 1, 3,
6

Houssam Zenati, Manon Romain, Chuan-Sheng Foo, Bruno Lecouat, and Vijay Chandrasekhar.
Adversarially learned anomaly detection. In 2018 IEEE International conference on data mining
(ICDM), pp. 727–736. IEEE, 2018b. 1, 2, 3, 6, 7, 8, 13

Gang Zhang, Meina Kan, Shiguang Shan, and Xilin Chen. Generative adversarial network with
spatial attention for face attribute editing. In Proceedings of the European conference on computer
vision (ECCV), pp. 417–432, 2018. 2, 3, 4

Yihao Zhao, Ruihai Wu, and Hao Dong. Unpaired image-to-image translation using adversarial
consistency loss. arXiv preprint arXiv:2003.04858, 2020. 2, 4

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation
using cycle-consistent adversarial networks. arXiv preprint, 2017a. 2, 3, 4, 5

Jun-Yan Zhu, Richard Zhang, Deepak Pathak, Trevor Darrell, Alexei A Efros, Oliver Wang, and Eli
Shechtman. Toward multimodal image-to-image translation. In Advances in Neural Information
Processing Systems, pp. 465–476, 2017b. 2, 3, 4

Maria A Zuluaga, Don Hush, Edgar JF Delgado Leyton, Marcela Hernández Hoyos, and Maciej
Orkisz. Learning from only positive and unlabeled data to detect lesions in vascular ct images.
In International conference on medical image computing and computer-assisted intervention, pp.
9–16. Springer, 2011. 1

12

https://doi.org/10.1038/s41598-020-76550-z
https://doi.org/10.1038/s41598-020-76550-z


Under review as a conference paper at ICLR 2022

A APPENDIX: A2B-GAN ON IMAGE-TO-IMAGE TRANSLATION

A.1 DATASETS

Eyeglass Removal. We have utilized CelebA (Liu et al., 2015) dataset to create dataset for eyeglass
removal task. The original dataset contains 202,599 face images of celebrities with 40 different
facial attributes. For eyeglass removal task, we have divided the dataset based-on the “Eyeglasses”
attribute. Our training dataset contains 10,523 images with eyeglasses and 152,251 images without
eyeglasses. In contrast, our testing dataset contains 2,672 images with eyeglasses.

Male-to-Female Translation. We have also utilized CelebA (Liu et al., 2015) dataset for translating
male faces to appears as female. In doing so, we have divided the dataset based-on the “Male”
attribute. For this task, our dataset contains 68,261 male images and 94,509 female images. For
testing, we have utilized 16,173 male images.

A.2 QUANTITATIVE RESULTS

Method # Gen. # Disc. Eyeglasses Male-to-Female
StarGAN (Choi et al., 2018) 1 1 34.62 –
Fixed-Point GAN (Rahman Sid-
diquee et al., 2019)

1 1 34.61 86.11

Council GAN (Nizan & Tal, 2020) 4 8 34.65 34.30
ACL GAN (Zenati et al., 2018b) 2 2 38.97 49.21
A2B-GAN 1 1 34.29 34.00

Table 2: Summary of image-to-image translation results. We have compared the proposed A2B-
GAN with existing state-of-the-art image-to-image translation methods. We have used FID score for
the evaluation. Our quantitative results show that the proposed A2B-GAN performs competitively
with the existing methods even though using only 1 generator and 1 discriminator network.

13


