
Revisiting the Solution of Meta KDD Cup 2024: CRAG
Jie Ouyang

State Key Laboratory of Cognitive
Intelligence, University of Science and

Technology of China
Hefei, Anhui, China

ouyang_jie@mail.ustc.edu.cn

Yucong Luo
State Key Laboratory of Cognitive

Intelligence, University of Science and
Technology of China
Hefei, Anhui, China

prime666@mail.ustc.edu.cn

Mingyue Cheng∗
State Key Laboratory of Cognitive

Intelligence, University of Science and
Technology of China
Hefei, Anhui, China

mycheng@ustc.edu.cn

Daoyu Wang
State Key Laboratory of Cognitive

Intelligence, University of Science and
Technology of China
Hefei, Anhui, China

wdy030428@mail.ustc.edu.cn

Shuo Yu
State Key Laboratory of Cognitive

Intelligence, University of Science and
Technology of China
Hefei, Anhui, China

yu12345@mail.ustc.edu.cn

Qi Liu
State Key Laboratory of Cognitive

Intelligence, University of Science and
Technology of China
Hefei, Anhui, China
qiliuql@ustc.edu.cn

Enhong Chen
State Key Laboratory of Cognitive

Intelligence, University of Science and
Technology of China
Hefei, Anhui, China
cheneh@ustc.edu.cn

Abstract
This paper presents the solution of our teamAPEX in theMeta KDD
CUP 2024: CRAG Comprehensive RAG Benchmark Challenge. The
CRAG benchmark addresses the limitations of existing QA bench-
marks in evaluating the diverse and dynamic challenges faced by
Retrieval-Augmented Generation (RAG) systems. It provides a more
comprehensive assessment of RAG performance and contributes
to advancing research in this field. We propose a routing-based do-
main and dynamic adaptive RAG pipeline, which performs specific
processing for the diverse and dynamic nature of the question in all
three stages: retrieval, augmentation, and generation. Our method
achieved superior performance on CRAG and ranked 2nd for Task
2&3 on the final competition leaderboard. Our implementation is
available at this link: https://github.com/USTCAGI/CRAG-in-KDD-
Cup2024.

CCS Concepts
• Information systems→ Information retrieval.

Keywords
Retrieval-Augmented Generation, Large Language Model

1 Introduction
Large Language Models (LLMs) have revolutionized the landscape
of Natural Language Processing (NLP) tasks [5, 8, 10], particularly in
question answering (QA). Despite advances in LLMs, hallucination
remains a significant challenge, particularly for dynamic facts and
information about less prominent entities.

Retrieval-AugmentedGeneration (RAG) [9] has recently emerged
as a promising solution to mitigate LLMs’ knowledge deficiencies.
∗Mingyue Cheng is the corresponding author.

Given a question, a RAG system queries external sources to re-
trieve relevant information and subsequently provides grounded
answers. Despite its potential, RAG continues to face numerous
challenges, including the selection of the most relevant information,
the reduction of question answering latency, and the synthesis of
information to address complex questions.

To bridge this gap, Meta introduced the Comprehensive RAG
Benchmark (CRAG) [13], a factual question answering benchmark
of 4,409 question-answer pairs and Mock APIs to simulate web
and Knowledge Graph (KG) search, and hosted the KDD CUP 2024
Challenge.

1.1 Dataset Description
The CRAG contains two parts of data: the QA pairs and the content
for retrieval.

QA pairs. The CRAG dataset contains a rich set of 4,409 QA
pairs covering five domains: finance, sports, music, movie, and
open domain, and eight types of questions. For the KDD CUP 2024
Challenge, the benchmark data were splited into three sets with
similar distributions: validation, public test, and private test at 30%,
30%, and 40%, respectively. In total, 2,706 examples from validation
and public test sets were shared.

The dataset also reflects varied entity popularity from popular
to long-tail entities, and temporal spans ranging from seconds to
years. Given the temporal nature of many questions, each question-
answer pair is accompanied by an additional field denoted as "query
time." This temporal marker ensures the reliability and uniqueness
of the answers within their specific temporal context.

Content for retrieval. The CRAG dataset incorporates two
types of content for retrieval to simulate a practical scenario for
RAG: web search and knowledge graph (KG) search. This encom-
passes up to 50 full HTML pages for each question, retrieved from

https://orcid.org/0000-0001-9873-7681
https://github.com/USTCAGI/CRAG-in-KDD-Cup2024
https://github.com/USTCAGI/CRAG-in-KDD-Cup2024

KDD ’24, August 25-29, 2024, Barcelona Jie Ouyang, Yucong Luo, Mingyue Cheng, Daoyu Wang, Shuo Yu, Qi Liu, and Enhong Chen

a real-world search engine, as well as Mock KGs containing 2.6 mil-
lion entities. Additionally, CRAG provides Mock APIs to simulate
retrieval from a wide range of available information sources.

• Web search results Each retrieved web search result com-
prises five fields: page name, page url, page snippet, page last
modified and page result. See Table 3 in Appendix A.1 for an
example.

• Mock KGs A Knowledge Graph containing 2.6 million enti-
ties, which is accessed through Mock API.

• Mock APIs APIs for retrieving structured data from Mock
KGs with predefined parameters, which are categorized by
domain and output in JSON format. See Example in Appendix
A.2 .

1.2 Task Desription
This challenge comprises three tasks designed to improve question-
answering (QA) systems.

TASK 1: The organizers provide 5 web pages per question, poten-
tially containing relevant information. The objective is to measure
the systems’ capability to identify and condense this information
into accurate answers.

TASK 2: This task introduces mock APIs to access information
from underlying mock Knowledge Graphs (KGs), with structured
data possibly related to the questions. Participants use mock APIs,
inputting parameters derived from the questions, to retrieve rele-
vant data for answer formulation. The evaluation focuses on the
systems’ ability to query structured data and integrate information
from various sources into comprehensive answers.

TASK 3: The third task increases complexity by providing 50
web pages and mock API access for each question, encountering
both relevant information and noise. It assesses the systems’ skill
in selecting the most important data from a larger set, reflecting
the challenges of real-world information retrieval and integration.

Each task builds upon the previous, steering participants toward
developing sophisticated end-to-end RAG systems. This challenge
showcases the potential of RAG technology in navigating and mak-
ing sense of extensive information repositories, setting the stage
for future AI research and development breakthroughs.

2 Methodlogy
Our approach, akin to most Retrieval-Augmented Generation (RAG)
systems, comprises three primary phases: retrieval, augmentation
and generation. In all phases, we implement routing mechanisms
to address diverse query types. Figure 1 illustrates the pipeline of
our solution, while the remainder of this section details the three
main phases and the routers employed in this challenge.

2.1 Router
Routing is a crucial component of RAG systems, especially in real-
world QA scenarios. In practical applications, RAG systems fre-
quently incorporate multiple data sources. In the CRAG Challenge,
we have three distinct data sources: Web Pages, Mock KGs, and
Mock APIs. The diversity of questions requires routing queries to
different data sources, individually or in combination. Even within
a single data source, such as Mock APIs, the question-specific se-
lection of appropriate APIs is crucial. Furthermore, we can tailor

prompt templates based on the nature of the question or route
questions to different post-processing components.

In response to the specific characteristics of the questions in the
CRAG Challenge, we designed two specialized routers: the Domain
Router and the Dynamism Router. These routers are designed to effi-
ciently navigate the complex landscape of multisource information
retrieval and question-specific processing in our RAG system.

Domain Router. Domain router is fundamentally a classifier,
more specifically, a sentence classifier. Given a query, the domain
router assigns a specific domain from a predefined set: finance,
sports, music, movie, and open. Based on the assigned domain, the
workflow is then routed to the corresponding path.

We utilize Llama3-8B-Instruct [2] as our base model and enhance
it with a classification head (Multilayer Perceptron, MLP) for do-
main classification. The 8B model inherently demonstrates a robust
capability to comprehend the domain of queries. We randomly split
the CRAG dataset into training, validation, and test sets with a
ratio of 8:1:1. Based on this split, we performed a simple LORA
(Low-Rank Adaptation) [7] fine-tuning to adapt to the distribution
of the CRAG dataset. This approach facilitates the development of
a high-quality classifier with minimal additional training.

The trained Domain router is employed at multiple stages within
the system. During the retrieval phase, the Domain router is pri-
marily used to select appropriate APIs. Following the retrieval of
Web Pages and APIs, it is further applied for selective fusion of the
retrieved knowledge. In the generation phase, we first customize
the prompt templates based on the domain. Subsequently, after
the model completes its generation, the Domain is also utilized for
corresponding post-processing.

Dynamic Router. Analogous to the Domain router, the Dy-
namism router is also a sentence classifier. Given a question, the
Dynamism router assigns a specific Dynamism, specifically one
of: static, slow-changing, fast-changing, or real-time. The specific
training methodology for the Dynamism router is congruent with
that of the Domain Router, and thus will not be recapitulated here.

Due to the inherent limitation of Large Language Models in
updating their internal knowledge, they are prone to providing
outdated answers to dynamic questions. Even when employing
external knowledge through RAG, LLMs can readily generate hal-
lucinations as most data sources are static, unless real-time APIs
are utilized. In the absence of real-time APIs, the more rapidly
a question changes over time, the more susceptible LLMs are to
hallucinations.

To attenuate hallucinations arising from dynamic questions, we
implemented theDynamism router for post-processing. In scenarios
where real-time APIs are inaccessible, we excluded certain real-time
questions and those that change rapidly over time.

2.2 Retrieval
As mentioned above, the CRAG dataset encompasses three types
of content for retrieval: Web Pages, Mock KGs, and Mock APIs. For
our final solution, we utilize two of these content types: Web Pages
and Mock APIs.

2.2.1 Web Pages. Web Pages are available for all 3 tasks of the
challenge. For Task 1&2, 5 Web Pages per question are provided,
each potentially containing relevant information. Task 3 increases

Revisiting the Solution of Meta KDD Cup 2024: CRAG KDD ’24, August 25-29, 2024, Barcelona

Figure 1: The overall pipeline of our solution.

HTML
Parse

HTML Text
Split

Large Chunks BM25
Pre-rank

Top 50
Large Chunks

Small Chunks

Split

Dense
Retrieve

Top N
Small Chunks

RerankTop K
Small Chunks

Web Retriever

Figure 2: The pipeline of Web Retriever.

complexity by offering 50 Web Pages for each question, presenting
both pertinent information and noise.

To enhance our QA system, we need to extract useful and rele-
vant information from web search results. The primary process for
retrieving web content is illustrated in Figure 2.

(1) HTML Parsing: Structured HTML is often unnecessarily
verbose and contains substantial extraneous information that
can impede subsequent segmentation operations. Therefore,
it is crucial to first convert this structured format into natural
language text that is more amenable to processing by Large
Language Models. We conducted experiments with various
HTML parsing methods, including BeautifulSoup, Newspa-
per, Markdownify, and several others. After evaluating both
parsing efficiency and quality, we ultimately selected News-
paper. See A.3 for more details about experiment results.

(2) Pre-ranking (Task 3 only): For Task 3, fine-grained pro-
cessing 50 Web Pages would be excessively time-consuming.

Therefore, we initially filter out an appropriate amount of
relevant text before ranking. Specifically, we segment all the
text from the Web Pages into chunks of 1024 tokens (cal-
culated based on tokens rather than characters). For these
segmented text chunks, we use BM25 [11] to select the top
50 most relevant text blocks.

(3) Ranking: In the ranking phase, we further refine the pre-
ranked text blocks. For task 1&2, the text blocks are the 5
raw plain text extracted from HTML. The text blocks are seg-
mented into smaller chunks, each comprising 256 tokens. We
then transform these 256-token chunks into embeddings uti-
lizing the bge-m3 [4] model. Finally, we calculate the cosine
similarity to select top 10 relevant chunks.

(4) Re-ranking: We utilized bge-m3-v2-reranker [6] to re-rank
the aforementioned 10 relevant chunks, ultimately selecting
the top 5 segments.

2.2.2 MockAPIs. A total of 38 Mock APIs were provided for tasks
2&3. As mentioned above, these Mock APIs can be categorized
into five distinct domains, with no overlap between the APIs of
different domains. Naturally, we designed separate workflows for
each domain using a Domain Router. However, the overarching
process flow of theworkflows across all domains remains consistent,
as shown in Figure 3:

(1) Named Entity Recognition (NER): We directly utilize
Llama3-70B-Instruct [2] to identify and classify named enti-
ties in the question into predefined categories, such as movie
names and artist names. Specific prompts are presented in
the Appendix A.4.

KDD ’24, August 25-29, 2024, Barcelona Jie Ouyang, Yucong Luo, Mingyue Cheng, Daoyu Wang, Shuo Yu, Qi Liu, and Enhong Chen

Mock APIs

Domain
Specific

···

Query NERNER

NERNER NERNER

NERNER

Domain
Specific

EMEM

EMEM EMEM

EMEM

Domain
Specific

Mock APIs

API Call

API Select

to

API Extractor

TimeInfo Extract

1 2

3

4

5

Figure 3: The pipeline of API Extractor.

(2) Entity Match: Matching extracted entities with API input
parameters. Taking finance as an example, the input parame-
ter for finance API is typically the ticker symbol, while user
questions often contain full company names. We need to
convert the company names to their corresponding ticker
symbols. We first perform exact matching, requiring the ex-
tracted entity to be exactly the same as the input parameter.
If no match is found, we then use BM25 to select the most
similar one.

(3) Time Information Extraction: In addition to entities, nu-
merous API inputs incorporate temporal information, re-
quiring the extraction of relevant time points or intervals
from user inputs. Notably, temporal information is often
dependent with query time, as illustrated by terms such as
"yesterday." In such cases, we must determine the specific
time point based on the query time through relative time
computation. We first use regular expressions to match cer-
tain time and date-related terms. Once matched, we use two
Python packages (pytz and datetime) to calculate the Abso-
lute Time. If no matches are found, the current time is used
by default.

(4) API Select: Each domain comprises numerous APIs, not
all of which are inherently relevant to a user’s query. We
have manually designed a set of rules to select APIs that
correspond to the given question. To minimize the risk of
overfitting the rules to the training set, we implemented
constraints on the rule design process, prioritizing simplicity
and robustness.

(5) Json to Markdown: The JSON output from APIs, while
structured and machine-readable, may not be optimal for
large language models (LLMs) to process efficiently. Con-
verting this JSON data into a more LLM-friendly Markdown
format can enhance the model’s ability to understand and
utilize the information.

2.3 Augmentation
We employ input-layer integration for generation augmentation,
which combines retrieved information/documents with the original
input/query and jointly passes them to the generator. In contrast
to common input-layer integration, we do not utilize all retrieved
documents. For different domains, we select specific data sources
and integrate them to construct the final reference.

For the open domain, since we did not employ a Mock API, we
exclusively utilized web search results. For the movie and music
domains, where most queries are relatively static or evolve slowly,
results retrieved from both web pages and mock APIs remain rele-
vant. Therefore, we chose to integrate these two sources. For the
sports and finance domains, which involve numerous real-time and
fast-changing queries, we exclusively used Mock APIs to ensure
the timeliness and relevance of the retrieved information.

2.4 Generation
In the generation phase, we employed two widely-used methodolo-
gies: Chain-of-Thought (CoT) reasoning and In-context Learning.
After generation, we performed a simple post-processing proce-
dure on the generated results based on the Domain and Dynamism
Routers.

2.4.1 Chain of Thought. Chain-of-Thought (CoT) [12] enhances
the reasoning process of language models by prompting them to
articulate intermediate steps in problem-solving. This approach not
only enhances the model’s ability to handle complex tasks but also
significantly reduces hallucinations.

2.4.2 In-context Learning. We improve the model’s ability to
recognize invalid questions, particularly those based on false premises,
through In-context Learning. We develop adaptive few-shot exam-
ples [3], selecting two of the most representative invalid question
samples for each domain and elucidating the reasons for their inva-
lidity. Using the sports domain as an example, our few-shot samples
are as follows:

Few-shot Example I

What’s the latest score for OKC’s game today?

There is no game for OKC today.

Few-shot Example II

How many times has Curry won the NBA dunk contest?

Steph Curry has never participated in the NBA dunk contest.

2.4.3 Post-processing. Before finalizing the results, we imple-
ment basic post-processing strategies. Based on the question do-
main and volatility, we assign "I don’t know" responses to queries
susceptible to hallucination. For domains lacking real-time API ac-
cess, specifically open, movie, and music categories, we designated
"I don’t know" answers to fast-changing and real-time questions.
Furthermore, due to the model’s limited mathematical computation

Revisiting the Solution of Meta KDD Cup 2024: CRAG KDD ’24, August 25-29, 2024, Barcelona

Table 1: Overall Preformance of our solutions on all 3 Tasks.

Score(%) Accuracy(%) Hallucination(%) Missing(%)

LLM Only -7.29 28.01 35.30 36.69
Direct RAG -6.78 34.79 41.58 23.63

Task 1 11.82 29.98 18.16 51.86
Task 2 31.22 46.75 15.54 37.71
Task 3 31.66 48.21 16.56 35.23

Table 2: Ablation Study for Major Strategies Employed in the System.

Score(%) Accuracy(%) Hallucination(%) Missing(%) Time Cost(s)

Task 2

w/o Rerank 29.17 43.54 14.37 42.09 -
w/o EntityMatch 21.44 32.31 10.87 56.82 -
w/o TimeInfoExtract 18.45 28.45 9.99 61.56 -
w/o Fewshot&CoT 25.53 52.08 26.55 21.37 -
w/o Fewshot 27.13 51.35 24.22 24.43 -
w/o CoT 28.52 53.32 24.80 21.88 -
Ours 31.22 46.75 15.54 37.71 -

Task 3 w/o Prerank 29.53 44.34 14.81 40.85 68.17
Ours 31.66 48.21 16.56 35.23 5.96

capabilities, we implement same processing for questions requiring
numerical calculations, such as those involving the term "average."
Although these approachmay be deemed simplistic, it demonstrated
efficacy in significantly reducing hallucinations.

3 Experiments
In this section, we present our main results and ablation studies for
some crucial components.

We did not employ a strategy of fine-tuning the LLM; instead,
we used the LLM in a zero-shot setting. According to the rules set
by the organizers, we used Llama3-70B-Instruct [2] for all our LLMs.
For the embedding model, we used BAAI/bge-m3, and for the rerank
model, we used BAAI/bge-m3-v2-reranker. In the 1371 public test
cases officially released for this round, we compared the following
baselines: LLM only (using the LLM without retrieving references)
and straightforward RAG (the baseline provided by the organizers,
using straightforward RAG solutions).

3.1 Metrics and Evaluation
In line with CRAG Benchmark, we conduct a model-based auto-
matic evaluation for our experiment. Automatic evaluation employs
rule-based matching and GPT-4 [1] assessment to check answer
correctness. It will assign three scores: correct (1 point), missing (0
points), and incorrect (-1 point). The final score for a given RAG
system is computed as the average score across all examples in the
evaluation set.

3.2 Overall Performance
Comparing our solutions to the RAG Baseline, we observe signifi-
cant advantages in performance across all three tasks. In Table 1,
our approach showcases notable improvements in accuracy and

information retention. Specifically, when contrasted with the RAG
Baseline, our solutions demonstrate superior results with reduced
hallucination rates and enhanced information completeness. Task
2 and Task 3, in particular, exhibit substantial enhancements in
accuracy and reduced hallucination percentages, highlighting the
effectiveness of our proposed methodologies in addressing these
key metrics.

3.3 Ablation Study
Table 2 presents the ablation study for major strategies employed
in our solution.

During the retrieval phase, we implemented several strategies,
including pre-ranking, re-ranking, Entity Match, and Time Infor-
mation Extraction. Ablation studies revealed that pre-ranking and
re-ranking marginally reduce performance, while Entity Match and
Time Information Extraction significantly decrease performance.
Both pre-ranking and re-ranking significantly contribute to the
improvement of retrieval quality. Pre-ranking enhances retrieval
performance by proactively filtering out a significant amount of
noise, while re-ranking ensures the accuracy of retrieval results
through more refined and granular sorting. The enhancement in
retrieval quality ultimately translates into an increase in answer
accuracy. The absence of pre-ranking and re-ranking demonstrably
leads to a substantial decrease in the accuracy of the final answers.
Furthermore, pre-ranking significantly enhances retrieval effiency
and reduces the retrieval time. Entity Matching and Time Informa-
tion Extraction form the basis of using MOCK APIs. They ensure
the accuracy of API call parameters, which is crucially linked to the
overall performance. The absence of either component can result
in a significant performance decline.

KDD ’24, August 25-29, 2024, Barcelona Jie Ouyang, Yucong Luo, Mingyue Cheng, Daoyu Wang, Shuo Yu, Qi Liu, and Enhong Chen

During the generation phase, we employed 2 main components:
domain specific fewshot examples and Chain of Thought prompt.
Both aforementioned components led to a substantial reduction in
hallucinations. The combined implementation of these components
yielded a reduction in hallucinations of up to 71%, consequently re-
sulting in a 22% increase in the final score. The experimental results
demonstrate the effectiveness and necessity of the two components.

4 Perspectives
Our method presents a robust and versatile framework for address-
ing a wide range of dynamic and complex real-world problems.
This approach, however, also opens up several avenues for further
investigation.

• Model Cognitive Ability Assessment Most conventional
QA evaluation methods primarily focus on accuracy, neglect-
ing the impact of hallucinations. Models should be aware of
their knowledge boundaries, discerning what they should
and should not answer. CRAG incorporates hallucinations
into evaluation metrics, but its settings lack sufficient jus-
tification. Responding "I don’t know" to all questions can
yield a satisfactory score. Exploring the assessment of mod-
els’ cognitive abilities using methodologies for evaluating
human cognition is a promising research direction.

• API Integration and Scalability. In real-world scenarios,
where extensive API usage is common, our manually de-
signed matching rules are likely to prove inadequate. The
development of a more universal method for selecting and
calling APIs, as well as processing the returned results, rep-
resents a promising avenue for future research.

• Handling Dynamic Information. For questions that in-
volve information that changes dynamically over time, sim-
ply refusing to answer is merely a basic solution. Future
research should focus on exploring methods to acquire the
most up-to-date knowledge and determine the timeliness of
information. This is crucial to avoid hallucinations caused
by outdated knowledge and to ensure the system provides
accurate, current information. Developing techniques for
real-time information retrieval and verification, as well as
implementing mechanisms to assess the reliability and cur-
rency of data sources, are key areas for investigation.

5 Conclusion
In this paper, we introduce our solution for the Meta KDD CUP
2024: CRAG Comprehensive RAG Benchmark. We adopt a classic
RAG framework with two specific routers. In the retrieval phase,
we demonstrated the process of obtaining high-quality information
from various data sources and utilizing the Domain Router for in-
formation filtering. In the augmentation phase, we employed the
Domain Router in a similar manner for information aggregation
based on domain characteristics. Finally, in the generation phase,
we implemented two methods to significantly improve the model’s
accuracy and reduce hallucinations, while further mitigating hallu-
cinations through post-processing based on the question’s domain
and dynamic nature.

Our approach offers a viable pathway for addressing the diverse
and dynamic challenges encountered in real-world scenarios. Nev-
ertheless, our method has certain limitations. We have identified
several inherent issues in the current methodology and provided
our insights and reflections on the specific problems related to our
approach. Ultimately, we anticipate that this study will make a
modest contribution to the broader RAG and LLM communities.

Acknowledgments
This research was supported by grants from the National Key Re-
search andDevelopment Program of China (Grant No. 2021YFF0901000),
the National Natural Science Foundation of China (No. 62337001)
and the Fundamental Research Funds for the Central Universities.

References
[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-

cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal
Anadkat, et al. 2023. Gpt-4 technical report. arXiv preprint arXiv:2303.08774
(2023).

[2] Meta AI. 2024. Meta LLaMA 3. Meta AI Blog (2024). https://ai.meta.com/blog/
meta-llama-3/

[3] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language models are few-shot learners. In
Proceedings of the 34th International Conference on Neural Information Processing
Systems (Vancouver, BC, Canada) (NIPS ’20). Curran Associates Inc., Red Hook,
NY, USA, Article 159, 25 pages.

[4] Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu Lian, and Zheng Liu. 2024.
Bge m3-embedding: Multi-lingual, multi-functionality, multi-granularity text
embeddings through self-knowledge distillation. arXiv preprint arXiv:2402.03216
(2024).

[5] Mingyue Cheng, Hao Zhang, Jiqian Yang, Qi Liu, Li Li, Xin Huang, Liwei
Song, Zhi Li, Zhenya Huang, and Enhong Chen. 2024. Towards Personalized
Evaluation of Large Language Models with An Anonymous Crowd-Sourcing
Platform. Companion Proceedings of the ACM on Web Conference 2024 (2024).
https://api.semanticscholar.org/CorpusID:268379217

[6] FlagOpen. 2024. FlagEmbedding Reranker. https://github.com/FlagOpen/
FlagEmbedding/tree/master/FlagEmbedding/reranker.

[7] J. Edward Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean
Wang, and Weizhu Chen. 2021. LoRA: Low-Rank Adaptation of Large Language
Models. ArXiv abs/2106.09685 (2021). https://api.semanticscholar.org/CorpusID:
235458009

[8] Junzhe Jiang, Shang Qu, Mingyue Cheng, and Qi Liu. 2023. Reformulating Sequen-
tial Recommendation: Learning Dynamic User Interest with Content-enriched
Language Modeling. ArXiv abs/2309.10435 (2023). https://api.semanticscholar.
org/CorpusID:262054865

[9] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin,
Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel,
et al. 2020. Retrieval-augmented generation for knowledge-intensive nlp tasks.
Advances in Neural Information Processing Systems 33 (2020), 9459–9474.

[10] Yucong Luo, Mingyue Cheng, Hao Zhang, Junyu Lu, Qi Liu, and Enhong Chen.
2023. Unlocking the Potential of Large Language Models for Explainable Rec-
ommendations. ArXiv abs/2312.15661 (2023). https://api.semanticscholar.org/
CorpusID:266551720

[11] Stephen Robertson, Hugo Zaragoza, et al. 2009. The probabilistic relevance
framework: BM25 and beyond. Foundations and Trends® in Information Retrieval
3, 4 (2009), 333–389.

[12] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi,
Quoc V Le, Denny Zhou, et al. 2022. Chain-of-thought prompting elicits reasoning
in large language models. Advances in neural information processing systems 35
(2022), 24824–24837.

[13] Xiao Yang, Kai Sun, Hao Xin, Yushi Sun, Nikita Bhalla, Xiangsen Chen, Sajal
Choudhary, Rongze Daniel Gui, Ziran Will Jiang, Ziyu Jiang, et al. 2024. CRAG–
Comprehensive RAG Benchmark. arXiv preprint arXiv:2406.04744 (2024).

https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/
https://api.semanticscholar.org/CorpusID:268379217
https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/reranker
https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/reranker
https://api.semanticscholar.org/CorpusID:235458009
https://api.semanticscholar.org/CorpusID:235458009
https://api.semanticscholar.org/CorpusID:262054865
https://api.semanticscholar.org/CorpusID:262054865
https://api.semanticscholar.org/CorpusID:266551720
https://api.semanticscholar.org/CorpusID:266551720

Revisiting the Solution of Meta KDD Cup 2024: CRAG KDD ’24, August 25-29, 2024, Barcelona

A Appendix
A.1 An Example of Web Search Results.

Table 3: An Example of Web Search Results.

Key Value
"page name" "Microsoft Office 2019 - Wikipedia"
"page url" "https://en.wikipedia.org/wiki/

Microsoft_Office_2019"
"page snippet" "For Office 2013 and 2016, various edi-

tions containing the client apps were
available in both Click-To-Run..."

"page last modified" "Tue, 27 Feb 2024 22:55:55 GMT"
"html page" "<!DOCTYPE html>

<html class=...>
<head>
...
<title>Microsoft Office 2019 -
Wikipedia</title>..."

A.2 An Example of Mock APIs.
Most mock APIs typically take entities as input and output entity-
related information in JSON format. The following is an example
of an API in the economic domain:

get_detailed_price_history

Description: The function returns the past 5 days’ his-
tory of 1-minute Stock price, starting from 09:30:00 EST to
15:59:00 EST.
Input:

• ticker_name: str, upper case
Output:

• Past 5 days’ 1-minute price history: json

A.3 Experiment Results of HTML Parsing
Methods

Table 4: Experiment Results of HTML Parsing Methods

Method Time Cost(s) Success Rate(%) Score(%)
beautifulsoup 0.31 100.0 5.11
boilerpy3 0.25 97.2 9.42
trafilatura 0.64 96.4 10.14
newspaper 1.96 98.8 11.82

markdownify 3.65 100.0 10.94

A.4 Prompts Used for Name Entity Recognition
Music NER Prompt

Please identify and list all the named entities present in
the following question about music instead answering it,
categorizing them appropriately (e.g., persons, song, band)
Your answer should be short and concise in 50 words.

Format your response as follows: For each entity, provide
the name followed by its category in parentheses. Categories
include persons, songs and bands. Ensure that your response
is clearly structured and easy to read.

Question: "{query}"

Output only the named entities present in the question. Do
not include any other information. If there are no named
entities in the question, please provide an empty response.

Expected Output Format:
a name of a person in the sentence (person)
a name of a song in the sentence (song)
a name of a band in the sentence (band);

Every entity should be in a new line and be in the format of
"entity_name (entity_category)"

Sports NER Prompt

Please identify and list all the named entities present in
the following question about sports instead answering it,
categorizing them appropriately (e.g., nba team, soccer team,
nba player, soccer player) Your answer should be short and
concise in 50 words.

Format your response as follows: For each entity, provide
the name followed by its category in parentheses. Categories
include nba teams, soccer teams, nba players, soccer players.
Ensure that your response is clearly structured and easy to
read.

Question: "{query}"

Output only the named entities present in the question. Do
not include any other information. If there are no named
entities in the question, please provide an empty response.

Expected Output Format:
a name of a nba team in the sentence (nba team)
a name of a soccer team in the sentence (soccer team)
a name of a nba player in the sentence (nba player)
a name of a soccer player in the sentence (soccer player);

Every entity should be in a new line and be in the format of
"entity_name (entity_category)"

KDD ’24, August 25-29, 2024, Barcelona Jie Ouyang, Yucong Luo, Mingyue Cheng, Daoyu Wang, Shuo Yu, Qi Liu, and Enhong Chen

Movie NER Prompt

Please identify and list all the named entities present in
the following question about movie instead answering it,
categorizing them appropriately (e.g., person, movie) Your
answer should be short and concise in 50 words.

Format your response as follows: For each entity, provide
the name followed by its category in parentheses. Categories
include persons, and movies. Ensure that your response is
clearly structured and easy to read.

Question: "{query}"

Output only the named entities present in the question. Do
not include any other information. If there are no named
entities in the question, please provide an empty response.

Expected Output Format:
a name of a person in the sentence (person)
a name of a movie in the sentence (movie)

Every entity should be in a new line and be in the format of
"entity_name (entity_category)"

Finance NER Prompt

Please identify and list all the named entities present in the
following question about finance instead answering it, cate-
gorizing them appropriately (e.g., company, ticker symbol)
Your answer should be short and concise in 50 words.

Format your response as follows: For each entity, provide
the name followed by its category in parentheses. Categories
include company, and symbol(which means the ticker symbol
of a company). Ensure that your response is clearly structured
and easy to read.

Question: "{query}"

Output only the named entities present in the question. Do
not include any other information. If there are no named
entities in the question, please provide an empty response.

Expected Output Format:
a name of a company in the sentence (company)
a name of a ticker symbol in the sentence (symbol);

Every entity should be in a new line and be in the format of
"entity_name (entity_category)"

	Abstract
	1 Introduction
	1.1 Dataset Description
	1.2 Task Desription

	2 Methodlogy
	2.1 Router
	2.2 Retrieval
	2.3 Augmentation
	2.4 Generation

	3 Experiments
	3.1 Metrics and Evaluation
	3.2 Overall Performance
	3.3 Ablation Study

	4 Perspectives
	5 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 An Example of Web Search Results.
	A.2 An Example of Mock APIs.
	A.3 Experiment Results of HTML Parsing Methods
	A.4 Prompts Used for Name Entity Recognition

