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Abstract
Multi-objective learning under user-specified pref-
erence is common in real-world problems such
as multi-lingual speech recognition under fair-
ness. In this work, we frame such a problem
as a semivectorial bilevel optimization problem,
whose goal is to optimize a pre-defined preference
function, subject to the constraint that the model
parameters are weakly Pareto optimal. To solve
this problem, we convert the multi-objective con-
straints to a single-objective constraint through
a merit function with an easy-to-evaluate gradi-
ent, and then, we use a penalty-based reformu-
lation of the bilevel optimization problem. We
theoretically establish the properties of the merit
function, and the relations of solutions for the
penalty reformulation and the constrained formu-
lation. Then we propose algorithms to solve the
reformulated single-level problem, and establish
its convergence guarantees. We test the method on
various synthetic and real-world problems. The
results demonstrate the effectiveness of the pro-
posed method in finding preference-guided opti-
mal solutions to the multi-objective problem.

1. Introduction
Many machine learning tasks naturally involve multiple
objectives, which may include diverse performance met-
rics such as accuracy, fairness, and privacy, or even the
same metrics evaluated across different datasets (Sener &
Koltun, 2018). A common approach to tackling such multi-
objective problems is to learn a shared model that performs
well across all objectives simultaneously. Compared to train-
ing separate models for each objective, this approach offers
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Figure 1. Example on multi-lingual speech or language processing
problem under user-specified preference guidance. The red curve
represents the Pareto front, which is, informally, the set of objective
values that achieve the best trade-offs among multiple objectives.

significant benefits – most notably, it reduces model size and
inference time, making it more efficient and scalable. Multi-
objective optimization facilitates this by enabling the learn-
ing of models that minimize vector-valued objectives (Mi-
ettinen, 1998; Ehrgott, 2005). In practical scenarios, it is
often desirable to obtain solutions that provide controlled
trade-offs or reflect specific preferences among competing
objectives, rather than treating all objectives equally.

To further illustrate, we use one example on multi-lingual
speech or language processing problem in Figure 1. The
goal of this problem is to minimize multiple losses from
different languages, while satisfying the user-specified pref-
erences. Preferences can control trade-offs among mul-
tiple losses and enhance steerability, enabling the solver
to return diverse solutions on the Pareto front. Analyti-
cally, the preferences can be defined as constraints or ob-
jectives, see, e.g., (Lin et al., 2019; Curtis et al., 2023;
Chen et al., 2024a). To prioritize finding the optimal so-
lutions of the multi-lingual losses over satisfying the pref-
erences, we model the preference as a secondary scalar-
valued objective. We first optimize the vector-valued ob-
jective formed by concatenating the multi-lingual losses,
and then optimize the scalar-valued preference objective.
More formally, let f1, . . . , fM : X → R be the objec-
tive functions, and f0 : X → R be the preference func-
tion, e.g., the discrepancy between different objectives,
with X ⊆ Rq being nonempty, closed and convex. De-
pending on the problem, X can be compact or Rq. Let
F = (f1, . . . , fM ) : X → RM be a vector-valued function.
Then the optimization problem is

minx∈X f0(x) s.t. x ∈ argminx∈X F (x) (OPS)
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where for minimizing the vector-valued objective F (x), we
consider the widely used Pareto optimality, whose formal
definition is deferred to Section 2. Then problem (OPS) is
also known as Optimization on the Pareto Set (OPS), or a
semivectorial simple bilevel optimization problem (Bolin-
tineanu, 1993a;b).

The OPS or semivectorial bilevel optimization problem is
generally very difficult to solve (Bolintineanu, 1993b). Ex-
isting studies usually make strong assumptions such as the
convexity of the objectives F (Roy et al., 2023), or the al-
gorithms require evaluating the second-order derivatives of
the objectives, and is thus inefficient for large-scale prob-
lems (Chen et al., 2022; Roy et al., 2023). To address
these challenges, we introduce reformulations of the OPS
problem, establish relations of the reformulations and the
original problem, and propose algorithms to solve the refor-
mulated problem with convergence guarantees.

Our contributions can be summarized as follows:
First, we propose a smoothed merit function to convert the
vector-valued objective F to a scalar-valued objective, with
easy-to-evaluate gradient. We prove that the smoothed merit
function preserves the equivalence with approximate weak
Pareto optimality. Then we use the smoothed merit func-
tion as a penalty function, prove its error bound properties,
and establish the relation of the global/local/stationary so-
lutions of the penalty-based reformulation and the original
problem. Based on the reformulation, we propose an effi-
cient first-order algorithm with convergence rate guarantees.
Experiments are conducted on various synthetic and real
datasets with possibly nonconvex objectives to demonstrate
its effectiveness.

Technically, we address the following challenges:

T1 The original OPS problem in general has a non-convex
non-smooth structure, posing challenges to evaluating
the subdifferential and developing convergent algo-
rithms. We propose to use a smoothed merit function
as a penalty so that it has easy-to-evaluate gradient,
and the convergence of the developed algorithm can be
analyzed.

T2 Instead of directly assuming the lower-level merit
(penalty) function satisfies the error bound as in ex-
isting (simple) bilevel optimization literature, we prove
the proposed merit (penalty) function satisfies the de-
sired error bound when the objectives satisfy certain
conditions such as subanalyticity.

T3 We define a stationary condition for the simple bilevel
problem with provable calmness condition under the
Kurdyka-Łojasiewicz inequality, weaker than the as-
sumptions in existing results, and thus applicable to
a wider range of problems including ours. Based on
this, we establish the relation of the stationary solution

to the penalty problem and that to the simple bilevel
problem.

2. Problem Setup and Preliminaries
For the optimization problem minx∈X F (x) in (OPS), we
use the standard definitions for Pareto optimality (Miettinen,
1998). Given two vectors v and w, we use v < w and v ≤ w
to denote vi < wi and vi ≤ wi for all i, respectively. We
use v ⪇ w to denote v ≤ w and v ̸= w, and define >,≥, ⪈
analogously. We use 1M to denote an all-one vector with
dimension M , where M is sometimes ommitted if it is clear
from the context. Then Pareto dominance and weak Pareto
optimality are formally defined below.

Definition 2.1 (Pareto dominance and optimality). Given
v, w ∈ RM , we say v strictly dominates w if and only if
v−w < 0. Correspondingly, a point x ∈ X is weakly Pareto
optimal if there is no x′ ∈ X such that, F (x′) < F (x). In
addition, a point x ∈ X is ϵ-weakly Pareto optimal if there
exists no x′ ∈ X and x′ ̸= x such that, F (x′) < F (x)− ϵ1.

Throughout the paper, we assume fm(x),m = 0, . . . ,M
are proper and bounded below. And we assume they are
twice continuously and directionally differentiable. Denote
the directional derivative of fm at point x along direction d
as f ′

m(x; d), defined as

f ′
m(x; d) := lim

α↓0

fm(x+ αd)− fm(x)

α
. (1)

Then the Pareto stationarity is defined as follows.

Definition 2.2 (Pareto stationarity e.g. (Ehrgott, 2005)). A
point x ∈ X is Pareto stationary if maxm∈[M ] f

′
m(x; z −

x) ≥ 0 for all z ∈ X , where [M ] = {1, . . . ,M}.

Denote WP (F ) ⊆ X as the weak Pareto set of F ,
which contains all the weakly Pareto optimal solutions
for minx∈X F (x). Then problem (OPS) is equivalent to
minx∈WP (F ) f0(x). We say that the solutions to (OPS)
are preferred Pareto optimal. We then discuss in the next
section the problem formulation to find these solutions.

3. Problem Reformulation
In this section, we first convert the original problem (OPS)
with multiple lower-level objectives to an equivalent prob-
lem with a single lower-level objective using a merit func-
tion. Then we discuss its penalty-based reformulation.

3.1. A smoothed merit function and its properties

A merit function associated with the multi-objective op-
timization problem minx∈X F (x) is non-negative, and
returns zero only at the weakly Pareto optimal solu-
tions (Auslender, 1976; Hearn, 1982). Under this require-
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ment, assuming lower semicontinuity of F , then

ū(x) := sup
y∈X

min
m∈[M ]

{fm(x)− fm(y)} (2)

is a merit function in the sense of weak Pareto optimal-
ity (Tanabe et al., 2024, Theorem 3.1). In other words,
ū(x) = 0 if and only if x is weakly Pareto optimal. Given
this equivalence, it is desirable to convert the original lower-
level multi-objective optimization problem to minimizing
the scalar-valued function ū(x). However, ū(x) in gen-
eral can be non-differentiable due to its max-min structure,
posing challenges to directly applying gradient-based ap-
proaches to minimize ū(x). To address this challenge, we
propose the following smoothed and regularized merit func-
tion vl,τ (x) given l ≥ 0, τ > 0.

hl,τ (x, y) := τ ln
( M∑

m=1

e
fm(y)−fm(x)

τ

)
+

l

2
∥x− y∥2 (3a)

vl,τ (x) := −min
y∈X

hl,τ (x, y). (3b)

Note that, vl,τ can be seen as a smoothed and regularized
function of ū. Specifically, when l = 0, v0,τ smoothes the
maximization operation over m ∈ [M ] in ū with the log-
sum-exponential (LSE) function (Nesterov, 2005). And it
uniformly converges to ū as τ converges to zero. Besides,
adding the regularization with l > 0 can further lift a weakly
convex objective to a strongly convex one, so that not only
the minimization miny∈X hl,τ (x, y) in (3b) enjoys a unique
solution, but also vl,τ (x) is smooth and has easy-to-evaluate
gradient. To further illustrate, we provide a visualization
of ū, vl,τ on a simple example in Figure 2. It shows that
vl,τ with smaller τ or l approximates ū better, while larger
τ or l makes vl,τ smoother. Too large τ or l could possibly
change the shape of vl,τ significantly compared to ū.
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Then we discuss the properties of the smoothed merit func-
tion and outline the procedure for computing its gradient.
Properties of the smoothed merit function. We estab-
lish how the value of the smoothed merit function changes
when x reaches the weak Pareto optimality condition. In
the prior work (Tanabe et al., 2024), such properties have

been established for the merit functions ū and ul (c.f. Ap-
pendix B.1). We will show that the smoothed version vl,τ
can still preserve these properties approximately depend-
ing on the hyperparameters l and τ . For our analysis, we
make the following assumptions that are common in multi-
objective optimization (Fliege et al., 2019; Liu & Vicente,
2021). Note that we do not require all the following as-
sumptions to hold for all our results, which will be specified
correspondingly.

Assumption 1. For all m ∈ {0, . . . ,M}, fm(x) is locally
Lipschitz on any bounded set in X .

Definition 3.1 (Weak convexity). A locally Lipschitz func-
tion f : X → R is µ-weakly convex if f(x) − µ

2 ∥x∥
2 is

convex for x ∈ X .

Assumption 2. For all m ∈ [M ], fm(x) is locally Lipschitz
and µ-weakly convex on X .

Before proceeding to the theoretical results, we introduce
the following definition, which relaxes the commonly used
convexity assumption of the objective functions.

Definition 3.2 (Point strong quasar-convex functions (Hardt
et al., 2018, Definition 2.1)). A function f : X → R is
(cq, µ)-point strong quasar-convex with cq ∈ (0, 1], µ ≥ 0
at x∗ ∈ X if for all x ∈ X ,

f(x∗) ≥ f(x) +
1

cq
∇f(x)⊤(x∗ − x) +

µ

2
∥x∗ − x∥2. (4)

The point (strong) quasar-convexity in Definition 3.2 is a re-
laxation of the (strong) convexity. When cq = 1, the quasar-
convexity implies point star-convexity (Lee & Valiant, 2016).
And if the point star-convexity holds at all x ∈ X , then it
implies convexity. There are many examples of noncon-
vex but point quasar-convex functions, see the discussions
in, e.g., (Hinder et al., 2020). In machine learning, typi-
cal examples that satisfy the quasar convexity include the
linear dynamical systems identification (Hardt et al., 2018)
and generalized linear models with leaky ReLU or logistic
activation functions (Wang & Wibisono, 2023).

Based on the above assumptions and definition, we intro-
duce the properties of the smoothed merit function vl,τ in
Proposition 3.3.

Proposition 3.3 (Properties of vl,τ ). Suppose Assump-
tion 2 holds. The merit function vl,τ (x) defined in (3b)
satisfies the following properties:
1. ū(x) − τ lnM ≤ v0,τ (x) ≤ ū(x). Furthermore,
minx∈X vl,τ (x) = −τ lnM .
2. If x is weakly Pareto optimal, then vl,τ (x) ≤ 0. Con-
versely, if a) l = 0, vl,τ (x) ≤ 0, then x is ϵ-weakly Pareto
optimal with ϵ = τ lnM ; b) l > 0, vl,τ (x) ≤ −τ lnM ,
and for all m ∈ [M ], fm are (1, 0)-point quasar-convex
at x, then x is weakly Pareto optimal.
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The proof of Proposition 3.3 is deferred to Appendix B.3.
In Appendix B.4, we provide some examples of nonconvex
F that satisfies condition 2-b) in Proposition 3.3.

Next we discuss how to compute the gradient of the
smoothed merit function vl,τ , so that we can use gradient-
based methods to directly minimize vl,τ .
Gradient of the smoothed merit function. Under As-
sumption 2, all the objectives fm are µ-weakly convex,
i.e., fm(x) − µ

2 ∥x∥
2 is convex on X . The LSE func-

tion preserves weak convexity (c.f. Lemma B.3), thus
hl,τ (x, y) is strongly convex w.r.t. y if l + µ > 0. Then
y∗l,τ (x) := argminy∈X hl,τ (x, y) is a singleton, and is con-
tinuous w.r.t. x, so the Danskin-type theorem can be applied
here to compute the gradient of vl,τ , given by

∇vl,τ (x) =

M∑
m=1

πm(x)∇fm(x)− l(x− y∗l,τ (x)), (5a)

with πm(x) :=
e

1
τ (fm(y∗

l,τ (x))−fm(x))∑M
m=1 e

1
τ (fm(y∗

l,τ (x))−fm(x))
. (5b)

Reformulation of problem (OPS). We then consider
the following optimization problem by approximating the
Pareto set constraint x ∈ WP (F ) through a merit function
constraint using vl,τ .
min
x∈X

f0(x), s.t. x ∈ X ∗
vl,τ

:={x ∈ X | vl,τ (x) + τ lnM ≤ 0}.
(CP)

We name the above program a constrained program (CP)
reformulation. By Proposition 3.3, S(F ) ⊆ WP (F ), and
these two sets become equal as l, τ ↓ 0. To solve (CP),
we further consider a penalty-based program (PPγ) with
penalty parameter γ, θ > 0 below

min
x∈X

φγ(x) := f0(x) + γp(x) (PPγ)

with p(x) := (vl,τ (x) + τ lnM)θ.

For (PPγ), when γ → ∞, any limit point of the sequence of
solutions to the approximation problem (PPγ) is a solution
to the problem (CP).

3.2. Relation of different formulations

To establish the relations of the solutions to (PPγ), (CP),
and (OPS), without loss of generality, we assume there
exists at least one x∗ ∈ argminx∈X vl,τ (x) that x∗ is
bounded, and that the function value fm and gradient ∇fm
at x∗ for m = 0, . . . ,M are also bounded. We also intro-
duce the following global subanalyticity assumptions on the
objectives below.
Assumption 3 (Subanalyticity of fm(x)). For all m ∈ [M ],
fm(x) is subanalytic on X .

Due to space limit, the definitions on (global) subanalytic
functions and the related properties are provided in Ap-
pendix C. Subanalyticity can be generally satisfied by many

widely-used objective functions (Dries & Miller, 1996;
Bolte et al., 2007). For example, the ℓp-norm with p ≥ 1,
and the LSE and polynomial functions defined on a bounded
set, all satisfy the subanalyticity. More discussions and
examples are provided in Appendix C.2 and Table 6. In-
tuitively speaking, global subanalytic functions can be de-
scribed by finite combinations of locally analytic functions.
They exhibit a “tame” geometry, thus stability under basic
operations, and desirable properties for optimization. One
of them is the Hölderian error bound defined below.

Definition 3.4 ((ϱ, η)-Hölderian error bound). For a func-
tion v : X → R, let X ∗

v := argminx∈X v(x). Then v
satisfies the (ϱ, η)-Hölderian error bound (HEB) if

ϱ
(
v(x)−min

x∈X
v(x)

)
≥
(
dist(x,X ∗

v )
)η

(6)

where dist(x, S) is the Euclidian distance from a point x to
a set S, and ϱ, η > 0.

The HEB in Definition 3.4 generalizes the widely used
Quadratic Growth (QG) condition with η = 2 in optimiza-
tion (Karimi et al., 2016; Drusvyatskiy & Lewis, 2018), and
the weak sharp minima condition with η = 1 (Burke &
Ferris, 1993). This condition ensures the point is close to
the solution set if the function value gap at the point is small.
In our problem, it is desirable that the function vl,τ also
satisfies such a condition, so that it satisfies HEB near its
solution set. This can be proved based on the properties of
subanalytic functions, as described in Lemma 3.5 below.

Lemma 3.5 (Subanalyticity of X ∗
vl,τ

and vl,τ (x)). Under
Assumption 3, and that X is subanalytic, given a com-
pact subanalytic set XC , suppose fm(x) is continuous and
bounded on XC ∩X for all m ∈ [M ]. Then both X ∗

vl,τ
∩XC

and vl,τ (x) on XC ∩ X are globally subanalytic. Conse-
quently, vl,τ (x), p(x) satisfy the (ϱ, η) and (ϱp, ηp)-HEB in
Definition 3.4 on XC ∩ X , respectively, with some ϱ, η > 0,
ηp = θη, and ϱp = ϱθ.

Definition 3.4 and Lemma 3.5 are crucial for establishing
the relations of the global/local/stationary solutions of the
penalty reformulation (PPγ) and the constrained formula-
tion (CP). Below we first define the global and local solu-
tions to (CP), then we discuss their relation with global and
local solutions to (PPγ).

Definition 3.6 (Global and local solutions). We say x is an
(ϵ, δ)-global solution to (CP) on XS ⊆ X if it satisfies

f0(x)− min
x∈XS∩Xδ

f0(x) ≤ ϵ, x ∈ XS ∩ Xδ, (7a)

with Xδ := {x ∈ X | p(x) ≤ δ}. (7b)

Let B(x, r) denote the neighborhood of x with radius r.
We say x is an (ϵ, δ)-local solution to (CP) on X if it is an
(ϵ, δ)-global solution on XS = B(x, r) ∩ X .
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In Theorem 3.7, we establish the relation of solutions to (CP)
with a smoothed merit function and those to the original
problem (OPS). We also establish the relations of the glob-
al/local solutions of the penalty reformulation (PPγ) and the
constrained formulation (CP).

Theorem 3.7 (Relation of ϵ-global/local solutions
to (OPS), (CP) and (PPγ)). Suppose Assumptions 1 and 3
hold. Then with proper choices of ϵ′, ϵ, δ′, γ depending on
δ for all δ > 0, we have
1. (Relation of (OPS) and (CP)) The (ϵ, δ)-global/local
solutions to (CP) with δ ≥ τ lnM are (ϵ′, δ)-global/local
solutions to (OPS). Conversely, the (ϵ, δ)-global/local so-
lutions to (OPS) are (ϵ′, δ′)-global/local solutions to (CP).
2. (Relation of (CP) and (PPγ)) The ϵ-global/local solu-
tion to (PPγ), denoted as xγ , is an (ϵ, δ+2ϵ∗)-global/local
solution to (CP), where ϵ∗ = 0 for the global case, and
ϵ∗ = infx∈B(xγ ,r)∩X p(x) for the local case. Conversely,
an (ϵ′, ϵ)-global/local solution to (CP) is a δ-global/local
solution to (PPγ).

The proof of Theorem 3.7-2 is deferred to Appendix D.2. It
extends the result from (Shen et al., 2025) using the HEB
proved in Lemma 3.5 on a compact subanalytic set instead
of directly assuming the QG condition on the whole domain
X . Furthermore, it does not rely on convexity assumptions
of vl,τ (x). The less restrictive assumptions make it appli-
cable to a much wider set of problems. A more detailed
comparison is given in Appendix A.1.

Theorem 3.7-2 states that if vl,τ satisfies HEB, and there
exists p(x) ≤ ϵ∗ in the neighborhood of the local solution,
then the local solution of (PPγ) is a local solution of (CP).
In e.g., (Shen et al., 2025; Chen et al., 2024b), these con-
ditions can be satisfied under certain assumptions on the
lower-level objective, such as the PL inequality or convex-
ity. However, in our problems (PPγ) and (CP), we cannot
directly assume such conditions hold for vl,τ . Therefore,
next we will show that the conditions hold under additional
conditions specified in Proposition 3.9. We first introduce
the Kurdyka-Łojasiewicz inequality below.

Definition 3.8 (Kurdyka-Łojasiewicz inequality). A proper
and lower semicontinuous function f : Rq → (−∞,+∞]
satisfies the (c, α)-Kurdyka-Łojasiewicz (KL) inequality at
x̄ if there exist ν ∈ (0,+∞], c > 0, α > 1, a neighborhood
B(x̄), such that for all x ∈ B(x̄) and f(x̄) < f(x) <
f(x̄) + ν, the following inequality holds

c
(
dist(0, ∂f(x))

)α ≥ ∥f(x)− f(x̄)∥. (8)

Moreover, if f satisfies the (c, α)-KL inequality for ev-
ery pair of points (x, x̄) on a set XC with f(x̄) =
minx∈XC

f(x), then we say f is (c, α)-KL on XC .

Proposition 3.9. Let x ∈ X be a bounded ϵ-stationary
point of minx∈X vl,τ (x). If there exists x∗ ∈ X ∗

vl,τ
and

x ∈ B(x∗) with KL inequality at x∗, then vl,τ satisfies the
condition in Theorem 3.7-2. The above condition holds if
a) for all m ∈ [M ], fm satisfies the (1, 0)-point quasar-
convexity at x, and (1, µ)-point strong quasar-convexity at
y∗l,τ (x) = argminy∈X hl,τ (x, y); or b) vl,τ (x)+τ lnM ≤
ν in Lemma C.9.
The condition in Theorem 3.7-2 requires a local solution to
minx∈X vl,τ (x) is also ϵ-globally optimal to this problem.
Such a condition holds if F satisfies point convexity or sub-
analyticity near the stationary points of vl,τ (x), as shown
in Proposition 3.9. The proof is deferred to Appendix D.2.
Next, we define the KKT condition, its necessity, and estab-
lish the relation of stationary solutions.
Definition 3.10 ((ϵ, δ)-stationary condition, e.g. (Liu et al.,
2022; Xiao et al., 2023b)). Let X = Rq. For the func-
tion p such that ∇p(x) and ∇2p(x) exist, and ∇p(x) = 0
implies p(x) = 0, a gradient-based reformulation of the
problem (CP) is

minx∈Rq f0(x), s.t.∇p(x) = 0, (9)

The (ϵ, δ)-KKT condition of the problem (9) is

∥∇f0(x) +∇2p(x)w∥ ≤ ϵ, ∥∇p(x)∥ ≤ δ (10)

where w ∈ Rq is bounded.

Theorem 3.11 (Relation of ϵ-stationary solutions). Let
X = Rq, and θ = 1. Let xγ be a bounded ϵ-stationary
solution to (PPγ). Then there exists a compact subanalytic
set XC ⊂ Rq with XC∩X ∗

vl,τ
̸= ∅ and xγ ∈ XC . Suppose

Assumption 1 holds, and that on XC , ∇vl,τ (x) exists and
is ℓv,2-smooth, and vl,τ (x) is (cv, αv)-KL with αv ≥ 2.
Then with proper choice of parameter γ, ϵ depending on δ,
xγ is an (ϵ+ δ, δ)-KKT point to the problem (9).

The ℓv,2-smoothness of ∇vl,τ can be justified under addi-
tional assumptions of the Hessian of fm for m ∈ [M ]. See
a detailed discussion in Lemma D.13. Theorem 3.11 shows
that for a simple bilevel problem where the lower-level ob-
jective vl,τ (x) satisfies the KL inequality with exponent
αv ≥ 2, a stationary solution to the penalty reformulation
approximates the KKT solution to the constrained formu-
lation in (9). This indicates that though the KKT solution
to a bilevel problem often requires the second-order infor-
mation of the lower-level objective as shown in (10) and
discussed in e.g., (Roy et al., 2023; Liu et al., 2022; Xiao
et al., 2023b), one can still use first-order methods to ap-
proximate such solutions. The proof of Theorem 3.11 is
provided in Appendix D.3. We first prove that the calmness
condition holds in the above settings, ensuring the KKT
conditions are necessary for global optimality.

3.3. Comparison with existing methods

To address the preference-guided MOL problem, one com-
monly used formulation is linear scalarization (LS) where
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Table 1. A recipe to choose hyperparameters θ, γ to obtain solutions to (PPγ) and thus the solutions to (CP). Denote ηp, αp as the HEB,
KL exponents of p(x), and η, αv as the HEB, KL exponents of vl,τ (x) on a subanalytic and compact set, respectively.

(PPγ) X vl,τ (x) property θ p(x) property γ (CP)

ϵ-global/local (Theorem 3.7-2) compact or Rq η > 0 θ =
ηp
η ηp ≥ 1 ϵ

1
ηp

−1 (ϵ, ϵ)-global/local
(ϵ, ϵ)-global/local

ϵ-stat. (Theorem 3.11) Rq αv ≥ 2 θ = 1 αp ≥ 2 ϵ−1 (ϵ, ϵ)-KKT to (9)
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Figure 3. Results of LS, FERERO, and FOOPS on Example 3.12.
The black dashed lines is the preference defined by H(x) = 0.
Green dots represent initial values, blue markers represent con-
verged values for different methods.

the preference is modeled by different weights of the objec-
tives. Another commonly used formulation is constrained
vector optimization (Lin et al., 2019; Chen et al., 2024a),
given by

minx∈X F (x), s.t. G(x) ≤ 0, H(x) = 0 (11)

where G,H are vector-valued functions defined by user-
specified perferences. Though the above formulation has
successful applications in, e.g., multi-task learning, it is only
guaranteed to converge to a KKT point of (11), which may
be far away from the optimal solutions to minx∈X F (x).
See Example 3.12, and the corresponding results in Fig-
ure 3. An intuitive explanation for this suboptimality is
that (11) puts constraints at the lower level, emphasizing
more on satisfying the constraints rather than minimizing
the objectives.

Example 3.12. Let M = 2, q = 1, and Mg = 0,Mh = 1.
Let X = R. The objective F and constraint H for the
preference-constained formulation (11) is defined as

F (x) =
(
1− e−∥x−1q∥2

2 , 1− e−∥x+1q∥2
2
)
, (12a)

H(x) =5f1(x)− 4f2(x). (12b)

The corresponding preference function f0 in formula-
tion (OPS) to minimize the constraint violation of H is
defined as f0(x) = ∥H(x)∥2. In Figure 3, it is easy to see
that there exists a solution x∗ in the Pareto set whose objec-
tive F (x∗) is at the intersection of the dashed line defined
by H(x) = 0 and the solid curve representing the Pareto
front. Therefore, x∗ is an optimal solution to both (OPS)
and (11).

In this example, linear scalarization (LS) fails to converge
to the preferred region that H(x) = 0, even after enumer-
ating different weights. Indeed, we could prove that with

Table 2. Comparison with existing methods for OPS or semivec-
torial bilevel optimization. “NC”, “C” and “SC” represent “non-
convex”, “convex” and “strongly convex”, respectively. “Ncs.”
represents whether the method converges to a necessary condition
to the OPS problem.

Method fm(x),
m ∈ [M ]

f0(x)
First
order Ncs.

PB-PDO (Kamani et al., 2021) NC NC ✓ ✗
TAWT (Chen et al., 2022) NC NC ✗ ✗

PNG (Ye & Liu, 2022) NC NC ✓ ✗
PMM (Roy et al., 2023) SC SC ✗ ✓

BSG (Giovannelli et al., 2024) Stricly C NC ✗ ✓
Ours NC NC ✓ ✓

certain initialization, LS cannot converge to a point that sat-
isfies (12b) with different weights, see Proposition 3.13. The
intuition is that, in Example 3.12, a solution to both (OPS)
and (11) that satisfies ∇F (x)λ = 0 with λ ∈ ∆M is a local
maximum point of the objective λ⊤F (x). It is also worth
noting that, there are some other examples where LS cannot
find all points on the Pareto front even after enumerating all
possible weights (Osyczka, 1984; Athan, 1994; Hu et al.,
2023). See a detailed discussion in Appendix A.2.
Proposition 3.13. Under certain initializations, there exists
no λ ∈ ∆M such that gradient descent algorithm on LS
objective with weight λ converges to the solution of (12).

Moreover, algorithms developed under the preference-
constrained formulation (11), such as PMTL (Lin et al.,
2019) and FERERO (Chen et al., 2024a) (with the partial
order cone being a nonnegative orthant cone RM

+ ), converge
to a KKT point to (11), which is not necessarily Pareto op-
timal or Pareto stationary. For a more detailed discussion
on this example, see Appendix A.2. Proposition 3.14 is
provided to further support the claim that the KKT solution
to (11) can be suboptimal for minx∈X F (x), with its proof
in Appendix A.2.
Proposition 3.14. The KKT solution to (11) is not neces-
sarily Pareto stationary to minx∈X F (x).

Besides modeling preference by weights or constraints,
there are also some works which model the preference by
objectives, and formulate the problem as optimization on
the Pareto set (OPS), as in (OPS). Among these meth-
ods, Preference-Based Pareto Descent Optimization (PB-
PDO) (Kamani et al., 2021) and Pareto Navigation Gradient
descent (PNG) (Ye & Liu, 2022) use a descent-type algo-
rithm to ensure the output of the algorithm satisfies the
preference and decreases the objectives F at each iteration.
However, it has been shown in (Roy et al., 2023) that the
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stationary condition derived in (Ye & Liu, 2022) is not a
necessary optimality condition for (OPS). Furthermore,
as discussed in (Roy et al., 2023, Proposition 3), a non-
trivial stationarity condition for (OPS) typically requires
second-order derivatives of the objectives fm,m ∈ [M ].
Different from these methods, Target-Aware Weighted Train-
ing (TAWT) (Chen et al., 2022) and Pareto Majorization-
Minimization (PMM) (Roy et al., 2023) convert the lower-
level vector-valued objective to a scalar-valued objective
through linear scalarization (LS), and optimize both the
scalarization weight and the model parameter. However, as
discussed in Example 3.12 and Appendix A.2, optimality
for LS is not necessary for (OPS) unless fm are convex for
all m ∈ [M ].

We summarize in Table 2 the key differences of our work
compared to existing methods for OPS. See also a detailed
review in Section 5 and Appendix A.

4. Algorithms and Analysis
In this section, we introduce practical first-order gradient-
based algorithms to solve (PPγ). We first update y to obtain
an estimate for y∗l,τ (x), and thus an estimate for vl,τ (x) =
−hl,τ (x, y

∗
l,τ (x)). Then we update x based on the estimated

penalty function φγ .

At the t-th outer iteration and the k-th inner iteration, we
iteratively update xt and yt,k as follows.

yt,k+1 = Uy(yt,k,∆yt,k(yt,k, xt);βt,k, k); (13a)
xt+1 = Ux(xt,∆xt(xt, yt+1);αt, t) (13b)

where U is some gradient based oracle, and the gradient
vectors with respect to y and x are defined as

∆yt,k(yt,k, xt) = ∇yhl,τ (xt, yt,k)

∆xt(xt, yt+1) = ∇f0(xt)−γtθ sign(vt)|vt|θ−1∇xhl,τ (xt, yt+1)

with yt+1 = yt,Kt and vt = τ lnM − hl,τ (xt, yt+1).

A meta algorithm with the above updates is summarized in
Algorithm 1. We name it First-Order Optimization on the
Pareto Set (FOOPS) algorithm.

Algorithm 1 The meta FOOPS algorithm with oracles

1: Initialize t = 0, x0, y0, set step sizes {αt, βt}, penalty
parameter {γt}, inner-loop iterations {Kt}.

2: while ∥∇φγt
(xt)∥2 > ϵ do

3: Set k = 0;
4: for k = 0, . . . ,Kt − 1 do
5: Update yt,k by (13a);
6: end for
7: Set yt+1 = yt,Kt

;
8: Update xt by (13b);
9: Set t = t+ 1;

10: end while

We then discuss the choices of update oracles and the non-
asymptotic convergence rate of Algorithm 1 with different
oracles below. Let w represent the updated parameter, which
can be either x and y, ∆w denote the gradient vector, α the
stepsize, and t is the iteration number.

We give examples of oracles using projected gradient desent
(PGD), and momentum updates (Momentum) in (14). The
Nesterov’s acceleration and Adam update are also applica-
ble, which is detailed in Appendix E, one can also see in
e.g., (Wang et al., 2024).

PGD: U(w,∆w;αt, t) = ProjX (w − αt∆w) (14a)
Momentum: U(w,∆w;αt, t) = ProjX (w − αtvt),

with vt = α̃vt−1 +∆w (14b)

Discussion about the convergence. Since hl,τ (x, y) is
µhy -strongly convex w.r.t. y as detailed in the proof of
Lemma E.4, when we choose Uy as projected gradient de-
scent, the momentum updates and Nesterov’s acceleration, it
gives linear convergence rate for the inner-loop of y. For the
outer-loop w.r.t. x, if θ ≥ 1, then the objective φγ(x) is dif-
ferentiable and thus projected gradient descent, momentum,
Nesterov’s acceleration, Adam updates give O(1/T ) con-
vergence rate in the deterministic setting and O(1/

√
T ) con-

vergence rate in the stochastic setting according to (Wang
et al., 2024). Therefore, combining outer-loop and inner-
loop update oracles together, Algorithm 1 converges. We
provide a proof for the convergence of Algorithm 1 in Ap-
pendix E, Theorem E.6, when choosing both Uy and Ux

as the PGD oracle and choosing θ ≥ 1, and assuming the
objectives fm(x) for m = 0, . . . ,M are smooth. For θ < 1,
p(x) can be nonsmooth. The convergence for Algorithm 1
can be built upon nonsmooth optimization (Kiwiel, 2004;
Davis et al., 2018), but possibly under additional assump-
tions. Some discussions about algorithms for nonsmooth
lower-level objective are provided in (Chen et al., 2024b).
When f0(x) and p(x) are Lipschitz, the algorithm can be
applied to our problem. We leave a more detailed study
of algorithm development in nonsmooth cases for future
research.

Single-loop and stochastic variants. When we take the
exact penalty method with ηp = 1, γt and Kt can be upper
bounded by a constant. In fact, under Assumption 2, when
l > ℓf,1, a single-loop variant of Algorithm 1 that takes
Kt = 1 also has non-asymptotic convergence guarantees,
see e.g. (Chen et al., 2021). Besides, stochastic variants of
Algorithm 1 can also be derived which replace the deter-
ministic gradients with their unbiased stochastic estimates.
We leave the development and convergence analysis of such
variants for future work.
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5. Related Works
We discuss recent works that are most related to ours. An
extended discussion is provided in Appendix A.1.
Preference-vector-guided multi-objective learning. Pref-
erences in multi-objective optimization can be represented
using weights, thresholds, or preference vectors. Scalar-
ization methods, such as linear and Tchebycheff scalar-
ization, convert vector objectives into scalar objectives by
applying weighted norms (Miettinen, 1998). Alternatively,
ϵ-constraint methods impose thresholds on objectives to
convert the problem to a constrained optimization prob-
lem (Curtis et al., 2023). There are also other approaches
which represent preferences with vectors in the objective
space, focusing on finding optimal solutions satisfying con-
straints defined by these vectors (Lin et al., 2019; Chen et al.,
2024a) or minimizing distances to the vectors (Mahapatra
& Rajan, 2020; Momma et al., 2022). See also a compre-
hensive review in (Chen et al., 2025).
Optimization on the Pareto Set. In machine learning, there
are specific instantiations of the OPS problem. For example,
EPO (Mahapatra & Rajan, 2020) and Preference-Based
Pareto Descent Optimization (PB-PDO) (Kamani et al.,
2021) find a Pareto model such that the objective values
satisfy a ratio constraint by minimizing the non-uniformity
score. Specifically, EPO finds update directions to improve
the objective values, or to reduce the constraint violations,
or both. PB-PDO finds common descent directions for the
lower-level multi-objectives and the upper-level objective.
They are not guaranteed to converge to a necessary condi-
tion of the OPS problem. Target-Aware Weighted Training
(TAWT) (Chen et al., 2022) learns a multi-task model that
minimizes the discrepancy of task representations to ensure
they are similar. TAWT converts the lower-level objectives
to a linearly scalarized objective, and optimizes the scalar-
ization weights in the upper level. This approach has the
limitation of introducing undesired local solutions.
(Simple) bilevel optimization. Problem (CP) is a con-
strained reformulation of the simple bilevel program with a
generally nonconvex lower-level (LL) objective. For non-
convex LL objectives, algorithms are proposed in e.g., (Liu
et al., 2021b; Huang, 2023; Xiao et al., 2023b). However,
they usually require second-order derivatives in the algo-
rithms, which can be expensive to implement. More re-
cently, first-order Hessian-free approaches were proposed
to address this by the value function reformulation of BLO.
For example, sequential quadratic programming (Liu et al.,
2022), and smoothed Lagrangian method (Lu, 2023) were
used to solve the constrained problem. Later on, a penalty-
based algorithm was proposed (Shen et al., 2025). Variants
such as Moreau Envelope based algorithms (Kwon et al.,
2024; Liu et al., 2024) and adaptive algorithms (Chen et al.,
2024b) were proposed. However, none of these works tackle
BLO with vector-valued LL objective. Moreover, even af-

ter converting the vector-valued LL objective to a scalar-
valued one through the merit function vl,τ , the LL objective
is generally nonconvex and non-PL even if the objectives
fm,m ∈ [M ] are all convex or PL. Therefore, it is difficult
to directly apply the existing analysis or algorithms to our
problem.

6. Experiments
In this section, we conduct experiments to verify our theory
and show the applicability of the algorithms to preference-
guided multi-task learning. We use LS, PMTL (Lin et al.,
2019), EPO (Mahapatra & Rajan, 2020), XWC-MGDA
(XM) (Momma et al., 2022), FERERO (Chen et al., 2024a)
as baselines for comparison. For a preference vector-guided
MOL problem, we define f0(x) = ∥H(x)∥2, where H(x) is
the equality constraint function derived from the preference
vector (Chen et al., 2024a).

Metrics. Objective loss and accuracy. We report the objec-
tive losses and accuracies in classification.
Hypervolume. Let F ′ ∈ RM denote the Nadir point, i.e.,
the worst performance on single-task baselines, and S de-
note a set of objective function values of the obtained
models. Hypervolume measures the size of the domi-
nated space of S relative to F ′, which can be computed
by H(S) = Λ({q ∈ RM | ∃F ∈ S : F ≤ q ≤ F ′}), where
Λ(·) denotes the Lebesgue measure.
Additional details. The implementation and additional
experiments can be found in Appendix F.
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Figure 4. Outputs (colored markers) and optimization trajectories
(colored curves) of different methods when initial objectives are
near the Pareto front. Dashed arrows with different colors represent
different preferences.

Example 3.12. Following (Lin et al., 2019; Mahapatra &
Rajan, 2020), the first objective we consider is (12a) in Ex-
ample 3.12, but with q = 20. The results for the experiments
with hard initialization are displayed in Figure 4. They show
that under certain initializations and preferences, algorithms
developed under (11) such as PMTL and FERERO (with
A = I therein) could fail to reach the Pareto front. It further
justifies our Proposition 3.14 that the KKT solution to (11),
with preferences modelled by the constraints at the lower
level, can be suboptimal for minx∈X F (x). In contrast,
FOOPS successfully converges to preferred Pareto optimal
solutions under different preferences. It demonstrates the
benefit of the OPS formulation over (11), by prioritizing the
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Figure 5. Losses of various methods with different preferences across three image datasets. The horizontal and vertical axes represent
results for objective 1 and objective 2, respectively. Different colored dashed arrows indicate various preference vectors. Different markers
denote the solutions obtained by different methods, with marker colors matching the preferences.

Table 3. Hypervolumes of different methods ↑ (×10−2).
Datasets LS PMTL EPO XM FERERO FOOPS

Mt-M loss 1.68 1.41 1.35 1.42 1.95±0.21 2.62±0.21

Mt-F loss 6.75 5.90 6.02 6.77 7.76±0.18 8.32±0.37

Mt-F+M loss 3.63 3.03 3.76 3.89 3.82±0.21 4.80±0.45

Mt-M accuracy 0.19 0.15 0.15 0.16 0.25±0.04 0.33±0.02

Mt-F accuracy 0.99 0.87 0.87 0.99 1.13±0.07 1.22±0.07

Mt-F+M accuracy 0.48 0.40 0.50 0.52 0.53±0.04 0.72±0.06

Table 4. WERs ↓ (%) for speech recognition.
Method English Chinese Average

Komatsu et al. 7.11 - -
w/o CPC 11.8 10.2 11.0
Init. (M2ASR) 7.3 6.2 6.7
LS-FT 6.8 5.9 6.4
FERERO-FT 5.4 4.9 5.1
FOOPS-FT 5.7 4.7 5.1

attainment of weak Pareto optimality instead of the optimal-
ity of the preference function.

Multi-patch image classification. Following (Momma
et al., 2022), we use Multi-MNIST (Mt-M), Multi-Fashion
(Mt-F), and Multi-Fashion+MNIST (Mt-F+M) for image
classification. The two tasks or objectives in all three
datasets are to classify the top-left and the bottom-right
images, respectively. We use LeNet as the backbone neural
network. The losses of different methods given different
preference vectors are plotted in Figure 5. Experiments for
our method are repeated 5 times. Hypervolumes with means
and standard deviations are reported in Table 3. The results
for other methods in Table 3 are referenced from (Momma
et al., 2022; Chen et al., 2024a). The results show that
FOOPS is better at obtaining large hypervolumes, see Ta-
ble 3, but worse at aligning with preferences compared to
other methods, see Figure 5.

Multi-lingual speech recognition. We use the proposed
method to fine-tune a pre-trained multi-lingual speech
recognition model. The datasets include Librispeech (100
hours) (Panayotov et al., 2015), and AISHELL v1 (Bu et al.,
2017). The model architecture is a conformer with 8 blocks.
The speech recognition Connectionist Temporal Classifica-
tion (CTC) losses in Chinese and English are denoted as f ch

t

and f en
t , respectively. We also use the self-supervised Con-

trastive Predictive Coding (CPC) loss fp for representation
learning, i.e.,

min f0(x) := ∥fch
t (x)− fen

t (x)∥2 (15a)

s.t. x ∈ argmin F (x) :=
(
fp(x), f

ch
t (x), fen

t (x)
)⊤ (15b)

where the lower-level objective fp ensures the model learns

a good representation, and the upper-level objective ensures
the difference of the performances on both languages is
small; see more details in Appendix F. The results are re-
ported in Table 4, which show that FOOPS demonstrate
competitive average performance on different languages,
but is less good at optimizing the fairness preference func-
tion f0. This observation is consistent with that in Figure 5.

7. Conclusions
In this work, we cast preference-guided multi-objective
learning as an optimization on the Pareto set (OPS) problem,
which is essentially a semivectorial simple bilevel optimiza-
tion problem, with a lower-level vector-valued objective,
and an upper-level scalar-valued preference objective. We
propose a first-order penalty method to solve the problem,
where the penalty function is the polynomial of a smoothed
merit function. For the theoretical analysis, first we es-
tablish the properties of the merit function, including its
relation to weak Pareto optimality, and the Hölderian error
bound. Then we discuss the relation of solutions to the
penalty reformulation and the original OPS problem. Part
of our theoretical analysis is of independent interest to sim-
ple bilevel optimization problem. Interestingly and perhaps
surprisingly, our analysis shows that although the stationary
condition of the OPS problem usually requires second-order
derivative information, it can be approximated using first-
order methods. Based on the results, we develop first-order
algorithms to solve the penalty problem and provide their
convergence guarantees. For the empirical experiments, we
apply the proposed method to synthetic and real-world prob-
lems, which demonstrate the effectiveness of the proposed
method in finding preference-guided optimal solutions.
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Appendix
Throughout the paper, we assume fm(x),m = 0, . . . ,M are twice continuously differentiable and bounded below, and the
minimizer of λ⊤F (x) exists for all λ ∈ ∆M .

For notation simplicity, we use LSEτ : RM → R to denote the Log-sum-exp function with parameter τ . We say a function
is µ-(weakly) convex, with µ ∈ R. If µ > 0, the function is strongly convex, if µ = 0, the function is convex, and if µ < 0,
the function is weakly convex.

Organization of the appendix. We organize the proof in the appendix as follows.

In Appendix A, we discuss additional related work on (semivectorial) bilevel optimization and limitation of linear scalariza-
tion and preference as constraint formulations.

• Appendix A.1: additional related work on bilevel and multi-objective optimization

• Appendix A.2: limitations of linear scalarization and preference as constraint

In Appendix B, we prove the basic properties of the merit function.

• Appendix B.2: continuity of the merit function

• Appendix B.3: relations of vl,τ and weak Pareto optimality

In Appendix C, we discuss (global) subanalyticity and prove related properties such as the subanalyticity, Hölderian error
bound (HEB), and KL inequality of the merit function.

• Appendix C.1: proof of global subanalyticity of vl,τ

• Appendix C.2: examples of globally subanalytic functions and their HEB

• Appendix C.3: relations of proximal error bound (EB), proximal KL, and HEB

In Appendix D, we prove the relations of different formulations.

• Appendix D.1: ϵ-global/local solutions relation of the smoothed problem

• Appendix D.2: ϵ-global/local solutions relation between the constrained problem and the penalty problem

• Appendix D.3: ϵ-stationary solutions relation between the constrained problem and the penalty problem

In Appendix E, we prove the convergence of the proposed algorithm.

In Appendix F, we provide implementation details and additional experiment results.

A. Extended discussion of related works
In this section, we provide an extended review of recent works that are closely related to ours.

A.1. Bilevel optimization

Bilevel optimization (BLO) is a classical problem that dates back to (Stackelberg, 1952; Vicente & Calamai, 1994; Luo
et al., 1996a). Gradient-based approaches with non-asymptotic convergence analysis and applications to machine learning
were studied in e.g., (Ghadimi & Wang, 2018; Chen et al., 2021; Ji et al., 2021; Hong et al., 2023). These works focus
on problems with (strongly) convex lower-level (LL) objectives. Similarly, in simple bilevel optimization with shared
optimization variable in the upper- and lower-level objectives, a line of works focus on convex LL objectives, including
e.g., (Jiang et al., 2023; Merchav & Sabach, 2023; Giang-Tran et al., 2024; Samadi et al., 2024; Doron & Shtern, 2023).
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For nonconvex LL objectives, a pessimistic algorithm with asymptotic convergence guarantee was proposed in (Liu et al.,
2021b), the stationary metric was studied for BLO with lower-level PL objective, and an alternating descent algorithm with
non-asymptotic analysis was proposed in (Xiao et al., 2023b). In Table 5, we provide a summary of the bilevel optimization
works with possibly nonconvex lower-level objectives which may satisfy the Hölderian error bound (HEB).

Semivectorial BLO. OPS can be seen as a semivectorial simple BLO problem, where the bilevel program has a vector-
valued lower-level (LL) objective and a scalar-valued upper-level (UL) objective. To solve such problems, one straightforward
approach is to convert the LL vector-valued objective to a scalar-valued objective through scalarization, and to optimize the
scalarization parameter in the upper level, see, e.g., (Roy et al., 2023). However, it has been shown that this reformulation
could induce additional local minimizers or stationary solutions (Dempe & Mehlitz, 2019; Benko & Mehlitz, 2021).
Furthermore, this reformulation might require stronger constraint qualifications than the original problem (Benko &
Mehlitz, 2021). Alternatively, penalty-based reformulations have been considered (Bonnel & Morgan, 2006), where the
penalty function is defined as the maximum improvement amount of the vector-valued objective. However, no practical
implementation, or relation of solutions to the original problem in nonconvex settings, or non-asymptotic convergence
analysis are provided for the reformulation. Recently, in (Giovannelli et al., 2024), deterministic and stochastic risk-neutral
and risk-averse algorithms are proposed, under the assumption that the LL objective is strictly convex w.r.t. the LL variable,
and requiring the second-order derivative of the objective.

Another line of research study the problem with vector-valued upper-level (UL) objective, and scalar-valued LL objective (Ye
et al., 2021; Gu et al., 2023; Ye et al., 2024; Yang et al., 2024). It is sometimes also referred to as the multi-objective BLO
problem. For a more detailed review of multi-objective BLO algorithms, see a survey (Mejı́a-De-Dios et al., 2023) and the
references therein. Besides, single-level multi-objective learning algorithms have been extensively studied, these include the
variants of the multi-gradient descent algorithm (Fliege & Svaiter, 2000; Sener & Koltun, 2018; Liu et al., 2021a; Liu &
Vicente, 2021; Fernando et al., 2023; Chen et al., 2023; Xiao et al., 2023a) that are designed to avoid gradient conflicts
during the optimization procedure. For a more detailed review of multi-objective learning algorithms, see a survey (Chen
et al., 2025) and the references therein.

Comparison of the theory in Section 3.2 to existing works. The works most related to ours regarding the theory in
Section 3.2 include (Ye et al., 1997; Luo et al., 1996b) and recent works (Shen et al., 2025; Chen et al., 2024b). However,
a major difference is that they directly assume the lower-level objective satisfies HEB, while in our work, we prove the
property holds on a bounded set for vl,τ (x) and p(x) when the objective F is subanalytic. The two works (Ye et al., 1997;
Luo et al., 1996b) focus on the cases with exact penalty. Other differences include that the results in (Shen et al., 2025)
only consider LL objective satisfies HEB with η = 2, while we consider more general η. Also, we do not require the
global convexity or Lipschitz assumption as in (Chen et al., 2024b), which is generally not satisfied by our merit function.
Furthermore, we provide the relation between the stationary solution of the penalty formulation and the KKT solution of the
constrained formulation under the general KL inequality, which is not discussed in either of the two works.

A.2. Limitation of linear scalarization and preference as constraint

Besides using empirical results on Example 3.12, we also provide theoretical justifications to show the limitations of LS and
KKT solutions for preference-guided MOL.

Limitation of linear scalarization. We first discuss the limitation of linear scalarization (LS) for preference-guided MOL.
It is known that LS is not good at handling nonconvex Pareto front. Prior works have shown that the optimality condition of
LS is not a necessary condition for Pareto optimality, see e.g., (Athan, 1994, Proposition 3.3). As a result, the solution set of
LS, even by enumerating all possible weights of objectives, does not include all Pareto optimal solutions, and thus it does
not include Pareto optimal solutions under certain preferences.

Below we provide the proof of Proposition 3.13, which shows that under certain initializations, gradient descent on the LS
objective does not converge to a preferred Pareto optimal solution in Example 3.12.

Proof of Proposition 3.13. In Example 3.12, there exists a solution x∗ ∈ (−1, 1), which is an optimal solution to both (OPS)

and (11). And there exists λ = [λ1, λ2]
⊤ ∈ ∆2 with λ2 = λ1

(1−x∗)e−(x∗−1)2

(1+x∗)e−(x∗+1)2
that ∇F (x∗)λ = 0. To show this, let c denote
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Table 5. Comparison with existing methods for (simple) bilevel optimization with lower-level scalar objective, “SC” and “C” represent
“strongly convex” and “convex”, respectively; “comp” represents “compact set”; “Lip” represents “Lipschitz continuous”. For non-simple
bilevel optimization problem, the lower-level and upper-level properties are all w.r.t. the lower-level variable for a meaningful comparison.
The lower-level objective in our problem is vl,τ (x) + τ lnM .

Method lower-level HEB other lower-level properties upper-level first-order

non-simple bilevel optimization
IAPTT-GM (Liu et al., 2021b) - smooth, comp smooth, comp ✗

BOME (Liu et al., 2022) η = 2 PL, Lip, smooth Lip, smooth ✓

PBGD (Shen et al., 2025) η = 2
PL, smooth Lip, smooth

✓C, smooth Lip, smooth
GALET (Xiao et al., 2023b) η = 2 PL, smooth Lip, smooth ✗

AGILS (Bai et al., 2024) η ≥ 1 KL, weakly C (composite) smooth ✓

MEHA (Liu et al., 2024) - smooth smooth
✓weakly C (composite) smooth

SLM (Lu, 2023) η = 2 PL, smooth smooth, comp ✓
simple bilevel optimization

CG-BiO (Jiang et al., 2023) η ≥ 1
C, smooth C, smooth

✓C, smooth non-C, smooth
R-APM (Samadi et al., 2024) η = 1 C, composite C, smooth ✓

PB-APG (Chen et al., 2024b) η ≥ 1
C, composite C, composite

✓C, composite SC, composite
nonsmooth, Lip nonsmooth, Lip

FOOPS (ours) η > 0,
(modified by θ =

ηp
η

≥ 1
η

)
subanalytic (provable) locally Lip

✓KL (provable) locally Lip

a positive constant, note that

∇F (x)λ =2λ1e
−(x−1)2(x− 1) + 2λ2e

−(x+1)2(x+ 1)

=c
(
2e−(x−1)2(x− 1)(1 + x∗)e−(x∗+1)2 + 2e−(x+1)2(x+ 1)(1− x∗)e−(x∗−1)2

)
=2c(x+ 1)(x∗ + 1)e−(x+1)2−(x∗+1)2

(
e4x

x− 1

x+ 1
− x∗ − 1

x∗ + 1
e4x

∗
)
. (16)

Let r(x) = x−1
x+1e

4x. Then r(x) > r(x∗) ⇐⇒ ∇F (x)λ > 0 and vice versa for r(x) < r(x∗). The above equation implies
that when r(x′) = r(x∗), ∇F (x′)λ = 0. Therefore, ∇F (x∗)λ = 0. Also observing that there exists different points
−1 < x1 < x∗ < x2 < 1 that

r(x1) = r(x2) = r(x∗). (17)

This means that x1, x2 are all stationary points of λ⊤F (x). Furthermore,
1. for x′ ∈ (x1, x

∗) ∪ (x2, 1), r(x′) > r(x∗), thus ∇F (x′)λ > 0, then gradient descent (GD) on λ⊤F (x) starting from
x′ ∈ (x1, x

∗) with sufficiently small step size converges to x1, and it converges to x2 if starting from x′ ∈ (x2, 1);
2. for x′ ∈ (−1, x1) ∪ (x∗, x2), r(x′) < r(x∗), thus ∇F (x′)λ < 0, then GD on λ⊤F (x) starting from x′ ∈ (−1, x1) with
sufficiently small step size converges to x1, and it converges to x2 if starting from x′ ∈ (x∗, x2).

This proves that they will not converge to x∗.

Limitation of preference as constraint. We then discuss in more detail of the limitation of modeling preference by
constraints. We verify Proposition 3.14 by constructing an example with a KKT but non-Pareto stationary solution.
Using Example 3.12, and noticing that one solution that PMTL converges to, denoted as x∗, has objective value that is
approximately F (x∗) ≈ [0.80; 0.99], which satisfies the feasibility condition that H(x∗) = 0. Furthermore, its gradient at
x∗ can be computed approximately as

∇f1(x
∗) ≈0.5062; (18a)

∇f2(x
∗) ≈0.0002. (18b)
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Clearly, x∗ is not Pareto stationary. By the KKT stationarity condition, we further have

∇F (x)λf +∇H(x)λh = ∇F (x)
(
λf +

[
5
−4

]
λh

)
=∇F (x)

(
λf +

[
5λh

−4λh

])
= 0, for some λf ∈ ∆2, λh ∈ R. (19)

It can be verified that 0.5062(λf,1+5λh)+0.0002(1−λf,1−4λh) = 0 has solutions, e.g., λf = [0; 1], λh ≈ −7.9×10−5.
Therefore, x∗ is a KKT point.

We use another example with strongly convex objectives to prove Proposition 3.14 that a KKT point to (11) is not necessarily
Pareto stationary.

Example A.1. Let M = 2, q = 2, and Mg = 0,Mh = 1. Let X = R2, and x = [x1;x2]. The objective F and constraint
H is defined as

F (x) =
(
(x1 − 1)2 + x2

2, 0.5x2
1 + x2

2

)
(20a)

H(x) =9f1(x)− 8f2(x) (20b)

Proof of Proposition 3.14. In Example A.1, the gradient of F can be computed by

∇F (x) =

[
2(x1 − 1) x1

2x2 2x2

]
. (21)

For x = [3; 0], ∇F (x) =

[
4 3
0 0

]
. Let ∆M denote the (M − 1)-simplex. Apparently, there exists no λ ∈ ∆2 such that

∇F (x)λ = 0. Therefore, x is not Pareto stationary.

Then we check whether x satisfies the KKT condition. First, it satisfies the feasiblity condition since H(x) = 0. Second, by
invoking the KKT stationarity condition, for some λf ∈ ∆2, λh ∈ R, we have

∇F (x)λf +∇H(x)λh = ∇F (x)
(
λf +

[
9
−8

]
λh

)
=

[
4 3
0 0

](
λf +

[
9λh

−8λh

])
= 0. (22)

It can then be verified that the above holds true when λf = [0, 1] ∈ ∆2, and λh = −0.25.

Therefore, x is a KKT point but not a Pareto stationary point. The proof is complete.

B. Proof of the properties of the merit functions
For convenience, we define the merit function ul(x) and restate the smoothed merit function vl,τ (x) below.

ul(x) :=max
y∈X

min
m∈[M ]

{
fm(x)− fm(y)− l

2
∥x− y∥2

}
(23)

vl,τ (x) :=−min
y∈X

{
τ ln

( M∑
m=1

e
fm(y)−fm(x)

τ

)
+

l

2
∥x− y∥2

}
. (24)

Correspondingly, we define hl,τ (x, y) below for analysis. Note that vl,τ (x) = −miny∈X hl,τ (x, y).

hl,τ (x, y) :=τ ln
( M∑

m=1

e
fm(y)−fm(x)

τ

)
+

l

2
∥x− y∥2. (25)

B.1. Auxiliary lemmas

Lemma B.1 (Restatement of (Tanabe et al., 2024, Theorems 3.1 and 3.3)). For l ≥ 0, consider the merit function ul(x)
defined in (23). Then ul(x) ≥ 0 for l ≥ 0. u0(x) = 0 if and only if x is weakly Pareto optimal. For l > 0, x is weakly
Pareto optimal implies ul(x) = 0; furthermore, if fm(x) is convex for all m ∈ [M ], then ul(x) = 0 implies x is weakly
Pareto optimal.
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Proposition B.2 (Smoothness implies weak convexity). If a locally Lipschitz function f is ℓf,1-smooth, then it is also
−ℓf,1-weakly convex.
Lemma B.3 (Log-sum-exp function preserves weak convexity). Let fm(x),m ∈ [M ] be weakly convex with modulus
µm ∈ R. Let µ̄ = minm∈[M ] µm. Then ln

(∑M
m=1 e

fm(x)
)

is weakly convex with modulus µ̄.

Proof of Lemma B.3. By definition, and since µ̄ = minm∈[M ] µm, we have fm(x) − µ̄
2 ∥x∥

2 is convex for all m ∈ [M ].
Also because the Log-sum-exp function preserves convexity, we have that ln

(∑M
m=1 e

fm(x)− µ̄
2 ∥x∥2)

is convex. Further
rearranging this function, we have

ln
( M∑

m=1

efm(x)− µ̄
2 ∥x∥2

)
= ln

(
e−

µ̄
2 ∥x∥2( M∑

m=1

efm(x)
))

= ln
( M∑

m=1

efm(x)
)
− µ̄

2
∥x∥2 (26)

which is convex. By definition, this implies that ln
(∑M

m=1 e
fm(x)

)
is weakly convex with modulus µ̄. The proof is

complete.

Corollary B.4. If fm(x),m ∈ [M ] is weakly convex with modulus µm ∈ R, and l +minm∈[M ] µm > 0, then hl,τ (x, y)
defined in (25) is strictly convex w.r.t. y, and the solution to miny∈X hl,τ (x, y) is a singleton.

Proof of Corollary B.4. By the µm-weak convexity, 1
τ fm(y) is µ̄

τ -weakly convex w.r.t. y. Therefore, combining with

Lemma B.3, the function τ ln
(∑M

m=1 e
fm(y)−fm(x)

τ

)
is µ̄-weakly convex w.r.t. y, where µ̄ = minm∈[M ] µm. Since

l +minm∈[M ] µm = l + µ̄ > 0, hl,τ (x, y) is strictly convex w.r.t. y, and the solution to miny∈X hl,τ (x, y) is unique. The
proof is complete.

Lemma B.5. If fm(x),m ∈ [M ] is continuous and weakly convex with modulus µm, and l ≥ −minm∈[M ] µm, then there
exists x ∈ X such that vl,τ (x) = −τ lnM .

Proof of Lemma B.5. From Corollary B.4, since l ≥ −minm∈[M ] µm, hl,τ (x, y) is convex w.r.t. y. Let P be the indicator
function defined on X . Then, 0 ∈ ∇yhl,τ (x, y) + ∂P (y) if and only if y = argminy∈X hl,τ (x, y).

By the definition of hl,τ (x, y), the gradient ∇yhl,τ (x, y) can be derived as

∇yhl,τ (x, y) =

M∑
m=1

e
fm(y)−fm(x)

τ∑M
m=1 e

fm(y)−fm(x)
τ

∇fm(y) + l(y − x). (27)

When y = x, it can be further derived that

∇yhl,τ (y, y) =
1

M

M∑
m=1

∇fm(y). (28)

Recall that λ⊤F (x) is lower bounded for all λ ∈ ∆M . And λ⊤F (x) is continuous since fm are continuous for all m ∈ [M ].
We assume either X is compact, or X = Rq and fm is coercive for all m ∈ [M ]. Then the solution to minx∈X λ⊤F (x)

exists. Let x∗ = argminx∈X
1
M

∑M
m=1 fm(x), which implies

0 ∈ 1

M

M∑
m=1

∇fm(x∗) + ∂P (x∗). (29)

Combining (29) with (28), we have that 0 ∈ ∇yhl,τ (x, y)+ ∂P (y) |(x,y)=(x∗,x∗). Therefore, x∗ ∈ argminy∈X hl,τ (x
∗, y),

and thus

min
y∈X

hl,τ (x
∗, y) = hl,τ (x

∗, x∗) = τ ln
( M∑

m=1

e
fm(x∗)−fm(x∗)

τ

)
= τ lnM. (30)

By definition, vl,τ (x∗) can be computed by

vl,τ (x
∗) = −min

y∈X
hl,τ (x

∗, y) = −τ lnM (31)

which completes the proof.
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B.2. Continuity of the merit function

Lemma B.6 (Continuity of hl,τ , vl,τ , and p). 1) If fm(x) is continuous for all m ∈ [M ], then the merit function vl,τ (x) is
lower semi-continuous.
2) Given a bounded set XC , suppose fm is ℓf -Lipschitz continuous on XC for m = 0, . . . ,M . Let ℓx = supx∈XC

∥x∥.
Then hl,τ (x, y) is (ℓf + 2lℓx)-Lipschitz continuous w.r.t. both x ∈ XC and y ∈ XC , vl,τ (x) is ℓvl,τ -Lipschitz continuous on

XC with ℓvl,τ = ℓf + 2lℓx, and for θ ≥ 1, p(x) is ℓp-Lipschitz continuous on XC with ℓp = θ
(
2ℓx
)θ−1

ℓθvl,τ .

Proof of Lemma B.6. Proof of 1). Recall that vl,τ (x) = −miny∈X hl,τ (x, y), and hl,τ (x, y) = LSEτ

(
fm(y)− fm(x)

)
+

l
2∥x−y∥2. Since fm(x) is continuous for all m ∈ [M ], and the LSE function is continuous, we have hl,τ (x, y) is continuous
w.r.t. x and y.

For any sequence {xt} ⊆ X satisfying limt→∞ xt = x̄ ∈ X , given any ϵ > 0, let ȳ ∈ X satisfy hl,τ (x̄, ȳ) ≤
miny∈X hl,τ (x̄, y) + ϵ. As hl,τ is continuous at (x̄, ȳ), there exists T > 0 such that

min
y∈X

hl,τ (xt, y) ≤ hl,τ (xt, ȳ) ≤ hl,τ (x̄, ȳ) + ϵ ≤ min
y∈X

hl,τ (x̄, y) + 2ϵ, ∀t > T, (32)

and thus

lim sup
t→∞

min
y∈X

hl,τ (xt, y) ≤ min
y∈X

hl,τ (x̄, y) + 2ϵ. (33)

As the above inequality holds for any ϵ > 0, we obtain,

lim sup
t→∞

min
y∈X

hl,τ (xt, y) ≤ min
y∈X

hl,τ (x̄, y) (34)

which proves that vl,τ (x) is lower semi-continuous.

Proof of 2). We prove the Lipschitz continuity of hl,τ (x, y) below. We define

πm(x, y) :=
e

1
τ (fm(y)−fm(x))∑M

m=1 e
1
τ (fm(y)−fm(x))

. (35)

Note that

∥∇xhl,τ (x, y)∥ ≤
∥∥∥ M∑

m=1

πm(x, y)∇fm(x)
∥∥∥+ ∥l(x− y)∥ ≤ ℓf + l(∥x∥+ ∥y∥) ≤ ℓf + 2lℓx, (36)

∥∇yhl,τ (x, y)∥ ≤
∥∥∥ M∑

m=1

πm(x, y)∇fm(y)
∥∥∥+ ∥l(x− y)∥ ≤ ℓf + l(∥x∥+ ∥y∥) ≤ ℓf + 2lℓx. (37)

Therefore, hl,τ (x, y) is (ℓf + 2lℓx)-Lipschitz continuous w.r.t. both x ∈ XC and y ∈ XC .

Next we prove the Lipschitz continuity of the merit function vl,τ under additional assumptions. From Assumption 1, the
functions fm(x),m = 0, . . . ,M are ℓf -Lipschitz on a bounded set XC where ∥x∥ ≤ ℓx. From (5), we can compute
∇vl,τ (x). We then derive the bound of ∥∇vl,τ (x)∥ below.

∥∇vl,τ (x)∥ =
∥∥∥ M∑

m=1

πm(x)∇fm(x)− l(x− y∗l,τ (x))
∥∥∥

≤ℓf + l∥x∥+ l∥y∗l,τ (x)∥ ≤ ℓf + 2lℓx (38)

which proves that vl,τ (x) is (ℓf + 2lℓx)-Lipschitz continuous on X .

Recall that p(x) =
(
vl,τ (x) + τ lnM

)θ
. For θ ≥ 1, the gradient of p(x) is given by

∇p(x) = θ
(
vl,τ (x) + τ lnM

)θ−1∇vl,τ (x) (39)
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Note that vl,τ (x) + τ lnM is bounded on a compact set since vl,τ (x) is Lipschitz on this set, i.e.,

vl,τ (x) + τ lnM ≤ ℓvl,τ ∥x− x∗∥ ≤ 2ℓvl,τ ℓx with ℓvl,τ = ℓf + 2lℓx. (40)

Then ∥∇p(x)∥ can be bounded by

∥∇p(x)∥ ≤θℓvl,τ
(
vl,τ (x) + τ lnM

)θ−1 ≤ θℓvl,τ
(
vl,τ (x) + τ lnM

)θ−1
(41)

≤θℓvl,τ
(
2ℓvl,τ ℓx

)θ−1
= θ
(
2ℓx
)θ−1

ℓθvl,τ (42)

which proves that p(x) is
(
θ
(
2ℓx
)θ−1

ℓθvl,τ

)
-Lipschitz continuous on X .

Corollary B.7 (Lipschitz continuity of φγ). Under the same settings as Lemma E.1, let ℓx = supx∈XC
∥x∥. Given γ > 0,

φγ(x) is
(
γℓp + ℓf

)
-Lipschitz continuous on XC .

Proof of Corollary B.7. Recall that φγ(x) = f0(x) + γp(x). The proof directly follows by applying the ℓp-Lipschitz
continuity of p from Lemma B.6, and the ℓf -Lipschitz continuity of f0 from Assumption 1.

Lemma B.8 (Lipschitz continuity of y∗l,τ (x)). Under the same settings as Lemma E.1, recall that

y∗l,τ (x) := argmin
y∈X

hl,τ (x, y) = argmin
y∈X

{
τ ln

( M∑
m=1

e
fm(y)−fm(x)

τ

)
+

l

2
∥x− y∥2

}
. (43)

For l − ℓf,1 ≥ µhy > 0, there exists ℓy∗
l,τ

=
2Mℓf

τ

(
ℓ2f
τ + ℓf,1

)
+

4Mℓ3f
τ2 > 0 that for all x, x′ ∈ XC , the following holds

∥y∗l,τ (x)− y∗l,τ (x
′)∥ ≤ ℓy∗

l,τ
∥x− x′∥. (44)

Proof. By Corollary B.4, for l + minm∈[M ] µm ≥ µhy
> 0, the function hl,τ (x, y) is µhy

-strongly convex w.r.t. y.
Therefore, from (Dontchev & Rockafellar, 2009, Theorem 2F.7), or using similar arguments for the proof in (Chen et al.,
2023, Lemma 15), we can derive that

∥y∗l,τ (x)− y∗l,τ (x
′)∥ ≤ µ−1

hy
∥∇2

yyhl,τ (x, y)−∇2
yyhl,τ (x

′, y)∥. (45)

Let Iq ∈ Rq×q denote the identity matrix, then ∇2
yyhl,τ (x, y) can be further computed by

∇2
yyhl,τ (x, y) = ∇y

(
M∑

m=1

e
fm(y)−fm(x)

τ∑M
m=1 e

fm(y)−fm(x)
τ︸ ︷︷ ︸

πm(x,y)

∇fm(y) + l(y − x)

)

=∇y

(
∇F (y)π(x, y)︸ ︷︷ ︸

S(x,y)

+l(y − x)
)

with π(x, y) = [π1(x, y), . . . , πM (x, y)]⊤

=
1

τ

M∑
m=1

πm(x, y)∇fm(y)∇fm(y)⊤ − 1

τ
S(x, y)S(x, y)⊤ +

M∑
m=1

πm(x, y)∇2fm(y) + lIq. (46)

We first bound ∥S(x, y)S(x, y)⊤ − S(x′, y)S(x′, y)⊤∥ by

∥S(x, y)S(x, y)⊤ − S(x′, y)S(x′, y)⊤∥ ≤
(
∥S(x, y)∥+ ∥S(x′, y)∥

)
∥S(x, y)− S(x′, y)∥. (47)

Then from Assumptions 4 and 1, we can bound ∥∇2
yyhl,τ (x, y)−∇2

yyhl,τ (x
′, y)∥ by

∥∇2
yyhl,τ (x, y)−∇2

yyhl,τ (x
′, y)∥

≤1

τ

M∑
m=1

∥πm(x, y)− πm(x′, y)∥∥∇fm(y)∥2 + 1

τ

(
∥S(x, y)∥+ ∥S(x′, y)∥

)
∥S(x, y)− S(x′, y)∥
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+

M∑
m=1

∥πm(x, y)− πm(x′, y)∥∥∇2fm(y)∥

≤
M∑

m=1

∥πm(x, y)− πm(x′, y)∥
(ℓ2f
τ

+ ℓf,1

)
+

2ℓf
τ

∥S(x, y)− S(x′, y)∥ (48)

where ∥πm(x, y)− πm(x′, y)∥ can be further bounded by

∥πm(x, y)− πm(x′, y)∥ ≤ 2ℓf
τ

∥x− x′∥. (49)

Similarly, ∥S(x, y)− S(x′, y)∥ can be further bounded by

∥S(x, y)− S(x′, y)∥ ≤
M∑

m=1

(
πm(x, y)− πm(x′, y)

)
∇fm(y) ≤

2Mℓ2f
τ

∥x− x′∥. (50)

The proof is complete with ℓy∗
l,τ

=
2Mℓf

τ

(
ℓ2f
τ + ℓf,1

)
+

4Mℓ3f
τ2 .

B.3. Proof of Proposition 3.3: relations of vl,τ and weak Pareto optimality

Proof of Proposition 3.3. We prove each property as follows.

Property 1. For the first argument, by the property of the Log-sum-exp function (Nesterov, 2005), and since taking miny∈X
preserves inequality, we have that

ul(x)− τ lnM ≤ vl,τ (x) ≤ ul(x). (51)

This implies that, as τ ↓ 0, vl,τ (x) uniformly converges to ul(x). Also recall from Lemma B.1 that x is weakly Pareto
optimal if and only if ul = 0. Therefore, x is weakly Pareto optimal if and only if limτ↓0 vl,τ (x) = 0. The first argument is
proved.

For the second argument, from (Nesterov, 2005), we have that

τ ln
( M∑

m=1

e
fm(y)−fm(x)

τ

)
+

l

2
∥x− y∥2 ≤ τ lnM + max

m∈[M ]
{fm(y)− fm(x)}+ l

2
∥x− y∥2. (52)

Since taking miny∈X preserves inequality, it implies that

min
y∈X

{
τ ln

( M∑
m=1

e
fm(y)−fm(x)

τ

)
+

l

2
∥x− y∥2

}
≤ τ lnM +min

y∈X

{
max
m∈[M ]

{fm(y)− fm(x)}+ l

2
∥x− y∥2

}
(53)

which proves that

vl,τ (x) ≥−min
y∈X

{
max
m∈[M ]

{fm(y)− fm(x)}+ l

2
∥x− y∥2

}
− τ lnM

=ul(x)− τ lnM ≥ −τ lnM (54)

where the last inequality holds because ul(x) ≥ 0. Furthermore, there exists x ∈ X such that vl,τ (x) = −τ lnM by
Lemma B.5. Then minx∈X vl,τ (x) = −τ lnM .

Property 2. For the first argument, by Lemma B.1, if x is weakly Pareto optimal, then ul(x) = 0. Furthermore, by
Property-1, ul(x) ≥ vl,τ (x), which proves vl,τ (x) ≤ 0.

Conversely, for the second argument, for condition a), l = 0, v0,τ (x) ≤ 0 implies that

ū(x) ≤ v0,τ (x) + τ lnM ≤ τ lnM. (55)
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By the definition of ū, for all z ∈ X , it holds that

min
m∈[M ]

{fm(x)− fm(z)} ≤ ū(x) ≤ τ lnM. (56)

In other words, there exists no z ∈ X and z ̸= x such that, F (z) < F (x)− τ lnM .

For condition b), l > 0, vl,τ (x) ≤ −τ lnM implies that

0 ≤ ul(x) ≤ vl,τ (x) + τ lnM ≤ 0. (57)

By the definition of ul(x), it implies

min
m∈[M ]

{fm(x)− fm(y)} − l

2
∥x− y∥2 ≤ 0 (58)

By the convexity of X , take z ∈ X , and t ∈ (0, 1), then (1 − t)x + tz ∈ X . Let y = (1 − t)x + tz, and plug it into the
above inequality, we have

min
m∈[M ]

{fm(x)− fm((1− t)x+ tz)} − l

2
∥x− y∥2 ≤ 0 (59)

By the (1, 0)-point-quasar convexity of fm at x for all m ∈ [M ], fm((1− t)x+ tz) ≤ tfm(z) + (1− t)fm(x). Therefore,

min
m∈[M ]

{t(fm(x)− fm(z))} − l

2
∥t(z − x)∥2 ≤ 0. (60)

Dividing both sides by t and letting t ↓ 0, we have that for all z ∈ X ,

min
m∈[M ]

{fm(x)− fm(z)} ≤ 0. (61)

This proves x is weakly Pareto optimal.

The proof of the properties of the smoothed merit function is complete.

B.4. Examples of point quasar convex functions

By definition, µ-(strongly) convex functions are (1, µ)-(strongly) point quasar convex everywhere. This quasar convexity
property is also closely related to star convexity, restricted secant condition, variational coherence, PL condition, invexity,
etc. For a more detailed discussion and more examples, refer to e.g., (Hinder et al., 2020, Appendix A, D.2, D.3).

B.4.1. EXAMPLES CONDITION 2-B) IN PROPOSITION 3.3

Example B.9. For all m ∈ [M ], fm are strongly convex on X .

Example B.9 is the simplest case covered by our method. But existing works which focus on such cases usually require
second-order information in the algorithm, as summarized in Table 2.

Example B.10. For x = [x1;x2] ∈ R2, let X = R2. Define f1(x) = x2
1x

2
2, f2(x) = x4

1x
4
2.

In Example B.10, f1, f2 are nonconvex but star-convex (Hinder et al., 2020) at x∗ = [0; 0]. Furthermore, x∗ satisfies that
vl,τ (x

∗) = −τ lnM . And both f1, f2 satisfies the (1, 0)-point quasar-convexity at x∗ within X .

B.5. Proof of gradient of the smoothed merit function

Lemma B.11 (Gradient and directional derivative of vl,τ ). The gradient of vl,τ can be computed by

∇vl,τ (x) =

M∑
m=1

πm(x)∇fm(x)− l(x− y∗l,τ (x)), with πm(x) :=
e

1
τ (fm(y∗

l,τ (x))−fm(x))∑M
m=1 e

1
τ (fm(y∗

l,τ (x))−fm(x))
. (62)

22



Efficient First-Order Optimization on the Pareto Set for Multi-Objective Learning under Preference Guidance

For all z ∈ X , the directional derivative of vl,τ , denoted as v′l,τ (x; z − x), can be computed by

v′l,τ (x; z − x) =

M∑
m=1

πm(x, y∗l,τ (x))f
′
m(x; z − x)− l

(
x− y∗l,τ (x)

)⊤
(z − x). (63)

Proof of Lemma B.11. Recall that we have defined

hl,τ (x, y) = τ ln
( M∑

m=1

e
fm(y)−fm(x)

τ

)
+

l

2
∥x− y∥2. (64)

By definition, vl,τ (x) = −miny∈X hl,τ (x, y) = −hl,τ (x, y
∗
l,τ (x)), with y∗l,τ (x) ∈ argminy∈X hl,τ (x, y). If

l +minm∈[M ] µm ≥ c > 0, by Corollary B.4, y∗l,τ (x) is unique. Furthermore, y∗l,τ (x) is continuous w.r.t. x.

By the extended Danskin-type theorem in e.g., (Shen et al., 2025, Proposition 5), vl,τ (x) is differentiable. Its gradient can
be computed by

∇vl,τ (x) =−∇xhl,τ (x, y
∗
l,τ (x))

=

M∑
m=1

e
fm(y∗

l,τ (x))−fm(x)

τ∑M
m=1 e

fm(y∗
l,τ

(x))−fm(x)

τ

∇fm(x)− l(x− y∗l,τ (x)). (65)

Then given all x, z ∈ X , the directional derivative of vl,τ (x) can be computed by

v′l,τ (x; z − x) =

M∑
m=1

πm(x, y∗l,τ (x))f
′
m(x; z − x)− l

(
x− y∗l,τ (x)

)⊤
(z − x) for all z ∈ X (66)

where πm(x, y) = e
fm(y)−fm(x)

τ∑M
m=1 e

fm(y)−fm(x)
τ

. The proof is complete.

C. Subanalyticity and related properties
In this section, we first discuss some preliminaries on subanalyticity, and then prove the global subanalyticity of the merit
function vl,τ (x).

Definition C.1 (Subanalyticity (Bierstone & Milman, 1988)). 1) A subset S ⊂ Rq is called semianalytic if each point of Rq

admits a neighborhood V for which S ∩ V assumes the following form

I⋃
i=1

J⋂
j=1

{x ∈ V : fij(x) = 0, gij(x) > 0} , (67)

where fij , gij : V → R are real analytic functions for 1 ≤ i ≤ I, 1 ≤ j ≤ J .
2) A subset S ⊂ Rq is called subanalytic if each point of Rq admits a neighborhood V such that

S ∩ V = {x ∈ Rq | (x, y) ∈ B} (68)

where B is a bounded semianalytic subset of Rq × Rm.
3) A function f : Rq → R ∪ {+∞} is called subanalytic if its graph is a subanalytic subset of Rq × R.

Definition C.2 (Global subanalyticity (Dries & Miller, 1996, p. 506)). Let x = [x1, . . . , xq]
⊤ ∈ Rq . Define the function

Φq(x) :=

(
x1

1 + x2
1

, . . . ,
xq

1 + x2
q

)
. (69)

1) A subset S of Rq is called globally subanalytic if its image under Φq is a subanalytic subset of Rq .
2) A function f : Rq → R ∪ {+∞} is called globally subanalytic if its graph is a globally subanalytic subset of Rq × R.
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Proposition C.3 ((Bolte et al., 2007)). Globally subanalytic sets are subanalytic, and conversely, any bounded subanalytic
set is globally subanalytic.

Lemma C.4 ((Dries & Miller, 1996)). The image or the preimage of a globally subanalytic set by a globally subanalytic
function (respectively, globally subanalytic multivalued operator) is globally subanalytic.

Lemma C.5 (Projection theorem (Dries & Miller, 1996)). Let Π(x1, . . . , xn+1) = (x1, . . . , xn) be the canonical projection
from Rn+1 onto Rn. If S is a globally subanalytic subset of Rn+1, then so is Π(S) in Rn.

Lemma C.6 (Lojasiewicz factorization lemma (Bierstone & Milman, 1988, Theorem 6.4)). If X ∗
vl,τ

:= argminx∈X vl,τ (x)

is globally subanalytic, and vl,τ (x) is continuous and globally subanalytic, then the (ϱ, η)-Hölderian error bound holds for
vl,τ (x) for some ϱ, η > 0.

C.1. Proof of global subanalyticity of vl,τ , p, and ul

Lemma C.7. Let X and Y be two bounded subanalytic subsets in Rq. Let f : X × Y → R be a bounded subanalytic
function. Then 1) the function ϕ below is bounded and subanalytic, thus globally subanalytic.

ϕ : X ∋ x 7→ max
y∈Y

f(x, y) ∈ R. (70)

2) Given x, the solution set Y∗(x) := argmaxy∈Y f(x, y) is bounded and subanalytic, thus globally subanalytic.

Proof. The proof mainly adopts the proof idea of (Kosiba, 2025, Lemma 4.18). The key difference is that instead of using
local boundedness of the functions, we start from global boundedness of f on X and derive the global boundedness of ϕ,
which, combined with subanalyticity, leads to the global subanalyticity of ϕ on X .

Let Gr(·) denote the graph of a function. Since f is bounded, let cf , cf denote its upper and lower bound, respectively. And
define W := {w ∈ R | cf ≤ w ≤ cf}. Then W ⊂ R is bounded. Consider the following set

A = {(x, y, z, w) ∈ X × Y × R×W | (x, y, z) ∈ Gr(f(x, y)), z ≤ w}. (71)

Note that x, y are bounded, and so is z because of the boundedness of f . Furthermore, w is bounded by definition. Thus A
is bounded. Also note that A is subanalytic because f is subanalytic, its graph is subanalytic, and the Cartesian product of
two subanalytic sets is subanalytic. Therefore, A is globally subanalytic.

Define the following projection ΠA and the set B by canonical projection of A.

ΠA : X × Y × R×W ∋ (x, y, z, w) 7→ (x, y, w) ∈ X × Y ×W. (72)
B := ΠA(A) = {(x, y, w) ∈ X × Y ×W | f(x, y) ≤ w}. (73)

Then B is globally subanalytic based on Lemma C.5.

We also define the following auxiliary sets

BR = {(x, y, w) ∈ X × Y ×W}, (74)
BR\B = {(x, y, w) ∈ X × Y ×W | f(x, y) > w}. (75)

Then we define the projection ΠB and define the following set C by canonical projection of B.

ΠB : X × Y ×W ∋ (x, y, w) 7→ (x,w) ∈ X ×W, (76)
C := ΠB(B)\ΠB(BR\B) = {(x,w) ∈ X ×W | sup

y∈Y
f(x, y) ≤ w}. (77)

Since C is bounded and subanalytic, it is globally subanalytic.

We further define the following subanalytic set and projection

D := {(x,w1, w2) ∈ X ×W ×W | (x,w1) ∈ C, (x,w2) ∈ C,w1 > w2}, (78)
ΠD : X ×W ×W ∋ (x,w1, w2) 7→ (x,w1) ∈ X ×W. (79)
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Finally, observe that

C\ΠD(D) ∋ (x,w) ⇐⇒ there exists no w′ such that (x,w′), (x,w) ∈ C and w > w′ (80)
⇐⇒ there exists no w′ such that sup

y∈Y
f(x, y) ≤ w′ and sup

y∈Y
f(x, y) ≤ w and w > w′ (81)

which means that Gr(ϕ(x)) = C\ΠD(D). Since Gr(ϕ(x)) is bounded and subanalytic, thus it is globally subanalytic. By
definition, ϕ is also globally subanalytic.

Next we proceed to prove the global subanalyticity of Y∗(x) given x. Define the following set E and projection ΠE

E := {(x, y, w) ∈ X × Y ×W | (x,w) ∈ Gr(ϕ(x)), f(x, y) = w}, (82)
ΠE : X × Y ×W ∋ (x, y, w) 7→ (x, y) ∈ X × Y. (83)

Then ΠE(E) = {(x, y) ∈ X × Y | y ∈ Y∗(x)} is globally subanalytic. Furthermore, given x = cx ∈ X for any cx ∈ X ,
we have

ΠE(E) ∩ {(x, y) ∈ X × Y | x = cx} = {(x, y) ∈ X × Y | y ∈ Y∗(x), x = cx} (84)

which is globally subanalytic. Taking projection Π : X × Y ∋ (x, y) 7→ y ∈ Y yields that Y∗(x) given x = cx for any
cx ∈ X is also globally subanalytic.

Proof of Lemma 3.5. Part 1: By Assumption 3, fm is globally subanalytic for all m = 0, . . . ,M . By Definition C.1 and
Lemma C.4, subanalyticity is preserved under the subanalytic LSE function.

Recall the definition of hl,τ (x, y) in (25). By Assumption 1 and Lemma B.6, hl,τ (x, y) is Lipschitz continuous w.r.t. both
x, y ∈ XC , thus hl,τ (x, y) is bounded for (x, y) ∈ XC ×XC . Combining the above arguments, hl,τ (x, y) is bounded and
subanalytic on XC , thus globally subanalytic on XC by Proposition C.3.

Part 2: Next, we prove that vl,τ (x) = −miny∈X hl,τ (x, y) and p(x) =
(
vl,τ (x) + τ lnM

)θ
are both globally subanalytic

on XC . This directly follows by applying Lemma C.7-1).

Part 3: Finally, we prove that X ∗
vl,τ

= argminx∈X vl,τ (x) is also globally subanalytic on XC . This directly follows by
applying Lemma C.7-2).

Consequently, the merit function vl,τ (x) satisfies the (ϱ, η)-Hölderian error bound for some ϱ, η > 0 on a bounded set XC

by Lemma C.6. The penalty function p(x) also satisfies the (ϱp, ηp)-Hölderian error bound with ϱp = ϱθ and ηp = θη.

Following similar arguments as the above proof, we can obtain that the original merit function ul(x) is globally subanalytic
on a bounded subanalytic set, and thus satisfies the HEB on the set. This result is formally stated below.

Corollary C.8. Under Assumption 3, and that X is subanalytic, given a compact subanalytic set XC , suppose fm(x) is
continuous and bounded on XC ∩X for all m ∈ [M ]. Then both X ∗

vl,τ
∩XC and vl,τ (x) on XC ∩X are globally subanalytic.

Consequently, the merit function ul(x) in (23) without smoothing satisfies the (ϱu, ηu)-HEB in Definition 3.4 on XC ∩ X ,
with some ϱu, ηu > 0.

Lemma C.9 (KL inequality (Kurdyka, 1998, Theorem 1)). Let f : Ω → R be a subanalytic function which is differentiable
in Ω\f−1(0), where Ω is an open bounded subset of Rq . Then there exist c > 0, ν > 0 and α > 1 such that: c∥∇f(x)∥α ≥
|f(x)|, for each x ∈ Ω such that |f(x)| ∈ (0, ν). If in addition limx→a f(x) = 0 for some a ∈ Ω̄, then the above inequality
holds for each x ∈ Ω\f−1(0) close to a.

C.2. Examples of globally subanalytic functions

We summarize some commonly used globally subanalytic functions and their corresponding Hölderian error bound (HEB)
in Table 6 below. The first few examples of convex functions in Table 6 are directly referenced from (Doron & Shtern, 2023,
Table 2) and (Chen et al., 2024b, Table 2).

Below, we prove the HEB of the last four bounded functions in Table 6.
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Table 6. Summary of some functions satisfying Hölderian error bound with corresponding exponents.
Functions Remarks Names η ϱ

Convex functions
maxi∈[m]{⟨ai, x⟩ − bi} ai ∈ Rq, b ∈ Rm Polytope 1 maxi∈[m]{∥ai∥−1}

∥x− x0∥Q =
√

(x− x0)⊤Q(x− x0) Q ∈ Sq, Q ≻ 0, x0 ∈ Rq Q-norm (Ellipsoid) 1 (λmin(Q))−
1
2

∥x− x0∥p x0 ∈ Rq, p ≥ 1 ℓp-norm 1 1

1
m

∑m
i=1 log(1 + exp(−a⊤

i xbi)) ai ∈ Rq, b ∈ Rm, A ∈ Rm×q Logistic loss 2 (λmin(Q))−1, Q is
a function of ai, b

f(x) + σ
2
∥x∥2 f convex, σ > 0 strongly-convex 2 2

σ
Bounded and possibly nonconvex functions

sin(x) x ∈ [0, 1
2
π] Sine ≥ 1 (π

2
)η

xp x ∈ [0, 1], p > 0 Polynomial p 1
ex x ∈ [0, 1] Exponential ≥ 1 1

ln(x+ 1) x ∈ [0, 1] Logarithmic ≥ 1 1
ln(2)

Proof of HEB of bounded functions in Table 6. We prove the (ϱ, η)-Hölderian error bound (HEB) of the last four functions
in Table 6 one by one as follows.

1) Sine function. For x ∈ [0, 1
2π], x

∗ = 0 is the unique minimizer of sin(x), thus for η ≥ 1,
(
dist(x,X ∗

sin)
)η

= |x|η ≤
(π2 )

η sin(x) for all x ∈ [0, 1
2π]. Therefore, sin(x) satisfies (ϱ, η)-HEB for x ∈ [0, 1

2π] with η ≥ 1 and ϱ = (π2 )
η .

2) Polynomial function. For x ∈ [0, 1], x∗ = 0 is the unique minimizer of xp. Thus
(
dist(x,X ∗

sin)
)p

= |x|p ≤ xp for all
x ∈ [0, 1]. Therefore, xp satisfies (ϱ, η)-HEB for x ∈ [0, 1] with η = p and ϱ = 1.

3) Exponential function. For x ∈ [0, 1], x∗ = 0 is the unique minimizer of ex. Thus
(
dist(x,X ∗

sin)
)η

= |x|η ≤ ex − e0 for
all x ∈ [0, 1], and η ≥ 1. Therefore, ex satisfies (ϱ, η)-HEB for x ∈ [0, 1] with η ≥ 1 and ϱ = 1.

4) Logarithmic function. For x ∈ [0, 1], x∗ = 0 is the unique minimizer of ln(x + 1). Thus
(
dist(x,X ∗

sin)
)η

= |x|η ≤
1

ln(2) ln(x+ 1) for all x ∈ [0, 1], and η ≥ 1. Therefore, ex satisfies (ϱ, η)-HEB for x ∈ [0, 1] with η ≥ 1 and ϱ = 1
ln(2) .

The proof is complete.

Remark C.10. Note that, even though we have shown in the above that the exponential function satisfies HEB in a compact
and subanalytic set x ∈ [0, 1], it is known that the exponential function is not globally subanalytic on R. In the following
proofs which require the HEB property, it suffices to show the global subanalyticity holds on a compact and subanalytic
set constructed from the corresponding problem, which leads to the HEB property on the compact and subanalytic set.
And HEB of p(x) on a compact and subanalytic set within X is sufficient to show the relations of global/local/stationary
solutions of the penalty problem to the bilevel problem as long as there exists bounded solutions to minx∈X p(x), even if X
is not bounded.

C.3. Relations of Hölderian error bound, quadratic growth, proximal PL, and proximal error bound

We further discuss the relations of Hölderian error bound (HEB), also known as Hölderian growth, with other commonly
used conditions such as quadratic growth (QG), proximal error bound (EB), proximal PL inequality, and strong convexity
(SC). Below, we consider a general function for the discussion.

ϕ(x) := f(x) + g(x) (85)

with f smooth and g convex. In our specific problem, g is an indicator function on X . Let X ∗
ϕ denote the set of minimizers

for ϕ. We first review the formal definitions of the above conditions, and then discuss their relations.

Definition C.11 (Proximal error bound). The function ϕ in (85) satisfies proximal error bound if for t > 0, there exists
cϕ > 0 that

dist(x,X ∗
ϕ ) ≤ cϕt

−1∥x− proxtg(x− t∇f(x))∥. (86)

Definition C.12 (Proximal PL). The function ϕ in (85) satisfies proximal PL inequality if for t > 0, there exists c > 0 that

ϕ(x)− ϕ(x∗) ≤ cDg(x, t) with x∗ ∈ X ∗
ϕ , and
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Dg(x, t) := −2tmin
y

[
⟨∇f(x), y − x⟩+ t

2
∥y − x∥2 + g(y)− g(x)

]
. (87)

By definition, QG is a special case of HEB with the exponent η = 2. And similarly, proximal KL generalizes the concept of
proximal PL. The relations of SC, proximal EB, proximal PL, QG have been studied in existing literature. We summarize
these relations using the equation below.

f is SC
(a)
=⇒ proximal EB

(b)⇐⇒ proximal PL
(c)
=⇒ QG

⇓ ⇓
proximal EB ⇐⇒ proximal KL =⇒ HEB (88)

where (a) has been proved in e.g., (Karimi et al., 2016, Appendix F-2); (b) has been proved in e.g., (Karimi et al., 2016,
Appendix G); (c) has been proved in e.g., (Liao et al., 2024, Theorem 3.1) with additional conditions that ϕ is closed and
weakly convex, or in (Karimi et al., 2016, Theorem 2) with additional conditions that g is a constant.

Furthermore, when the function f is convex, we have that

proximal EB/PL
(d)⇐⇒ QG

⇓ ⇓

proximal EB/KL
(f)⇐⇒ HEB (89)

where (d) has been proved in e.g., (Drusvyatskiy & Lewis, 2018, Corollary 3.6); (f) has been proved in e.g., (Bolte et al.,
2016, Theorem 5). In this paper, we provide a proof of the relations between KL, HEB, and EB in (88) for nonconvex f and
constant g in Lemma C.13 and Lemma C.14 below.

Lemma C.13 (KL implies HEB). Consider the function ϕ in (85) with g(x) = 0, and minϕ(x) = 0. If ϕ satisfies the
(cϕ, αϕ)-KL inequality on Ω with exponent αϕ > 1, then it also satisfies the (ϱϕ, ηϕ)-HEB on Ω with exponent ηϕ =

αϕ

αϕ−1 ,

and ϱϕ =
(
1− 1

αϕ

)− αϕ
αϕ−1

(
1
cϕ

)− 1
αϕ−1

.

Proof of Lemma C.13. We first define an auxiliary function

L(x) :=
(
ϕ(x)

)1− 1
αϕ . (90)

Since ϕ satisfies the KL inequality, then for any x /∈ X ∗
ϕ , and thus ϕ(x) ̸= 0, we have

∥∇L(x)∥2 =
(
1− 1

αϕ

)2∥∥∥∥∥ ∇ϕ(x)

(ϕ(x))
1

αϕ

∥∥∥∥∥
2

=
(
1− 1

αϕ

)2 ∥∇ϕ(x)∥2

(ϕ(x))
2

αϕ

≥
(
1− 1

αϕ

)2( 1

cϕ

) 2
αϕ

︸ ︷︷ ︸
µL

. (91)

Also ϕ satisfies the KL inequality implies that ϕ is an invex function and thus L is a non-negative invex function with
a closed optimal solution set and zero optimal value. or any point x0 /∈ X ∗

L, consider solving the following differential
equation for x(t) /∈ X ∗

ϕ :

dx(t)

dt
= −∇L(x(t)) (92)

x(t = 0) = x0 (93)

Following similar arguments for proving PL implies QG, see e.g., (Karimi et al., 2016, Theorem 2, Appendix A), there
exists a T such that x(T ) ∈ X ∗

L (and at this point the differential equation ceases to be defined). Then

L(x0)− L(xt) =

∫ x0

xt

⟨∇L(x), dx⟩ = −
∫ xt

x0

⟨∇L(x), dx⟩ = −
∫ T

0

⟨∇L(x(t)),
dx(t)

dt
⟩dt (94)

=

∫ T

0

∥∇L(x(t))∥2dt ≥
∫ T

0

µLdt = µLT. (95)
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As L(xt) ≥ 0, this shows we need to have T ≤ L(x0)/µL, so there must be a T with x(T ) ∈ X ∗
L. The length of the orbit

x(t) starting at x0, which we’ll denote by D(x0), is given by

D(x0) =

∫ T

0

∥dx(t)/dt∥dt =
∫ T

0

∥∇L(x(t))∥dt ≥ ∥x0 − xp∥ (96)

where xp is the projection of x0 onto X ∗
L and the inequality follows because the orbit is a path from x0 to a point in X ∗

L (and
thus it must be at least as long as the projection distance).

Then we can further bound

L(x0) = L(x0)− L(xT )
(95)
=

∫ T

0

∥∇L(x(t))∥2dt
(91)
≥ √

µL

∫ T

0

∥∇L(x(t))∥dt
(96)
≥ √

µL∥x0 − xp∥. (97)

The proof is complete.

Lemma C.14 (KL and HEB imply EB). For ϕ(x) in (85) with g(x) = 0 that satisfies the KL inequality with exponent αϕ,
and the HEB with exponent ηϕ, i.e.,

KL: cϕ∥∇ϕ(x)∥αϕ ≥ ϕ(x), HEB: ϕ(x) ≥ ϱ−1
ϕ

(
dist(x,X ∗

ϕ )
)ηϕ (98)

Then it holds that

∥∇ϕ(x)∥ ≥ ϱ−1
h

(
dist(x,X ∗

ϕ )
)ηh with ηh =

ηϕ
αϕ

, and ϱh =
(
ϱϕcϕ

) 1
αϕ . (99)

Proof of Lemma C.14. The proof directly follows from combining the two inequalities from KL and HEB that

cϕ∥∇ϕ(x)∥αϕ ≥ ϕ(x) ≥ ϱ−1
ϕ

(
dist(x,X ∗

ϕ )
)ηϕ . (100)

Rearranging the above inequalities proves the result.

D. Proof of relations of different formulations
In this section, we prove the relations of the solutions of the bilevel problem and the penalty reformulation. Recall that we
denote the penalty function with exponent θ as

p(x) =
(
vl,τ (x) + τ lnM

)θ
. (101)

Recall that we let X ∗
vl,τ

:= argminx∈X vl,τ (x). Similarly, we define X ∗
φγ

:= argminx∈X φγ(x). For ϵ ≥ 0, define the
ϵ-approximate solution set (level set) below

Xϵ := {x ∈ X | p(x) ≤ ϵ}. (102)

Then X ∗
vl,τ

= X0 ⊆ Xϵ. We use XC to denote a compact subanalytic set, XS ⊆ X to denote a closed subanalytic subset of
X , and define zϵ(x) ∈ argminz∈Xϵ∩XC

∥z − x∥.

D.1. Proof of Theorem 3.7-1: the ϵ-global/local solutions relation of the smoothed problem

Proof of Theorem 3.7-1. We use ul as an auxiliary merit function, defined below

ul(x) := sup
y∈X

min
m∈[M ]

{fm(x)− fm(y)− l

2
∥y − x∥2}. (103)

Under the conditions in Proposition 3.3-2, solving (OPS) is equivalent to solving

min
x∈X

f0(x), s.t. x ∈ X ∗
ul

:= {x ∈ X | ul(x) ≤ 0}. (104)
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Part 1: proof of global solutions relation. Let xδ be an (ϵ, δ)-global solution to (CP), then xδ ∈ Xδ , i.e., vl,τ (xδ)+τ lnM ≤
δ. From Proposition 3.3-2, we have that ul(xδ) ≤ vl,τ (xδ) + τ lnM ≤ δ.

Let x∗ be a global solution to (OPS), and let xp := ProjX∗
ul
(xδ). By the (ϱu, ηu)-HEB of the function ul in Corollary C.8,

see Appendix C.1, we have ∥xδ − xp∥ = dist(xδ,X ∗
ul
) ≤ (ϱuδ)

1
ηu .

For δ ≥ τ lnM , X ∗
ul

⊆ X ∗
δ , thus f0(x∗)− f0(xδ) ≥ 0. By the ℓf -local Lipschitz continuity of f0, it holds that

f0(x
∗)− f0(xδ) ≤ f0(xp)− f0(xδ) ≤ ℓf∥xδ − xp∥ ≤ ℓf (ϱuδ)

1
ηu . (105)

This proves that xδ is an (ϵ′, δ)-global solution to (OPS) with ϵ′ = ℓf (ϱuδ)
1

ηu .

Conversely, if x′ is an (ϵ, δ)-global optimal solution to (OPS), then by definition,

f0(x
′)− min

x∈Xul,δ

f0(x) ≤ ϵ, and x′ ∈ Xul,δ. (106)

In other words, ul(x
′) ≤ δ, which implies vl,τ (x′)+τ lnM ≤ δ+τ lnM , i.e., x′ ∈ Xδ′ with δ′ = δ+τ lnM . Furthermore,

since Xul,δ ⊆ Xδ′ , minx∈Xδ′ f0(x) ≤ minx∈Xul,δ
f0(x), therefore

f0(x
′)− min

x∈Xδ′
f0(x) =f0(x

′)− min
x∈Xul,δ

f0(x) + min
x∈Xul,δ

f0(x)− min
x∈Xδ′

f0(x)

≤ϵ+ min
x∈Xul,δ

f0(x)− min
x∈Xδ′

f0(x) (107)

where letting x∗
δ′,0 ∈ argminx∈Xδ′

f0(x), and x∗
p,δ′,0 = ProjXul,δ

(x), then minx∈Xul,δ
f0(x) − minx∈Xδ′ f0(x) can be

further bounded by

min
x∈Xul,δ

f0(x)− min
x∈Xδ′

f0(x) = min
x∈Xul,δ

f0(x)− f0(x
∗
δ′,0)

≤f0(x
∗
p,δ′,0)− f0(x

∗
δ′,0) ≤ ℓf∥x∗

δ′,0 − x∗
p,δ′,0∥ ≤ ℓfdist(x

∗
δ′,0,X ∗

ul
) ≤ ℓf (ϱuδ

′)
1

ηu . (108)

Therefore, x′ is an (ϵ′, δ′) solution to (CP) with ϵ′ = ϵ+ ℓf (ϱuδ
′)

1
ηu and δ′ = δ + τ lnM .

Part 2: proof of local solutions relation. Let xδ be an (ϵ, δ)-local solution to (CP), then xδ ∈ Xδ , and xδ is an (ϵ, δ)-global
solution to (CP) on the set X ∩ B(xδ, r). Applying the results in Part 1 we get that xδ is an (ϵ′, δ)-global solution to (OPS)
on the set X ∩ B(xδ, r), thus an (ϵ′, δ)-local solution to (OPS) on the set X . Similar arguments can be used to prove the
converse statement.

Combining Part 1 and Part 2 completes the proof.

D.2. Proof of Theorem 3.7-2: the ϵ-global/local solutions relation

We first present some auxiliary lemmas below, then prove the main results.

Lemma D.1. Let XC ⊆ Rq be a compact subanalytic set with XC ∩ X0 ̸= ∅, and thus XC ∩ Xϵ ̸= ∅ for some ϵ ≥ 0.
Suppose f0(x) is ℓf -Lipschitz continuous on XC ∩ X with some ℓf > 0. If vl,τ is globally subanalytic on XC ∩ X , then it
satisfies the (ϱ, η)-HEB on XC ∩ X with some ϱ, η > 0, and p(x) satisfies the (ϱp, ηp)-HEB on XC ∩ X with ϱp = ϱθ and
ηp = θη. Given x ∈ XC ∩ X , it holds for any ϵ ≥ 0 that

f0(x) + γp(x)− f0(zϵ(x)) ≥ −ϵγ :=

ℓf

(
ℓfϱp

γηp

) 1
ηp−1

( 1
ηp

− 1), ηp > 1, γ > 0;

0, ηp = 1, γ ≥ ϱpℓf .
(109)

Proof of Lemma D.1. Since vl,τ (x) and p(x) are globally subanalytic on XC ∩X , there exists ϱ, η > 0 that vl,τ (x) satisfies
the (ϱ, η)-HEB, thus p(x) satisfies the (ϱp, ηp)-HEB with ϱp = ϱθ and ηp = θη on XC ∩ X , which yields that for all ϵ ≥ 0,

ϱpp(x) ≥ ∥z0(x)− x∥ηp ≥ ∥zϵ(x)− x∥ηp . (110)
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Since XC is bounded, we have that for all x, x′ ∈ XC , there exists ℓf > 0 such that f0(x) − f0(x
′) ≥ −ℓf∥x − x′∥.

Combined with the above inequality, it holds that

f0(x) + γp(x)− f0(zϵ(x)) ≥
γ

ϱp
∥zϵ(x)− x∥ηp − ℓf∥zϵ(x)− x∥ ≥ inf

ζ∈R+

γ

ϱp
ζηp − ℓfζ︸ ︷︷ ︸

−ϵγ

. (111)

Analyzing −ϵγ separately under ηp > 1 and ηp = 1 proves the result. When ηp > 1, the result is obtained by solving the
optimal ζ through the first-order optimality condition. When ηp = 1, the optimal value is achieved at ζ = 0.

Lemma D.2. Given xγ ∈ XS ⊆ X with p(xγ) = ϵγ , and that xγ is an ϵ-global solution to (PPγ) on XS , then

f0(xγ)− inf
x∈XS∩Xϵγ

f0(x) ≤ ϵ (112)

Proof of Lemma D.2. Since xγ is an ϵ-global solution of (PPγ) on XS , by definition we have that for all x ∈ XS ∩ Xϵγ ,

f0(xγ) + γp(xγ) ≤ f0(x) + γp(x) + ϵ. (113)

Recall p(xγ) = ϵγ , and p(x) ≤ ϵγ since x ∈ XS ∩ Xϵγ . Plugging these into the above inequality yields (112).

Lemma D.3. Let XC ⊆ Rq be a compact subanalytic set with XC ∩ X0 ̸= ∅, and thus XC ∩ Xϵ ̸= ∅ for some ϵ ≥ 0. Let
B(x, r) denote the neighborhood of x with radius r > 0 for some x ∈ XC ∩ X . If there exists x̄ ∈ B(x, r) ∩ X ∩ XC such
that p(x̄) ≤ ϵ, then there exists zϵ(x) ∈ argminz∈Xϵ∩XC

∥z − x∥ such that zϵ(x) ∈ B(x, r) ∩ Xϵ ∩ XC .

Proof of Lemma D.3. As Xϵ ∩ XC for ϵ ≥ 0 is closed and nonempty, there exists zϵ(x) ∈ argminx∈Xϵ∩XC
∥z − x∥. Also

since x̄ ∈ B(x, r) ∩ X , and p(x̄) ≤ ϵ, thus x̄ ∈ B(xγ , r) ∩ Xϵ ∩ XC , then

∥zϵ(x)− x∥ = min
z∈Xϵ∩XC

∥z − x∥ ≤ ∥x̄− x∥ ≤ r (114)

which implies that zϵ(x) ∈ B(x, r), combined with zϵ(x) ∈ Xϵ ∩ XC proves the result.

Lemma D.4. Let XS = X or XS = X ∩ B(x, r). Given xϵb ∈ XS ⊆ X , which is also an (ϵb, ϵ)-global solution to (CP) on
XS . Suppose XS ∩ Xϵ′ ̸= ∅ with ϵ ≥ ϵ′ ≥ 0, and there exist bounded points in XS ∩ Xϵ′ , then for ϵγ specified in (109) in
Lemma D.1, we have

f0(xϵb) + γp(xϵb) ≤ inf
x∈XS

f0(x) + γp(x) + ϵγ + ϵb + γϵ. (115)

Proof of Lemma D.4. By the definition of (ϵb, ϵ)-global solution to (CP) on XS , we have

p(xϵb) ≤ ϵ, and f0(xϵb) ≤ inf
x∈Xϵ∩XS

f0(x) + ϵb. (116)

Therefore,

f0(xϵb) + γp(xϵb) ≤ inf
x∈Xϵ∩XS

f0(x) + ϵb + γϵ. (117)

Recall that XS ∩ Xϵ′ ̸= ∅. Let XC be a compact subanalytic set such that XC ∩ XS ∩ Xϵ′ ̸= ∅, and XC ∩ X ∗
S,φγ

̸= ∅. The
set XC exists because there exist bounded points in XS ∩ Xϵ′ and X ∗

S,φγ
, respectively. For x ∈ XC ∩ X , recall we define

zϵ(x) ∈ argminz∈Xϵ∩XC
∥z − x∥. When XS = X , zϵ(x) ∈ XS ; when XS = X ∩ B(x, r), zϵ(x) ∈ XS by Lemma D.3.

Let x∗
C ∈ argminx∈XC∩XS

φγ(x). Then infx∈Xϵ∩XS
f0(x) can be further bounded by

inf
x∈Xϵ∩XS

f0(x) ≤ inf
x∈Xϵ′∩XC∩XS

f0(x) since Xϵ′ ∩ XC ∩ XS ⊆ Xϵ ∩ XS

≤f0(zϵ′(x
∗
C)) since zϵ′(x

∗
C) ∈ Xϵ′ ∩ XC ∩ XS

≤f0(x
∗
C) + γp(x∗

C) + ϵγ from Lemma D.1
= inf

x∈XS

f0(x) + γp(x) + ϵγ . since XC ∩ X ∗
S,φγ

̸= ∅ (118)
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Plugging (118) into (117) yields

f0(xϵb) + γp(xϵb) ≤ inf
x∈XS

f0(x) + γp(x) + ϵγ + ϵb + γϵ. (119)

The proof is complete.

Proof of Theorem 3.7-2. 1) Given γ > 0, let xγ be a bounded ϵ-global solution of (PPγ) on XS , with XS = X or
XS = B(xγ , r) ∩ X , then for all x ∈ XS ,

f0(xγ) + γp(xγ) ≤ f0(x) + γp(x) + ϵ. (120)

Let x∗ ∈ XS ∩ Xϵ∗ denote a bounded (0, ϵ∗)-global solution of (CP) on XS . Then there exists a compact and subanalytic
set XC such that xγ , x

∗ ∈ XC and XC ∩ Xϵ∗ ̸= ∅. Let zϵ∗(x) ∈ argminz∈Xϵ∗∩XC
∥z − x∥. When 1) XS = X ,

zϵ∗(xγ) ∈ XS ∩ Xϵ∗ ; when 2) XS = B(xγ , r), zϵ∗(xγ) ∈ XS ∩ Xϵ∗ according to Lemma D.3. Then by Lemma D.1, given
γ′ > 0, in both cases we have that

f0(xγ) + γ′p(xγ)− f0(zϵ∗(xγ)) ≥ −ϵγ′ . (121)

Because f0(zϵ∗(xγ)) ≥ f0(x
∗), (121) indicates that f0(xγ) + γ′p(xγ) ≥ f0(x

∗) − ϵγ′ . Plugging x = x∗ in (120), and
combining with the above inequality, we obtain that

f0(xγ) + γp(xγ) ≤f0(x
∗) + γϵ∗ + ϵ since p(x∗) ≤ ϵ∗

≤f0(xγ) + γ′p(xγ) + ϵγ′ + γϵ∗ + ϵ from (121) (122)

which further implies

(γ − γ′)p(xγ) ≤ ϵγ′ + γϵ∗ + ϵ. (123)

Define ϵγ := p(xγ), then xγ ∈ Xϵγ := {x ∈ X | p(xϵγ ) ≤ ϵγ}. The above inequality implies ϵγ ≤ ϵγ′+γϵ∗+ϵ

γ−γ′ . Further,
from Lemma D.2 we have

f0(xγ)− inf
x∈XS∩Xϵγ

f0(x) ≤ ϵ. (124)

Combining (123) and (124) proves that xγ is an (ϵ, ϵγ)-approximate global solution to (CP) on XS with ϵγ ≤ ϵγ′+γϵ∗+ϵ

γ−γ′ .

When ηp > 1, choosing γ′ = γ
2 , γ ≥ 2ℓfδ

− ηp−1

ηp (
ϱp

ηp
)

1
ηp (1 − 1

ηp
)

ηp−1

ηp , and ϵ ≤ ℓfδ
1
ηp (

ϱp

2ηp
)

1
ηp (1 − 1

ηp
)

ηp−1

ηp , we further
have that

ϵγ ≤ ϵγ′ + ϵ+ γϵ∗

γ − γ′ =
(2ℓf

γ

) ηp
ηp−1

(ϱp
ηp

) 1
ηp−1

(1− 1

ηp
) +

2ϵ

γ
+ 2ϵ∗ ≤ δ + 2ϵ∗ (125)

which proves that the ϵ-global solution of (PPγ) on XS with γ ≥ 2ℓfδ
− ηp−1

ηp (
ϱp

ηp
)

1
ηp (1− 1

ηp
)

ηp−1

ηp and ϵ ≤ ℓfδ
1
ηp (

ϱp

2ηp
)

1
ηp (1−

1
ηp
)

ηp−1

ηp , is an (ϵ, δ + 2ϵ∗)-global solution to (CP) on XS .

When ηp = 1, from Lemma D.1, for γ′ ≥ ϱpℓf , ϵγ′ = 0. Choosing γ ≥ ϱpℓf + 1, we have ϵγ ≤ ϵ. Therefore, the ϵ-global
solution of (PPγ) on XS is an (ϵ, ϵ + 2ϵ∗)-global solution to (CP) on XS . The set XS can be X or B(xγ , r) ∩ X , which
corresponds to the global solution on X , or the local solution in the neighborhood of xγ , respectively.

2) Next we prove the converse. Define xϵb to be a bounded (ϵb, ϵ)-global solution to (CP) on XS , and recall Xϵ := {x ∈ X |
p(x) ≤ ϵ}. Then by Lemma D.4, we have

f0(xϵb) + γp(xϵb) ≤ inf
x∈XS

f0(x) + γp(x) + ϵγ + ϵb + γϵ

≤ inf
x∈XS

f0(x) + γp(x) + δ (126)

where the last inequality holds by choosing ϵ ≤ δ
3γ , ϵb ≤ δ

3 , and γ =
ℓfϱp

ηp

(
3ℓf (1− 1

ηp
)

δ

)ηp−1

when ηp > 1, γ = ϱpℓf when
ηp = 1. The set XS can be X or B(xϵb , r) ∩ X , which corresponds to the global solution on X , or the local solution in the
neighborhood of xϵb , respectively. The converse is proved.

31



Efficient First-Order Optimization on the Pareto Set for Multi-Objective Learning under Preference Guidance

Lemma D.5. If xγ ∈ X is an ϵ-stationary solution to (PPγ), and ∥∇f0(xγ)∥ ≤ ℓf , then it is also an ϵγ-stationary solution
to minx∈X p(x) with ϵγ =

ϵ+ℓf
γ . Furthermore, for θ ≥ 1, let cv(xγ) := θ(vl,τ (xγ) + τ lnM)θ−1. Then either one of the

following two conditions holds.
1) cv(xγ) = 0 and xγ is an optimal solution, thus also a stationary solution to minx∈X vl,τ (x);
2) cv(xγ) > 0, and xγ is an ϵ′γ-stationary solution to minx∈X vl,τ (x) with ϵ′γ =

ϵ+ℓf
γcv(xγ)

.

Proof of Lemma D.5. Since xγ ∈ X is an ϵ-stationary solution to (PPγ), for α > 0, we have

1

α
∥xγ − ProjX (xγ − α∇φγ(xγ))∥ ≤ ϵ. (127)

By the definition that φγ(x) = f0(x) + γp(x), we further have that

∥xγ − ProjX (xγ − αγ∇p(xγ))∥
≤∥xγ − ProjX (xγ − α∇φγ(xγ))∥+ ∥ProjX (xγ − α∇φγ(xγ))− ProjX (xγ − αγ∇p(xγ))∥
≤∥xγ − ProjX (xγ − α∇φγ(xγ))∥+ ∥α∇φγ(xγ)− αγ∇p(xγ)∥
=∥xγ − ProjX (xγ − α∇φγ(xγ))∥+ α∥∇f0(xγ)∥. (128)

Dividing both sides by 1
αγ of the above inequality yields

1

αγ
∥xγ − ProjX (xγ − αγ∇p(xγ))∥ ≤ ϵ+ ℓf

γ
(129)

which proves that xγ is an ϵγ-stationary solution to minx∈X p(x) with ϵγ =
ϵ+ℓf
γ . By the definition that p(xγ) =

(vl,τ (xγ) + τ lnM)θ, for θ ≥ 1, we further have

1

αγ
∥xγ − ProjX (xγ − αγ θ(vl,τ (xγ) + τ lnM)θ−1︸ ︷︷ ︸

cv(xγ)

∇vl,τ (xγ))∥ ≤ ϵ+ ℓf
γ

(130)

where cv(xγ) ≥ 0. This implies that either vl,τ (xγ) + τ lnM = 0, or cv(xγ) > 0, and

1

αγcv(xγ)
∥xγ − ProjX (xγ − αγcv(xγ)∇vl,τ (xγ))∥ ≤ ϵ+ ℓf

γcv(xγ)
. (131)

The proof is complete.

Lemma D.6. Suppose Assumption 4 holds. Recall that y∗l,τ (x) := argminy∈X hl,τ (x, y). For l − ℓf,1 > 0, we have

l − ℓf,1
2

∥x− y∗l,τ (x)∥2 ≤ vl,τ (x) + τ lnM ≤
3ℓ2hl,τ ,1

+ 6α−2

2(l − ℓf,1)
∥x− y∗l,τ (x)∥2. (132)

Proof of Lemma D.6. By definition, vl,τ (x) = −hl,τ (x, y
∗
l,τ (x)), and hl,τ (x, x) = τ lnM . Therefore,

vl,τ (x) + τ lnM =− hl,τ (x, y
∗
l,τ (x)) + hl,τ (x, x) ≥

l − ℓf,1
2

∥x− y∗l,τ (x)∥2 (133)

where the last inequality follows from the (l − ℓf,1)-strong convexity of hl,τ (x, ·), thus the quadratic growth. The first
inequality in (132) is proved.

For the second inequality in (132), we have

vl,τ (x) + τ lnM = −hl,τ (x, y
∗
l,τ (x)) + hl,τ (x, x)

(a)

≤ 1

2(l − ℓf,1)α2
∥x− ProjX (x− α∇yhl,τ (x, x))∥2

(b)

≤ 1

2(l − ℓf,1)α2
∥x− ProjX (x− α∇yhl,τ (x, x))− y∗l,τ (x) + ProjX (y∗l,τ (x)− α∇yhl,τ (x, y

∗
l,τ (x)))∥2
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(c)

≤
3ℓ2hl,τ ,1

+ 6α−2

2(l − ℓf,1)
∥x− y∗l,τ (x)∥2 (134)

where (a) follows from the (l − ℓf,1)-strong convexity of hl,τ (x, ·), thus the proximal-PL inequality, (b) follows from
the optimality condition of miny∈X hl,τ (x, y) at y∗l,τ (x), and (c) follows from the ℓhl,τ ,1-smoothness of hl,τ (x, ·), and the
non-expansiveness of projection.

Corollary D.7. Lemma D.6 implies that, for l − ℓf,1 > 0, vl,τ (x) achieves its minimum value if and only if y∗l,τ (x) = x.

Proof of Proposition 3.9. Since xγ is a local solution to (PPγ), it is a stationary solution to (PPγ), thus an ϵ-stationary
solution to minx∈X vl,τ by Lemma D.5.

We then show the ϵ-stationary solution of minx∈X vl,τ is also an ϵ′-optimal solution of minx∈X vl,τ under additional
assumptions of F . By Lemma B.11, the directional derivative of vl,τ , denoted as v′l,τ (x; z − x), can be computed by

v′l,τ (x; z − x) =

M∑
m=1

πm(x, y∗l,τ (x))f
′
m(x; z − x)− l

(
x− y∗l,τ (x)

)⊤
(z − x) ≥ −ϵ∥z − x∥ for all z ∈ X . (135)

Plugging z = y∗l,τ (x) into the above inequality yields

M∑
m=1

πm(x, y∗l,τ (x))f
′
m(x; y∗l,τ (x)− x) + l∥y∗l,τ (x)− x∥2 ≥ −ϵ∥y∗l,τ (x)− x∥. (136)

Furthermore, let P (x) be the indicator function on X , by the optimality condition of hl,τ (x, ·) at y∗l,τ (x), we have

0 ∈
M∑

m=1

πm(x, y∗l,τ (x))∇fm(y∗l,τ (x)) + l
(
y∗l,τ (x)− x

)
+ ∂P (y∗l,τ (x)). (137)

For analysis, we construct an auxiliary function R(y) := λ⊤F (y) + P (y), where λ = [λ1;λ2; . . . ;λM ] ∈ ∆M is a
hyperparameter. Then R(y) is (1, 0)-point quasar convex at y = y∗l,τ (x). By the definition of the subgradient of R(y), and
the (1, 0)-point quasar convexity, for all z ∈ X , we have

〈 M∑
m=1

λm∇fm(y∗l,τ (x)) + ∂P (y∗l,τ (x)), z − y∗l,τ (x)
〉
≤

M∑
m=1

λm

(
fm(z)− fm(y∗l,τ (x))

)
. (138)

Letting λm = πm(x, y∗l,τ (x)) given that x ∈ X is a stationary point of minx∈X vl,τ (x), and plugging y = y∗l,τ (x),
l(x− y∗l,τ (x)) ∈

∑M
m=1 πm(x, y∗l,τ (x))∇yfm(y∗l,τ (x)) + ∂P (y∗l,τ (x)) into the above inequality yield

l⟨x− y∗l,τ (x), z − y∗l,τ (x)⟩ ≤
M∑

m=1

πm(x, y∗l,τ (x))
(
fm(z)− fm(y∗l,τ (x))

)
. (139)

Substituting z = x into the above inequality, then l∥x− y∗l,τ (x)∥2 ≤
∑M

m=1 πm(x, y∗l,τ (x))
(
fm(x)− fm(y∗l,τ (x))

)
, which

combined with (136) yields

M∑
m=1

πm(x, y∗l,τ (x))
(
fm(y∗l,τ (x))− fm(x)

)
− ϵ∥y∗l,τ (x)− x∥ ≤

M∑
m=1

πm(x, y∗l,τ (x))f
′
m(x; y∗l,τ (x)− x)

≤
M∑

m=1

πm(x, y∗l,τ (x))
(
fm(y∗l,τ (x))− fm(x)

)
− µ∥y∗l,τ (x)− x∥2 (140)

where the last inequality holds since fm(x) are (1, µ)-strong point quasar convex for all m ∈ [M ] at x. The above inequality
implies µ∥y∗l,τ (x)− x∥ ≤ ϵ.
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Applying Lemma D.6 and letting α = O(1), we have

vl,τ (x) + τ lnM ≤
3ℓ2hl,τ ,1

+ 6α−2

2(l − ℓf,1)
∥x− y∗l,τ (x)∥2 ≤

3ℓ2hl,τ ,1
+ 6α−2

2(l − ℓf,1)µ2
ϵ2 = O(ϵ2). (141)

Then there exists x̄ ∈ N (xγ , r) that p(x̄) = O(ϵ2θ).

D.3. Proof of Theorem 3.11: the ϵ-stationary solutions relation

We first discuss the stationary condition of (CP) when X = Rq , and the calmness condition that ensures the KKT condition
is a necessary condition. Then we prove Theorem 3.11, the relation of ϵ-stationary solutions to (PPγ) and (CP). Consider a
general constrained problem below

min
x∈Rq

f0(x) s.t. H(x) = 0 (142)

where f0 : Rq → R, and H : Rq → Rdh with dh ≥ 1.

Definition D.8 (KKT condition of (142)). The KKT condition of (142) is

H(x) = 0︸ ︷︷ ︸
feasibility

, ∇f0(x) +∇H(x)w = 0︸ ︷︷ ︸
stationarity

, with w ∈ Rdh . (143)

Correspondingly, the (ϵ′, ϵ)-KKT condition of (142) is

∥∇f0(x) +∇H(x)w∥ ≤ ϵ′, ∥H(x)∥ ≤ ϵ, with w ∈ Rdh . (144)

Definition D.9 (Calmness (Clarke, 1990, Definition 6.4.1)). Let x∗ be the global minimizer of (142). If there exist ϵ, c > 0
such that for any u ∈ Rdh with ∥u∥ ≤ ϵ and any x that ∥x− x∗∥ ≤ ϵ which satisfies H(x) + u = 0, one has

f0(x)− f0(x
∗) + c∥u∥ ≥ 0. (145)

Then the problem (142) is said to be calm with c.

Lemma D.10 ((Ye, 2000, Theorem 3.6)). If the problem (142) is calm at a global solution x∗, then x∗ satisfies the KKT
condition in Definition D.8.

Below is a lemma to show that if the objective is Lipschitz and the constraint satisfies error bound with exponent no greater
than one, then the calmness condition holds. Similar results have been discussed in (Ye, 2000, Proposition 4.2) with exponent
equal to one. This result connects error bound with the calmness condition, and thus the necessity of KKT condition.

Lemma D.11. Let x∗ be a global minimizer of problem (142). For ϵ < 1, consider any u ∈ Rdh and ∥u∥ ≤ ϵ, and any x
that ∥x − x∗∥ ≤ ϵ and H(x) + u = 0. Define xp = ProjX∗

H
(x), where X ∗

H = {x ∈ Rq | H(x) = 0}. If H(x) satisfies
an error bound that ∥H(x)∥ ≥ ϱh∥x− xp∥ηh and f0 is ℓf -Lipschitz for all x ∈ B(x∗, 2ϵ) with ϵ < 1, then the calmness
condition in Definition D.9 for problem (142) holds.

Proof of Lemma D.11. By definition, for x ∈ B(x∗, ϵ) with ϵ ≤ 1,

ϵ ≥ ∥u∥ = ∥H(x)∥ ≥ ϱh∥x− xp∥ηh . (146)

Since x∗ is a global minimizer, and ∥u∥ ≤ ϵ ≤ 1, for ηh ≤ 1,

f0(x)− f0(x
∗) ≥ f0(x)− f0(xp)

(a)

≥ −ℓf∥x− xp∥ ≥ − ℓf
ϱh

∥u∥
1
ηh ≥ − ℓf

ϱh
∥u∥. (147)

where (a) holds because of the ℓf -Lipschitz continuity of f0 on a bounded set that includes x and xp. Therefore, the
calmness condition in Definition D.9 holds with c =

ℓf
ϱh

.

Proposition D.12. Recall that p(x) =
(
vl,τ (x) + τ lnM

)θ
with θ > 0. If vl,τ satisfies the (cv, αv)-KL inequality on Ω

with αv > 1, then p satisfies the (cp, αp)-KL inequality on Ω with αp = θ
θ−1+ 1

αv

> 1, and cp = θ
− θ

θ−1+ 1
αv · c

θ
(θ−1)αv+1
v .
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Proof of Proposition D.12. For x ∈ Ω and that vl,τ (x) + τ lnM > 0, we have

∥∇p(x)∥ =θ(vl,τ (x) + τ lnM)θ−1∥∇vl,τ (x)∥

≥θ(cv)
− 1

αv

(
vl,τ (x) + τ lnM

)θ−1+ 1
αv = θ(cv)

− 1
αv

(
p(x)

) θ−1+ 1
αv

θ . (148)

Rearranging the above inequality proves the result.

Theorem 3.11 requires the assumption of the ℓv,2-smoothness of ∇vl,τ on a bounded set. Below we provide a sufficient
condition, which shows that under additional assumptions of fm,m ∈ [M ], the ℓv,2-smoothness of ∇vl,τ on a bounded set
XC can be justified.

Lemma D.13 (Smoothness of ∇vl,τ ). Suppose Assumption 2 holds, and l + µ > 0. If ∇fm is ℓf,2-smooth for all m ∈ [M ]
on a bounded set XC , and there exists x′ ∈ XC that ∇2fm for all m ∈ [M ] is bounded, then ∇vl,τ is ℓv,2-smooth on XC ,
with ℓv,2 = ℓhxx,2(1 + ℓy∗

l,τ
) + ℓy∗

l,τ ,1
ℓhxy,1 + ℓy∗

l,τ
ℓhxy,2(1 + ℓy∗

l,τ
).

Proof of Lemma D.13. With similar arguments as Lemma E.1, since ∇fm is ℓf,2-smooth for all m ∈ [M ] on a bounded
set XC , and there exists x′ ∈ XC that ∇2fm(x′) for all m ∈ [M ] is bounded, therefore, there exists ℓf,1 > 0 such that for
x ∈ XC , and for all m ∈ [M ], ∥∇2fm(x)∥ ≤ ℓf,1.

Under Assumption 2, and with l + µ > 0, first recall from (5) that ∇vl,τ (x) can be computed by

∇vl,τ (x) = −∇xh(x, y) |y=y∗
l,τ (x)

=

M∑
m=1

πm(x, y)∇fm(x)− l(x− y) |y=y∗
l,τ (x)

. (149)

Because of the twice continuous differentiability of fm for m ∈ [M ], ∇2vl,τ (x) exists and can be computed by

∇2vl,τ (x) =−∇2
xxh(x, y)−∇y∗l,τ (x)∇2

xyh(x, y) |y=y∗
l,τ (x)

. (150)

For simplicity, we simplify y∗l,τ (x) as y∗(x), and hl,τ (x, y) as h(x, y) in the following derivations. Then ∥∇2vl,τ (x) −
∇2vl,τ (x

′)∥ can be bounded by

∥∇2vl,τ (x)−∇2vl,τ (x
′)∥ ≤∥∇2

xxh(x, y
∗(x))−∇2

xxh(x
′, y∗(x′))∥︸ ︷︷ ︸

J1

+ ∥∇y∗(x)−∇y∗(x′)∥∥∇2
xyh(x, y

∗(x))∥︸ ︷︷ ︸
J2

+ ∥∇y∗(x)∥∥∇2
xyh(x, y

∗(x))−∇2
xyh(x

′, y∗(x′))∥︸ ︷︷ ︸
J3

(151)

where J1 can be further bounded by

J1 ≤ ℓhxx,2

(
∥x− x′∥+ ∥y∗(x)− y∗(x′)∥

)
≤ ℓhxx,2(1 + ℓy∗

l,τ
)∥x− x′∥ (152)

with ℓhxx,2 denoting the Lipschitz continuity of ∇2
xxh(x, y) w.r.t. [x; y]. Similarly, with ℓhxy,2 denoting the Lipschitz

continuity of ∇2
xyh(x, y) w.r.t. [x; y], J3 can be bounded by

J3 ≤ ℓy∗
l,τ
ℓhxy,2(1 + ℓy∗

l,τ
)∥x− x′∥. (153)

And J2 can be bounded by

J2 ≤ ℓy∗
l,τ ,1

ℓhxy,1∥x− x′∥. (154)

Therefore,

∥∇2vl,τ (x)−∇2vl,τ (x
′)∥ ≤

(
ℓhxx,2(1 + ℓy∗

l,τ
) + ℓy∗

l,τ ,1
ℓhxy,1 + ℓy∗

l,τ
ℓhxy,2(1 + ℓy∗

l,τ
)
)

︸ ︷︷ ︸
ℓv,2

∥x− x′∥. (155)

The derivation of ℓy∗
l,τ

is discussed in Lemma B.8. We next discuss the derivation for ℓhxy,1, ℓhxx,2, ℓhxy,2 and ℓy∗
l,τ ,1

.
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To compute ℓy∗
l,τ ,1

, from implicit differentiation, ∇y∗l,τ (x) can be computed by

∇y∗l,τ (x) = −∇2
xyh(x, y

∗(x))
[
∇2

yyh(x, y
∗(x))

]−1
. (156)

Then ∥∇y∗l,τ (x)−∇y∗l,τ (x
′)∥ can be bounded by

∥∇y∗l,τ (x)−∇y∗l,τ (x
′)∥ ≤ ∥∇2

xyh(x, y
∗(x))−∇2

xyh(x
′, y∗(x′))∥

∥∥[∇2
yyh(x, y

∗(x))
]−1∥∥

+ ∥∇2
xyh(x

′, y∗(x′))∥∥[∇2
yyh(x, y

∗(x))]−1∥∥[∇2
yyh(x

′, y∗(x′))]−1∥
∥∥∥∇2

yyh(x, y
∗(x))−∇2

yyh(x
′, y∗(x′))

∥∥∥
≤
(
ℓhxy,2(l + µ)−1 + ℓhxy,1(l + µ)−2ℓhyy,2

)
(1 + ℓy∗

l,τ
)︸ ︷︷ ︸

ℓy∗
l,τ

,1

∥x− x′∥. (157)

We then proceed to bound ℓhxy,1
.

∇2
xyh(x, y) =

M∑
m=1

∇yπm(x, y)∇fm(x)⊤ + lIq

=
1

τ
∇F (y)

(
π(x, y)π(x, y)⊤ − diag(π(x, y))

)
∇F (x)⊤ − lIq. (158)

We have that

∥∇2
xyh(x, y)∥ ≤ ℓf + l := ℓhxy,1. (159)

Furthermore, to bound ℓhxy,2, we have

∥∇2
xyh(x, y)−∇2

xyh(x
′, y′)∥ ≤1

τ

(
∥∇F (y)−∇F (y′)∥

∥∥(π(x, y)π(x, y)⊤ − diag(π(x, y))
)
∇F (x)⊤

∥∥
+ ∥∇F (y′)∥∥π(x, y)− π(x′, y′)∥(∥π(x, y)∥+ ∥π(x′, y′)∥+ 1)∥∇F (x)∥

+
∥∥∇F (y′)

(
π(x′, y′)π(x′, y′)⊤ − diag(π(x′, y′))

)∥∥∥∇F (x)−∇F (x′)∥
)

≤ 1

τ

(
2ℓf,1 + 3ℓf ℓπ

)
Mℓf︸ ︷︷ ︸

ℓhxy,2

(
∥x− x′∥+ ∥y − y′∥

)
. (160)

To compute ℓπ , recall that

∇xπ(x, y) =− 1

τ
∇F (x)

(
diag(π(x, y))− π(x, y)π(x, y)⊤

)
, (161)

∇yπ(x, y) =
1

τ
∇F (y)

(
diag(π(x, y))− π(x, y)π(x, y)⊤

)
(162)

from which we have

max{∥∇xπ(x, y)∥, ∥∇yπ(x, y)∥} ≤ 2

τ

√
Mℓf := ℓπ. (163)

Next we bound ℓhxx,2, and ℓhyy,2. The Hessian of h(x, y) can be computed by

∇2
yyh(x, y) =− 1

τ
∇F (y)

(
π(x, y)π(x, y)⊤ − diag(π(x, y))

)
∇F (y)⊤ +

M∑
m=1

πm(x, y)∇2fm(y) + lIq, (164)

∇2
xxh(x, y) =− 1

τ
∇F (x)

(
π(x, y)π(x, y)⊤ − diag(π(x, y))

)
∇F (x)⊤ +

M∑
m=1

πm(x, y)∇2fm(x) + lIq. (165)

Then we have

∥∇2
yyh(x, y)−∇2

yyh(x
′, y′)∥ ≤1

τ

(
∥∇F (y)−∇F (y′)∥

∥∥(π(x, y)π(x, y)⊤ − diag(π(x, y))
)
∇F (y)⊤

∥∥
36



Efficient First-Order Optimization on the Pareto Set for Multi-Objective Learning under Preference Guidance

+ ∥∇F (y′)∥∥π(x, y)− π(x′, y′)∥(∥π(x, y)∥+ ∥π(x′, y′)∥+ 1)∥∇F (y)∥

+
∥∥∇F (y′)

(
π(x′, y′)π(x′, y′)⊤ − diag(π(x′, y′))

)∥∥∥∇F (y)−∇F (y′)∥
)

+ ∥∇2F (y)−∇2F (y′)∥∥π(x, y)∥+ ∥∇2F (y′)∥∥π(x, y)− π(x′, y′)∥

≤ 1

τ

((
2ℓf,1 + 3ℓf ℓπ

)
Mℓf +

√
Mℓf,2 +

√
Mℓf,1ℓπ

)
︸ ︷︷ ︸

ℓhyy,2

(
∥x− x′∥+ ∥y − y′∥

)
. (166)

With similar derivations as the above, we have ℓhxx,2 = ℓhyy,2.

Collecting the results in (155), (157), (159), (160), (163), (166) completes the proof.

Proof of Theorem 3.11. Since xγ is an ϵ-stationary solution to (PPγ), thus

∥∇f0(xγ) + γ∇p(xγ)∥ ≤ ϵ. (167)

By Lemma D.5, it is also an ϵγ-stationary solution to minx∈Rq p(x), and thus

∥∇p(xγ)∥ ≤ ϵγ =
ϵ+ ℓf
γ

. (168)

By Lemma C.14, the KL condition implies that ϱh
(
dist(xγ ,X ∗

p ∩XC)
)ηh ≤ ∥∇p(xγ)∥. And since X ∗

p ∩XC is closed, the
above implies that there exists x∗ ∈ X ∗

p ∩ XC such that

∥xγ − x∗∥ = dist(xγ ,X ∗
p ∩ XC) ≤ ϱ

− 1
ηh

h ∥∇p(xγ)∥
1
ηh = (ϱ−1

h ϵγ)
1
ηh = O(ϵ

1
ηh
γ ). (169)

Taking Taylor expansion of ∇p(x) at x∗ and by the ℓp,2-smoothness of ∇p(x) on XC , we have

∥∇p(xγ)−∇2p(x∗)(xγ − x∗)∥ =∥∇p(xγ)−∇p(x∗)−∇2p(x∗)(xγ − x∗)∥

≤ℓp,2∥xγ − x∗∥2 ≤ ℓp,2(ϱ
−1
h ϵγ)

2
ηh = O(ϵ

2
ηh
γ ). (170)

Plugging the above inequality into (167), we have

∥∇f0(xγ) + γ∇2p(x∗)(xγ − x∗)∥ ≤ ϵ+ γℓp,2(ϱ
−1
h ϵγ)

2
ηh = O(ϵ+ γ

1− 2
ηh ). (171)

Letting w = γ(xγ − x∗), then ∥w∥ = O(γ
1− 1

ηh ) ≤ O(1) is bounded since ηh ≤ 1. We can further bound ∥∇f0(xγ) +
∇2p(xγ)w∥ by

∥∇f0(xγ) +∇2p(xγ)w∥ ≤∥∇f0(xγ) +∇2p(x∗)w∥+ ∥∇2p(xγ)−∇2p(x∗)∥∥w∥
≤∥∇f0(xγ) +∇2p(x∗)w∥+ ℓp,2γ∥xγ − x∗∥2

≤ϵ+ 2γℓp,2(ϱ
−1
h ϵγ)

2
ηh = O(ϵ+ γ

1− 2
ηh ). (172)

Recall that ηh ≤ 1, thus choosing γ = Ω(δ−1), and ϵ ≤ ℓf , we have ϵγ ≤ δ, and ∥∇f0(xγ) +∇2p(xγ)w∥ ≤ ϵ+ δ, which
proves the result. In this case, since we require

1 ≥ ηh =
ηp
αp

=
1

αp − 1
(173)

which implies αp ≥ 2, and thus θ
θ−1+ 1

αv

≥ 2 from Proposition D.12, implying θ < 2.

Remark D.14. Note that, the HEB and KL exponents may not be unique (c.f. Appendix C.2). In such cases, there may
exist 0 < ηp ̸= αp

αp−1 . And the above theorem still requires ηh =
ηp

αp
≤ 1, thus αp ≥ ηp. If we further have that p(x) is

smooth around x∗, then the smoothness implies ηp ≥ 2 ≥ αp, combining which with αp ≥ ηp, implies that we require
αp = ηp = 2. This condition can be relaxed, or the exponent can take a wider range if the local Lipschitz continuity of f0 is
replaced by the Hölder continuity with larger exponent as in (Ye et al., 1997, Definition 2.8). We leave a detailed discussion
to future work.
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E. Proof of convergence of algorithms
In this section, we prove the convergence of the proposed algorithms with a specific instantiation of θ = 1, thus p(x) =
vl,τ (x) + τ lnM . For convenience, we define φfh,γ(x, y) := f0(x)− γhl,τ (x, y).

The details of other oracles including Nesterov’s acceleration and Adam updates are given below.

Nesterov’s acceleration. Define U(w,∆w;αt, t) = ProjX (vt+1 + α̃(vt+1 − vt)), where vt+1 = w − αt∆w and α̃ is the
lookahead coefficient.

Adam updates. Define U(w,∆w;α, t) = ProjX (w − α m̂t√
v̂t+ϵ

), where mt = β1mt−1 + (1 − β1)∆w denotes the
moving average of gradients, vt = β2vt−1 + (1− β2)(∆w2) denotes moving average of squared gradients, m̂t =

mt

1−βt
1

is
bias-corrected first moment, v̂t = vt

1−βt
2

is bias-corrected second moment, with β1, β2 ∈ (0, 1), ϵ is the small error.

In our convergence analysis, we use the PGD algorithm as an oracle.

E.1. Auxiliary lemmas

We first present the auxiliary lemmas to prove the convergence of the algorithms.

Assumption 4 (Smoothness of functions). For all m ∈ {0, . . . ,M}, fm is ℓf,1-smooth on X .

Assumption 5. The sequence {xt} generated by Algorithm 1 is bounded on the trajectory.

The above assumption combined with Lemma E.1, implies that {fm(xt)},m = 0, . . . ,M are ℓf -Lipschitz on the trajectory.

Lemma E.1. Suppose Assumption 4 holds. Given a bounded set XC ⊆ X such that ∥x∥ ≤ ℓx for all x ∈ XC , if there
exists x′ ∈ XC that ∥∇fm(x′)∥ ≤ ℓ̄f , and |fm(x′)| < c̄f for all m = 0, . . . ,M . Then fm(x) is bounded and ℓf -Lipschitz
continuous for all x ∈ XC with ℓf = ℓ̄f + 2ℓf,1ℓx.

Proof of Lemma E.1. We first prove that fm is ℓf -Lipschitz continuous on XC . For all x ∈ XC , it holds that

∥∇fm(x)∥ ≤ ∥∇fm(x′)∥+ ∥∇fm(x)−∇fm(x′)∥ ≤ ℓ̄f + ℓf,1∥x− x′∥ ≤ ℓ̄f + 2ℓf,1ℓx︸ ︷︷ ︸
ℓf

. (174)

Then we can further bound |fm(x)| by

|fm(x)| ≤ |fm(x′)|+ |fm(x)− fm(x′)| ≤ c̄f + ℓf∥x− x′∥ ≤ c̄f + 2ℓf ℓx. (175)

The above holds for all m = 0, . . . ,M , the proof is complete.

Lemma E.2 (Smoothness of hl,τ and vl,τ ). Under the same settings as Lemma E.1, then hl,τ (x, y) is ℓhl,τ ,1-smooth on XC

w.r.t. both x and y with ℓhl,τ ,1 = l+ ℓf,1 + 2e
ℓf ℓx

τ
ℓ2f
τ . And vl,τ (x) is ℓvl,τ ,1-smooth on XC with ℓvl,τ ,1 = ℓhl,τ ,1(1 + ℓy∗

l,τ
).

Proof of Lemma E.2. The gradient of hl,τ (x, y) w.r.t. x can be computed by

∇xhl,τ (x, y) = −
M∑

m=1

πm(x, y)∇fm(x) + l(x− y). (176)

Given x, x′, y ∈ X , we can bound ∥∇xhl,τ (x, y)−∇xhl,τ (x
′, y)∥ by

∥∇xhl,τ (x, y)−∇xhl,τ (x
′, y)∥

≤l∥x− x′∥+
M∑

m=1

πm(x, y)∥∇fm(x)−∇fm(x′)∥+
M∑

m=1

∥∥πm(x, y)− πm(x′, y)
∥∥∥∇fm(x′)∥

≤l∥x− x′∥+ ℓf,1∥x− x′∥+ ℓf

M∑
m=1

∥∥πm(x, y)− πm(x′, y)
∥∥ (177)
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where we bound ∥πm(x, y)− πm(x′, y)
∥∥ by

∥πm(x, y)− πm(x′, y)∥ =

∥∥∥∥∥ e
fm(y)−fm(x)

τ∑M
m=1 e

fm(y)−fm(x)
τ

− e
fm(y)−fm(x′)

τ∑M
m=1 e

fm(y)−fm(x′)
τ

∥∥∥∥∥
≤

∥∥∥∥∥ e
fm(y)−fm(x)

τ∑M
m=1 e

fm(y)−fm(x)
τ

− e
fm(y)−fm(x′)

τ∑M
m=1 e

fm(y)−fm(x)
τ

∥∥∥∥∥+
∥∥∥∥∥ e

fm(y)−fm(x′)
τ∑M

m=1 e
fm(y)−fm(x)

τ

− e
fm(y)−fm(x′)

τ∑M
m=1 e

fm(y)−fm(x′)
τ

∥∥∥∥∥
≤

∥∥∥∥∥ e
fm(y)−fm(x̃)

τ∑M
m=1 e

fm(y)−fm(x)
τ

∥∥∥∥∥ℓfτ ∥x− x′∥+

∥∥∥∥∥ e
fm(y)−fm(x′)

τ

∑M
m=1 e

fm(y)−fm(x̃)
τ(∑M

m=1 e
fm(y)−fm(x)

τ

)(∑M
m=1 e

fm(y)−fm(x′)
τ

)∥∥∥∥∥ℓfτ ∥x− x′∥ (178)

where x̃ is on the line segment of x and x′. Taking
∑M

m=1 of the above inequality yields

M∑
m=1

∥πm(x, y)− πm(x′, y)∥

≤
∑M

m=1 e
fm(y)−fm(x̃)

τ∑M
m=1 e

fm(y)−fm(x)
τ

· ℓf
τ
∥x− x′∥+

∑M
m=1 e

fm(y)−fm(x̃)
τ∑M

m=1 e
fm(y)−fm(x)

τ

· ℓf
τ
∥x− x′∥

≤2e
ℓf ℓx

τ
ℓf
τ
∥x− x′∥ (179)

where the last inequality uses the fact that ∥fm(x̃)− fm(x)∥ ≤ ℓf ℓx. Combining the above arguments yields

∥∇xhl,τ (x, y)−∇xhl,τ (x
′, y)∥ ≤ℓhl,τ ,1∥x− x′∥ (180)

with ℓhl,τ ,1 = l + ℓf,1 + 2e
ℓf ℓx

τ
ℓ2f
τ .

Similarly, given x, y, y′ ∈ X , we can bound ∥∇hl,τ (x, y)−∇hl,τ (x, y
′)∥ by

∥∇xhl,τ (x, y)−∇xhl,τ (x, y
′)∥ ≤ℓhl,τ ,1∥y − y′∥ (181)

∥∇yhl,τ (x, y)−∇yhl,τ (x, y
′)∥ ≤ℓhl,τ ,1∥y − y′∥. (182)

The gradient of vl,τ (x) can be computed by

∇vl,τ (x) =

M∑
m=1

πm(x, y∗l,τ (x))∇fm(x) + l(x− y∗l,τ (x)). (183)

Given x, x′ ∈ X , we can bound ∥∇vl,τ (x)−∇vl,τ (x
′)∥ by

∥∇vl,τ (x)−∇vl,τ (x
′)∥ ≤ ℓhl,τ ,1(∥x− x′∥+ ∥y∗l,τ (x)− y∗l,τ (x

′)∥) ≤ ℓhl,τ ,1(1 + ℓy∗
l,τ
)∥x− x′∥. (184)

The proof is complete.

Lemma E.3 (Smoothness of the penalized function). Suppose Assumptions 4, 5 hold. Then φfh,γ is ℓφfh,γ ,1-smooth w.r.t.
x and y on the trajectory, with ℓφfh,γ ,1 = ℓf,1 + γℓhl,τ ,1.

Proof of Lemma E.3. Given x, x′, y, y′ ∈ X , we can bound the difference ∥∇xφfh,γ(x, y)−∇xφfh,γ(x
′, y)∥ by

∥∇xφfh,γ(x, y)−∇xφfh,γ(x
′, y)∥ ≤∥∇f0(x)−∇f0(x

′)∥+ γ∥∇hl,τ (x, y)−∇hl,τ (x
′, y)∥

≤ℓf,1∥x− x′∥+ γℓhl,τ ,1∥x− x′∥. (185)

Similarly, we can bound the difference ∥∇yφfh,γ(x, y)−∇yφfh,γ(x, y
′)∥ by

∥∇yφfh,γ(x, y)−∇yφfh,γ(x, y
′)∥ ≤γ∥∇hl,τ (x, y)−∇hl,τ (x, y

′)∥ ≤ γℓhl,τ ,1∥y − y′∥. (186)

The proof is complete.
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Lemma E.4 (Contraction of yt,k). Suppose Assumptions 4, 5 hold, and l − ℓf,1 ≥ µhy
> 0. Recall that y∗l,τ (x) :=

argminyhl,τ (x, y). The sequence {yt,k}Kk=1 produced by Algorithm 1 satisfies

∥yt,k+1 − y∗l,τ (xt)∥2 ≤ (1− µhy
βt,k)∥yt,k − y∗l,τ (xt)∥2. (187)

Proof of Lemma E.4. Recall that the update of yt,k in (13a) takes the projected gradient descent (PGD) on hl,τ (x, y). By
Corollary B.4, for l +minm∈[M ] µm ≥ µhy

> 0, the function hl,τ (x, y) is µhy
-strongly convex w.r.t. y.

Leveraging the convergence result of PGD on strongly convex functions, we have

∥yt,k+1 − y∗l,τ (xt)∥2 ≤ (1− µhyβt,k)∥yt,k − y∗l,τ (xt)∥2. (188)

The proof is complete.

Corollary E.5. Suppose Assumptions 4, 5 hold, and l − ℓf,1 ≥ µhy
> 0. Recall that y∗l,τ (x) := argminyhl,τ (x, y). The

sequence {yt,k}Kk=1 produced by Algorithm 1 satisfies

∥yt,K − y∗l,τ (xt)∥2 ≤
K−1∏
k=0

(1− µhy
βt,k)∥yt,0 − y∗l,τ (xt)∥2. (189)

Proof of Corollary E.5. The result directly follows from the update of yt,k in (13a), and by applying Lemma E.4 iteratively
from k = 0, . . . ,K − 1.

E.2. Convergence of the meta algorithm

Theorem E.6 (Convergence of Algorithm 1 with projected gradient descent). Suppose Assumptions 4 and 5 hold. The
sequence {xt, yt}Tt=0 produced by Algorithm 1 with αt = α = Θ(1), βt = β = Θ(1), γt = O(1 + t), Kt = O(1 + t)
satisfies

1

T

T−1∑
t=0

1

α2
t

∥∥∥xt − ProjX
(
xt − αt∇φγt(xt)

)∥∥∥2 = O
( 1

T

)
. (190)

Proof of Theorem E.6. We first prove (190), the convergence of the penalty reformulation (PPγ). Recall that at each
outer-loop iteration, Algorithm 1 does the following update

xt+1 = ProjX
(
xt − αt(∇f0(xt)− γt∇xhl,τ (xt, yt+1))

)
(191)

where yt+1 = yt,K approximates y∗l,τ (xt) with sufficiently large K based on Corollary E.5. Choosing βt,k = βt ≤ 1/µhy

for all k = 0, . . . ,K − 1, it then follows that

∥yt+1 − y∗l,τ (xt)∥2 = ∥yt,K − y∗l,τ (xt)∥2 ≤ (1− µhy
βt)

K∥yt,0 − y∗l,τ (xt)∥2. (192)

Let ℓfh,1,t denote the smoothness constant for f0(x)− γthl,τ (x, y). Define the Lyapunov function Vt to be

Vt := f0(xt)− γthl,τ (xt, yt+1). (193)

Applying the convergence of PGD for general nonconvex smooth objective yields

Vt+1 − Vt ≤ ⟨∇f0(xt)− γt∇hl,τ (xt, yt+1), xt+1 − xt⟩+
ℓfh,1,t

2
∥xt+1 − xt∥2. (194)

By the property of projection, and the update of xt, we further have

⟨∇f0(xt)− γt∇hl,τ (xt, yt+1), xt+1 − xt⟩ ≤ − 1

αt
∥xt+1 − xt∥2 (195)
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Since αt ≤ 1/ℓfh,1,t, plugging the above inequality back into (194) and rearranging yield

Vt+1 − Vt ≤ − 1

2αt
∥xt+1 − xt∥2 (196)

Recall from (191) and (192) that xt+1 is an approximation to ProjX
(
xt − αt∇φγt

(xt)
)
= ProjX

(
xt − αt(∇f0(xt) −

γt∇xhl,τ (xt, y
∗
l,τ (xt)))

)
, since yt+1 is an approximation to y∗l,τ (xt). Therefore, the term

∥∥xt−ProjX
(
xt−αt∇φγt

(xt)
)∥∥2

can be further decomposed as∥∥xt − ProjX
(
xt − αt∇φγt

(xt)
)∥∥2 =

∥∥∥xt − ProjX
(
xt − αt(∇f0(xt)− γt∇xhl,τ (xt, y

∗
l,τ (xt)))

)∥∥∥2
≤2
∥∥∥xt − ProjX

(
xt − αt(∇f0(xt)− γt∇xhl,τ (xt, yt+1))

)∥∥∥2 + 2γ2
t ∥∇xhl,τ (xt, yt+1)−∇xhl,τ (xt, y

∗
l,τ (xt))∥2

≤2∥xt − xt+1∥2 + 2γ2
t ℓ

2
hl,τ ,1

∥yt+1 − y∗l,τ (xt)∥2

≤2∥xt − xt+1∥2 + 2γ2
t ℓ

2
hl,τ ,1

ϵ2y,t (197)

where ϵ2y,t = (1− µhy
βt)

Kt∥yt,0 − y∗l,τ (xt)∥2 .

Plugging (197) into (196) and rearranging, we have∥∥xt − ProjX
(
xt − αt∇φγt

(xt)
)∥∥2 ≤2∥xt − xt+1∥2 + 2γ2

t ℓ
2
hl,τ ,1

ϵ2y,t

≤4αt(Vt − Vt+1) + 2γ2
t ℓ

2
hl,τ ,1

ϵ2y,t. (198)

Taking telescoping sum of the above inequality, and choosing αt = α = Θ(1), βt = β = Θ(1), γt = O(1 + t),
Kt = O(1 + t) prove the result.

F. Implementation details and additional experiments
In this section, we report the additional implementation details and additional experimental results and discussion omitted
from the main text.

Computation. All experiments were conducted on a server with an Intel i9-7920X CPU, and one NVIDIA A5000 GPU.
Some experiments require CPU only.

For all the experiments reported in the main text except for the multi-lingual speech recognition experiment, we exactly
follow the settings from (Mahapatra & Rajan, 2020). For the multi-lingual speech recognition experiment, we follow the
settings from (Chen et al., 2024a). The implementations of the baselines including LS, PMTL, and EPO are from the official
code of the EPO (Mahapatra & Rajan, 2020) and that of FERERO (Chen et al., 2024a) is from its official code with their
default hyperparameters. The results of XWC-MGDA are directly referenced from the paper.

Synthetic data. For the results in both Figure 4 and Figure 6, the model parameter x has dimension q = 20, the number of
objectives is M = 2. The angles between the preference vectors and the horizontal axis are generated between [ 1

20π,
9
20π]

with equal angular distance. The optimization methods are all deterministic in this experiment. We use the default parameters
for all baseline methods. For the FOOPS method, we use hyperparameters θ = 1, l = 1, τ = 0.01. The penalty parameter
γt = min{0.05 + 0.01t, 1.5}. The inner-loop parameters are K = 100, β = 0.1.

Table 7. Summary of hyper-parameters for the synthetic data experiments in Figure 6.

Hyperparameters LS MGDA PMTL EPO FERERO FOOPS (ours)

step size αt 0.1 0.2 0.2 0.1 0.05 0.2
max iterations 150 150 150 100 100 100

In Figure 6, we include additional results from LS and MGDA for comparison. For all preferences and all methods, the
initial model parameter x0 is randomly generated from a Gaussian distribution B(0, 1) for each dimension. In Table 7, we
provide a summary of the hyperparameters for the baselines and our methods for the experiments in Figure 6.
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Figure 6. Converging solutions (blue dots) and optimization trajectories (blue lines) on the objective space of different methods on
synthetic objectives given in (12a). Dashed black arrows represent pre-specified preference vectors. The green dots represent initial
objective values.
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(c) FERERO (A = I)

0.0 0.2 0.4 0.6 0.8 1.0 51

0.0

0.2

0.4

0.6

0.8

1.0

1.2 5 2

Ours output

(d) FOOPS

0.0 0.2 0.4 0.6 0.8 1.0 51

0.0

0.2

0.4

0.6

0.8

1.0

5 2

Initial values

PMTL output

(e) PMTL

0.0 0.2 0.4 0.6 0.8 1.0 51

0.0

0.2

0.4

0.6

0.8

1.0

5 2

EPO Search
output

(f) EPO

0.0 0.2 0.4 0.6 0.8 1.0 51

0.0

0.2

0.4

0.6

0.8

1.0
5 2

FERERO output

(g) FERERO (A = I)
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Figure 7. Extension of Figure 4. Outputs (colored markers) and optimization trajectories (colored lines) of different methods when initial
objectives are near the Pareto front. Different colors represent different preferences. For FERERO, A = I represents choosing the partial
order cone CA = RM

+ therein for vector optimization, which corresponds to Pareto dominance.

Figure 7 is an extension of Figure 4 under the same experiment objectives but with additional results from EPO and by
different initializations. In Figures 7a-7d, the initial model parameters are randomly generated from a uniform distribution
between [−0.3, 0.3] for each dimension. While in Figures 4a-4c and Figures 7e-7h, the initial model parameters are randomly
generated from a uniform distribution between [−0.5,−0.15] or [0.15, 0.5] for each dimension. Table 8 summarizes the
hyperparameters for the experiments in Figure 4. Compared to other baselines, our method is more robust to initializations
and requires the least number of iterations for the hard initialization in Figures 7e-7h.

Table 8. Summary of hyper-parameters for the synthetic data experiments in Figure 7.

Hyperparameters Figures 7a-7d Figures 7e-7h
PMTL EPO FERERO FOOPS PMTL EPO FERERO FOOPS

step size αt 0.25 0.10 0.60 0.20 0.50 0.20 0.60 0.20
max iterations 100 60 10 100 200 120 200 100

Multi-patch image classification. For a fair comparison, we follow the same data splitting and processing procedures
as (Mahapatra & Rajan, 2020). In each of the three datasets, there are 120k samples for training and 20k samples for testing.
There are two tasks on each dataset: 1) classifying the top-left image, and 2) classifying the bottom-right image. For all
methods, we use the SGD optimizer with batch size 256. The step sizes for updating the model parameters of all methods
are 10−3. The number of epochs for all methods are 100. The parameters for other methods are chosen as default. For the
FOOPS method, we use hyperparameters θ = 1, l = 0.6, τ = 0.01. The penalty parameter γt is set initially to 0.1 and
increased by 0.1 after every 10 epochs until it reaches 2. The inner-loop parameters are K = 5, β = 10−3.
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We use the Pymoo 0.6.1 library to compute the hypervolume. The Nadir points for the hypervolume computation are given
in Table 9. For a fair comparison, the Nadir points we use are the same with (Momma et al., 2022; Chen et al., 2024a).

Table 9. Nadir points for the hypervolume computation
Dataset and metrics Nadir points, metrics on objective [1, . . . ,M ]

Multi-MNIST loss [0.500, 0.450]
Multi-Fashion loss [0.840, 0.800]
Multi-F+M loss [0.625, 0.575]
Multi-MNIST accuracy [0.830, 0.848]
Multi-Fashion accuracy [0.680, 0.710]
Multi-F+M accuracy [0.790, 0.785]

Table 10. Hypervolumes ↑
(
×10−2

)
in multi-patch image classification of different methods including PNG and PB-PDO.

Datasets LS PMTL EPO XM PB-PDO PNG FERERO FOOPS

Mt-M loss 1.68 1.41 1.35 1.42 1.89 1.93 1.95± 0.21 2.62± 0.21
Mt-F loss 6.75 5.90 6.02 6.77 7.82 7.79 7.76± 0.18 8.32± 0.37
Mt-F+M loss 3.63 3.03 3.76 3.89 3.77 3.85 3.82± 0.21 4.80± 0.45
Mt-M accuracy 0.19 0.15 0.15 0.16 0.23 0.25 0.25± 0.04 0.33± 0.02
Mt-F accuracy 0.99 0.87 0.87 0.99 1.16 1.15 1.13± 0.07 1.22± 0.07
Mt-F+M accuracy 0.48 0.40 0.50 0.52 0.51 0.56 0.53± 0.04 0.72± 0.06

Ablation studies. In the multi-patch image classification problem, we further conduct ablation studies to test the sensitivity
of hypervolumes (HV) for the proposed FOOPS algorithm under different hyperparameters τ and l. Results are plotted in
Figure 8 below. They show that choosing τ or l to be too large or too small could degrade the performance. Nevertheless,
the performances of FOOPS under suboptimal choice of the hyperparameters are still better than the baselines.

(a) Loss HV vs. l (b) Accuracy HV vs. l (c) Loss HV vs. τ (d) Accuracy HV vs. τ

Figure 8. Ablation studies for multi-patch image classification on l and τ .

Multi-lingual speech recognition. We follow the same experiment settings in (Chen et al., 2024a). We use two datasets,
Librispeech and AISHELL v1. Librispeech is an English speech dataset that consists of 960 hours of labeled audio data. For
our experiments, we use the “train-clean-100” subset of the Librispeech dataset for supervised training, which contains 100
hours of clean training data. Additionally, we use the full 960 hours of data for self-supervised training. AISHELL v1 is a
178-hour Mandarin speech corpus designed for various speech and speaker processing tasks. We use the full AISHELL
v1 dataset for both self-supervised and supervised training. We combine these two datasets for our multi-lingual speech
recognition experiments.

We use the conformer (Gulati et al., 2020) model with 8 conformer blocks as the encoder. Each block contains 512 hidden
units and 8 attention heads. Each attention head has dimension 64. The convolutional kernel size is 31. Two classification
heads are used. They contain two linear layers, one with 1000 output size for English, and another with 5000 output size
for Chinese. The total number of parameters is around 64.5M with 58.4M encoder layer parameters and the rest being the
classification layer parameters.
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The loss functions we use include the Contrastive Predictive Coding (CPC) loss, and the Connectionist Temporal Classifica-
tion (CTC) loss. The CPC loss (Oord et al., 2018) is a self-supervised loss to learn robust representations from unlabeled
speech data. The CPC loss is designed to maximize the probability of a future sample given a contextual representation
generated from the current speech sequence. The CTC loss is defined as the negative log-likelihood of the model parameter
given the input sequence and the label sequence.

For all methods including the baselines, we use the step sizes αt,1 = 5 × 10−4 for training the backbone conformer
parameters and αt,2 = 5× 10−5 for training the classification head parameters.

Comparison of run time and memory cost. In Table 11 we summarize the average run time and number of iterations or
epochs of different methods on different datasets. The results show that FOOPS generally requires shorter run time than
FERERO, but longer run time than LS. Furthermore, we summarize the memory cost in Table 12. It shows slightly higher
memory cost than LS or FERERO on smaller-scale experiments. This is because although FOOPS does not compute M
gradients per-iteration while FERERO does, which saves some memory, FOOPS requires storing the model parameters for
both x and y while FERERO does not, which introduces extra memory cost. We leave it for future work to further reduce
the memory cost and improve the efficiency of the algorithms.

Table 11. Summary of average run time in seconds (s), minutes (m), or hours (h) and number of iterations or epochs of different methods
on different datasets.

Datasets Metrics LS PMTL EPO FERERO FOOPS

Synthetic, Figures 3(a-c) Iterations 100 100 60 10 100
Per-iteration run time 3.50E-4s 7.67E-4s 4.93E-3s 7.50E-4s 7.61E-4s

Total run time 0.035s 0.0767s 0.296s 0.0075s 0.0761s
Synthetic, Figures 3(d-f) Iterations 100 200 80 200 100

Per-iteration run time 3.10E-4s 7.65E-4s 4.93E-3s 7.30E-4s 7.43E-4s
Total run time 0.031s 0.153s 0.394s 0.146s 0.074s

Multi-MNIST/Fashion/F+M Epochs 100 100 100 100 100
Per-epoch run time 3.54s 11.88s 9.66s 7.02s 6.89s

Total run time 5.9m 19.8m 16.1m 11.7m 11.5m
Multi-lingual ASR Finetuning time 4.2 h - - 13.5 h 12.7 h

Table 12. Summary of memory consumption and running time of different methods on different datasets. ”M” is short for ”Megabytes”,
”G” is short for ”Gigabytes”.

Datasets Metrics LS PMTL EPO FERERO FOOPS

Multi-M/F/F+M GPU memory (LeNet) 1356 M 1378 M 1358 M 1380 M 1395 M
GPU memory (ResNet18) 1738 M 2386 M 2060 M 2196 M 2224 M

Multi-lingual ASR GPU memory 38 G - - 40 G 40 G
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