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Cooperative Game in Dynamic Spectrum Access
with Unknown Model and Imperfect Sensing

Keqin Liu and Qing Zhao

Abstract—We consider dynamic spectrum access where dis-
tributed secondary users search for spectrum opportunities
without knowing the primary traffic statistics. In each slot,
a secondary transmitter chooses one channel to sense and
subsequently transmit if the channel is sensed as idle. Sensing
is imperfect, i.e., an idle channel may be sensed as busy and
vice versa. Without centralized control, each secondary user
needs to independently identify the channels that offer the
most opportunities while avoiding collisions with both primary
and other secondary users. We address the problem within a
cooperative game framework, where the objective is to maximize
the throughput of the secondary network under a constraint on
the collision with the primary system. The performance of a
decentralized channel access policy is measured by the system
regret, defined as the expected total performance loss with respect
to the optimal performance in the ideal scenario where the
traffic load of the primary system on each channel is known
to all secondary users and collisions among secondary users
are eliminated through centralized scheduling. By exploring the
rich communication structure of the problem, we show that the
optimal system regret has the same logarithmic order as in the
centralized counterpart with perfect sensing. A decentralized
policy is constructed to achieve the logarithmic order of the
system regret. In a broader context, this work addresses im-
perfect reward observation in decentralized multi-armed bandit
problems.

Index Terms—Dynamic spectrum access, cognitive radio, co-
operative game, distributed learning, imperfect sensing, system
regret, decentralized multi-armed bandit.

I. INTRODUCTION

WE study a distributed learning problem in the context
of dynamic spectrum access (DSA) under a noisy

environment [1]. There are multiple secondary users inde-
pendently searching for idle channels temporarily unused by
the primary system. The traffic load of the primary system
on each channel is unknown to the secondary users. At the
beginning of each time slot, each secondary user chooses one
channel to sense and subsequently transmit if the channel is
sensed as idle. Due to noise and fading, sensing is imperfect:
an idle channel can be sensed as busy and vice versa. As a
consequence, a secondary user may transmit on a busy channel
and causes a collision to the primary system (referred to as
a primary collision). The secondary users are decentralized:
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they make channel access decisions solely based on local
observations without information exchange or centralized con-
trol. A secondary collision happens when multiple secondary
users transmit on the same idle channel. Under both primary
collisions and secondary collisions, all transmissions involved
fail. We address the problem within a cooperative game
framework, where the objective is to maximize the long-term
throughput of the secondary network under a constraint on the
maximum allowable probability of primary collisions.

A. Learning under Competition and from Corrupted Data

In the case of a single secondary user, the above DSA
problem can be formulated as a Multi-Armed Bandit (MAB)
problem pioneered by Lai and Robbins in 1985 within a non-
Bayesian framework [2]. In an MAB problem, a player selects
one out of a given set of arms to play to accrue reward
at each time. Each arm, when played, offers i.i.d. reward
over time with unknown statistics. The player can improve its
selection over time by learning from past reward observations
which are assumed to be perfect. The performance of an
arm selection policy is measured by regret defined as the
total reward loss with respect to the case with known reward
models. The essence of the problem is the well-known tradeoff
between exploitation (i.e., selecting the arm appearing to be
the best based on past reward observations) and exploration
(selecting an arm to learn its reward statistic to minimize
future mistakes). It has been shown by Lai and Robbins in [2]
that the optimal regret has a logarithmic order with time.
An optimal policy was constructed under a general reward
model to achieve the optimal regret1. In [3], Anantharam et
al. extended Lai and Robbins’s results to the case of multiple
plays where the player chooses M arms to play at each
time [3].

Even with imperfect sensing, the single-user DSA problem
can be formulated as an MAB with a proper measure for the
goodness of an arm. Specifically, the goodness of a channel
is determined by how likely the secondary user can catch an
opportunity (i.e., the channel is idle and is correctly detected
as such). Consequently, the reward offered from a channel can
be measured by whether the user successfully transmits in the
channel, which is perfectly observed. The problem thus falls
into the general MAB model that considers perfect reward
observations.

With multiple distributed secondary users, however, im-
perfect sensing significantly complicates the problem. The

1Note that the regret is a finer performance measure than the average
reward. Any sub-linear regret leads to the same maximum average reward
achieved in the case of known reward model.

1536-1276/12$31.00 c© 2012 IEEE

Authorized licensed use limited to: Nanjing University. Downloaded on November 10,2020 at 16:04:03 UTC from IEEE Xplore.  Restrictions apply. 



LIU and ZHAO: COOPERATIVE GAME IN DYNAMIC SPECTRUM ACCESS WITH UNKNOWN MODEL AND IMPERFECT SENSING 1597

main difficulty is that each secondary user cannot distin-
guish between secondary collisions caused by competition
and primary collisions caused by sensing errors. A failed
transmission due to secondary collisions does not reflect the
channel quality. If a secondary user learns the channel quality
from the history of successful transmissions (as in the single-
user case), the best channels may not be correctly identified.
In other words, collisions among secondary users affect not
only the immediate reward but also the learning ability at each
colliding user, which further degrades the system long-term
throughput.

B. Main Results

In this paper, we formulate the multi-user DSA with imper-
fect sensing as a variant of decentralized MAB with multiple
players to take into account the imperfect reward observation.
The performance measure of a decentralized channel access
policy is given by system regret, defined as the expected total
throughput loss with respect to the optimal performance in
the ideal case where the traffic load of the primary system on
each channel is known to all secondary users and collisions
among the secondary users are eliminated through centralized
scheduling. Under the cooperative game framework, the ob-
jective of the secondary users is to minimize the rate that
the system regret grows with time (i.e., maximize the rate
that the network throughput converges to the maximum). We
show that the optimal system regret has the same logarithmic
order as in the classic centralized MAB. Referred to as SLCD
(Synchronized Learning under Corrupted Data), the proposed
decentralized policy achieves the optimal logarithmic order of
the system regret. Under this policy, the network throughput
achieves the same maximum throughput attainable in the ideal
case with known models and perfect scheduling. Furthermore,
the policy ensures fairness among all secondary users, i.e.,
each user achieves the same local throughput at the same rate.

The basic approach in the SLCD policy is to ensure that
learning at each secondary user is carried out using only
reliable information on the channel quality. This information is
conveyed through the detection history of the primary traffic.
The main challenge is that due to imperfect sensing, the
detection outcomes at each secondary transmitter and receiver
may disagree, e.g., a channel may be detected as idle at the
transmitter but busy at the receiver. If both the transmitter
and receiver learn from their own detection outcomes, they
may have different channel selections. Without a dedicated
control channel between each transmitter and receiver, a
natural but nontrivial question is how to achieve synchronized
and efficient channel selection at each transmitter and receiver.
While each transmitter and receiver can exploit idle channels
to exchange control information to coordinate, achieving an
efficient synchronization mechanism is nontrivial. Beyond the
throughput sacrifice due to the control information exchange,
the synchronization requirement also yields a constrained
channel selection and observation sequence. Since the observa-
tion sequence determines the learning efficiency, the question
here is whether the optimal tradeoff between exploitation
and exploration under the unconstrained scenario can still be
achieved. We show that under SLDC, the learning mistakes

can be bounded within the same logarithmic order as in
the unconstrained MAB. Meanwhile, the incurred control
overhead is also bounded at the same order, leading to the
optimal logarithmic system regret.

C. Related Work

This work builds upon our prior work on decentralized
MAB with a perfect observation model [4], where the optimal
system regret was shown to have the same logarithmic order
as in the classic centralized MAB [2], [3]. With imperfect
sensing, however, the multi-user DSA problem is significantly
more complex as detailed in Sec. I-A. The result in this paper
shows that for this class of decentralized MAB with imperfect
observations, the system can still achieve the logarithmic order
of the regret.

Under the assumption of perfect sensing, the multi-user
DSA problem under unknown channel model was studied
in [5]–[7]. In [5], a heuristic distributed policy based on
histogram estimation of the unknown parameters was proposed
to maximize the average reward. The system regret minimiza-
tion was not addressed. In [6], [7], distributed policies that
achieve the optimal logarithmic order of the system regret
were developed based on UCB1 proposed in [8]. Specifically,
a randomized strategy was proposed in [6] to orthogonalize
users into the best channels without pre-agreement. In [7],
UCB1 was extended to targeting at the mth (1 < m < N)
best channel and the distributed polices under both prioritized
and fair access scenarios were proposed.

The above studies on multi-user DSA focus on the co-
operative game framework where secondary users have a
common global objective. In [9]–[12], a non-cooperative game
framework was adopted where secondary users are considered
selfish. In [9], a direct transmission model was considered
where each secondary user transmits on the selected channel
without sensing the primary traffic. Each user solely aims
to maximize its local throughput. It was shown that the
system converges to a Nash equilibrium when each user
adopts the single-user policy proposed in [13]. Specifically,
as time goes, users will be asymptotically orthogonalized to
the M best channels and the system achieves the maximum
long-term throughput without fairness. For the sensing-before-
transmission model considered in this paper, each user can
efficiently identify the best channel and severe collisions on
the channel may happen when users are non-cooperative.
Consequently, both the system and the individual performance
suffer. In this paper, we show that if users are cooperative, the
system can achieve an order-optimal and fair Nash equilibrium
(in terms of regret minimization). In [10]–[12], transmission
strategies for non-cooperative secondary users are analyzed
under known channel interference and noise models, where
the system Nash equilibria are characterized.

In this paper, we focus on a memoryless channel occupancy
model commonly adopted in the literature of classic MAB [2],
[3], [8]. In [14]–[18], a Markovian channel model with un-
known transition probabilities was addressed under the perfect
sensing scenario. Specifically, in [14], a single-user policy was
constructed to achieve a regret with an order arbitrarily close
to logarithmic when channels are governed by stochastically
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identical two-state Markov chains. Under a weak definition
of regret, single-user policies were proposed in [15], [16] to
achieve a logarithmic order of the weak regret. The extension
to the case of multiple users was addressed in [17], [18], where
a distributed policy was constructed to achieve a logarithmic
order of the weak regret. All these studies, however, assume a
perfect observation model. The extension of the results in this
paper to the Markovian model will be addressed in Sec. VI.

II. NETWORK MODEL

Consider a spectrum consisting of N independent but
nonidentical channels and M distributed secondary users. We
consider the nontrivial scenario that the number of users is
less than the number of channels2. This scenario is suitable
for the cognitive radio network since the secondary users
are not restricted to a particular frequency band and can
search opportunities among a large set of channels. Fur-
thermore, we only need to consider the group of secondary
users that can interfere on the same set of channels. Let
S(t) = [S1(t), · · · , SN (t)] ∈ {0, 1}N (t ≥ 1) denote the
system state, where Sn(t) is the state of channel n in slot
t. For simplicity, we assume that Sn(t) evolves as an i.i.d.
Bernoulli process3 on the state space {0 (busy), 1 (idle)} with
unknown mean θn ∈ (0, 1). The unknown mean θn ∈ (0, 1)
represents the unknown traffic load of the primary system on
channel n, and the channel with a higher mean has a lighter
traffic load.

In slot t, a secondary user (say user m (1 ≤ m ≤ M))
chooses a sensing action am(t) ∈ {1, · · · , N} that specifies
the channel (say, channel n) to sense based on its observation
and decision history. Based on the sensed signals, the user
detects the channel state, which can be considered as a binary
hypothesis test:

H0 : Sn(t) = 1 (idle) vs. H1 : Sn(t) = 0 (busy).

The performance of channel state detection is characterized by
the receiver operating characteristics (ROC) which relates the
probability of false alarm ε to the probability of miss detection
δ:

ε
Δ
= Pr{decide H1|H0 is true}, δ

Δ
= Pr{decide H0|H1 is true}.

If the detection outcome is H0, the user accesses the channel
for data transmission. The design should be subject to a
constraint on the probability of accessing a busy channel,
which causes interference to the primary system and also data
loss of the user. Specifically, the probability Pn(t) of collision
caused by the user and perceived by the primary system in any
channel and slot is capped below a predetermined threshold ζ,
i.e.,

Pn(t)
Δ
= Pr(decide H0|Sn(t) = 0) = δ ≤ ζ, ∀ n, t.

2In the case of M ≥ N , there is no longer an issue of learning and
identifying the best channels since all channels will need to be utilized, and
a zero system regret can be easily achieved by letting N users fully occupy
the N channels.

3It is straightforward to extend the results to general i.i.d. processes.

We should set the miss detection probability δ = ζ as
the detector operating point to minimize the false alarm
probability ε. If multiple secondary users decide to trans-
mit over the same channel, they collide and no one can
transmit successfully. In other words, a secondary user can
transmit data successfully if and only if the chosen channel
is idle, detected correctly, and no collision happens. Since
failed transmissions may occur, acknowledgements (ACKs)
are necessary to ensure guaranteed delivery. Specifically, when
a secondary receiver successfully receives a packet over a
channel, it sends an acknowledgement to the transmitter over
the same channel at the end of the slot. Otherwise, the receiver
does nothing, i.e., a NAK is defined as the absence of an
ACK. We assume that acknowledgements are received without
error since acknowledgements are always transmitted over idle
channels without collisions.

The DSA model considered in this paper and the associated
results find applications in more general wireless commu-
nication networks including opportunistic transmission over
fading channels, downlink scheduling in cellular systems, and
resource-constrained jamming and anti-jamming.

III. A DECENTRALIZED MAB FORMULATION

We formulate the DSA problem as a decentralized MAB
with imperfect observations. In a general decentralized MAB,
there are M players independently playing N arms with
unknown reward statistics. At each time, each player selects
one arm to play and accrue certain amount of reward from this
arm. Under a general observation model, the player may not be
able to observe the actual reward offered by the selected arm.
The DSA problem is a special class of decentralized MAB by
considering secondary users as players and sensing a channel
as playing an arm. The imperfect sensing scenario yields the
imperfect observation of the actual channel state (i.e., reward).
A distinctive property of this class of decentralized MAB is
that each user consists of one transmitter and receiver where
they need to choose the same channel for data transmission at
each time.

Under the synchronization constraint on each transmitter
and receiver, we define a local policy πm for user m as
a sequence of functions πm = {πm(t)}t≥1, where πm(t)
maps user m’s local information that is available to both its
transmitter and receiver to the sensing action am(t) in slot t.
The decentralized policy π is thus given by the concatenation
of the local policy for each user: π = [π1, · · · , πM ]. Define
immediate reward Y (t) as the total number of successful
transmissions of the data (instead of the control information
for synchronization) by all users in slot t:

Y (t) = ΣN
n=1I

′
n(t)Sn(t),

whereI′n(t) is the indicator function that equals to 1 if channel
n is accessed by only one user and used for transmitting the
data (instead of the control information), and 0 otherwise.

Let Θ = (θ1, θ2, · · · , θN ) be the unknown parameter set and
σ a permutation such that4 θσ(1) > θσ(2) > · · · > θσ(N). The

4For the simplicity of the presentation, we assume that there is no tie in
channel mean.
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performance measure of a decentralized policy π is defined as
the system regret

Rπ
T (Θ) = TΣM

n=1(1 − ε)θσ(n) − Eπ[Σ
T
t=1Y (t)].

Note that TΣM
n=1(1− ε)θσ(n) is the maximum expected total

reward over T slots under the ideal scenario that the parameter
set Θ = (θ1, · · · , θN) is known and users are centralized (thus
the M best channels are sensed in each slot5).

We point out that the system regret is always growing
with time since users can never perfectly identify the best
channels. Under a cooperative game framework, the objective
of secondary users is to minimize the rate at which RT (Θ)
grows with time T under any parameter set Θ by choosing the
optimal decentralized policy π∗. Note that the system regret is
a finer performance measure than the long-term throughput.
All policies with a sub-linear system regret would achieve
the maximum long-term throughput. However, the difference
in their performance measured by the expected total bits of
transmitted data over a time horizon of length T can be
arbitrarily large as T grows. It is thus of great interest to
characterize the minimum system regret and construct policies
optimal under this finer performance measure.

Next, we show that the minimum system regret has the
same logarithmic order with time as in the classic MAB with
a single user and perfect sensing considered in [2], [3], [8].

Theorem 1: The optimal order of the system regret is
logarithmic with time, i.e., for an optimal decentralized policy
π∗, we have, ∀ Θ,

L(Θ) = lim inf
T→∞

Rπ∗
T (Θ)

logT
≤ lim sup

T→∞

Rπ∗
T (Θ)

logT
= U(Θ) (1)

for some constants L(Θ) and U(Θ) that depend on Θ.

Proof: To prove the lower bound, we consider a genie-
aided system where secondary users are centralized and the
synchronization constraint on each pair of transmitter and
receiver is removed from consideration. Note that the channel
parameters remain unknown to all users in the genie-aided
system. It is easy to see that the problem is equivalent to the
one with a single user that can sense M channels simultane-
ously in each slot. For simplicity, we focus on the latter one. In
each slot, the user obtains two types of observations from each
chosen channel: the detection outcome and the ACK/NAK. In
Lemma 1, we show that the system regret in the genie-aided
system is at least logarithmic with time. The proof is thus
completed by noticing that the minimum system regret in the
problem at hand is lower bounded by the one in the genie
aided system.

Lemma 1: Let R̃π
T (Θ) denote the system regret under a

policy π in the genie-aided system over T slots. If R̃π
T (Θ) =

5Note that the benchmark performance of the ideal centralized case is given
by orthogonalizing secondary users to the M best channels. We point out that
when the false alarm probability is large, allowing multiple users to sense
the same channel may lead to better exploitation of the idle slots. However,
when the false alarm probability is relatively bounded (specifically, ε ≤ 0.5)
or when there are costs associated with secondary collisions (e.g., energy
consumption), orthogonalizing secondary users is desirable.

o(T c) ∀ Θ and ∀ c > 0, then, for any Θ,

lim inf
T→∞

R̃π
T (Θ)

logT
≥ (1− ε)Σn: θn<θσ(M)

θσ(M) − θn

G(θn, θσ(M))
, (2)

where

G(θi, θj) = (εθi + (1 − δ)(1 − θi)) log
εθi + (1 − δ)(1 − θi)

εθj + (1 − δ)(1 − θj)

+δ(1 − θi) log
δ(1 − θi)

δ(1 − θj)
+ (1 − ε)θi log

(1 − ε)θi

(1 − ε)θj

is the K-L distance between two joint distributions of the
detection outcome and the ACK/NAK parameterized by θi
and θj , respectively.
The proof of Lemma 1 follows a similar line to that of
Theorem 3.1 in [3] by combining the detection outcome and
ACK/NAK as a single observation vector of an arm.

For the upper bound, we show that their exists a decen-
tralized policy that achieves logarithmic order of the system
regret. See Sec. IV for details.

IV. AN ORDER-OPTIMAL DECENTRALIZED POLICY

In this section, we establish a decentralized SLCD (Syn-
chronized Learning under Corrupted Data) policy to achieve
the optimal logarithmic order of the system regret while
ensuring the fairness among all secondary users.

A. The General Structure

The general structure of the SLCD policy is based on a Time
Division Fair Sharing (TDFS) of the M best channels among
the M distributed users. The TDFS structure was first pro-
posed in [4] under the scenario of perfect sensing. Due to the
imperfect sensing of the channel state and the synchronization
constraint, extending the TDFS framework to the problem at
hand is nontrivial. Specifically, compared to perfect sensing,
the channel sensing and observation sequence is constrained
by the synchronization requirement and extracting reliable
and sufficient information for efficient learning becomes more
difficult (see Sec. IV-D for details).

Under the TDFS structure, the local policy of each user con-
sists of disjoint rounds of sensing the M channels considered
to be the best. Different users have different offsets in sensing
the sets of the M channels. Consider, for example, user 1 has
offset 0. In each round, the user successively senses the best,
second best, · · · , and the M th best channels based on its local
learning result. The offset in each user’s round-robin schedule
can be predetermined (e.g., based on the user’s ID).

To achieve the optimal order of the system regret, it is cru-
cial that each user efficiently learn the correct ranking of the
M best channels while ensuring the synchronization between
the transmitter and the receiver without significant control
overhead. We first propose a synchronization procedure for
each transmitter and receiver, as given below.

B. Synchronization

Based on the symmetry among users, it is sufficient to
consider one user, say, user 1. We assume that its transmitter
and receiver have a simple initial setup for synchronization,
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Round 1 Round 2 Round 3 Round 4 Round 5

ACKACKACKACK NAKNAKNAKNAK

Sending the new channel rank

Compute the channel rank at the tx
Compute the channel rank at the tx

Compute the channel rank at the tx

new channel rank received

new channel rank received
new channel rank: (2, 3)

new channel rank: (1, 2), same as current one
new channel rank: (1, 3)

Use the received new channel rank for sensing

Sensing action

T

1111 2222 33

Fig. 1. An example of the structure of user 1’s local policy under π∗
F (M = 2, N = 3, tx: transmitter).

e.g., in the first round6, they will both tune to channel 1, 2,
· · · , M (i.e., the initial rank of the M channels considered to
be the best is (1, 2, · · · ,M)). As shown in Fig. 1, if an ACK
is observed, the transmitter will compute a new channel rank
based on all past detection outcomes (a detailed procedure is
given in Sec. IV-C). If the new channel rank is different from
the currently adopted one, the transmitter will keep sending
the receiver the new rank until it is successfully received (i.e.,
a new ACK is observed). Based upon a successful reception
of the new channel rank, the transmitter and the receiver will
adopt the new rank for channel sensing in the next round. We
point out that, in each round, the transmitter only computes a
new channel rank at most once based on the first ACK (if it
exists) received in this round.

C. Efficient Learning of the Best Channels

Next, we consider the learning of the best channels at
the transmitter when computing the channel rank. The basic
approach is to let the transmitter learn from detection out-
comes (instead of ACKs/NAKs) that represent the real channel
quality. Specifically, the mean of detection outcomes from a
channel (say, channel n) is equal to

Pr{Sn(t) = 1} ∗ (1− ε) +Pr{Sn(t) = 0} ∗ δ = (1− ε− δ)θn + δ,

the channel rank ordered by the state mean is thus the same as
that ordered by the mean of detection outcomes7. By treating
the detection outcome as the new state of each channel,
we arrive at a perfect observation model at the transmitter.
It is thus possible to extend the learning procedure for the
perfect observation model addressed in [4] to the problem
at hand. Basically, we let the transmitter first identify the
best channel by applying a single-user policy (say, the Lai-
Robbins policy [2]) for the classic MAB. To identify the kth
(1 ≤ k ≤ M ) best channel, the transmitter removes the
k − 1 channels considered to have a higher rank than others
and applies a parallel Lai-Robbins policy to the remaining
N − k + 1 channels.

6We allow the case that users have different local channel indexes.
7Note that 1− ε− δ is always nonnegative based on the concavity of the

ROC curve [19].

A detailed implementation of the SLCD policy is given in
Fig. 2.

D. Order-Optimality

To show the order-optimality of the SLCD policy, it is
crucial to establish the the efficiency of the learning procedure
given in Sec. IV-C. As mentioned before, compared to the
perfect sensing model, the main difficulty is due to the
synchronization constraint. Specifically, the transmitter cannot
start sensing the channels considered as the best until the re-
ceiver has successfully received the channel rank information.
The delayed channel sensing leads to different observation
path and thus different channel learning result compared to the
scenario of perfect sensing. Since the channel learning result
further determines the future channel sensing sequence, this
cascade effect needs to be carefully addressed. In the following
theorem, we show that under the proposed synchronization
procedure (see Sec. IV-B), the learning mistakes are bounded
by the logarithmic order with time. By further bounding the
control overhead for synchronization, we show that the SLCD
policy achieves the logarithmic order of the system regret.

Theorem 2: Under the decentralized SLCD policy (denoted
by π∗

F ), we have

lim sup
T→∞

R
π∗
F

T (Θ)

logT
= C(Θ) (3)

for some constant C(Θ) that depends on Θ.
Proof: Note that the set of slots in which a reward loss

occurs is a subset of slots in which there exists a user that
does not sense the correct channel or a transmitter that sends
the channel rank information instead of the data. It is thus
sufficient to prove the expected number of slots that a user
does not sense the M best channels in a correct order or its
transmitter sends the channel rank information to the receiver
has at most the logarithmic order with time.

Without loss of generality, consider user 1. We first present
the following key lemma, which shows that the expected
number of times that the transmitter does not compute the
channel rank correctly has at most logarithmic order with time.

Lemma 2: Let τ̄u(T ) denote the number of times that the
channel rank is computed incorrectly at the transmitter, we
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The Decentralized SLCD Policy
Without loss of generality, consider user m.

• Notations and Inputs: For two positive integers k and l, define k � l
Δ
=((k − 1) mod l) + 1, which is an

integer taking values from 1, 2, · · · , l. let θ̃n(t) denote the sample mean of detection outcomes obtained
from channel n at the transmitter and τn,t the number of times that channel n has been sensed up to
(but excluding) slot t. Let I(θ, θ′) = θ log(θ/θ′) + (1 − θ) log((1 − θ)/(1 − θ′)) denote the K-L distance
between the Bernoulli distributions parameterized by θ and θ′, respectively. User m first senses each
channel once in the first N slots to establish initial observations. Starting from slot N + 1, user m’s local
policy consists of disjoint rounds of sensing the M channels considered to be the best. Let Qk denote the
channel sensing order in the kth round. Let Uk denote the number of computations of channel rank at the
transmitter up to (and including) round k. Initially, Q1 = (1, 2, · · · ,M) and U0 = 0. Select a b (0 < b < 1/N).

• In the kth round, user m does the following.

1. Both the transmitter and receiver sense the channels considered to be the M best in turn according to Qk.
If an ACK is observed and this is the first ACK observed in this round, the transmitter sets Uk = Uk−1+1
and computes a new rank of the M channels considered to be the best according to step 2. If the new
channel rank is different from Qk, the transmitter will send the receiver the new rank until the next ACK
is observed. If the receiver received a new channel rank, then both the transmitter and receiver set Qk+1

equal to the new rank; otherwise Qk+1 = Qk.
2. First, the transmitter identifies the best channel. Let t denote the current time. The transmitter chooses

between a leader lt and a round-robin candidate rt = Uk � N , where the leader lt is the channel with
the largest sample mean of detection outcomes among all channels that have been sensed for at least
(Uk−1)b times. The transmitter chooses the leader lt as the best if θ̃lt(t) > θ̃rt(t) and I(θ̃rt(t), θ̃lt(t)) >
log(t−1)/τrt,t; otherwise the transmitter chooses the round-robin candidate rt as the best. To identify the
kth (k > 1) best channel, the transmitter removes the set of k − 1 channels considered to have a higher
rank than others from the channel set and then chooses between a leader and a round-robin candidate
defined within the remaining channels. Specifically, let m(t) denote the number of times that the same
set of k− 1 channels has been removed up to (and including) time t. Among all channels that have been
sensed for at least (m(t)− 1)b times, let lt denote the leader with the largest sample mean of detection
outcomes. Let rt = m(t) � (N − k + 1) be the round-robin candidate where, for simplicity, we have
assumed that the remaining channels are indexed by 1, · · · , N−k+1. The transmitter chooses the leader
lt as the kth best if θ̃lt(t) > θ̃rt(t) and I(θ̃rt(t), θ̃lt(t)) > log(t − 1)/τrt,t; otherwise the user chooses
the round-robin candidate rt as the kth best.

Fig. 2. The decentralized SLCD policy.

have

lim sup
T→∞

τ̄u(T )

logT
= V (Θ) (4)

for some constant V (Θ) that depends on Θ.
Proof: See Appendix A for details.

Now we show that the expected number of rounds that the
user does not sense the M best channels in a correct order has
at most the logarithmic order with time. Note that the expected
number of slots between two successive computations of
the channel rank at the transmitter is uniformly bounded by
some constant. So the expected number of successive rounds
that the user does not sense the M best channels in the
correct order caused by the previous incorrect computation
is uniformly bounded by some constant. Consequently, the
expected number of rounds that the user does not sense the
M best channels in a correct order has the same order as the
incorrect computation of the channel rank at the transmitter,
which has at most the logarithmic order with time based on
Lemma 2.

Next, we bound the number of slots in which the transmitter
sends the receiver the channel rank information instead of the

data. Note that the transmitter only needs to send its receiver
the information if the computed channel rank is different from
the current one. Except that the channel rank is incorrectly
computed, the channel ranks are all the same. By noticing
that the expected number of times that the channel rank
is incorrectly computed has at most the logarithmic order
with time, the expected number of times that the transmitter
needs to send its receiver the channel rank information has
at most the logarithmic order with time. Since each sending
duration till a successful reception is uniformly bounded in
expectation, the expected number of slots that the transmitter
sends its receiver the channel rank information has at most
the logarithmic order with time.

We thus proved Theorem 2.

Based on the symmetry among users’ local policies, the
SLCD policy achieves fairness among all users.

Theorem 3: Define the local regret for user m under the
decentralized SLDC policy (denoted by π∗

F ) as

Rπ∗
F,m(Θ)

Δ
=

1

M
TΣM

n=1(1− ε)θσ(n) − Eπ∗
F
[ΣT

t=1Ym(t)],

where Ym(t) is the immediate reward obtained by user m in
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Fig. 3. The convergence of the regret (M = 2, N = 9, Θ =
[0.1, 0.2, · · · , 0.9], ε = 0.0854, δ = 0.1, (primary) signal to noise
ratio=5db).

slot t. We have, for any m ∈ {1, · · · ,M},

lim sup
T→∞

Rπ∗
F,m(Θ)

logT
=

1

M
lim sup
T→∞

R
π∗
F

T (Θ)

logT
.

Based on Theorem 2 and 3, we arrive at the following
corollary on the Nash Equilibrium of the system.

Corollary 1: Under the decentralized SLDC policy, the
system achieves an order-optimal Nash equilibrium: each user
cannot improve the local regret order by deviating from the
local policy of SLDC.

V. SIMULATION EXAMPLES

In this section, we illustrate the performance of the de-
centralized SLCD policy. We consider the scenario that both
the channel noise and the signal of the primary network are
white Gaussian processes with zero mean but different power
densities. The energy detector is adopted that is optimal under
the Neyman-Pearson criterion [19]. In Fig. 3, we show the
convergence of the system regret as a function of time. In
Fig. 4, we plot the leading constant of the logarithmic order
as a function of N . We observe that, from this example, the
system performs better for smaller detection errors. Further-
more, the system performance is not monotonic as the number
of channels increases. This is due to the tradeoff that as N
increases, users are less likely to collide but learning the M
best channels becomes more difficult.

VI. EXTENSIONS AND DISCUSSIONS

The results in this paper can be directly extended to a more
general sensing model. Specifically, the probabilities (ε, δ) of
sensing errors can vary across channels. It is only required that
the probability of detecting an idle slot preserves the rank
of the channels in terms of achievable throughput given by
{(1− εn)θn}Nn=1, i.e.,

(1 − εn)θn ≥ (1 − εm)θm =⇒ (1 − εn)θn + δn(1− θn)

≥ (1− εm)θm + δm(1− θm).

Consequently, each user can efficiently learn the best channel
(ranked by {(1−εn)θn}Nn=1) based on the detection outcomes
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Fig. 4. The performance of SLCD (T = 5000, M = 2, Θ =
[0.1, 0.2, · · · , N

10
], SNR: (primary) signal to noise ratio).

at the transmitter. For the general case that the error proba-
bilities are also user-dependent, each channel offers different
achievable throughput to different users. Efficient sharing
among users thus becomes a complex issue. A similar problem
with centralized users and perfect sensing was formulated as a
combinatorial multi-armed bandit in [20] in which Auer et al’s
UCB1 policy was extended to achieve a logarithmic regret.
Extending the combinatorial bandit problem to the scenario
of decentralized users and imperfect sensing is still open and
requires a full investigation that is beyond the scope of this
paper.

We further consider the generalization of the memoryless
traffic model to a two-state Markovian model in which the
channel state (busy or idle) transits as a Markov chain. Even
with known system parameters (i.e., transition probabilities)
and a single user, the Markovian model yields a restless multi-
armed bandit problem to which finding the optimal solution
is PSPACE-hard in general [21]. For the case of unknown
parameters, recent studies [15]–[18] have focused on a weaker
objective: learning the arm with the highest stationary reward
mean. The challenges arisen here are twofold. First, each user
needs to observe a sufficient number of contiguous sample
path segments to learn the stationary reward mean. Second,
the user needs to bound the number of arm switchings to min-
imize the transient effect. Under a perfect observation/sensing
model, a distributed policy was proposed in [17], [18] based
on an epoch structure. Specifically, the policy consists of
interleaving exploration and exploitation epochs with carefully
controlled epoch lengths. During an exploration epoch, each
user plays each of the N arms with even time portion to learn
their reward statistics. During an exploitation epoch, each user
plays the M arms locally learned as the best (ranked by the
sample mean calculated from the observations obtained so
far) under either a fair or a prioritized sharing scheme. The
lengths of both the exploration and the exploitation epochs
grow geometrically. The number of arm switchings at each
user is thus at the logarithmic order with time. The tradeoff
between exploration and exploitation at each user is balanced
by choosing the cardinality of the sequence of the exploration
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epochs. Specifically, it was shown that with an O(log T )
cardinality of the exploration epochs, sufficiently accurate
learning of the arm rank at each user can be obtained. For
the case of imperfect sensing considered in this paper, we
can incorporate the epoch structure into the SLCD policy, as
detailed below.

1. Divide time into the exploration and exploitation epochs
as in [18];

2. During the exploration epochs, each transmitter senses all
channels in a round-robin fashion and identifies the M
best arms based on the detection outcomes;

3. In the exploitation epochs, each transmitter first updates
the receiver on the learned channel rank. The transmitter
and the receiver then use the updated channel rank to
choose and sense the best channels according to the
process described in Sec. IV-B.

Based on Theorem 5 in [18] and Theorem 2, it is not difficult
to show that the users can correctly learn and share the
M best arms except for a logarithmic order of time, i.e.,
the system achieves a logarithmic (weak) regret. We point
out that the policy in [17], [18] and the above extended
SLCD require certain knowledge on the system transition
probabilities (although the knowledge can be eliminated by an
arbitrarily small sacrifice of the regret order). Furthermore, all
users need to adopt the same pre-determined exploration and
exploitation epochs. A possible future direction is on relaxing
these system constraints.

VII. CONCLUSION

In this paper, we addressed the dynamic spectrum access
problem with distributed cooperative secondary users and
imperfect spectrum sensing. Under a decentralized MAB
approach, we showed that the optimal system regret has a
logarithmic order with time. A decentralized channel access
policy was proposed to achieve the logarithmic system regret
and thus leads to a fast convergence to the same maximum
throughput offered by the ideal scenario of known channel
model and centralized users.

APPENDIX A. PROOF OF LEMMA 2

We prove by induction on identifying the M best channels.
Specifically, it is sufficient to show that, given that the (i− 1)
best channels are correctly identified, the expected number of
times that the ith best channel is not correctly identified has
at most logarithmic order with time for all 1 ≤ i ≤ M .

Let K denote the number of total computations of the
channel rank over the horizon of T slots. Let D(K) denote
the set of computations at which the (i − 1) best channels
are correctly identified up to the Kth computation. Define
function f(x)

Δ
=(1 − ε − δ)x + δ. Consider channel n with

θn < θσ(i). For any α ∈ (0, f(θσ(i)) − f(θσ(i+1))), let
N1(K) denote the number of computations in D(K) at which
channel n is selected as the ith best when lt = σ(i) and
|θ̃lt(t) − f(θlt(t))| ≤ α (t is the computation time), N2(K)
the number of computations in D(K) at which channel n
is selected as the ith best when lt = σ(i) and |θ̃lt(t) −
f(θlt(t))| > α, and N3(K) the number of computations in

D(K) when lt �= σ(i). It is sufficient to show that E[N1(K)],
E[N2(K)], and E[N3(K)] are all at most in the order of logT .

Let |A| denote the cardinality of set A. Consider first
E[N1(T )]. We have

E[N1(k)] = O(E[|{1 ≤ k ≤ K : k ∈ {D(K)}, θlt = θσ(i),

|θ̃lt(t) − f(θlt(t))| ≤ α, and channel n is sensed}|])
= O(E[|{1 ≤ j ≤ T − 1 : θ̃n (j samples) ≥ f(θσ(i)) − α

or I(θ̃n (j samples), f(θσ(i)) − α) ≤ log(T − 1)/j}|])
= O(log T ), (5)

where the first equality is due to the fact that the probability
that each computed channel rank will be executed for channel
sensing is lower bounded by some constant non-zero proba-
bility, the second equality is due to the structure of the local
policy of π∗

F , and the third equality follows the property of
Bernoulli distributions established in [2].

Consider E[N2(K)]. Since the number of observations
obtained from lt at the sth (∀ 1 ≤ s ≤ T ) computation is
at least (s− 1)b, we have that, ∀ 1 ≤ s ≤ T ,

Pr{at the sth computation, θlt = θσ(i), |θ̃lt(t) − f(θlt(t))| > α}
≤ Pr{ sup

j≥b(s−1)

|θ̃lt (j samples) − f(θlt(t))| > α}

= Σ∞
i=0b

io(s−1)

= o(s−1), (6)

where the first equality is due to the property of Bernoulli
distributions established in [2].

We thus have,

E[N2(K)] = E(|{1 ≤ k ≤ K : k ∈ D(K), θlt = θσ(i),

|θ̃lt(t) − f(θlt (t))| > α}|)
≤ ΣT

s=1 Pr{at the sth computation,

θlt = θσ(i), |θ̃lt(t) − f(θlt (t))| > α}
= o(log T ). (7)

Next, we show that E[N3(K)] = o(log T ).
Choose 0 < α1 < (f(θσ(i)) − f(θσ(i+1)))/2 and c > (1−

Nb)−1. For r = 0, 1, · · · , define the following events.

Ar
Δ
= ∩i≤n≤N{ max

δcr−1≤s
|θ̃σ(n) (s samples) − f(θσ(n))| ≤ α1},

Br
Δ
= {θ̃σ(i) (j samples) ≥ f(θσ(i))− α1

or I(θ̃σ(i) (j samples), f(θσ(i))− α1) ≤ log(sm − 1)/j

for all 1 ≤ j ≤ bm, cr−1 ≤ m ≤ cr+1, and sm > m}.

By (6), we have Pr(Ār) = o(c−r). Consider the following
event:

Cr
Δ
= {θ̃σ(i) (j samples) ≥ f(θσ(i)) − α1

or I(θ̃σ(i) (j samples), f(θσ(i)) − α1) ≤ log(m)/j

for all 1 ≤ j ≤ bm, cr−1 ≤ m ≤ cr+1}.

We have that Br ⊃ Cr. From Lemma 1−(i) in [2], Pr(C̄r) =
o(c−r). We thus have Pr(B̄r) = o(c−r).

Consider the sth computation where cr−1 ≤ s− 1 < cr+1.
When the round-robin candidate rt = σ(i), we show that on
the event Ar ∩Br, σ(i) must be identified as the ith best. It
is sufficient to focus on the nontrivial case that θlt < θσ(i).
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Since τlt,t ≥ (s−1)b, on Ar, we have θ̃lt(t) < f(θσ(i))−α1.
We also have, on Ar ∩Br,

θ̃σ(i)(t) ≥ f(θσ(i))− α1

or I(θ̃σ(i)(t), f(θσ(i))− α1) ≤ log(t − 1)/τσ(i),t.

Channel σ(i) is thus identified as the ith best on Ar∩Br . Since
(1− c−1)/N > b, for any cr ≤ s− 1 ≤ cr+1, there exists an
r0 such that on Ar ∩Br, τσ(i),t ≥ (1/N)(s− cr−1 − 2N) >
bs for all r > r0. It thus follows that on Ar ∩ Br, for any
cr ≤ s − 1 ≤ cr+1, we have τσ(i),t > (s − 1)b, and σ(i) is
thus the leader. We have, for all r > r0,

Pr(at the sth computation, cr−1 ≤ s− 1 < cr+1 , lt �= σ(i))

≤ Pr(Ār) + Pr(B̄r) = o(c−r).

Therefore,

E[N3(K)] = E[|{1 ≤ k ≤ K : k ∈ D(K), lt 	= σ(i)}|]
≤ ΣT

s=1 Pr(at the sth computation, lt 	= σ(i))

≤ 1 + Σ
�logc T�
r=0 Σcr≤s−1≤cr+1

Pr(at the sth computation, lt 	= σ(i))

= 1 + Σ
�logc T�
r=0 o(1)

= o(log T ). (8)

From (5), (7), (8), we arrive at Lemma 2.
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