
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TSLM: TREE-STRUCTURED LANGUAGE MODELING
FOR DIVERGENT THINKING

Anonymous authors
Paper under double-blind review

ABSTRACT

Current language models generate solutions through sequential reasoning, limit-
ing their ability to systematically explore multiple solution paths. We introduce
Tree-Structured Language Modeling (TSLM), which teaches language models to
generate complete search trees within a single generation process using special
tokens to encode branching structure. TSLM serializes tree exploration into linear
sequences, enabling standard transformer training on tree-structured reasoning
traces that capture both successful and failed solution attempts. Across structured
planning (Game of 24, Gridworld) and open-ended reasoning tasks (ProntoQA,
GSM8K), TSLM achieves superior performance: 100% accuracy on Game of 24 vs.
17% for sequential baselines, and robust extrapolation to 20×20 grids (76.5%) com-
pared to Tree-of-Thought’s collapse (26%). Remarkably, TSLM demonstrates 14×
parameter efficiency, with a 0.5B model (68% scaling performance) outperforming
7B sequential baselines (19-26%). TSLM also exhibits emergent capabilities in-
cluding unsolvable problem detection and rapid adaptation with minimal training
data. These results challenge the assumption that reinforcement learning is nec-
essary for robust reasoning, demonstrating that supervised learning on complete
tree-structured traces provides an efficient alternative for developing systematic
exploration capabilities in language models.

1 INTRODUCTION

(a) Sequential thinking:
A purely sequential ap-
proach that traverses one
deterministic path.

(b) Tree-structured think-
ing: A branching explo-
ration that expands multi-
ple possibilities simultane-
ously.

Figure 1: Sequential vs. Tree-Structured Reason-
ing. (a) Sequential approaches commit to single paths,
limiting exploration of alternatives. (b) Tree-structured
approaches systematically explore multiple possibilities,
enabling recovery from mistakes and comprehensive
solution space coverage. TSLM bridges this gap by
teaching language models to generate tree-structured
explorations natively.

Complex reasoning often requires exploring
multiple solution paths before converging on
an answer. Consider solving the Game of 24
with numbers [8, 4, 3, 6]: a systematic ap-
proach would explore (8 + 4)× (6÷ 3) = 24,
(8− 4)× 6÷ 3 = 4, and other combinations si-
multaneously, rather than committing to a single
path early. However, current language models
generate solutions sequentially, making it dif-
ficult to systematically explore alternatives or
recover from early mistakes.

Recent reasoning models like o1 OpenAI (2024)
and DeepSeek-R1 DeepSeek-AI et al. (2025)
have shown impressive capabilities through ex-
tended reasoning traces, but still fundamentally
operate as sequential generators. While they
may internally consider multiple options, they
cannot explicitly represent parallel exploration
within their generation process. External meth-
ods like Tree-of-Thought Yao et al. (2023) ad-
dress this through post-hoc search, but require
multiple independent model calls and external
orchestration.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

To address these limitations, we introduce Tree-
Structured Language Modeling (TSLM), which directly embeds systematic exploration into language
generation. Rather than forcing tree-structured reasoning into sequential format or applying search
externally, TSLM teaches models to natively generate complete search trees. Using special tokens
to encode branching structure ([SEP1] for viable paths, [SEP2] for dead ends, [SEP3] for step
completion), TSLM serializes tree exploration into trainable sequences while preserving the parallel
exploration capability.

This approach enables models to learn the complete reasoning process—including both successful
paths and failed attempts—leading to more robust problem-solving capabilities. Our experimental
results demonstrate that this internalized search strategy not only outperforms sequential baselines
but also exhibits remarkable parameter efficiency and emergent capabilities that arise naturally from
learning complete exploration patterns rather than just final answers.

1.1 OUR CONTRIBUTIONS

This paper makes the following contributions:

• We introduce Tree-Structured Language Modeling (TSLM), a token-based serialization
framework that enables standard transformers to learn tree-structured reasoning through
supervised learning on complete search traces

• We demonstrate consistent performance gains across diverse tasks: 100% vs. 17% on
Game of 24, robust extrapolation to larger Gridworld environments (76.5% vs. 26% for
Tree-of-Thought), and competitive performance on open-ended reasoning

• We reveal remarkable parameter efficiency, showing that a 0.5B TSLM model (68% scaling
performance) outperforms 7B sequential and RL baselines (19-26%), representing a 14×
parameter efficiency advantage

• We uncover emergent capabilities including systematic identification of unsolvable problems,
rapid adaptation with minimal training data (95% accuracy after 1.5K samples), and robust
extrapolation beyond training complexity

• We provide detailed analysis of inference-time scaling dynamics, showing TSLM’s internal-
ized search procedures generalize better than external search algorithms when complexity
exceeds training boundaries

Our findings challenge the prevailing assumption that reinforcement learning is necessary for de-
veloping robust reasoning capabilities in language models. Instead, we demonstrate that properly
structured supervised learning of tree-formatted reasoning traces may provide a more direct and
efficient path toward enhanced reasoning and planning. We provide detailed answers to common
questions in Appendix §A.

2 BACKGROUND

Contemporary language models generate tokens sequentially, modeling p(y | x) =
∏|y|

t=1 p(yt |
x, y<t) Brown et al. (2020). For problems requiring exploration of multiple solution paths, this
sequential approach has limitations: (1) linear commitment to single paths, (2) error propagation,
(3) redundant computation when multiple solutions are needed, and (4) inability to systematically
explore alternatives in parallel.

Current multi-path reasoning approaches rely on post hoc sampling methods. Tree-of-Thoughts Yao
et al. (2023) samples multiple candidates at each step using external search algorithms, but faces
exponential computational costs. Recent autoregressive models like o1 OpenAI (2024) generate
reasoning procedures in single sequences, but remain constrained by linear generation and may
produce redundant information Chen et al. (2025). We provide a more extensive related works in
Appendix §B.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

3 TREE-STRUCTURED LANGUAGE MODELING (TSLM)

We introduce Tree-Structured Language Modeling (TSLM) as a framework to natively incorporate
divergent exploration for natural language generation. TSLM differs from standard sequential
language modeling by generating multiple possible next actions or statements and linking them into a
coherent tree structure.

3.1 MODELING MULTIPLE NEXT ACTIONS

Let s be the current state or partial solution. In a sequential language model, we predict a single next
action a from s and transition to s′ = T (s, a). By contrast, in TSLM, we represent multiple possible
successors:

πθ(s) = {T (s, a1), · · · , T (s, ak)},
where each ai denotes a distinct branch and k is the branching factor. TSLM learns to expand s into
these k successors within a single forward pass, retaining the relationships among them rather than
generating them independently.

3.2 ENCODING AND DECODING WITH TREE STRUCTURE

To enable standard transformer architectures to learn tree-structured reasoning, we develop a serial-
ization scheme that encodes complete search trees into linear sequences. This approach allows us to
train language models on tree data while preserving the branching structure.

Token-Based Tree Serialization. We introduce special tokens to encode tree structure:

• [SEP1]: Indicates a viable action that can be further expanded
• [SEP2]: Indicates a non-viable action (dead end)
• [SEP3]: Marks the end of all actions at the current step
• [BOS] and [EOS]: Mark sequence boundaries

This serialization captures both successful paths and unsuccessful explorations, teaching the model
the complete search process rather than just final answers. A detailed worked example showing the
complete serialization format is provided in Appendix §C.

Training Procedure. During training, we apply standard language modeling loss to the entire
serialized sequence:

L = −
T∑

t=1

log p(yt|y<t, x) (1)

where yt includes both reasoning content and structural tokens. Crucially, this trains the model to:

1. Generate multiple actions at each decision point
2. Assign appropriate viability markers ([SEP1] vs [SEP2])
3. Structure the exploration systematically

Inference Procedure. During inference, TSLM reconstructs the tree structure:

1. Generate the next reasoning step with multiple candidate actions
2. Parse structural tokens to identify viable branches ([SEP1])
3. Maintain a queue of unexplored viable states
4. Recursively expand each viable state until finding a solution or exhausting options

This approach enables systematic exploration while maintaining computational efficiency through
shared computation of common prefixes. Unlike Tree-of-Thought which requires multiple inde-
pendent forward passes, TSLM generates the complete exploration strategy in a single coherent
process.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2: TSLM (Tree-Structured Language Model) is a language model designed for hierarchical
exploration in sequence generation tasks. Beginning with an initial state (e.g., “A”) and progressing
toward a goal state (e.g., “I”), TSLM constructs a tree structure where nodes represent states and
branches signify possible paths. During training, the model serializes the tree into linear sequences
using special tokens to separate branches and mark the start/end of a sequence, allowing it to learn
structured expansions effectively. During inference, TSLM generates multiple branching actions
to explore diverse sequences (e.g., expanding from “C” to “G” and “H”). These branches are
independently expanded in parallel using a stitching process, enabling broad exploration toward the
goal while efficiently pruning unwanted paths.

3.3 TRAINING OBJECTIVES AND COMPUTATIONAL CONSIDERATIONS

TSLM training differs from standard sequence modeling in several key aspects that enable effective
tree structure learning.

Tree-Aware Loss Function. While we apply standard language modeling loss (Equation 2), the
training targets include complete tree structures rather than single solution paths. For a tree Γ(t) with
N nodes, each node si contributes to the loss:

L = − 1

N

∑
si∈Γ(t)

|ysi
|∑

t=1

log p(ysi,t|ysi,<t, x) (2)

where ysi is the token sequence for node si. This ensures the model learns both successful and
unsuccessful exploration patterns.

Structural Consistency Training. Beyond token prediction, TSLM must learn to generate struc-
turally valid trees. We achieve this through:

• Marker consistency: Training on diverse tree structures teaches proper [SEP1]/[SEP2]
usage

• Branching patterns: Models learn appropriate branching factors for different problem
types

• Termination conditions: Proper [SEP3] placement indicates complete step exploration

Computational Efficiency. TSLM training requires O(N ·L) computation where N is the average
number of nodes per tree and L is the average sequence length per node. While this is more expensive
than training on single paths (O(L)), it provides richer supervision that leads to better generalization
with fewer training examples.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4 SEARCH TREE SUPERVISION

4.1 TRAINING ON STRUCTURED TASKS

For structured tasks with predefined search trees, we can directly train TSLM to learn and reproduce
the tree structure. Formally, let t ∈ T be a task with a solution of a finite depth, T (s, a) be a transition
function that maps state-action pairs to new states, and A(s) be a finite action space that defines valid
actions at state s. Since these components are explicitly defined, we can generate the complete search
tree and employ TSLM to predict the branching structure (T (s, a) | a ∈ A(s)) at each state in the
search tree. By directly imitating the predefined tree expansions, TSLM guides the model to faithfully
reproduce structured exploration patterns. Examples include board games and planning problems
with well-defined rules.

4.2 SEARCH TREE SUPERVISION FOR OPEN-ENDED REASONING TASKS

While structured tasks have predefined search trees that TSLM can directly learn from, most real-
world tasks lack explicit tree structures, providing only correct answers or gold trajectories. We
introduce a bootstrapping method to construct synthetic training trees by combining model-generated
explorations with known solutions.

For each training instance, we employ a supervision language model to generate candidate actions
via Tree-of-Thoughts sampling Yao et al. (2023). The process involves:

1. Sampling a set of candidate actions at each state using beam search

2. Building a tree structure by propagating these actions forward

3. Incorporating known gold trajectories as high-priority branches

4. Ordering remaining branches using a reward function R(s, a)

5. Deduplicating redundant paths while preserving the tree structure

Algorithm 1 details this procedure. Our approach ensures each training tree contains at least one valid
solution while exploring diverse alternatives. The reward-based ordering helps prioritize promising
actions, while deduplication prevents redundant search. We adopt the original RAPHao et al. (2023)
reward function to refine exploration by prioritizing promising branches.

5 EXPERIMENTAL RESULTS

5.1 BASELINES FOR COMPARISON

Baseline Model Architecture We compare TSLM to the following baselines:

• Sequence Cloning (SC): A standard sequential modeling that clones a single linear sequence
of gold Chain-of-Thought (language modeling similar to GPT-3 (Brown et al., 2020) or
Llama 3 (Touvron et al., 2023)).

• Procedure Cloning (PC): A sequential modeling that clones Chain-of-Thought reasonings
of the entire search trace in a single linear sequence (o1-like reasoning models, trained with
systematic supervision(Kim et al., 2024; Yang et al., 2022)).

• GRPO: A reinforcement learning approach to incentivize reasoning trace during post-
training (o1-like reasoning models, trained with GRPO (Shao et al., 2024) objectives)

• Tree-of-Thought (ToT): Scaling the number of inference of SC model during test-time using
external search algorithms (Yao et al., 2023) with beam search across multiple reasoning
paths.

We test models using greedy decoding for sequential methods. For TSLM inference, we explore
different tree traversal and solution selection strategies. Unless otherwise specified, we use Breadth-
First Search (BFS) as the default algorithm to systematically explore the generated tree structure until
finding a successful solution. (We analyze implications of BFS versus alternative search strategies

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 Guided Search Tree Bootstrapping

Input: Task T , transition T , reward R, branch factor k, supervision model πθ

Data = []
for t ∈ T do

Initialize queue = [s].
Gold trajectory s0 = s, s1, . . . , sn = g
while g /∈ queue do
tmp = queue.pop(0)
for i = 1 to k do
tmpqueue = []
if i = 1 and tmp ∈ {s0, . . . , sn} then
ai = a∗(tmp) {Add gold action}
tmpqueue.add(T (tmp, ai))

else
ai ∼ πθ(tmp)
if ai /∈ {a1, . . . , ai−1} then
tmpqueue.add(T (tmp, ai))
{Deduplication}

end if
end if

end for
tmpqueue = σR(tmpqueue){Sort by reward}
queue+ = tmpqueue

end while
Data.append(queue)

end for

Task SC PC GRPO ToT TSLM
§H.2 Game of 24 17.0% 47.0% 15.0% 17.0% 100%

Gridworld (10×10) 78.2% 99.7% 24.0% 95.0% 100%
Gridworld (20×20) 19.0% 26.5% 6.0% 26.0% 76.5%

§H.3 ProntoQA 99.7% 97.5% 99.8% 100% 100%
GSM8K 55.8% 55.9% 60.8% 85.0% 61.6%

Table 1: Success rates across different tasks and methods. The Gridworld results show both in-domain
(10×10) and scaling (20×20) performance, highlighting ToT’s dramatic degradation when complexity
scales beyond training boundaries.

such as Depth-First Search (DFS) in Appendix §G.2.) For each expansion during the inference, we
select the first k = 5 actions generated and deduplicate them with exact matching.

To evaluate Tree-Structured Language Modeling (TSLM), we conduct experiments on both structured
and unstructured tasks. Our experiments use Llama-3-8B Grattafiori et al. (2024) as base experiments,
comparing TSLM against sequential language modeling baselines. Also, We aim to compare
architectural differences rather than scaling effects, using modest training data (less than 10K
instances per task) with supervised fine-tuning. We have two task scenarios: Structured Planning
Tasks, which are tasks with predefined search trees, while Open-ended Reasoning Tasks are tasks
with undefined solution spaces. Structured Planning Tasks include Game of 24 and Textualized
Gridworld, while Open-ended Reasoning Tasks include ProntoQA and GSM8K. Refer to Appendix
§H for more details regarding each task and supervision examples.

5.2 BASE RESULTS

Table 1 summarizes our experimental findings across all tasks, revealing key insights about different
reasoning approaches. TSLM consistently outperforms sequential models, achieving perfect accuracy
on structured tasks. Most notably, the Gridworld scaling results reveal a striking limitation of Tree-of-

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Thought: while ToT achieves excellent in-domain performance (95.0% on 10×10 grids), it suffers
catastrophic degradation when complexity scales (dropping to 26.0% on 20×20 grids).

This ToT scaling failure is particularly surprising given its strong in-domain performance and
sophisticated external search mechanisms. In contrast, TSLM maintains robust performance across the
complexity boundary (100% → 76.5%), demonstrating that internalized search procedures generalize
better than external search algorithms. For open-ended tasks, ToT shows strong performance on
GSM8K (85.0%) but this advantage disappears when systematic exploration is needed, as evidenced
by Game of 24 results where ToT performs no better than basic sequential methods (17.0%).

5.3 PARAMETER EFFICIENCY AND RAPID ADAPTATION

We evaluate TSLM’s efficiency along two critical dimensions: parameter scaling and learning speed.
These analyses reveal remarkable efficiency characteristics that distinguish TSLM from conventional
approaches.

Parameter Efficiency Analysis. TSLM demonstrates remarkable parameter efficiency, with
a 0.5B model achieving 68% scaling performance while 7B baseline models achieve only 19-
26%—representing a 14× parameter efficiency advantage. The scaling curve for TSLM is notably flat,
suggesting systematic exploration supervision captures algorithmic competencies largely independent
of parameter count. Detailed analysis across the Qwen 2.5 model family is provided in Appendix §F.

Rapid Adaptation Capability. TSLM also demonstrates superior learning efficiency on open-
domain tasks. As shown in Figure 3, TSLM achieves rapid convergence on ProntoQA, reaching
77.3% and 95.1% accuracy after just 750 and 1500 training samples respectively. Meanwhile, SC and
PC require significantly more data to reach comparable performance. Notably, GRPO shows poor
initial performance (slightly worse than SFT at the start) before eventually reaching 100% accuracy,
highlighting the cold-start problems inherent in RL-based approaches.

6 KEY ANALYSIS

Beyond core performance gains, TSLM exhibits several remarkable capabilities that distinguish it
from traditional approaches.

6.1 IDENTIFYING UNSOLVABLE CASES

One challenging aspect for language models is avoiding hallucination on problems that have no
valid solution. Sequential models like SC or PC implicitly learn to generate answers within their
training distribution, which can be problematic when faced with unsolvable cases. For example, in the
Game of 24 task, the numbers 1, 1, 2, and 3 cannot generate 24 through any sequence of arithmetic
operations. Since sequential models have not been trained on examples with no solution, they tend to
hallucinate and generate invalid answers.

TSLM, however, demonstrates a unique capability to identify unsolvable cases. We qualitatively
analyzed its behavior on the 1, 1, 2, 3 instance and found that TSLM correctly terminated without
generating any answer. This suggests the tree-structured exploration enables TSLM to systematically
explore the full solution space and recognize when no valid path exists. Unlike sequential models
that are pressured to always generate some answer, TSLM’s broader search allows it to confidently
determine and declare when a problem is unsolvable.

This capability emerges naturally from TSLM’s training on complete search trees rather than indi-
vidual solution paths. By learning to represent both successful and unsuccessful branches, TSLM
develops a more complete model of the solution space that includes recognizing unsolvable cases.

6.2 EXTRAPOLATION BEYOND TRAINING DATA

TSLM demonstrates strong extrapolation capabilities when tested on larger grid sizes than seen
during training. Testing on 20×20 grids after training on 10×10 grids, TSLM maintains 91.5%

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

SC PC TSLM (ours)

33.0% 81.1% 91.5%

Table 2: Qualitative comparison of model extrapolation capabilities on Gridworlds of varying sizes
(maximum 20×20). Each heatmap shows performance at different grid dimensions (x,y), with darker
colors indicating better performance. The red box indicates the boundary of training data. Overall
accuracy shown above each plot.

0 2,000 4,000
0

20

40

60

80

100

Training Samples

A
cc

ur
ac

y
(%

)

(a) Rapid adaptation on ProntoQA

0.5 1.5 3.0 7.0
0

20

40

60

80

Model Size (B)

Sc
al

in
g

Pe
rf

or
m

an
ce

(%
)

(b) Parameter scaling on Gridworld (20×20)

Figure 3: TSLM efficiency analysis. (Left) Rapid adaptation showing GRPO’s cold-start problems.
(Right) Parameter scaling on Gridworld complexity extrapolation, where 0.5B TSLM (68%) dramati-
cally outperforms 7B baselines, demonstrating 14× parameter efficiency. Methods: TSLM (•), PC
(□), SC (△), GRPO (⋄)

accuracy compared to PC’s 81.1% and SC’s 33.0% (Table 2). This suggests TSLM’s structured tree
representation learns generalizable navigation patterns rather than memorizing specific configurations.

6.3 RAPID ADAPTATION

These results demonstrate two key efficiency advantages of TSLM. First, the rapid adaptation analysis
reveals fundamental differences in learning dynamics: while TSLM shows consistent improvement
from the start, GRPO exhibits initial performance that is slightly worse than basic supervised learning
before eventually converging to 100% accuracy. This highlights the cold-start brittleness inherent in
RL-based approaches when base competence is low.

Second, the parameter scaling results on Gridworld extrapolation tasks reveal TSLM’s most remark-
able characteristic: algorithmic competencies that are largely independent of parameter count. The
flat scaling curve (68% → 75% from 0.5B to 7B) contrasts sharply with baseline methods that show
steep parameter dependence, suggesting TSLM teaches structured reasoning procedures rather than
relying on brute-force memorization. We provide detailed inference-time scaling analysis including
performance scaling and base model comparisons in Appendix §G.

6.4 INFERENCE-TIME SCALING PROPERTIES

A key finding is that TSLM’s internalized search procedures generalize better than external search
methods when complexity exceeds training boundaries. In Gridworld experiments, Tree-of-Thought
achieves 95% success on 10×10 training grids but collapses to 26% on 20×20 test grids, while
TSLM maintains robust performance (76.5%). This demonstrates that training-time acquisition of
search algorithms provides more robust generalization than inference-time application of external

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

procedures. Detailed analysis of inference-time scaling dynamics, including BFS vs DFS trade-offs
and performance on GSM8K, is provided in Appendix §G.

7 DISCUSSION

7.1 SUPERVISED LEARNING VS. REINFORCEMENT LEARNING FOR REASONING

Our results challenge a growing trend in the field that emphasizes reinforcement learning for improv-
ing reasoning capabilities in language models. Recent models like DeepSeek Math, O1, and Phi-4
have demonstrated enhanced reasoning through extensive RL training, leading to a prevailing belief
that RL is necessary for developing robust reasoning.

Our findings suggest an alternative perspective: properly structured supervised learning of complete
tree-structured reasoning traces can achieve similar or better performance without the complexity and
computational demands of RL. This challenges the ”SFT Memorizes, RL Generalizes” paradigm
Chu et al. (2025), but offers a crucial nuance—when the supervised data contains the full exploration
process, not just input-output pairs, SFT can also lead to strong generalization.

The key insight appears to be whether the model learns the underlying algorithm or merely the answer.
By explicitly teaching the algorithm through complete traces, we enable the model to apply the same
reasoning process to more complex instances of the same problem class.

7.2 COMPARISON WITH ALGORITHMIC IMITATION

TSLM differs from algorithmic imitation approaches that embed reasoning into linear traces. Unlike
single-path imitation, TSLM represents multiple branching paths simultaneously and enables dynamic
exploration adjustment. Detailed comparison including representation differences, exploration
capabilities, and adaptability is provided in Appendix §E.

7.3 LIMITATIONS AND FUTURE WORK

TSLM faces computational overhead due to recomputing shared nodes during tree-based training,
and synthetic tree generation quality depends heavily on the supervision model’s capabilities. Current
transformer architectures are not optimized for tree-structured generation, and broader application to
complex domains like code generation requires further exploration. Detailed discussion and potential
solutions are provided in Appendix §D.

8 CONCLUSION

We introduce Tree-Structured Language Modeling (TSLM), which enables language models to
generate complete search trees within a single generation process using token-based serialization.
TSLM achieves superior performance across structured planning and open-ended reasoning tasks:
100% accuracy on Game of 24 (vs. 17% for baselines), robust extrapolation to larger environments
(76.5% vs. 26% for Tree-of-Thought), and remarkable 14× parameter efficiency where a 0.5B model
outperforms 7B baselines.

TSLM demonstrates that supervised learning on tree-structured traces can match or exceed reinforce-
ment learning approaches without their complexity. Key emergent capabilities include identifying
unsolvable problems, rapid adaptation with minimal data, and systematic exploration that generalizes
better than external search algorithms. The approach requires only standard language model fine-
tuning with special tokens to encode tree structure, making it compatible with existing transformer
architectures.

These results challenge prevailing assumptions about sequential generation and reinforcement learning
necessity for reasoning, demonstrating that properly structured supervised learning provides an
efficient path toward enhanced reasoning capabilities in language models.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gianinazzi,
Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, and Torsten Hoefler. Graph
of thoughts: Solving elaborate problems with large language models. Proceedings of the AAAI
Conference on Artificial Intelligence, 38(16):17682–17690, March 2024. ISSN 2159-5399. doi: 10.
1609/aaai.v38i16.29720. URL http://dx.doi.org/10.1609/aaai.v38i16.29720.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi
Liu, Mengfei Zhou, Zhuosheng Zhang, Rui Wang, Zhaopeng Tu, Haitao Mi, and Dong Yu.
Do not think that much for 2+3=? on the overthinking of o1-like llms, 2025. URL https:
//arxiv.org/abs/2412.21187.

Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans, Quoc V.
Le, Sergey Levine, and Yi Ma. Sft memorizes, rl generalizes: A comparative study of foundation
model post-training, 2025. URL https://arxiv.org/abs/2501.17161.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Jacob Hilton, Reiichiro Nakano, Christopher
Hesse, and John Schulman. Training verifiers to solve math word problems, 2021.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong,
Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,
Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,
Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,
Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L.
Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang,
Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng
Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng
Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan
Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang,
Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen,
Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li,
Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang,
Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan,
Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia
He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong
Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha,
Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang,
Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen
Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025.
URL https://arxiv.org/abs/2501.12948.

Xidong Feng, Ziyu Wan, Muning Wen, Stephen Marcus McAleer, Ying Wen, Weinan Zhang, and Jun
Wang. Alphazero-like tree-search can guide large language model decoding and training, 2024.
URL https://arxiv.org/abs/2309.17179.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan,
Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev,

10

http://dx.doi.org/10.1609/aaai.v38i16.29720
https://arxiv.org/abs/2412.21187
https://arxiv.org/abs/2412.21187
https://arxiv.org/abs/2501.17161
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2309.17179

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru,
Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak,
Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu,
Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle
Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego
Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova,
Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco Guzmán, Frank Zhang, Gabriel
Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind Thattai, Graeme Nail, Gregoire Mialon,
Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan
Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra, Ivan Evtimov, Jack Zhang, Jade Copet,
Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer van der Linde,
Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie
Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua
Saxe, Junteng Jia, Kalyan Vasuden Alwala, Karthik Prasad, Kartikeya Upasani, Kate Plawiak,
Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley
Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren Rantala-Yeary, Laurens van der Maaten, Lawrence
Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas
Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar Paluri,
Marcin Kardas, Maria Tsimpoukelli, Mathew Oldham, Mathieu Rita, Maya Pavlova, Melanie
Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal, Narjes
Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Ning Zhang, Olivier Duchenne,
Onur Çelebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal
Bhargava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong,
Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic,
Roberta Raileanu, Rohan Maheswari, Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie
Polidoro, Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana
Chennabasappa, Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie,
Sharan Narang, Sharath Raparthy, Sheng Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon
Vandenhende, Soumya Batra, Spencer Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan,
Sydney Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas
Scialom, Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami,
Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti,
Vı́tor Albiero, Vladan Petrovic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier
Martinet, Xiaodong Wang, Xiaofang Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao
Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song,
Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe
Papakipos, Aaditya Singh, Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya
Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei
Baevski, Allie Feinstein, Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu,
Andres Alvarado, Andrew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit
Ramchandani, Annie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury,
Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer,
Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu,
Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido,
Britt Montalvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu
Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer,
Cynthia Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu,
Davide Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc
Le, Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily
Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smothers,
Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni, Frank
Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia Swee,
Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hakan Inan,
Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harrison Rudolph,
Helen Suk, Henry Aspegren, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj, Igor Molybog,
Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James Geboski, James
Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny
Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe Cummings,
Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Junjie Wang, Kai

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy Matosich, Kaushik
Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang, Kunal Chawla, Kyle
Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell, Lei Zhang, Liangpeng
Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa, Manav Avalani, Manish
Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim
Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L. Seltzer, Michal Valko, Michelle
Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark, Mike Macey, Mike Wang,
Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari, Munish Bansal, Nandhini Santhanam,
Natascha Parks, Natasha White, Navyata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier,
Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong, Norman Cheng, Oleg Chernoguz, Olivia
Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro
Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani,
Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Rodriguez, Rafi Ayub, Raghotham Murthy,
Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy, Raymond Li, Rebekkah Hogan, Robin
Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin Mehta, Sachin Siby, Sai Jayesh Bondu,
Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Satadru Pan, Saurabh
Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Shaun Lindsay,
Sheng Feng, Shenghao Lin, Shengxin Cindy Zha, Shishir Patil, Shiva Shankar, Shuqiang Zhang,
Shuqiang Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie
Max, Stephen Chen, Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta,
Summer Deng, Sungmin Cho, Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman,
Tal Remez, Tamar Glaser, Tamara Best, Thilo Koehler, Thomas Robinson, Tianhe Li, Tianjun
Zhang, Tim Matthews, Timothy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria
Montanez, Vijai Mohan, Vinay Satish Kumar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru,
Vlad Tiberiu Mihailescu, Vladimir Ivanov, Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz,
Will Constable, Xiaocheng Tang, Xiaojian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv
Kleinman, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi,
Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait,
Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The
llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.21783.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, Zhen Wang, Daisy Zhe Wang, and Zhiting Hu.
Reasoning with language model is planning with world model, 2023. URL https://arxiv.
org/abs/2305.14992.

Doyoung Kim, Jongwon Lee, Jinho Park, and Minjoon Seo. How language models extrapolate
outside the training data: A case study in textualized gridworld, 2024. URL https://arxiv.
org/abs/2406.15275.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cyprien
de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven
Gowal, Alexey Cherepanov, James Molloy, Daniel J. Mankowitz, Esme Sutherland Robson,
Pushmeet Kohli, Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-level code
generation with alphacode. Science, 378(6624):1092–1097, December 2022. ISSN 1095-9203. doi:
10.1126/science.abq1158. URL http://dx.doi.org/10.1126/science.abq1158.

OpenAI. Openai o1 system card. preprint, 2024.

Abulhair Saparov and He He. Language models are greedy reasoners: A systematic formal analysis
of chain-of-thought, 2023. URL https://arxiv.org/abs/2210.01240.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of
mathematical reasoning in open language models, 2024. URL https://arxiv.org/abs/
2402.03300.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

12

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2305.14992
https://arxiv.org/abs/2305.14992
https://arxiv.org/abs/2406.15275
https://arxiv.org/abs/2406.15275
http://dx.doi.org/10.1126/science.abq1158
https://arxiv.org/abs/2210.01240
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models,
2023. URL https://arxiv.org/abs/2203.11171.

Mengjiao Yang, Dale Schuurmans, Pieter Abbeel, and Ofir Nachum. Chain of thought imitation with
procedure cloning, 2022. URL https://arxiv.org/abs/2205.10816.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models, 2023.

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, Haohan Wang, and Yu-Xiong Wang. Language
agent tree search unifies reasoning acting and planning in language models. arXiv preprint
arXiv:2310.04406, 2023.

A FREQUENTLY ASKED QUESTIONS

Q1: How does TSLM differ from Tree-of-Thought (ToT) inference? A1: While ToT applies
external sampling and search algorithms to explore multiple reasoning paths at inference time, TSLM
directly teaches the model to generate and explore tree-structured reasoning within a single generation
process. This internal representation eliminates the need for multiple separate forward passes and
external orchestration, leading to more efficient and effective exploration.

Q2: Why doesn’t standard supervised learning on linear Chain-of-Thought achieve similar
extrapolation performance? A2: Standard CoT typically provides step-by-step verbal explanations
without explicitly representing the global problem space or systematically exploring solution paths.
TSLM differs by teaching models to construct and use complete tree-structured representations of the
environment, enabling more robust planning in novel, complex scenarios.

Q3: How does TSLM compare to reinforcement learning approaches like GRPO? A3: While
GRPO and other RL approaches can achieve reasonable performance, particularly on open-ended
tasks, they face challenges including complex reward engineering, computational intensity, and
training instability. TSLM provides a simpler alternative that achieves comparable or better per-
formance with straightforward supervised learning, particularly excelling on structured tasks like
puzzle-solving.

Q4: Does model size matter for TSLM? A4: Our experiments show that TSLM demonstrates
consistent performance improvements across model sizes. Interestingly, TSLM helps smaller models
achieve performance close to larger ones, suggesting that the structured tree representation provides a
stronger learning signal that can compensate for model size limitations. However, larger models still
benefit from TSLM, achieving the overall best performance.

Q5: Can TSLM be applied to more complex real-world tasks? A5: While our current exper-
iments focus on relatively constrained tasks, the principles of TSLM can extend to more complex
domains. For tasks with well-defined structure (like code generation or game playing), direct applica-
tion is straightforward. For more open-ended tasks, our bootstrapping approach provides a foundation
for constructing synthetic tree-structured training data. Future work will explore applications to more
diverse and complex reasoning domains.

B RELATED WORK

External Search-Augmented Language Models. A major line of work augments language models
with external search algorithms during inference. Tree-of-Thought Yao et al. (2023) applies breadth-
first and depth-first search externally, sampling multiple reasoning paths with external evaluation.
Graph-of-Thought Besta et al. (2024) extends this to general graph structures. Monte Carlo Tree
Search approaches include RAP (Reasoning via Planning) Hao et al. (2023), which employs MCTS
with world models, and LATS (Language Agent Tree Search) Zhou et al. (2023), which combines
MCTS with reflection mechanisms. TS-LLM Feng et al. (2024) and AlphaCode-style approaches Li

13

https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2205.10816

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

et al. (2022) integrate MCTS with language generation. These methods achieve strong performance
but require multiple model invocations and external orchestration, limiting efficiency and integration
with model training.

Multi-Path Generation and Reasoning. Various approaches explore multiple reasoning paths
without structured search. Self-consistency decoding Wang et al. (2023) generates multiple indepen-
dent reasoning paths and selects the most consistent answer. Ensemble methods combine predictions
from multiple reasoning chains through diverse beam search and nucleus sampling variants. Recent
models like o1 OpenAI (2024) and DeepSeek-R1 DeepSeek-AI et al. (2025) generate extended
reasoning traces, but remain fundamentally sequential and may include redundant computation Chen
et al. (2025). These approaches explore multiple paths but typically generate them independently
without capturing structural relationships, unlike TSLM’s coherent tree structures.

Learning-Based Reasoning Enhancement. Reinforcement learning has emerged as a dominant
paradigm for improving reasoning capabilities. DeepSeek Math Shao et al. (2024) applies GRPO for
mathematical reasoning, while other work uses RL from human feedback for instruction following.
Actor-Critic methods and policy gradient approaches have shown promise in multi-step reasoning and
mathematical problem solving. Algorithmic reasoning approaches train models to imitate procedures
like sorting, graph traversal, and dynamic programming Kim et al. (2024); Yang et al. (2022), learning
to execute classical algorithms step-by-step. However, these methods either require complex RL
training or focus on single algorithmic traces rather than dynamic exploration strategies. TSLM
demonstrates that carefully structured supervised learning can achieve comparable performance
without RL’s complexity.

C TSLM SERIALIZATION EXAMPLE

This section provides a detailed worked example showing how TSLM serializes tree structures for
the Game of 24 task.

Problem Setup. Consider a Game of 24 problem with numbers [4, 5, 6, 10]. The goal is to find
arithmetic operations that result in 24.

Complete Tree Serialization. The tree structure is serialized as:

[BOS] Step 1
4 + 5 = 9 [SEP1]
4 * 6 = 24 [SEP1] [SEP3]
Step 2
6 + 10 = 16 [SEP1]
6 * 10 = 60 [SEP1] [SEP3]
Step 3
9 + 16 = 25 [SEP2]
9 - 16 = -7 [SEP2] [SEP3] [EOS]

This format captures:

• Multiple candidate actions at each step

• Viability markers ([SEP1] for expandable, [SEP2] for dead ends)

• Step boundaries ([SEP3])

• Both successful and unsuccessful exploration paths

D DETAILED LIMITATIONS AND FUTURE DIRECTIONS

This section provides an in-depth discussion of TSLM’s current limitations and potential solutions.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Computational Efficiency. TSLM’s node-wise training approach can be computationally inefficient
compared to sequential methods. While the expanded supervision over tree nodes provides a richer
training signal, the lack of computation caching means shared nodes are recomputed multiple times
rather than reused. Future work could explore more efficient training strategies for scalability,
including:

• Developing tree-aware attention mechanisms that can cache shared computations

• Exploring gradient accumulation strategies that account for tree structure

• Investigating sparse training approaches that selectively update tree components

Supervision Quality. The synthetic data generation framework’s success heavily depends on the
supervision model’s capabilities and training distribution. For example, in GSM8K experiments,
using Llama-3-8B as a supervision model produces poor-quality search trees. Different model
families pose additional challenges - some generate Python code instead of reasoning steps, while
others include extraneous dialogue that doesn’t align with the desired reasoning format. We need to
carefully select supervision models with output distributions matching the target reasoning scheme.

Architectural Adaptation. Current transformer architectures are not optimized for tree-structured
generation. Developing architectures that naturally support tree-structured thinking could further
enhance performance. Potential directions include hierarchical attention mechanisms and specialized
positional encodings for tree structures.

Application to Complex Domains. Extending TSLM to more complex reasoning domains, in-
cluding code generation, multi-hop reasoning, and creative problem-solving, represents an exciting
direction for future work.

Combining with RL. While we’ve demonstrated TSLM’s effectiveness with supervised learning
alone, combining it with targeted reinforcement learning could potentially yield further improvements,
particularly for adapting to user preferences or optimizing for specific outcomes.

E DETAILED COMPARISON WITH ALGORITHMIC IMITATION

This section provides an in-depth comparison between TSLM and algorithmic imitation approaches.

Representation Differences. While algorithmic imitation approaches embed the complete reason-
ing process into a single sequential trace, TSLM explicitly represents multiple branching paths within
a unified generation process. This fundamental difference enables:

• TSLM: Multiple potential paths represented simultaneously

• Algorithmic Imitation: Single linear trace representation

Exploration Capabilities. The exploration mechanisms differ significantly:

• TSLM: Enables systematic exploration of multiple branches with dynamic backtracking

• Algorithmic Imitation: Follows a predefined algorithmic path without exploration

Adaptability and Flexibility. TSLM provides greater adaptability:

• TSLM: Can dynamically adjust exploration strategy based on intermediate results

• Algorithmic Imitation: Executes a fixed procedure without adaptation

These distinctions enable TSLM to more effectively handle tasks requiring complex search or
exploration, particularly when the optimal path is not immediately apparent.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

F PARAMETER EFFICIENCY DETAILED ANALYSIS

Experimental Setup. We conducted systematic experiments across the Qwen 2.5 model family
(0.5B, 1.5B, 3B, 7B parameters) on Gridworld scaling tasks, training on 10×10 grids and testing
extrapolation to 20×20 grids.

Detailed Results. Our experiments reveal striking parameter efficiency characteristics:

• TSLM scaling: 0.5B (68%) → 1.5B (71%) → 3B (73%) → 7B (75%)

• Standard CoT: 0.5B (15%) → 1.5B (18%) → 3B (21%) → 7B (26.5%)

• GRPO: 0.5B (12.7%) → 1.5B (15%) → 3B (17%) → 7B (19%)

• PC: 0.5B (3.0%) → 1.5B (3.5%) → 3B (5.5%) → 7B (6.0%)

Analysis. The flat scaling curve for TSLM (68% → 75% from 0.5B to 7B) suggests that systematic
exploration supervision captures algorithmic competencies largely independent of parameter count.
In contrast, baseline methods show steeper parameter dependence, indicating reliance on brute-force
memorization capacity. This fundamental difference demonstrates that TSLM teaches structured
reasoning procedures that generalize across model scales.

G DETAILED INFERENCE-TIME SCALING ANALYSIS

A key question is how TSLM performance scales with inference-time parameters like the number of
candidate paths explored. We investigate different search strategies and their implications for model
behavior. We compare three approaches for scaling inference:

• TSLM: Controls the number of candidates k by verifying the first k terminal states from
Breadth-First Search (BFS) of the generated tree structure

• Procedure cloning (PC): Verifies the first k terminal states from the sequential search trace

• Sequential cloning (SC): Uses Tree-of-Thought inference to generate the first k candidates
via BFS.

G.1 PERFORMANCE SCALING WITH NUMBER OF CANDIDATES

As shown in Figure 4, TSLM consistently outperforms baseline methods across different language
model variants. With Llama-3-8B (solid lines), TSLM achieves 67.2% accuracy with just 5 candidates
while PC and SC need 10 candidates to reach 63.6% and 61.9% respectively. Similar patterns emerge
with Llama-3-8B-Instruct (dashed lines), where TSLM reaches 70.2% accuracy compared to 61.6%
for PC and 67.9% for SC.

1 2 3 4 5 6 7 8 9 10

55

60

65

70

Number of Candidates

A
cc

ur
ac

y
(%

)

Figure 4: Performance scaling across different models and methods on GSM8K. Methods: TSLM
(blue), PC (green), SC (purple). Models: Llama-3-8B (solid) and Llama-3-8B-Instruct (dashed).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

G.2 BFS VS DFS: EXPLORING SEARCH STRATEGIES

Within TSLM’s inference framework, the choice between Breadth-First Search (BFS) and Depth-First
Search (DFS) reveals fundamental differences in exploration priorities. We analyze these search
strategies when TSLM’s branching is guided by preference-based ordering.

Theoretical Analysis. Consider two distinct solution paths A = a1, ..., an and B = b1, ..., bm in a
preference-ordered search tree generated by TSLM.

BFS employs a dual prioritization strategy: it first considers path length (traversing A before B if
n < m), then uses preference signals to break ties. When paths have equal length (n = m), BFS
selects based on the first differing action’s reward—if R(ak) > R(bk) at the earliest divergence point
k, BFS favors path A. This means BFS prioritizes solution optimality first, using learned preferences
to resolve ties.

In contrast, DFS operates purely on learned preference ordering, disregarding path length consid-
erations. For the same paths A and B, DFS immediately follows the higher-reward action at any
divergence point k, regardless of whether this leads to longer solution paths. This approach means
DFS prioritizes learned preferences consistently, potentially sacrificing optimality for high-confidence
actions.

Empirical Results. Figure 5 shows that DFS achieves better top-1 accuracy by finding preferred
solutions first, but slightly underperforms BFS for top-3 to top-6 candidates since it does not prioritize
optimality. However, both methods converge to the same accuracy as they traverse the complete
tree. This validates our theoretical analysis that DFS provides faster convergence to high-confidence
solutions while BFS offers better overall exploration coverage.

1 2 3 4 5 6 7 8 9 10

62

64

66

Number of Candidates

A
cc

ur
ac

y
(%

)

Figure 5: Comparison of BFS (blue) and DFS (orange) search strategies on Llama-3-8B.

G.3 BASE MODEL PERFORMANCE IMPACT

We investigated whether the base model’s performance influences TSLM’s effectiveness by com-
paring performance across both Llama-3-8B and Llama-3-8B-Instruct variants. TSLM consistently
outperforms baseline methods across both model variants, with improvements remaining robust
across architectures. This indicates that TSLM’s structured exploration provides consistent benefits
independent of the base model.

H TASK DETAILS AND EXAMPLES

H.1 GENERAL TASK SETUP DETAILS

Table 3 illustrates the general task settings for structured and open-ended tasks. Depth refers to the
number of reasoning steps.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

SC PC TSLM
50

55

60

65

A
cc

ur
ac

y
(%

)
Figure 6: GSM8K accuracy across base models. Blue: Llama-3-8B, Red: Llama-3-8B-Instruct.
Dashed lines show 4-shot performance.

Task # Depth(Train) # Depth(Test) # Train Instance # Test Instance Evaluation Metric
Game of 24 3 3 1.2K 100 Equation Validation
Textualized Gridworld 10× 10 10× 10 10K 1.5K Exact Matching
ProntoQA 1-5 1-5 4.5K 450 Exact Matching
GSM8K 2-9 2-11 7.5K 1.3K Answer Matching

Table 3: General task settings

H.2 TASK SCENARIO 1: STRUCTURED PLANNING

We first evaluate TSLM and baselines on two different structured planning tasks (Left in Figure
7). These tasks involve predefined search trees, enabling us to evaluate how well models reproduce
algorithmic patterns:

Game of 24 Given four numbers, the task is to obtain 24 with basic arithmetic operations
(+,−,×,÷). For example, with inputs 8, 4, 3, and 6, a valid solution is (8 + 4) × (6 ÷ 3) = 24
Yao et al. (2023). Each action selects two operands and an operator, while states represent partial
expressions. Since there may be multiple paths that reaches the answer (e.g. (8 + 4)× (6÷ 3) and
(6÷3)× (4+8)), we check if the final expression equals 24. We train each method on 1.2K instances
and test on 100 instances.

Textualized Gridworld A text-based navigation task where an agent navigates a grid using cardinal
directions (up, down, left, right) while avoiding obstacles. Given a start position (typically bottom
left) and goal position (typically top right), the agent must find a valid path with shortest length. For
instance, in a 3x2 grid with a pit at (1,1), the optimal solution is (right, right, up). Actions are single
moves (up/down/left/right) and states are grid coordinates. We ensure all the environments to have

up right

right right up

up

right, right, up

8, 4, 3, 6

8+4=12 4+3=7

12, 3, 6

12, 2

24

6/3=2

12*2=24

12, 18

3*6=18

12+2=14

14

7, 8, 6

…

……
(8+4)*(6/3)=24

True or false: Sam is not warm-blooded

Sam is a feline+Felines are carnivores

Sam is a carnivore

Sam is a mammal

Sam is warm-blooded

Carnivores are mammals

Every mammal is warm-blooded

Sam is not herbivorous

Carnivores are not
herbivorous

…

…

Answer: False

Sally drives 30 miles at 60 mph
and returns 30 miles at 40 mph.
What is her average speed?

Take the average
speed

Total time:
<<30/60+30/40=1.25>>

Avg speed:
<<60/1.25=48>>

Avg speed:
<<(60+40)/2=50>>

Calculate the total
travel time

15, 6

7+8=15

21

15+6=21

Textualized Gridworld ProntoQA GSM8KGame of 24

Predefined Search Space Open-ended Reasoning

Figure 7: (Left) Structured planning tasks with predefined search spaces (e.g., Game of 24, Textualized
Gridworld) where success is measured by the model’s ability to reproduce algorithmic search patterns.
(Right) General open-ended reasoning tasks (e.g., ProntoQA, GSM8K) requiring adaptive exploration
of undefined search spaces.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

unique shortest paths. We use 10K training instances with maximum grid size 10x10 and 1.5K test
instances up to the same maximum size, evaluating exact path matching.

H.3 TASK SCENARIO 2: OPEN-ENDED REASONING TASKS

We next evaluate TSLM and baselines on two open-ended reasoning tasks (Right on Figure 7)
requiring exploration of undefined solution spaces. We use the synthetic tree generation method from
§4.2 for training.

ProntoQA ProntoQA Saparov & He (2023) is a logical reasoning dataset where models verify
statement truth given premises. For example, given a premise “Every jompus is not small. Each
impus is small. Each jompus is a dumpus. Alex is a jompus.” and a query “True or false: Alex is not
small?”, the solution path to verify the query should be “Alex is a jompus. Every jompus is not small.
Alex is not small. So the answer is True.”

Actions are logical deduction steps and states are accumulated facts. With unique valid deduction
paths, we verify whether the generated path is correct. We use 4.5K training and 450 test instances.
For TSLM/PC, we use tree generation of beam search (k=5, temp=0.3) with Llama-3-8B as a base
model for supervision.

GSM8K GSM8K Cobbe et al. (2021) is a mathematical word problem dataset requiring multi-step
reasoning. For example, for a given problem “James runs 3 sprints 3 times a week. Each sprint is 60
meters. How many total meters per week?”, one valid solution would be “3 sprints × 3 times = 9
sprints per week. 9 sprints × 60 meters = 540 meters. The answer is 540.”

Actions are solution steps and states are partial solutions. Since multiple valid solution paths can reach
the correct answer, we just validate whether the answer is correct. We use 7.5K training instances
and 1.3K test instances. For TSLM/PC, we use tree generation of beam search (k=5, temp=0.1) with
Llama-3-8B-Instruct as a base model for supervision.

H.4 TASK EXAMPLES

For the following task examples, [SEP1] is a special token indicating that the action is good and can
be further expanded, [SEP2] is a special token indicating that the action is not good and can’t be
expanded anymore, [SEP3] is a special token indicating the end of the current step, and [SEP4] is a
special token indicating the success.

Gridworld SC Instance:
USER: You are given a rectangular gridworld, where you can move up, down, left, or right
as long as each of your x, y coordinate is within 0 to the x, y size of the grid. If you move
up, your y coordinate increases by 1. If you move down, your y coordinate decreases by 1.
If you move left, your x coordinate decreases by 1. If you move right, your x coordinate
increases by 1.
You will interact with the girdworld environment to reach the goal state, while avoiding the
pit and the wall. You cannot move through the wall or move outside the grid. If you fall
into the pit, you lose. If you reach the goal, you win. For each of your turn, you will be
given the possible moves.
You should respond your move with either one of ’up’, ’down’, ’left’, or ’right’.
ASSISTANT: OK
USER: Grid is from (7, 7) to (18, 13). Goal: (18, 13) Current: (7, 7) The pit is at (16, 9),
(17, 7), (14, 8), (11, 9), and (16, 11). The wall is at (11, 7), (15, 10), (18, 12), (9, 9), (8, 7),
(17, 10), (9, 12), (12, 7), (10, 13), (15, 12), (17, 9), (9, 11), (17, 12), (8, 9), (13, 11), (10, 9),
(12, 9), (11, 11), (12, 12), (16, 10), (15, 8), (9, 7), (8, 11), (7, 13), (13, 13), and (13, 10).
ASSISTANT:
Step 1
up
(7, 8)[SEP1][SEP3]
Step 2
up

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

(7, 9)[SEP1][SEP3]
Step 3
up
(7, 10)[SEP1][SEP3]
Step 4
up
(7, 11)[SEP1][SEP3]

Gridworld PC Instance:
USER: You are given a rectangular gridworld, where you can move up, down, left, or right
as long as each of your x, y coordinate is within 0 to the x, y size of the grid. If you move
up, your y coordinate increases by 1. If you move down, your y coordinate decreases by 1.
If you move left, your x coordinate decreases by 1. If you move right, your x coordinate
increases by 1.
You will interact with the girdworld environment to reach the goal state, while avoiding the
pit and the wall. You cannot move through the wall or move outside the grid. If you fall
into the pit, you lose. If you reach the goal, you win. For each of your turn, you will be
given the possible moves.
You should respond your move with either one of ’up’, ’down’, ’left’, or ’right’.
ASSISTANT: OK
USER: Grid is from (7, 7) to (18, 13). Goal: (18, 13) Current: (7, 7) The pit is at (16, 9),
(17, 7), (14, 8), (11, 9), and (16, 11). The wall is at (11, 7), (15, 10), (18, 12), (9, 9), (8, 7),
(17, 10), (9, 12), (12, 7), (10, 13), (15, 12), (17, 9), (9, 11), (17, 12), (8, 9), (13, 11), (10, 9),
(12, 9), (11, 11), (12, 12), (16, 10), (15, 8), (9, 7), (8, 11), (7, 13), (13, 13), and (13, 10).
ASSISTANT:
Step 1
up
(7, 8)[SEP1]
down
(7, 6)[SEP2]
left
(6, 7)[SEP2]
right
(8, 7)[SEP2][SEP3]
Step 2
up
(7, 9)[SEP1]
down
(7, 7)[SEP2]
left
(6, 8)[SEP2]
right
(8, 8)[SEP1][SEP3]

Gridworld TSLM Instance:
USER: You are given a rectangular gridworld, where you can move up, down, left, or right
as long as each of your x, y coordinate is within 0 to the x, y size of the grid. If you move
up, your y coordinate increases by 1. If you move down, your y coordinate decreases by 1.
If you move left, your x coordinate decreases by 1. If you move right, your x coordinate
increases by 1.
You will interact with the girdworld environment to reach the goal state, while avoiding the
pit and the wall. You cannot move through the wall or move outside the grid. If you fall
into the pit, you lose. If you reach the goal, you win. For each of your turn, you will be
given the possible moves.
You should respond your move with either one of ’up’, ’down’, ’left’, or ’right’.
ASSISTANT: OK
USER: Grid is from (7, 7) to (18, 13). Goal: (18, 13) Current: (7, 7) The pit is at (16, 9),
(17, 7), (14, 8), (11, 9), and (16, 11). The wall is at (11, 7), (15, 10), (18, 12), (9, 9), (8, 7),
(17, 10), (9, 12), (12, 7), (10, 13), (15, 12), (17, 9), (9, 11), (17, 12), (8, 9), (13, 11), (10, 9),
(12, 9), (11, 11), (12, 12), (16, 10), (15, 8), (9, 7), (8, 11), (7, 13), (13, 13), and (13, 10).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

ASSISTANT:
Step 1
up
(7, 8)[SEP1][SEP3]
Step 2
up
(7, 9)[SEP1][SEP3]
Step 3
up
(7, 10)[SEP1][SEP3]
Step 4
up
(7, 11)[SEP1]
down
(7, 9)[SEP2]
left
(6, 10)[SEP2]
right
(8, 10)[SEP1][SEP3]

Game24 SC Instance:
USER: Input: 4, 5, 6, 10
ASSISTANT: Step 1
4 + 5 = 9[SEP1]
Step 2
6 + 10 = 16[SEP1][SEP3]

Game24 PC Instance:
USER: Input: 4, 5, 6, 10
ASSISTANT: Step 1
4 + 5 = 9[SEP1]
4 - 5 = -1[SEP1]
4 * 5 = 20[SEP1]
4 / 5 = 4/5[SEP1]
4 + 6 = 10[SEP1]
4 - 6 = -2[SEP1]
4 * 6 = 24[SEP1]
4 / 6 = 2/3[SEP1]
4 + 10 = 14[SEP1]
4 - 10 = -6[SEP1]
4 * 10 = 40[SEP1]
4 / 10 = 2/5[SEP1]
5 + 4 = 9[SEP1]
5 - 4 = 1[SEP1]
5 * 4 = 20[SEP1]
5 / 4 = 5/4[SEP1]
5 + 6 = 11[SEP1]
5 - 6 = -1[SEP1]
5 * 6 = 30[SEP1]
5 / 6 = 5/6[SEP1]
5 + 10 = 15[SEP1]
5 - 10 = -5[SEP1]
5 * 10 = 50[SEP1]
5 / 10 = 1/2[SEP1]
6 + 4 = 10[SEP1]
6 - 4 = 2[SEP1]
6 * 4 = 24[SEP1]
6 / 4 = 3/2[SEP1]
6 + 5 = 11[SEP1]
6 - 5 = 1[SEP1]

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

6 * 5 = 30[SEP1]
6 / 5 = 6/5[SEP1]
6 + 10 = 16[SEP1]
6 - 10 = -4[SEP1]
6 * 10 = 60[SEP1]
6 / 10 = 3/5[SEP1]
10 + 4 = 14[SEP1]
10 - 4 = 6[SEP1]
10 * 4 = 40[SEP1]
10 / 4 = 5/2[SEP1]
10 + 5 = 15[SEP1]
10 - 5 = 5[SEP1]
10 * 5 = 50[SEP1]
10 / 5 = 2[SEP1]
10 + 6 = 16[SEP1]
10 - 6 = 4[SEP1]
10 * 6 = 60[SEP1]
10 / 6 = 5/3[SEP1][SEP3]
Step 2
6 + 10 = 16[SEP1]
6 - 10 = -4[SEP1]
6 * 10 = 60[SEP1]
6 / 10 = 3/5[SEP1]
6 + 9 = 15[SEP1]
6 - 9 = -3[SEP1]
6 * 9 = 54[SEP1]
6 / 9 = 2/3[SEP1]
10 + 6 = 16[SEP1]
10 - 6 = 4[SEP1]
10 * 6 = 60[SEP1]
10 / 6 = 5/3[SEP1]
10 + 9 = 19[SEP1]
10 - 9 = 1[SEP1]
10 * 9 = 90[SEP1]
10 / 9 = 10/9[SEP1]
9 + 6 = 15[SEP1]
9 - 6 = 3[SEP1]
9 * 6 = 54[SEP1]
9 / 6 = 3/2[SEP1]
9 + 10 = 19[SEP1]
9 - 10 = -1[SEP1]
9 * 10 = 90[SEP1]
9 / 10 = 9/10[SEP1][SEP3]
6 + 10 = 16[SEP1]
6 - 10 = -4[SEP1]
6 * 10 = 60[SEP1]
6 / 10 = 3/5[SEP1]
6 + -1 = 5[SEP1]
6 - -1 = 7[SEP1]
6 * -1 = -6[SEP1]
6 / -1 = -6[SEP1]
10 + 6 = 16[SEP1]
10 - 6 = 4[SEP1]
10 * 6 = 60[SEP1]
10 / 6 = 5/3[SEP1]
10 + -1 = 9[SEP1]
10 - -1 = 11[SEP1]
10 * -1 = -10[SEP1]
10 / -1 = -10[SEP1]

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

-1 + 6 = 5[SEP1]
-1 - 6 = -7[SEP1]
-1 * 6 = -6[SEP1]
-1 / 6 = -1/6[SEP1]
-1 + 10 = 9[SEP1]
-1 - 10 = -11[SEP1]
-1 * 10 = -10[SEP1]
-1 / 10 = -1/10[SEP1][SEP3]
6 + 10 = 16[SEP1]
6 - 10 = -4[SEP1]
6 * 10 = 60[SEP1]
6 / 10 = 3/5[SEP1]
6 + 20 = 26[SEP1]
6 - 20 = -14[SEP1]
6 * 20 = 120[SEP1]
6 / 20 = 3/10[SEP1]
10 + 6 = 16[SEP1]
10 - 6 = 4[SEP1]
10 * 6 = 60[SEP1]
10 / 6 = 5/3[SEP1]
10 + 20 = 30[SEP1]
10 - 20 = -10[SEP1]
10 * 20 = 200[SEP1]
10 / 20 = 1/2[SEP1]
20 + 6 = 26[SEP1]
20 - 6 = 14[SEP1]
20 * 6 = 120[SEP1]
20 / 6 = 10/3[SEP1]
20 + 10 = 30[SEP1]
20 - 10 = 10[SEP1]
20 * 10 = 200[SEP1]
20 / 10 = 2[SEP1][SEP3]

Game24 TSLM Instance:
USER: Input: 4, 5, 6, 10
ASSISTANT: Step 1
4 + 5 = 9[SEP1]
Step 2
6 + 10 = 16[SEP1]
6 - 10 = -4[SEP1]
6 * 10 = 60[SEP1]
6 / 10 = 3/5[SEP1]
6 + 9 = 15[SEP1]
6 - 9 = -3[SEP1]
6 * 9 = 54[SEP1]
6 / 9 = 2/3[SEP1]
10 + 6 = 16[SEP1]
10 - 6 = 4[SEP1]
10 * 6 = 60[SEP1]
10 / 6 = 5/3[SEP1]
10 + 9 = 19[SEP1]
10 - 9 = 1[SEP1]
10 * 9 = 90[SEP1]
10 / 9 = 10/9[SEP1]
9 + 6 = 15[SEP1]
9 - 6 = 3[SEP1]
9 * 6 = 54[SEP1]
9 / 6 = 3/2[SEP1]
9 + 10 = 19[SEP1]

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

9 - 10 = -1[SEP1]
9 * 10 = 90[SEP1]
9 / 10 = 9/10[SEP1][SEP3]

ProntoQA SC Instance:
USER: Arthropods are small. Insects are not eight-legged. Lepidopterans are insects.
Invertebrates are animals. Every spider is eight-legged. Insects are arthropods. Every
butterfly is a lepidopteran. Animals are multicellular. Arthropods are invertebrates. Sam is
a butterfly.
True or false: Sam is not eight-legged.
ASSISTANT:
Step 1
Sam is a butterfly.[SEP1][SEP3]
Step 2
Every butterfly is a lepidopteran.[SEP1][SEP3]
Step 3
Sam is a lepidopteran.[SEP1][SEP3]
Step 4
Lepidopterans are insects.[SEP1][SEP3]
Step 5
Sam is an insect.[SEP1][SEP3]
Step 6
Insects are not eight-legged.[SEP1][SEP3]
Step 7
Sam is not eight-legged.[SEP1][SEP3]
Step 8
The answer is true.[SEP4][SEP3]

ProntoQA PC Instance: c Arthropods are small. Insects are not eight-legged. Lepi-
dopterans are insects. Invertebrates are animals. Every spider is eight-legged. Insects are
arthropods. Every butterfly is a lepidopteran. Animals are multicellular. Arthropods are
invertebrates. Sam is a butterfly.
True or false: Sam is not eight-legged.
ASSISTANT:
Step 1
Sam is a butterfly.[SEP1][SEP3]
Step 2
Every butterfly is a lepidopteran.[SEP1][SEP3]
Step 3
Sam is a lepidopteran.[SEP1][SEP3]
Step 4
Lepidopterans are insects.[SEP1][SEP3]
Step 5
Sam is an insect.[SEP1][SEP3]
Step 6
Insects are not eight-legged.[SEP1]
Insects are arthropods.[SEP1][SEP3]
Step 7
Sam is not eight-legged.[SEP1][SEP3]
Sam is an arthropod.[SEP1][SEP3]

ProntoQA TSLM Instance:
USER: Arthropods are small. Insects are not eight-legged. Lepidopterans are insects.
Invertebrates are animals. Every spider is eight-legged. Insects are arthropods. Every
butterfly is a lepidopteran. Animals are multicellular. Arthropods are invertebrates. Sam is
a butterfly.
True or false: Sam is not eight-legged.
ASSISTANT:
Step 1
Sam is a butterfly.[SEP1][SEP3]

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Step 2
Every butterfly is a lepidopteran.[SEP1][SEP3]
Step 3
Sam is a lepidopteran.[SEP1][SEP3]
Step 4
Lepidopterans are insects.[SEP1][SEP3]
Step 5
Sam is an insect.[SEP1][SEP3]
Step 6
Insects are not eight-legged.[SEP1][SEP3]
Step 7
Sam is not eight-legged.[SEP1]
Sam is an arthropod.[SEP1][SEP3]

GSM8K SC Instance:
USER: Kylar went to the store to buy glasses for his new apartment. One glass costs $5,
but every second glass costs only 60% of the price. Kylar wants to buy 16 glasses. How
much does he need to pay for them?
ASSISTANT:
Step 1
Every second glass costs 5 ∗ 0.6 = $ << 5 ∗ 0.6 = 3 >> 3.[SEP1][SEP3]
Step 2
So for 16 glasses, Kylar needs to pay 3 ∗ 8 = $ << 16/2 = 8 >> for every second
glass.[SEP1][SEP3]

GSM8K PC Instance:
USER: A robe takes 2 bolts of blue fiber and half that much white fiber. How many bolts
in total does it take?
ASSISTANT:
Step 1
It takes 2 ∗ 0.5 =<< 2 ∗ 0.5 = 1 >> 1 bolt of white fiber.[SEP1]
The robe takes 2 bolts of blue fiber.[SEP1][SEP3]
Step 2
So it takes 2 + 1 =<< 2 + 1 = 3 >> 3 bolts in total.[SEP1][SEP3]
It also takes half as much white fiber, which means it takes 1 bolt of white fiber (since half
of 2 is 1).[SEP1][SEP3]
Step 3
The answer is 3.[SEP4][SEP3]

GSM8K TSLM Instance:
USER: Kylar went to the store to buy glasses for his new apartment. One glass costs $5,
but every second glass costs only 60% of the price. Kylar wants to buy 16 glasses. How
much does he need to pay for them?
ASSISTANT:
Step 1
Every second glass costs 5 ∗ 0.6 = $ << 5 ∗ 0.6 = 3 >> 3.[SEP1][SEP3]
Step 2
So for 16 glasses, Kylar needs to pay 3 ∗ 8 = $ << 16/2 = 8 >> for every second
glass.[SEP1]
So for 8 glasses, it would cost 8× 3 = 24 dollars. For the remaining 8 glasses, it would
cost 8× 5 = 40 dollars. So in total, it would cost 24 + 40 = 64 dollars.[SEP1][SEP3]

I USE OF LARGE LANGUAGE MODELS

We acknowledge the use of large language models to assist in the preparation of this manuscript.
Specifically:

Writing assistance. Large language models were used to aid in polishing and refining the writing
throughout the paper, including improving clarity, grammar, and expression of technical concepts.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Related work discovery. Large language models were employed for retrieval and discovery tasks,
particularly in identifying and organizing relevant related work and ensuring comprehensive coverage
of the literature.

All technical contributions, experimental design, implementation, analysis, and conclusions presented
in this work are the original work of the authors. The use of LLMs was limited to editorial assistance
and literature search support, and did not influence the core scientific contributions or findings
reported in this paper.

26

	Introduction
	Our Contributions

	Background
	Tree-Structured Language Modeling (TSLM)
	Modeling Multiple Next Actions
	Encoding and Decoding with Tree Structure
	Training Objectives and Computational Considerations

	Search Tree Supervision
	Training on Structured Tasks
	Search Tree Supervision for Open-ended Reasoning Tasks

	Experimental Results
	Baselines for Comparison
	Base Results
	Parameter Efficiency and Rapid Adaptation

	Key Analysis
	Identifying Unsolvable Cases
	Extrapolation beyond Training Data
	Rapid Adaptation
	Inference-time Scaling Properties

	Discussion
	Supervised Learning vs. Reinforcement Learning for Reasoning
	Comparison with Algorithmic Imitation
	Limitations and Future Work

	Conclusion
	Frequently Asked Questions
	Related Work
	TSLM Serialization Example
	Detailed Limitations and Future Directions
	Detailed Comparison with Algorithmic Imitation
	Parameter Efficiency Detailed Analysis
	Detailed Inference-Time Scaling Analysis
	Performance Scaling with Number of Candidates
	BFS vs DFS: Exploring Search Strategies
	Base Model Performance Impact

	Task Details and Examples
	General Task Setup Details
	Task Scenario 1: Structured Planning
	Task Scenario 2: Open-ended Reasoning Tasks
	Task Examples

	Use of Large Language Models

