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ABSTRACT

Current language models generate solutions through sequential reasoning, limit-
ing their ability to systematically explore multiple solution paths. We introduce
Tree-Structured Language Modeling (TSLM), which teaches language models to
generate complete search trees within a single generation process using special
tokens to encode branching structure. TSLM serializes tree exploration into linear
sequences, enabling standard transformer training on tree-structured reasoning
traces that capture both successful and failed solution attempts. Across structured
planning (Game of 24, Gridworld) and open-ended reasoning tasks (ProntoQA,
GSM8K), TSLM achieves superior performance: 100% accuracy on Game of 24 vs.
17% for sequential baselines, and robust extrapolation to 20×20 grids (76.5%) com-
pared to Tree-of-Thought’s collapse (26%). Remarkably, TSLM demonstrates 14×
parameter efficiency, with a 0.5B model (68% scaling performance) outperforming
7B sequential baselines (19-26%). TSLM also exhibits emergent capabilities in-
cluding unsolvable problem detection and rapid adaptation with minimal training
data. These results challenge the assumption that reinforcement learning is nec-
essary for robust reasoning, demonstrating that supervised learning on complete
tree-structured traces provides an efficient alternative for developing systematic
exploration capabilities in language models.

1 INTRODUCTION

(a) Sequential thinking:
A purely sequential ap-
proach that traverses one
deterministic path.

(b) Tree-structured think-
ing: A branching explo-
ration that expands multi-
ple possibilities simultane-
ously.

Figure 1: Sequential vs. Tree-Structured Reason-
ing. (a) Sequential approaches commit to single paths,
limiting exploration of alternatives. (b) Tree-structured
approaches systematically explore multiple possibilities,
enabling recovery from mistakes and comprehensive
solution space coverage. TSLM bridges this gap by
teaching language models to generate tree-structured
explorations natively.

Complex reasoning often requires exploring
multiple solution paths before converging on
an answer. Consider solving the Game of 24
with numbers [8, 4, 3, 6]: a systematic ap-
proach would explore (8 + 4)× (6÷ 3) = 24,
(8− 4)× 6÷ 3 = 4, and other combinations si-
multaneously, rather than committing to a single
path early. However, current language models
generate solutions sequentially, making it dif-
ficult to systematically explore alternatives or
recover from early mistakes.

Recent reasoning models like o1 OpenAI (2024)
and DeepSeek-R1 DeepSeek-AI et al. (2025)
have shown impressive capabilities through ex-
tended reasoning traces, but still fundamentally
operate as sequential generators. While they
may internally consider multiple options, they
cannot explicitly represent parallel exploration
within their generation process. External meth-
ods like Tree-of-Thought Yao et al. (2023) ad-
dress this through post-hoc search, but require
multiple independent model calls and external
orchestration.
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To address these limitations, we introduce Tree-
Structured Language Modeling (TSLM), which directly embeds systematic exploration into language
generation. Rather than forcing tree-structured reasoning into sequential format or applying search
externally, TSLM teaches models to natively generate complete search trees. Using special tokens
to encode branching structure ([SEP1] for viable paths, [SEP2] for dead ends, [SEP3] for step
completion), TSLM serializes tree exploration into trainable sequences while preserving the parallel
exploration capability.

This approach enables models to learn the complete reasoning process—including both successful
paths and failed attempts—leading to more robust problem-solving capabilities. Our experimental
results demonstrate that this internalized search strategy not only outperforms sequential baselines
but also exhibits remarkable parameter efficiency and emergent capabilities that arise naturally from
learning complete exploration patterns rather than just final answers.

1.1 OUR CONTRIBUTIONS

This paper makes the following contributions:

• We introduce Tree-Structured Language Modeling (TSLM), a token-based serialization
framework that enables standard transformers to learn tree-structured reasoning through
supervised learning on complete search traces

• We demonstrate consistent performance gains across diverse tasks: 100% vs. 17% on
Game of 24, robust extrapolation to larger Gridworld environments (76.5% vs. 26% for
Tree-of-Thought), and competitive performance on open-ended reasoning

• We reveal remarkable parameter efficiency, showing that a 0.5B TSLM model (68% scaling
performance) outperforms 7B sequential and RL baselines (19-26%), representing a 14×
parameter efficiency advantage

• We uncover emergent capabilities including systematic identification of unsolvable problems,
rapid adaptation with minimal training data (95% accuracy after 1.5K samples), and robust
extrapolation beyond training complexity

• We provide detailed analysis of inference-time scaling dynamics, showing TSLM’s internal-
ized search procedures generalize better than external search algorithms when complexity
exceeds training boundaries

Our findings challenge the prevailing assumption that reinforcement learning is necessary for de-
veloping robust reasoning capabilities in language models. Instead, we demonstrate that properly
structured supervised learning of tree-formatted reasoning traces may provide a more direct and
efficient path toward enhanced reasoning and planning. We provide detailed answers to common
questions in Appendix §A.

2 BACKGROUND

Contemporary language models generate tokens sequentially, modeling p(y | x) =
∏|y|

t=1 p(yt |
x, y<t) Brown et al. (2020). For problems requiring exploration of multiple solution paths, this
sequential approach has limitations: (1) linear commitment to single paths, (2) error propagation,
(3) redundant computation when multiple solutions are needed, and (4) inability to systematically
explore alternatives in parallel.

Current multi-path reasoning approaches rely on post hoc sampling methods. Tree-of-Thoughts Yao
et al. (2023) samples multiple candidates at each step using external search algorithms, but faces
exponential computational costs. Recent autoregressive models like o1 OpenAI (2024) generate
reasoning procedures in single sequences, but remain constrained by linear generation and may
produce redundant information Chen et al. (2025). We provide a more extensive related works in
Appendix §B.
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3 TREE-STRUCTURED LANGUAGE MODELING (TSLM)

We introduce Tree-Structured Language Modeling (TSLM) as a framework to natively incorporate
divergent exploration for natural language generation. TSLM differs from standard sequential
language modeling by generating multiple possible next actions or statements and linking them into a
coherent tree structure.

3.1 MODELING MULTIPLE NEXT ACTIONS

Let s be the current state or partial solution. In a sequential language model, we predict a single next
action a from s and transition to s′ = T (s, a). By contrast, in TSLM, we represent multiple possible
successors:

πθ(s) = {T (s, a1), · · · , T (s, ak)},
where each ai denotes a distinct branch and k is the branching factor. TSLM learns to expand s into
these k successors within a single forward pass, retaining the relationships among them rather than
generating them independently.

3.2 ENCODING AND DECODING WITH TREE STRUCTURE

To enable standard transformer architectures to learn tree-structured reasoning, we develop a serial-
ization scheme that encodes complete search trees into linear sequences. This approach allows us to
train language models on tree data while preserving the branching structure.

Token-Based Tree Serialization. We introduce special tokens to encode tree structure:

• [SEP1]: Indicates a viable action that can be further expanded
• [SEP2]: Indicates a non-viable action (dead end)
• [SEP3]: Marks the end of all actions at the current step
• [BOS] and [EOS]: Mark sequence boundaries

This serialization captures both successful paths and unsuccessful explorations, teaching the model
the complete search process rather than just final answers. A detailed worked example showing the
complete serialization format is provided in Appendix §C.

Training Procedure. During training, we apply standard language modeling loss to the entire
serialized sequence:

L = −
T∑

t=1

log p(yt|y<t, x) (1)

where yt includes both reasoning content and structural tokens. Crucially, this trains the model to:

1. Generate multiple actions at each decision point
2. Assign appropriate viability markers ([SEP1] vs [SEP2])
3. Structure the exploration systematically

Inference Procedure. During inference, TSLM reconstructs the tree structure:

1. Generate the next reasoning step with multiple candidate actions
2. Parse structural tokens to identify viable branches ([SEP1])
3. Maintain a queue of unexplored viable states
4. Recursively expand each viable state until finding a solution or exhausting options

This approach enables systematic exploration while maintaining computational efficiency through
shared computation of common prefixes. Unlike Tree-of-Thought which requires multiple inde-
pendent forward passes, TSLM generates the complete exploration strategy in a single coherent
process.
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Figure 2: TSLM (Tree-Structured Language Model) is a language model designed for hierarchical
exploration in sequence generation tasks. Beginning with an initial state (e.g., “A”) and progressing
toward a goal state (e.g., “I”), TSLM constructs a tree structure where nodes represent states and
branches signify possible paths. During training, the model serializes the tree into linear sequences
using special tokens to separate branches and mark the start/end of a sequence, allowing it to learn
structured expansions effectively. During inference, TSLM generates multiple branching actions
to explore diverse sequences (e.g., expanding from “C” to “G” and “H”). These branches are
independently expanded in parallel using a stitching process, enabling broad exploration toward the
goal while efficiently pruning unwanted paths.

3.3 TRAINING OBJECTIVES AND COMPUTATIONAL CONSIDERATIONS

TSLM training differs from standard sequence modeling in several key aspects that enable effective
tree structure learning.

Tree-Aware Loss Function. While we apply standard language modeling loss (Equation 2), the
training targets include complete tree structures rather than single solution paths. For a tree Γ(t) with
N nodes, each node si contributes to the loss:

L = − 1

N

∑
si∈Γ(t)

|ysi
|∑

t=1

log p(ysi,t|ysi,<t, x) (2)

where ysi is the token sequence for node si. This ensures the model learns both successful and
unsuccessful exploration patterns.

Structural Consistency Training. Beyond token prediction, TSLM must learn to generate struc-
turally valid trees. We achieve this through:

• Marker consistency: Training on diverse tree structures teaches proper [SEP1]/[SEP2]
usage

• Branching patterns: Models learn appropriate branching factors for different problem
types

• Termination conditions: Proper [SEP3] placement indicates complete step exploration

Computational Efficiency. TSLM training requires O(N ·L) computation where N is the average
number of nodes per tree and L is the average sequence length per node. While this is more expensive
than training on single paths (O(L)), it provides richer supervision that leads to better generalization
with fewer training examples.
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4 SEARCH TREE SUPERVISION

4.1 TRAINING ON STRUCTURED TASKS

For structured tasks with predefined search trees, we can directly train TSLM to learn and reproduce
the tree structure. Formally, let t ∈ T be a task with a solution of a finite depth, T (s, a) be a transition
function that maps state-action pairs to new states, and A(s) be a finite action space that defines valid
actions at state s. Since these components are explicitly defined, we can generate the complete search
tree and employ TSLM to predict the branching structure (T (s, a) | a ∈ A(s)) at each state in the
search tree. By directly imitating the predefined tree expansions, TSLM guides the model to faithfully
reproduce structured exploration patterns. Examples include board games and planning problems
with well-defined rules.

4.2 SEARCH TREE SUPERVISION FOR OPEN-ENDED REASONING TASKS

While structured tasks have predefined search trees that TSLM can directly learn from, most real-
world tasks lack explicit tree structures, providing only correct answers or gold trajectories. We
introduce a bootstrapping method to construct synthetic training trees by combining model-generated
explorations with known solutions.

For each training instance, we employ a supervision language model to generate candidate actions
via Tree-of-Thoughts sampling Yao et al. (2023). The process involves:

1. Sampling a set of candidate actions at each state using beam search

2. Building a tree structure by propagating these actions forward

3. Incorporating known gold trajectories as high-priority branches

4. Ordering remaining branches using a reward function R(s, a)

5. Deduplicating redundant paths while preserving the tree structure

Algorithm 1 details this procedure. Our approach ensures each training tree contains at least one valid
solution while exploring diverse alternatives. The reward-based ordering helps prioritize promising
actions, while deduplication prevents redundant search. We adopt the original RAPHao et al. (2023)
reward function to refine exploration by prioritizing promising branches.

5 EXPERIMENTAL RESULTS

5.1 BASELINES FOR COMPARISON

Baseline Model Architecture We compare TSLM to the following baselines:

• Sequence Cloning (SC): A standard sequential modeling that clones a single linear sequence
of gold Chain-of-Thought (language modeling similar to GPT-3 (Brown et al., 2020) or
Llama 3 (Touvron et al., 2023)).

• Procedure Cloning (PC): A sequential modeling that clones Chain-of-Thought reasonings
of the entire search trace in a single linear sequence (o1-like reasoning models, trained with
systematic supervision(Kim et al., 2024; Yang et al., 2022)).

• GRPO: A reinforcement learning approach to incentivize reasoning trace during post-
training (o1-like reasoning models, trained with GRPO (Shao et al., 2024) objectives)

• Tree-of-Thought (ToT): Scaling the number of inference of SC model during test-time using
external search algorithms (Yao et al., 2023) with beam search across multiple reasoning
paths.

We test models using greedy decoding for sequential methods. For TSLM inference, we explore
different tree traversal and solution selection strategies. Unless otherwise specified, we use Breadth-
First Search (BFS) as the default algorithm to systematically explore the generated tree structure until
finding a successful solution. (We analyze implications of BFS versus alternative search strategies

5
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Algorithm 1 Guided Search Tree Bootstrapping

Input: Task T , transition T , reward R, branch factor k, supervision model πθ

Data = []
for t ∈ T do

Initialize queue = [s].
Gold trajectory s0 = s, s1, . . . , sn = g
while g /∈ queue do
tmp = queue.pop(0)
for i = 1 to k do
tmpqueue = []
if i = 1 and tmp ∈ {s0, . . . , sn} then
ai = a∗(tmp) {Add gold action}
tmpqueue.add(T (tmp, ai))

else
ai ∼ πθ(tmp)
if ai /∈ {a1, . . . , ai−1} then
tmpqueue.add(T (tmp, ai))
{Deduplication}

end if
end if

end for
tmpqueue = σR(tmpqueue){Sort by reward}
queue+ = tmpqueue

end while
Data.append(queue)

end for

Task SC PC GRPO ToT TSLM
§H.2 Game of 24 17.0% 47.0% 15.0% 17.0% 100%

Gridworld (10×10) 78.2% 99.7% 24.0% 95.0% 100%
Gridworld (20×20) 19.0% 26.5% 6.0% 26.0% 76.5%

§H.3 ProntoQA 99.7% 97.5% 99.8% 100% 100%
GSM8K 55.8% 55.9% 60.8% 85.0% 61.6%

Table 1: Success rates across different tasks and methods. The Gridworld results show both in-domain
(10×10) and scaling (20×20) performance, highlighting ToT’s dramatic degradation when complexity
scales beyond training boundaries.

such as Depth-First Search (DFS) in Appendix §G.2.) For each expansion during the inference, we
select the first k = 5 actions generated and deduplicate them with exact matching.

To evaluate Tree-Structured Language Modeling (TSLM), we conduct experiments on both structured
and unstructured tasks. Our experiments use Llama-3-8B Grattafiori et al. (2024) as base experiments,
comparing TSLM against sequential language modeling baselines. Also, We aim to compare
architectural differences rather than scaling effects, using modest training data (less than 10K
instances per task) with supervised fine-tuning. We have two task scenarios: Structured Planning
Tasks, which are tasks with predefined search trees, while Open-ended Reasoning Tasks are tasks
with undefined solution spaces. Structured Planning Tasks include Game of 24 and Textualized
Gridworld, while Open-ended Reasoning Tasks include ProntoQA and GSM8K. Refer to Appendix
§H for more details regarding each task and supervision examples.

5.2 BASE RESULTS

Table 1 summarizes our experimental findings across all tasks, revealing key insights about different
reasoning approaches. TSLM consistently outperforms sequential models, achieving perfect accuracy
on structured tasks. Most notably, the Gridworld scaling results reveal a striking limitation of Tree-of-
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Thought: while ToT achieves excellent in-domain performance (95.0% on 10×10 grids), it suffers
catastrophic degradation when complexity scales (dropping to 26.0% on 20×20 grids).

This ToT scaling failure is particularly surprising given its strong in-domain performance and
sophisticated external search mechanisms. In contrast, TSLM maintains robust performance across the
complexity boundary (100% → 76.5%), demonstrating that internalized search procedures generalize
better than external search algorithms. For open-ended tasks, ToT shows strong performance on
GSM8K (85.0%) but this advantage disappears when systematic exploration is needed, as evidenced
by Game of 24 results where ToT performs no better than basic sequential methods (17.0%).

5.3 PARAMETER EFFICIENCY AND RAPID ADAPTATION

We evaluate TSLM’s efficiency along two critical dimensions: parameter scaling and learning speed.
These analyses reveal remarkable efficiency characteristics that distinguish TSLM from conventional
approaches.

Parameter Efficiency Analysis. TSLM demonstrates remarkable parameter efficiency, with
a 0.5B model achieving 68% scaling performance while 7B baseline models achieve only 19-
26%—representing a 14× parameter efficiency advantage. The scaling curve for TSLM is notably flat,
suggesting systematic exploration supervision captures algorithmic competencies largely independent
of parameter count. Detailed analysis across the Qwen 2.5 model family is provided in Appendix §F.

Rapid Adaptation Capability. TSLM also demonstrates superior learning efficiency on open-
domain tasks. As shown in Figure 3, TSLM achieves rapid convergence on ProntoQA, reaching
77.3% and 95.1% accuracy after just 750 and 1500 training samples respectively. Meanwhile, SC and
PC require significantly more data to reach comparable performance. Notably, GRPO shows poor
initial performance (slightly worse than SFT at the start) before eventually reaching 100% accuracy,
highlighting the cold-start problems inherent in RL-based approaches.

6 KEY ANALYSIS

Beyond core performance gains, TSLM exhibits several remarkable capabilities that distinguish it
from traditional approaches.

6.1 IDENTIFYING UNSOLVABLE CASES

One challenging aspect for language models is avoiding hallucination on problems that have no
valid solution. Sequential models like SC or PC implicitly learn to generate answers within their
training distribution, which can be problematic when faced with unsolvable cases. For example, in the
Game of 24 task, the numbers 1, 1, 2, and 3 cannot generate 24 through any sequence of arithmetic
operations. Since sequential models have not been trained on examples with no solution, they tend to
hallucinate and generate invalid answers.

TSLM, however, demonstrates a unique capability to identify unsolvable cases. We qualitatively
analyzed its behavior on the 1, 1, 2, 3 instance and found that TSLM correctly terminated without
generating any answer. This suggests the tree-structured exploration enables TSLM to systematically
explore the full solution space and recognize when no valid path exists. Unlike sequential models
that are pressured to always generate some answer, TSLM’s broader search allows it to confidently
determine and declare when a problem is unsolvable.

This capability emerges naturally from TSLM’s training on complete search trees rather than indi-
vidual solution paths. By learning to represent both successful and unsuccessful branches, TSLM
develops a more complete model of the solution space that includes recognizing unsolvable cases.

6.2 EXTRAPOLATION BEYOND TRAINING DATA

TSLM demonstrates strong extrapolation capabilities when tested on larger grid sizes than seen
during training. Testing on 20×20 grids after training on 10×10 grids, TSLM maintains 91.5%

7
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SC PC TSLM (ours)

33.0% 81.1% 91.5%

Table 2: Qualitative comparison of model extrapolation capabilities on Gridworlds of varying sizes
(maximum 20×20). Each heatmap shows performance at different grid dimensions (x,y), with darker
colors indicating better performance. The red box indicates the boundary of training data. Overall
accuracy shown above each plot.
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Figure 3: TSLM efficiency analysis. (Left) Rapid adaptation showing GRPO’s cold-start problems.
(Right) Parameter scaling on Gridworld complexity extrapolation, where 0.5B TSLM (68%) dramati-
cally outperforms 7B baselines, demonstrating 14× parameter efficiency. Methods: TSLM (•), PC
(□), SC (△), GRPO (⋄)

accuracy compared to PC’s 81.1% and SC’s 33.0% (Table 2). This suggests TSLM’s structured tree
representation learns generalizable navigation patterns rather than memorizing specific configurations.

6.3 RAPID ADAPTATION

These results demonstrate two key efficiency advantages of TSLM. First, the rapid adaptation analysis
reveals fundamental differences in learning dynamics: while TSLM shows consistent improvement
from the start, GRPO exhibits initial performance that is slightly worse than basic supervised learning
before eventually converging to 100% accuracy. This highlights the cold-start brittleness inherent in
RL-based approaches when base competence is low.

Second, the parameter scaling results on Gridworld extrapolation tasks reveal TSLM’s most remark-
able characteristic: algorithmic competencies that are largely independent of parameter count. The
flat scaling curve (68% → 75% from 0.5B to 7B) contrasts sharply with baseline methods that show
steep parameter dependence, suggesting TSLM teaches structured reasoning procedures rather than
relying on brute-force memorization. We provide detailed inference-time scaling analysis including
performance scaling and base model comparisons in Appendix §G.

6.4 INFERENCE-TIME SCALING PROPERTIES

A key finding is that TSLM’s internalized search procedures generalize better than external search
methods when complexity exceeds training boundaries. In Gridworld experiments, Tree-of-Thought
achieves 95% success on 10×10 training grids but collapses to 26% on 20×20 test grids, while
TSLM maintains robust performance (76.5%). This demonstrates that training-time acquisition of
search algorithms provides more robust generalization than inference-time application of external

8
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procedures. Detailed analysis of inference-time scaling dynamics, including BFS vs DFS trade-offs
and performance on GSM8K, is provided in Appendix §G.

7 DISCUSSION

7.1 SUPERVISED LEARNING VS. REINFORCEMENT LEARNING FOR REASONING

Our results challenge a growing trend in the field that emphasizes reinforcement learning for improv-
ing reasoning capabilities in language models. Recent models like DeepSeek Math, O1, and Phi-4
have demonstrated enhanced reasoning through extensive RL training, leading to a prevailing belief
that RL is necessary for developing robust reasoning.

Our findings suggest an alternative perspective: properly structured supervised learning of complete
tree-structured reasoning traces can achieve similar or better performance without the complexity and
computational demands of RL. This challenges the ”SFT Memorizes, RL Generalizes” paradigm
Chu et al. (2025), but offers a crucial nuance—when the supervised data contains the full exploration
process, not just input-output pairs, SFT can also lead to strong generalization.

The key insight appears to be whether the model learns the underlying algorithm or merely the answer.
By explicitly teaching the algorithm through complete traces, we enable the model to apply the same
reasoning process to more complex instances of the same problem class.

7.2 COMPARISON WITH ALGORITHMIC IMITATION

TSLM differs from algorithmic imitation approaches that embed reasoning into linear traces. Unlike
single-path imitation, TSLM represents multiple branching paths simultaneously and enables dynamic
exploration adjustment. Detailed comparison including representation differences, exploration
capabilities, and adaptability is provided in Appendix §E.

7.3 LIMITATIONS AND FUTURE WORK

TSLM faces computational overhead due to recomputing shared nodes during tree-based training,
and synthetic tree generation quality depends heavily on the supervision model’s capabilities. Current
transformer architectures are not optimized for tree-structured generation, and broader application to
complex domains like code generation requires further exploration. Detailed discussion and potential
solutions are provided in Appendix §D.

8 CONCLUSION

We introduce Tree-Structured Language Modeling (TSLM), which enables language models to
generate complete search trees within a single generation process using token-based serialization.
TSLM achieves superior performance across structured planning and open-ended reasoning tasks:
100% accuracy on Game of 24 (vs. 17% for baselines), robust extrapolation to larger environments
(76.5% vs. 26% for Tree-of-Thought), and remarkable 14× parameter efficiency where a 0.5B model
outperforms 7B baselines.

TSLM demonstrates that supervised learning on tree-structured traces can match or exceed reinforce-
ment learning approaches without their complexity. Key emergent capabilities include identifying
unsolvable problems, rapid adaptation with minimal data, and systematic exploration that generalizes
better than external search algorithms. The approach requires only standard language model fine-
tuning with special tokens to encode tree structure, making it compatible with existing transformer
architectures.

These results challenge prevailing assumptions about sequential generation and reinforcement learning
necessity for reasoning, demonstrating that properly structured supervised learning provides an
efficient path toward enhanced reasoning capabilities in language models.

9
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A FREQUENTLY ASKED QUESTIONS

Q1: How does TSLM differ from Tree-of-Thought (ToT) inference? A1: While ToT applies
external sampling and search algorithms to explore multiple reasoning paths at inference time, TSLM
directly teaches the model to generate and explore tree-structured reasoning within a single generation
process. This internal representation eliminates the need for multiple separate forward passes and
external orchestration, leading to more efficient and effective exploration.

Q2: Why doesn’t standard supervised learning on linear Chain-of-Thought achieve similar
extrapolation performance? A2: Standard CoT typically provides step-by-step verbal explanations
without explicitly representing the global problem space or systematically exploring solution paths.
TSLM differs by teaching models to construct and use complete tree-structured representations of the
environment, enabling more robust planning in novel, complex scenarios.

Q3: How does TSLM compare to reinforcement learning approaches like GRPO? A3: While
GRPO and other RL approaches can achieve reasonable performance, particularly on open-ended
tasks, they face challenges including complex reward engineering, computational intensity, and
training instability. TSLM provides a simpler alternative that achieves comparable or better per-
formance with straightforward supervised learning, particularly excelling on structured tasks like
puzzle-solving.

Q4: Does model size matter for TSLM? A4: Our experiments show that TSLM demonstrates
consistent performance improvements across model sizes. Interestingly, TSLM helps smaller models
achieve performance close to larger ones, suggesting that the structured tree representation provides a
stronger learning signal that can compensate for model size limitations. However, larger models still
benefit from TSLM, achieving the overall best performance.

Q5: Can TSLM be applied to more complex real-world tasks? A5: While our current exper-
iments focus on relatively constrained tasks, the principles of TSLM can extend to more complex
domains. For tasks with well-defined structure (like code generation or game playing), direct applica-
tion is straightforward. For more open-ended tasks, our bootstrapping approach provides a foundation
for constructing synthetic tree-structured training data. Future work will explore applications to more
diverse and complex reasoning domains.

B RELATED WORK

External Search-Augmented Language Models. A major line of work augments language models
with external search algorithms during inference. Tree-of-Thought Yao et al. (2023) applies breadth-
first and depth-first search externally, sampling multiple reasoning paths with external evaluation.
Graph-of-Thought Besta et al. (2024) extends this to general graph structures. Monte Carlo Tree
Search approaches include RAP (Reasoning via Planning) Hao et al. (2023), which employs MCTS
with world models, and LATS (Language Agent Tree Search) Zhou et al. (2023), which combines
MCTS with reflection mechanisms. TS-LLM Feng et al. (2024) and AlphaCode-style approaches Li
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et al. (2022) integrate MCTS with language generation. These methods achieve strong performance
but require multiple model invocations and external orchestration, limiting efficiency and integration
with model training.

Multi-Path Generation and Reasoning. Various approaches explore multiple reasoning paths
without structured search. Self-consistency decoding Wang et al. (2023) generates multiple indepen-
dent reasoning paths and selects the most consistent answer. Ensemble methods combine predictions
from multiple reasoning chains through diverse beam search and nucleus sampling variants. Recent
models like o1 OpenAI (2024) and DeepSeek-R1 DeepSeek-AI et al. (2025) generate extended
reasoning traces, but remain fundamentally sequential and may include redundant computation Chen
et al. (2025). These approaches explore multiple paths but typically generate them independently
without capturing structural relationships, unlike TSLM’s coherent tree structures.

Learning-Based Reasoning Enhancement. Reinforcement learning has emerged as a dominant
paradigm for improving reasoning capabilities. DeepSeek Math Shao et al. (2024) applies GRPO for
mathematical reasoning, while other work uses RL from human feedback for instruction following.
Actor-Critic methods and policy gradient approaches have shown promise in multi-step reasoning and
mathematical problem solving. Algorithmic reasoning approaches train models to imitate procedures
like sorting, graph traversal, and dynamic programming Kim et al. (2024); Yang et al. (2022), learning
to execute classical algorithms step-by-step. However, these methods either require complex RL
training or focus on single algorithmic traces rather than dynamic exploration strategies. TSLM
demonstrates that carefully structured supervised learning can achieve comparable performance
without RL’s complexity.

C TSLM SERIALIZATION EXAMPLE

This section provides a detailed worked example showing how TSLM serializes tree structures for
the Game of 24 task.

Problem Setup. Consider a Game of 24 problem with numbers [4, 5, 6, 10]. The goal is to find
arithmetic operations that result in 24.

Complete Tree Serialization. The tree structure is serialized as:

[BOS] Step 1
4 + 5 = 9 [SEP1]
4 * 6 = 24 [SEP1] [SEP3]
Step 2
6 + 10 = 16 [SEP1]
6 * 10 = 60 [SEP1] [SEP3]
Step 3
9 + 16 = 25 [SEP2]
9 - 16 = -7 [SEP2] [SEP3] [EOS]

This format captures:

• Multiple candidate actions at each step

• Viability markers ([SEP1] for expandable, [SEP2] for dead ends)

• Step boundaries ([SEP3])

• Both successful and unsuccessful exploration paths

D DETAILED LIMITATIONS AND FUTURE DIRECTIONS

This section provides an in-depth discussion of TSLM’s current limitations and potential solutions.
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Computational Efficiency. TSLM’s node-wise training approach can be computationally inefficient
compared to sequential methods. While the expanded supervision over tree nodes provides a richer
training signal, the lack of computation caching means shared nodes are recomputed multiple times
rather than reused. Future work could explore more efficient training strategies for scalability,
including:

• Developing tree-aware attention mechanisms that can cache shared computations

• Exploring gradient accumulation strategies that account for tree structure

• Investigating sparse training approaches that selectively update tree components

Supervision Quality. The synthetic data generation framework’s success heavily depends on the
supervision model’s capabilities and training distribution. For example, in GSM8K experiments,
using Llama-3-8B as a supervision model produces poor-quality search trees. Different model
families pose additional challenges - some generate Python code instead of reasoning steps, while
others include extraneous dialogue that doesn’t align with the desired reasoning format. We need to
carefully select supervision models with output distributions matching the target reasoning scheme.

Architectural Adaptation. Current transformer architectures are not optimized for tree-structured
generation. Developing architectures that naturally support tree-structured thinking could further
enhance performance. Potential directions include hierarchical attention mechanisms and specialized
positional encodings for tree structures.

Application to Complex Domains. Extending TSLM to more complex reasoning domains, in-
cluding code generation, multi-hop reasoning, and creative problem-solving, represents an exciting
direction for future work.

Combining with RL. While we’ve demonstrated TSLM’s effectiveness with supervised learning
alone, combining it with targeted reinforcement learning could potentially yield further improvements,
particularly for adapting to user preferences or optimizing for specific outcomes.

E DETAILED COMPARISON WITH ALGORITHMIC IMITATION

This section provides an in-depth comparison between TSLM and algorithmic imitation approaches.

Representation Differences. While algorithmic imitation approaches embed the complete reason-
ing process into a single sequential trace, TSLM explicitly represents multiple branching paths within
a unified generation process. This fundamental difference enables:

• TSLM: Multiple potential paths represented simultaneously

• Algorithmic Imitation: Single linear trace representation

Exploration Capabilities. The exploration mechanisms differ significantly:

• TSLM: Enables systematic exploration of multiple branches with dynamic backtracking

• Algorithmic Imitation: Follows a predefined algorithmic path without exploration

Adaptability and Flexibility. TSLM provides greater adaptability:

• TSLM: Can dynamically adjust exploration strategy based on intermediate results

• Algorithmic Imitation: Executes a fixed procedure without adaptation

These distinctions enable TSLM to more effectively handle tasks requiring complex search or
exploration, particularly when the optimal path is not immediately apparent.
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F PARAMETER EFFICIENCY DETAILED ANALYSIS

Experimental Setup. We conducted systematic experiments across the Qwen 2.5 model family
(0.5B, 1.5B, 3B, 7B parameters) on Gridworld scaling tasks, training on 10×10 grids and testing
extrapolation to 20×20 grids.

Detailed Results. Our experiments reveal striking parameter efficiency characteristics:

• TSLM scaling: 0.5B (68%) → 1.5B (71%) → 3B (73%) → 7B (75%)

• Standard CoT: 0.5B (15%) → 1.5B (18%) → 3B (21%) → 7B (26.5%)

• GRPO: 0.5B (12.7%) → 1.5B (15%) → 3B (17%) → 7B (19%)

• PC: 0.5B (3.0%) → 1.5B (3.5%) → 3B (5.5%) → 7B (6.0%)

Analysis. The flat scaling curve for TSLM (68% → 75% from 0.5B to 7B) suggests that systematic
exploration supervision captures algorithmic competencies largely independent of parameter count.
In contrast, baseline methods show steeper parameter dependence, indicating reliance on brute-force
memorization capacity. This fundamental difference demonstrates that TSLM teaches structured
reasoning procedures that generalize across model scales.

G DETAILED INFERENCE-TIME SCALING ANALYSIS

A key question is how TSLM performance scales with inference-time parameters like the number of
candidate paths explored. We investigate different search strategies and their implications for model
behavior. We compare three approaches for scaling inference:

• TSLM: Controls the number of candidates k by verifying the first k terminal states from
Breadth-First Search (BFS) of the generated tree structure

• Procedure cloning (PC): Verifies the first k terminal states from the sequential search trace

• Sequential cloning (SC): Uses Tree-of-Thought inference to generate the first k candidates
via BFS.

G.1 PERFORMANCE SCALING WITH NUMBER OF CANDIDATES

As shown in Figure 4, TSLM consistently outperforms baseline methods across different language
model variants. With Llama-3-8B (solid lines), TSLM achieves 67.2% accuracy with just 5 candidates
while PC and SC need 10 candidates to reach 63.6% and 61.9% respectively. Similar patterns emerge
with Llama-3-8B-Instruct (dashed lines), where TSLM reaches 70.2% accuracy compared to 61.6%
for PC and 67.9% for SC.
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Figure 4: Performance scaling across different models and methods on GSM8K. Methods: TSLM
(blue), PC (green), SC (purple). Models: Llama-3-8B (solid) and Llama-3-8B-Instruct (dashed).
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G.2 BFS VS DFS: EXPLORING SEARCH STRATEGIES

Within TSLM’s inference framework, the choice between Breadth-First Search (BFS) and Depth-First
Search (DFS) reveals fundamental differences in exploration priorities. We analyze these search
strategies when TSLM’s branching is guided by preference-based ordering.

Theoretical Analysis. Consider two distinct solution paths A = a1, ..., an and B = b1, ..., bm in a
preference-ordered search tree generated by TSLM.

BFS employs a dual prioritization strategy: it first considers path length (traversing A before B if
n < m), then uses preference signals to break ties. When paths have equal length (n = m), BFS
selects based on the first differing action’s reward—if R(ak) > R(bk) at the earliest divergence point
k, BFS favors path A. This means BFS prioritizes solution optimality first, using learned preferences
to resolve ties.

In contrast, DFS operates purely on learned preference ordering, disregarding path length consid-
erations. For the same paths A and B, DFS immediately follows the higher-reward action at any
divergence point k, regardless of whether this leads to longer solution paths. This approach means
DFS prioritizes learned preferences consistently, potentially sacrificing optimality for high-confidence
actions.

Empirical Results. Figure 5 shows that DFS achieves better top-1 accuracy by finding preferred
solutions first, but slightly underperforms BFS for top-3 to top-6 candidates since it does not prioritize
optimality. However, both methods converge to the same accuracy as they traverse the complete
tree. This validates our theoretical analysis that DFS provides faster convergence to high-confidence
solutions while BFS offers better overall exploration coverage.
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Figure 5: Comparison of BFS (blue) and DFS (orange) search strategies on Llama-3-8B.

G.3 BASE MODEL PERFORMANCE IMPACT

We investigated whether the base model’s performance influences TSLM’s effectiveness by com-
paring performance across both Llama-3-8B and Llama-3-8B-Instruct variants. TSLM consistently
outperforms baseline methods across both model variants, with improvements remaining robust
across architectures. This indicates that TSLM’s structured exploration provides consistent benefits
independent of the base model.

H TASK DETAILS AND EXAMPLES

H.1 GENERAL TASK SETUP DETAILS

Table 3 illustrates the general task settings for structured and open-ended tasks. Depth refers to the
number of reasoning steps.
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Figure 6: GSM8K accuracy across base models. Blue: Llama-3-8B, Red: Llama-3-8B-Instruct.
Dashed lines show 4-shot performance.

Task # Depth(Train) # Depth(Test) # Train Instance # Test Instance Evaluation Metric
Game of 24 3 3 1.2K 100 Equation Validation
Textualized Gridworld 10× 10 10× 10 10K 1.5K Exact Matching
ProntoQA 1-5 1-5 4.5K 450 Exact Matching
GSM8K 2-9 2-11 7.5K 1.3K Answer Matching

Table 3: General task settings

H.2 TASK SCENARIO 1: STRUCTURED PLANNING

We first evaluate TSLM and baselines on two different structured planning tasks (Left in Figure
7). These tasks involve predefined search trees, enabling us to evaluate how well models reproduce
algorithmic patterns:

Game of 24 Given four numbers, the task is to obtain 24 with basic arithmetic operations
(+,−,×,÷). For example, with inputs 8, 4, 3, and 6, a valid solution is (8 + 4) × (6 ÷ 3) = 24
Yao et al. (2023). Each action selects two operands and an operator, while states represent partial
expressions. Since there may be multiple paths that reaches the answer (e.g. (8 + 4)× (6÷ 3) and
(6÷3)× (4+8)), we check if the final expression equals 24. We train each method on 1.2K instances
and test on 100 instances.

Textualized Gridworld A text-based navigation task where an agent navigates a grid using cardinal
directions (up, down, left, right) while avoiding obstacles. Given a start position (typically bottom
left) and goal position (typically top right), the agent must find a valid path with shortest length. For
instance, in a 3x2 grid with a pit at (1,1), the optimal solution is (right, right, up). Actions are single
moves (up/down/left/right) and states are grid coordinates. We ensure all the environments to have

up right

right right up

up

right, right, up

8, 4, 3, 6

8+4=12 4+3=7

12, 3, 6

12, 2

24

6/3=2

12*2=24

12, 18

3*6=18

12+2=14

14

7, 8, 6

…

……
(8+4)*(6/3)=24

True or false: Sam is not warm-blooded

Sam is a feline+Felines are carnivores

Sam is a carnivore

Sam is a mammal

Sam is warm-blooded

Carnivores are mammals

Every mammal is warm-blooded

Sam is not herbivorous

Carnivores are not 
herbivorous

…

…

Answer: False

Sally drives 30 miles at 60 mph 
and returns 30 miles at 40 mph. 
What is her average speed?

Take the average 
speed

Total time: 
<<30/60+30/40=1.25>>

Avg speed: 
<<60/1.25=48>>

Avg speed: 
<<(60+40)/2=50>>

Calculate the total 
travel time

15, 6

7+8=15

21

15+6=21

Textualized Gridworld ProntoQA GSM8KGame of 24

Predefined Search Space Open-ended Reasoning

Figure 7: (Left) Structured planning tasks with predefined search spaces (e.g., Game of 24, Textualized
Gridworld) where success is measured by the model’s ability to reproduce algorithmic search patterns.
(Right) General open-ended reasoning tasks (e.g., ProntoQA, GSM8K) requiring adaptive exploration
of undefined search spaces.
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unique shortest paths. We use 10K training instances with maximum grid size 10x10 and 1.5K test
instances up to the same maximum size, evaluating exact path matching.

H.3 TASK SCENARIO 2: OPEN-ENDED REASONING TASKS

We next evaluate TSLM and baselines on two open-ended reasoning tasks (Right on Figure 7)
requiring exploration of undefined solution spaces. We use the synthetic tree generation method from
§4.2 for training.

ProntoQA ProntoQA Saparov & He (2023) is a logical reasoning dataset where models verify
statement truth given premises. For example, given a premise “Every jompus is not small. Each
impus is small. Each jompus is a dumpus. Alex is a jompus.” and a query “True or false: Alex is not
small?”, the solution path to verify the query should be “Alex is a jompus. Every jompus is not small.
Alex is not small. So the answer is True.”

Actions are logical deduction steps and states are accumulated facts. With unique valid deduction
paths, we verify whether the generated path is correct. We use 4.5K training and 450 test instances.
For TSLM/PC, we use tree generation of beam search (k=5, temp=0.3) with Llama-3-8B as a base
model for supervision.

GSM8K GSM8K Cobbe et al. (2021) is a mathematical word problem dataset requiring multi-step
reasoning. For example, for a given problem “James runs 3 sprints 3 times a week. Each sprint is 60
meters. How many total meters per week?”, one valid solution would be “3 sprints × 3 times = 9
sprints per week. 9 sprints × 60 meters = 540 meters. The answer is 540.”

Actions are solution steps and states are partial solutions. Since multiple valid solution paths can reach
the correct answer, we just validate whether the answer is correct. We use 7.5K training instances
and 1.3K test instances. For TSLM/PC, we use tree generation of beam search (k=5, temp=0.1) with
Llama-3-8B-Instruct as a base model for supervision.

H.4 TASK EXAMPLES

For the following task examples, [SEP1] is a special token indicating that the action is good and can
be further expanded, [SEP2] is a special token indicating that the action is not good and can’t be
expanded anymore, [SEP3] is a special token indicating the end of the current step, and [SEP4] is a
special token indicating the success.

Gridworld SC Instance:
USER: You are given a rectangular gridworld, where you can move up, down, left, or right
as long as each of your x, y coordinate is within 0 to the x, y size of the grid. If you move
up, your y coordinate increases by 1. If you move down, your y coordinate decreases by 1.
If you move left, your x coordinate decreases by 1. If you move right, your x coordinate
increases by 1.
You will interact with the girdworld environment to reach the goal state, while avoiding the
pit and the wall. You cannot move through the wall or move outside the grid. If you fall
into the pit, you lose. If you reach the goal, you win. For each of your turn, you will be
given the possible moves.
You should respond your move with either one of ’up’, ’down’, ’left’, or ’right’.
ASSISTANT: OK
USER: Grid is from (7, 7) to (18, 13). Goal: (18, 13) Current: (7, 7) The pit is at (16, 9),
(17, 7), (14, 8), (11, 9), and (16, 11). The wall is at (11, 7), (15, 10), (18, 12), (9, 9), (8, 7),
(17, 10), (9, 12), (12, 7), (10, 13), (15, 12), (17, 9), (9, 11), (17, 12), (8, 9), (13, 11), (10, 9),
(12, 9), (11, 11), (12, 12), (16, 10), (15, 8), (9, 7), (8, 11), (7, 13), (13, 13), and (13, 10).
ASSISTANT:
Step 1
up
(7, 8)[SEP1][SEP3]
Step 2
up
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(7, 9)[SEP1][SEP3]
Step 3
up
(7, 10)[SEP1][SEP3]
Step 4
up
(7, 11)[SEP1][SEP3]

Gridworld PC Instance:
USER: You are given a rectangular gridworld, where you can move up, down, left, or right
as long as each of your x, y coordinate is within 0 to the x, y size of the grid. If you move
up, your y coordinate increases by 1. If you move down, your y coordinate decreases by 1.
If you move left, your x coordinate decreases by 1. If you move right, your x coordinate
increases by 1.
You will interact with the girdworld environment to reach the goal state, while avoiding the
pit and the wall. You cannot move through the wall or move outside the grid. If you fall
into the pit, you lose. If you reach the goal, you win. For each of your turn, you will be
given the possible moves.
You should respond your move with either one of ’up’, ’down’, ’left’, or ’right’.
ASSISTANT: OK
USER: Grid is from (7, 7) to (18, 13). Goal: (18, 13) Current: (7, 7) The pit is at (16, 9),
(17, 7), (14, 8), (11, 9), and (16, 11). The wall is at (11, 7), (15, 10), (18, 12), (9, 9), (8, 7),
(17, 10), (9, 12), (12, 7), (10, 13), (15, 12), (17, 9), (9, 11), (17, 12), (8, 9), (13, 11), (10, 9),
(12, 9), (11, 11), (12, 12), (16, 10), (15, 8), (9, 7), (8, 11), (7, 13), (13, 13), and (13, 10).
ASSISTANT:
Step 1
up
(7, 8)[SEP1]
down
(7, 6)[SEP2]
left
(6, 7)[SEP2]
right
(8, 7)[SEP2][SEP3]
Step 2
up
(7, 9)[SEP1]
down
(7, 7)[SEP2]
left
(6, 8)[SEP2]
right
(8, 8)[SEP1][SEP3]

Gridworld TSLM Instance:
USER: You are given a rectangular gridworld, where you can move up, down, left, or right
as long as each of your x, y coordinate is within 0 to the x, y size of the grid. If you move
up, your y coordinate increases by 1. If you move down, your y coordinate decreases by 1.
If you move left, your x coordinate decreases by 1. If you move right, your x coordinate
increases by 1.
You will interact with the girdworld environment to reach the goal state, while avoiding the
pit and the wall. You cannot move through the wall or move outside the grid. If you fall
into the pit, you lose. If you reach the goal, you win. For each of your turn, you will be
given the possible moves.
You should respond your move with either one of ’up’, ’down’, ’left’, or ’right’.
ASSISTANT: OK
USER: Grid is from (7, 7) to (18, 13). Goal: (18, 13) Current: (7, 7) The pit is at (16, 9),
(17, 7), (14, 8), (11, 9), and (16, 11). The wall is at (11, 7), (15, 10), (18, 12), (9, 9), (8, 7),
(17, 10), (9, 12), (12, 7), (10, 13), (15, 12), (17, 9), (9, 11), (17, 12), (8, 9), (13, 11), (10, 9),
(12, 9), (11, 11), (12, 12), (16, 10), (15, 8), (9, 7), (8, 11), (7, 13), (13, 13), and (13, 10).
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ASSISTANT:
Step 1
up
(7, 8)[SEP1][SEP3]
Step 2
up
(7, 9)[SEP1][SEP3]
Step 3
up
(7, 10)[SEP1][SEP3]
Step 4
up
(7, 11)[SEP1]
down
(7, 9)[SEP2]
left
(6, 10)[SEP2]
right
(8, 10)[SEP1][SEP3]

Game24 SC Instance:
USER: Input: 4, 5, 6, 10
ASSISTANT: Step 1
4 + 5 = 9[SEP1]
Step 2
6 + 10 = 16[SEP1][SEP3]

Game24 PC Instance:
USER: Input: 4, 5, 6, 10
ASSISTANT: Step 1
4 + 5 = 9[SEP1]
4 - 5 = -1[SEP1]
4 * 5 = 20[SEP1]
4 / 5 = 4/5[SEP1]
4 + 6 = 10[SEP1]
4 - 6 = -2[SEP1]
4 * 6 = 24[SEP1]
4 / 6 = 2/3[SEP1]
4 + 10 = 14[SEP1]
4 - 10 = -6[SEP1]
4 * 10 = 40[SEP1]
4 / 10 = 2/5[SEP1]
5 + 4 = 9[SEP1]
5 - 4 = 1[SEP1]
5 * 4 = 20[SEP1]
5 / 4 = 5/4[SEP1]
5 + 6 = 11[SEP1]
5 - 6 = -1[SEP1]
5 * 6 = 30[SEP1]
5 / 6 = 5/6[SEP1]
5 + 10 = 15[SEP1]
5 - 10 = -5[SEP1]
5 * 10 = 50[SEP1]
5 / 10 = 1/2[SEP1]
6 + 4 = 10[SEP1]
6 - 4 = 2[SEP1]
6 * 4 = 24[SEP1]
6 / 4 = 3/2[SEP1]
6 + 5 = 11[SEP1]
6 - 5 = 1[SEP1]
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6 * 5 = 30[SEP1]
6 / 5 = 6/5[SEP1]
6 + 10 = 16[SEP1]
6 - 10 = -4[SEP1]
6 * 10 = 60[SEP1]
6 / 10 = 3/5[SEP1]
10 + 4 = 14[SEP1]
10 - 4 = 6[SEP1]
10 * 4 = 40[SEP1]
10 / 4 = 5/2[SEP1]
10 + 5 = 15[SEP1]
10 - 5 = 5[SEP1]
10 * 5 = 50[SEP1]
10 / 5 = 2[SEP1]
10 + 6 = 16[SEP1]
10 - 6 = 4[SEP1]
10 * 6 = 60[SEP1]
10 / 6 = 5/3[SEP1][SEP3]
Step 2
6 + 10 = 16[SEP1]
6 - 10 = -4[SEP1]
6 * 10 = 60[SEP1]
6 / 10 = 3/5[SEP1]
6 + 9 = 15[SEP1]
6 - 9 = -3[SEP1]
6 * 9 = 54[SEP1]
6 / 9 = 2/3[SEP1]
10 + 6 = 16[SEP1]
10 - 6 = 4[SEP1]
10 * 6 = 60[SEP1]
10 / 6 = 5/3[SEP1]
10 + 9 = 19[SEP1]
10 - 9 = 1[SEP1]
10 * 9 = 90[SEP1]
10 / 9 = 10/9[SEP1]
9 + 6 = 15[SEP1]
9 - 6 = 3[SEP1]
9 * 6 = 54[SEP1]
9 / 6 = 3/2[SEP1]
9 + 10 = 19[SEP1]
9 - 10 = -1[SEP1]
9 * 10 = 90[SEP1]
9 / 10 = 9/10[SEP1][SEP3]
6 + 10 = 16[SEP1]
6 - 10 = -4[SEP1]
6 * 10 = 60[SEP1]
6 / 10 = 3/5[SEP1]
6 + -1 = 5[SEP1]
6 - -1 = 7[SEP1]
6 * -1 = -6[SEP1]
6 / -1 = -6[SEP1]
10 + 6 = 16[SEP1]
10 - 6 = 4[SEP1]
10 * 6 = 60[SEP1]
10 / 6 = 5/3[SEP1]
10 + -1 = 9[SEP1]
10 - -1 = 11[SEP1]
10 * -1 = -10[SEP1]
10 / -1 = -10[SEP1]
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-1 + 6 = 5[SEP1]
-1 - 6 = -7[SEP1]
-1 * 6 = -6[SEP1]
-1 / 6 = -1/6[SEP1]
-1 + 10 = 9[SEP1]
-1 - 10 = -11[SEP1]
-1 * 10 = -10[SEP1]
-1 / 10 = -1/10[SEP1][SEP3]
6 + 10 = 16[SEP1]
6 - 10 = -4[SEP1]
6 * 10 = 60[SEP1]
6 / 10 = 3/5[SEP1]
6 + 20 = 26[SEP1]
6 - 20 = -14[SEP1]
6 * 20 = 120[SEP1]
6 / 20 = 3/10[SEP1]
10 + 6 = 16[SEP1]
10 - 6 = 4[SEP1]
10 * 6 = 60[SEP1]
10 / 6 = 5/3[SEP1]
10 + 20 = 30[SEP1]
10 - 20 = -10[SEP1]
10 * 20 = 200[SEP1]
10 / 20 = 1/2[SEP1]
20 + 6 = 26[SEP1]
20 - 6 = 14[SEP1]
20 * 6 = 120[SEP1]
20 / 6 = 10/3[SEP1]
20 + 10 = 30[SEP1]
20 - 10 = 10[SEP1]
20 * 10 = 200[SEP1]
20 / 10 = 2[SEP1][SEP3]

Game24 TSLM Instance:
USER: Input: 4, 5, 6, 10
ASSISTANT: Step 1
4 + 5 = 9[SEP1]
Step 2
6 + 10 = 16[SEP1]
6 - 10 = -4[SEP1]
6 * 10 = 60[SEP1]
6 / 10 = 3/5[SEP1]
6 + 9 = 15[SEP1]
6 - 9 = -3[SEP1]
6 * 9 = 54[SEP1]
6 / 9 = 2/3[SEP1]
10 + 6 = 16[SEP1]
10 - 6 = 4[SEP1]
10 * 6 = 60[SEP1]
10 / 6 = 5/3[SEP1]
10 + 9 = 19[SEP1]
10 - 9 = 1[SEP1]
10 * 9 = 90[SEP1]
10 / 9 = 10/9[SEP1]
9 + 6 = 15[SEP1]
9 - 6 = 3[SEP1]
9 * 6 = 54[SEP1]
9 / 6 = 3/2[SEP1]
9 + 10 = 19[SEP1]
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9 - 10 = -1[SEP1]
9 * 10 = 90[SEP1]
9 / 10 = 9/10[SEP1][SEP3]

ProntoQA SC Instance:
USER: Arthropods are small. Insects are not eight-legged. Lepidopterans are insects.
Invertebrates are animals. Every spider is eight-legged. Insects are arthropods. Every
butterfly is a lepidopteran. Animals are multicellular. Arthropods are invertebrates. Sam is
a butterfly.
True or false: Sam is not eight-legged.
ASSISTANT:
Step 1
Sam is a butterfly.[SEP1][SEP3]
Step 2
Every butterfly is a lepidopteran.[SEP1][SEP3]
Step 3
Sam is a lepidopteran.[SEP1][SEP3]
Step 4
Lepidopterans are insects.[SEP1][SEP3]
Step 5
Sam is an insect.[SEP1][SEP3]
Step 6
Insects are not eight-legged.[SEP1][SEP3]
Step 7
Sam is not eight-legged.[SEP1][SEP3]
Step 8
The answer is true.[SEP4][SEP3]

ProntoQA PC Instance: c Arthropods are small. Insects are not eight-legged. Lepi-
dopterans are insects. Invertebrates are animals. Every spider is eight-legged. Insects are
arthropods. Every butterfly is a lepidopteran. Animals are multicellular. Arthropods are
invertebrates. Sam is a butterfly.
True or false: Sam is not eight-legged.
ASSISTANT:
Step 1
Sam is a butterfly.[SEP1][SEP3]
Step 2
Every butterfly is a lepidopteran.[SEP1][SEP3]
Step 3
Sam is a lepidopteran.[SEP1][SEP3]
Step 4
Lepidopterans are insects.[SEP1][SEP3]
Step 5
Sam is an insect.[SEP1][SEP3]
Step 6
Insects are not eight-legged.[SEP1]
Insects are arthropods.[SEP1][SEP3]
Step 7
Sam is not eight-legged.[SEP1][SEP3]
Sam is an arthropod.[SEP1][SEP3]

ProntoQA TSLM Instance:
USER: Arthropods are small. Insects are not eight-legged. Lepidopterans are insects.
Invertebrates are animals. Every spider is eight-legged. Insects are arthropods. Every
butterfly is a lepidopteran. Animals are multicellular. Arthropods are invertebrates. Sam is
a butterfly.
True or false: Sam is not eight-legged.
ASSISTANT:
Step 1
Sam is a butterfly.[SEP1][SEP3]
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Step 2
Every butterfly is a lepidopteran.[SEP1][SEP3]
Step 3
Sam is a lepidopteran.[SEP1][SEP3]
Step 4
Lepidopterans are insects.[SEP1][SEP3]
Step 5
Sam is an insect.[SEP1][SEP3]
Step 6
Insects are not eight-legged.[SEP1][SEP3]
Step 7
Sam is not eight-legged.[SEP1]
Sam is an arthropod.[SEP1][SEP3]

GSM8K SC Instance:
USER: Kylar went to the store to buy glasses for his new apartment. One glass costs $5,
but every second glass costs only 60% of the price. Kylar wants to buy 16 glasses. How
much does he need to pay for them?
ASSISTANT:
Step 1
Every second glass costs 5 ∗ 0.6 = $ << 5 ∗ 0.6 = 3 >> 3.[SEP1][SEP3]
Step 2
So for 16 glasses, Kylar needs to pay 3 ∗ 8 = $ << 16/2 = 8 >> for every second
glass.[SEP1][SEP3]

GSM8K PC Instance:
USER: A robe takes 2 bolts of blue fiber and half that much white fiber. How many bolts
in total does it take?
ASSISTANT:
Step 1
It takes 2 ∗ 0.5 =<< 2 ∗ 0.5 = 1 >> 1 bolt of white fiber.[SEP1]
The robe takes 2 bolts of blue fiber.[SEP1][SEP3]
Step 2
So it takes 2 + 1 =<< 2 + 1 = 3 >> 3 bolts in total.[SEP1][SEP3]
It also takes half as much white fiber, which means it takes 1 bolt of white fiber (since half
of 2 is 1).[SEP1][SEP3]
Step 3
The answer is 3.[SEP4][SEP3]

GSM8K TSLM Instance:
USER: Kylar went to the store to buy glasses for his new apartment. One glass costs $5,
but every second glass costs only 60% of the price. Kylar wants to buy 16 glasses. How
much does he need to pay for them?
ASSISTANT:
Step 1
Every second glass costs 5 ∗ 0.6 = $ << 5 ∗ 0.6 = 3 >> 3.[SEP1][SEP3]
Step 2
So for 16 glasses, Kylar needs to pay 3 ∗ 8 = $ << 16/2 = 8 >> for every second
glass.[SEP1]
So for 8 glasses, it would cost 8× 3 = 24 dollars. For the remaining 8 glasses, it would
cost 8× 5 = 40 dollars. So in total, it would cost 24 + 40 = 64 dollars.[SEP1][SEP3]

I USE OF LARGE LANGUAGE MODELS

We acknowledge the use of large language models to assist in the preparation of this manuscript.
Specifically:

Writing assistance. Large language models were used to aid in polishing and refining the writing
throughout the paper, including improving clarity, grammar, and expression of technical concepts.
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Related work discovery. Large language models were employed for retrieval and discovery tasks,
particularly in identifying and organizing relevant related work and ensuring comprehensive coverage
of the literature.

All technical contributions, experimental design, implementation, analysis, and conclusions presented
in this work are the original work of the authors. The use of LLMs was limited to editorial assistance
and literature search support, and did not influence the core scientific contributions or findings
reported in this paper.
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