
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TRANSFORMERS CAN NAVIGATE MAZES WITH
MULTI-STEP PREDICTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Despite their remarkable success in language modeling, transformers trained to
predict the next token in a sequence struggle with long-term planning. This lim-
itation is particularly evident in tasks requiring foresight to plan multiple steps
ahead such as maze navigation. The standard next single token prediction objec-
tive, however, offers no explicit mechanism to predict multiple steps ahead—or
revisit the path taken so far. Consequently, in this work we study whether explic-
itly predicting multiple steps ahead (and backwards) can improve transformers’
maze navigation. We train parameter-matched transformers from scratch, under
identical settings, to navigate mazes of varying types and sizes with standard next
token prediction and MLM-U , an objective explicitly predicting multiple steps
ahead and backwards. We find that MLM-U considerably improves transform-
ers’ ability to navigate mazes compared to standard next token prediction across
maze types and complexities. We also find MLM-U training is 4× more sample
efficient and converges 2× faster in terms of GPU training hours relative to next
token training. Finally, for more complex mazes we find MLM-U benefits from
scaling to larger transformers. Remarkably, we find transformers trained with
MLM-U outperform larger transformers trained with next token prediction using
additional supervision from A* search traces. We hope these findings underscore
the promise of learning objectives to advance transformers’ capacity for long-term
planning.

1 INTRODUCTION

Transformers trained to predict the next token in a sequence have become the de facto approach
in today’s best language models (Dubey et al., 2024; Gemma, 2024). Despite their remarkable
success, such transformers encounter challenges when tasked with planning and decision-making
over extended horizons. This limitation becomes particularly evident in tasks requiring foresight
such as maze navigation.

To effectively navigate a maze, a model must have the foresight to plan ahead multiple steps. The
de facto next token prediction training approach, however, offers no explicit mechanism to predict
multiple steps ahead or revisit the path taken so far. The model is trained to only predict the next
step in the input sequence given the previous steps. Prior work has shown next token prediction
can fall prey to shortcuts in navigation tasks, particularly as path complexity increases (Bachmann
& Nagarajan, 2024). Consequently, we ask: Can explicitly learning to predict multiple steps ahead
(and backwards) improve transformers’ ability to navigate mazes?

To answer this question, we isolate the effect of learning objectives by training transformers from
scratch to navigate mazes. Inspired by prior work to remedy shortcomings of next token prediction
(Bachmann & Nagarajan, 2024; Gloeckle et al., 2024), we explore the the MLM-U objective from
Kitouni et al. (2024a) as an alternative to next token prediction. MLM-U proposes masking arbitrary
subsets of the input sequence to explicitly predict a variable number of steps ahead and backward as
shown in Figure 1. We then assess whether MLM-U by explicitly predicting multiple-steps during
training can improve transformers’ performance on maze navigation.

We operate with a collection of mazes with varying levels of grid-size complexities. Two common
types of mazes generation approaches are studied that differ in shortest path solution lengths as well

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Maze Navigation Training

Next Token MLM-U

context

training target training targets

na
vi

ga
tio

n
ac

cu
ra

cy

0

25

50

75

100

maze complexity
5x5 10x10 15x15 20x20 30x30

18.820.6
24.4

46

100

93.8

100100100100

MLM Next Token

Held-Out Maze Navigation

Start

End

Start

End

-U

Figure 1: MLM-U predicts multiple steps ahead and backward. Standard autoregressive training
only (explicitly) predicts the next step. We compare 8M parameter transformer models trained with
autoregressive next token prediction versus MLM-U training objectives. Maze complexity is defined
in terms of the maze grid size.

as maze text representations. For one setting, we train transformer models for both objectives, stan-
dard next token prediction and MLM-U . In the other setting, we compare MLM-U against published
results on next token training from Lehnert et al. (2024). Finally, we compare learning objectives
across several transformer model sizes by measuring maze navigation, data sample efficiency, as
well as training efficiency in terms of GPU hours to convergence.

Our results indicate MLM-U can improve maze navigation accuracy and training efficiency com-
pared to standard next token prediction. Remarkably, we find a transformer trained with MLM-U
outperforms larger transformers trained with next token prediction using additional supervision from
A* search traces (Lehnert et al., 2024). Specifically, relative to standard next token prediction train-
ing, we find that:

1. MLM-U considerably improves transformers’ ability to navigate mazes.

• MLM-U outperforms comparable next token transformer models across every maze
type and grid size complexity tested. For example, an 8M parameter transformer
trained with MLM-U can perfectly solve all mazes of grid sizes up to 20x20, whereas
next token training peaks at 20.6% navigation accuracy on held-out 20x20 test mazes
(shown in Figure 1).

• MLM-U outperforms next token transformers trained with additional A* search trace
supervision on complex mazes. For example, on 30x30 mazes an 8M parameter trans-
former reaches 85.5% navigation accuracy with MLM-U , improving on the 70.2%
navigation accuracy of a 175M parameter transformer trained with next token predic-
tion and additional A* search trace supervision.

2. MLM-U training is 4x more data-efficient in terms of training samples. For simpler mazes
(5x5) solved by both MLM-U and next token prediction, MLM-U is 2x more efficient in
GPU hours needed for convergence.

3. MLM-U benefits from scaling to larger transformers for more complex mazes. For example
scaling MLM-U from a 3M to an 8M parameter transformer boosts performance from 85%
to perfect navigation on 20x20 mazes.

These findings suggest that the learning objective is critical to transformer’s maze navigation abili-
ties, offering a promising direction for future research in long-horizon planning tasks.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 RELATED WORK

Standard next token trained transformers struggle with navigation and planning Ivanitskiy
et al. (2023b) show transformers trained on maze navigation tasks learn internal states that allow a
decoding of the entire maze. Despite this emergent state however, Bachmann & Nagarajan (2024)
shows the limits of next token prediction objectives for basic graph navigation tasks. In particular,
the work identifies a Clever-Hans cheat based on shortcuts in teacher forced training similar to theo-
retical shortcomings identified in Wang et al. (2024b). This demonstrates that while transformers can
represent world states for mazes, they may struggle in planning that requires significant foresight. A
remedy found by Bachmann & Nagarajan involves removing the teacher forced supervision. Their
view inspired us to look further into the training objective to encourage more explicit planning.

Deep Learning approaches to maze navigation Many deep learning approaches for maze nav-
igation use reinforcement-learning objectives (Akmandor et al., 2022; Wang et al., 2024a; Tamar
et al., 2016; Wang et al., 2024c; Kong et al., 2024). Liu & Borisyuk (2023) compares the navigation
strategies learned by reinforcement learning to those observed in animals suggesting some similari-
ties in learning dynamics. Janner et al. (2022) study reinforcement learning reward modeling with a
diffusion objective with applications to planning tasks including maze navigation. While reinforce-
ment learning approaches excel at tasks involving interaction and games, reinforcement learning
has played a relatively minor role in foundation model pretraining.Outside of reinforcement learn-
ing approaches, Lehnert et al. (2024) successfully train transformers with the next token objective
to perform maze navigation. Crucially, they can vastly improve performance via additional supervi-
sion. By exposing the model to a trace of an A* algorithm solving the maze, they gain significant
performance and data efficiency. Interestingly, just like in Bachmann & Nagarajan (2024), the rem-
edy to failure on a navigation task seems to involve changing the supervision structure. We directly
compare this approach with the MLM-U objective trained without any supervision from A* search
traces.

Diffusion Learning Objectives Kitouni et al. (2024a) used MLM-U , which can be seen as a
diffusion objective (Austin et al., 2021; Kitouni et al., 2024b), to mitigate the reversal curse in
language modelling (Berglund et al., 2024), where models trained to answer questions in one way
can not generalize to an inverse, semantically equivalent formulation. They also show that MLM-U
performs well in the graph navigation task from Bachmann & Nagarajan (2024). Sahoo et al. (2024);
Austin et al. (2021); Li et al. (2022) incorporate diffusion objectives in masked language modeling
for general purpose language models. He et al. (2022) adds a diffusion objective to further train a
pretrained BERT model showing improvements over standard BERT training in terms of perplexity
and BLEU score on language tasks.

3 THE ROLE OF LEARNING OBJECTIVES IN MAZE NAVIGATION

We examine how the standard next token learning objective manifests itself in maze navigation,
a task requiring planning multiple steps head. We contrast next token prediction with MLM-U , a
training objective explicitly encouraging predicting multiple steps ahead and backward.

3.1 PREDICTING THE NEXT STEP WITH STANDARD TRAINING

The de facto learning objective used to train language models is next token prediction. This objec-
tive, which is also referred to as an autoregressive (AR) or causal-masked prediction objective, when
paired with the transformer architecture has shown great success in language tasks at scale. Specifi-
cally, given a sequence of inputs x1, x2, x3, . . . , xn, the next token learning objective minimizes

Lnext token = −
∑
t

logPθ(xt+1|x1:t) (1)

where t indicates the index of the input sequence. This simple objective maximizing the probability
of the next token given the previous tokens in the sequence has led to remarkable fluency in language
tasks (Dubey et al., 2024; Gemma, 2024). However, transformers trained with next token prediction
exhibit limits in terms of planning.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Standard next token prediction does not seem to encourage explicit multi-step planning. In
maze navigation, as shown in Figure 1, next token prediction amounts to predicting only the next step
given the path so far. The learning objective in Equation (1) does not explicitly encourage predicting
multiple steps ahead. Bachmann & Nagarajan (2024) suggests the lack of multi-step prediction in
standard next token training limits transformers’ ability to navigate even simple graphs. One pitfall
highlighted by Bachmann & Nagarajan (2024) is that models fall prey to short-sighted shortcuts
such as the Clever-Hans cheat, show because the model does not plan far enough ahead. Dziri
et al. (2024) show similar limits for other multi-step problems, especially as problem complexity
increases.

3.2 PREDICTING MULTIPLE STEPS AHEAD AND BACK WITH MLM-U

One remedy discovered by Bachmann & Nagarajan (2024) avoids supervision through teacher-
forcing by allowing the model to predict the entire path before applying a gradient. However, this
approach is slow to train, since it requires the sequential generation steps. Gloeckle et al. (2024) pro-
vide an elegant way to reason multiple tokens into the future by having multiple prediction heads.
They found this method to have beneficial effects on decoder models of size 13B and above when
employing up to 8 prediction heads for the 8 next tokens. Motivated by Gloeckle et al. (2024) we
consider an explicit objective predicting multiple tokens both ahead and backwards with a vari-
able, rather than fixed context size. Specifically, we study the MLM-U objective from Kitouni et al.
(2024a) which predicts any subset of tokens given any others as context, hoping to capture long-term
context dependence and explicit multi-step prediction.

MLM-U explicitly makes predictions multiple steps ahead MLM-U proposes masking arbitrary
subsets of the input sequence to explicitly encourage the model to predict multiple steps ahead
and backwards. The masking ratio, which determines the portion of the input that is masked, is
drawn uniformly from [0, 1] thereby encouraging a variable prediction window. Specifically, for
a uniformly sampled mask mµ with masking rate µ over the input sequence, the MLM-U learning
objective minimizes

LMLM-U = − E
µ∈U

logPθ(mµX|mC
µX) (2)

where mC
µX is the context used for prediction, equivalent to the complement of the masked target

elements. Incidentally, this method is reminiscent of BERT (Devlin et al., 2019), but with a uniform
masking rate and without token substitution. (Kitouni et al., 2024a, see their Figure 2) argue that
since the uniform masking rate exposes the model to different length sequences to be completed and
to draw information from, there is no distributional shift in a generative inference step.

For maze navigation, as shown in Figure 1, the MLM-U objective in Equation (2) amounts to pre-
dicting multiple steps at various points in the navigation path thereby explicitly planning ahead and
back multiple steps.

We study the role of the learning objective in maze navigation by comparing standard next token
prediction to MLM-U . We ask: can modifying only the learning objective to predict multiple steps
ahead and back enable transformers to navigate complex mazes?

4 METHODS

To study the role of learning objectives for maze navigation, we train transformer models from
scratch to generate the shortest navigation path for mazes of increasing complexity. We design
our experiments such that transformer models are parameter-matched and trained under identical
regimes to isolate the effect of next token versus MLM-U learning objectives. We assess models’
ability to accurately navigate previously unseen mazes as well as their efficiency in terms of training
samples and GPU training hours.

4.1 MAZES AND THEIR REPRESENTATIONS

We consider two maze generation approaches across several levels of grid-size complexities to en-
sure our findings are not specific to a single type of maze or representation, but hold more generally.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

10x10 20x20 30x30
Maze size

0

50

100

150

200

250

Pa
th

 le
ng

th
 (#

 c
el

ls
tra

ve
rs

ed
)

DFS
A*

Figure 2: Left: Path lengths, measured by number of traversed cells, of A* and DFS mazes for maze
sizes 10x10, 20x20 and 30x30 on the validation dataset. Error bars show the standard deviation.
Middle: Example 10x10 A* maze Right: Example 10x10 DFS maze. Both are real randomly
selected examples illustrating the difference between encoding walls in cells (A*) versus edges with
longer paths (DFS).

DFS mazes First, we utilize the maze generation method from Ivanitskiy et al. (2023a) to generate
2 dimensional mazes via the randomized Depth First Search (DFS) method. This method works by
constructing a path from a uniformly random start node in a depth-first manner. This generation
approach yields long paths (relative to A* mazes described below), but does not allow ambiguity:
the shortest path is also the only path that does not backtrack and thus overlap with itself. An
example 10x10 DFS maze in show on the right panel of Figure 2. The mazes are serialized into
strings that enumerate the edges of the maze connection graph as a set of tuples. The start node, goal
node and solution path are appended to form the full text that the model trains with. We generate
500k mazes across five levels of complexity as measured by the grid size of the maze spanning 5x5,
10x10, 20x20, and 30x30.

A* mazes Second, we use the deterministic A* maze dataset from Lehnert et al. (2024). Start and
goal cell were uniformly sampled in a 2-dimensional grid with walls randomly placed in 30–50%
of cells (see middle panel of Figure 2). The shortest paths are discovered via the A* algorithm and
added to the dataset if the shortest path is at least of length L, where L indicates the maze grid
size (for an LxL maze). In A* mazes, grid cells are tokenized with individual tokens for x and y
coordinate, which increases the input sequence length relative to the graph tuple encoding used for
DFS. In both datasets, the solution path is the last part of the string. In contrast to the DFS mazes,
however, A* mazes have many possible solutions, out of more than one are possibly the shortest
ones. Lehnert et al. (2024) experiment with both randomly and deterministically (heuristically)
choosing the shortest path that the model sees as ground truth. We choose 10x10, 20x20 and 30x30
mazes from the deterministic setting, see Appendix D.2 for additional details.

Together these maze generation approaches allow us to study mazes of varying complexities (in
terms of grid size), differing distributions of shortest path lengths, as well as different maze text
encoding approaches. In Figure 2 we show the distribution differences between solution path lengths
for DFS versus A* mazes across three levels of grid-size complexities. Additionally in the middle
and right panels, we show sample generations for DFS and A* mazes.

4.2 STANDARD NEXT TOKEN PREDICTION AND A* SEARCH DYNAMIC SUPERVISION

We evaluate the standard next token prediction learning objective for maze navigation. To do so, we
train transformers from scratch on text representations of maze solutions similar to Ivanitskiy et al.
(2023b). Mirroring the objective of modern language models the transformer predicts the next token
based on the previous tokens in the maze solution path (see Equation (1)). We investigate various
transformer model sizes to understand the effect of model scale. We also evaluate the standard
decoder-only transformer architecture as well as the encoder-decoder architecture from Lehnert et al.
(2024). Finally, to better contextualize our findings we also report the next token model from Lehnert
et al. (2024) trained with additional A* search trace supervision for the A* maze setting.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: MLM-U compared to next token training for 8M parameter transformer-based models
trained on 100k maze, solution pairs. We report shortest path accuracy (exact match of all path
tokens) for held-out maze of varying complexities based on their grid size. See Table 3 for per token
accuracy.

Maze Navigation (Accuracy) 5x5 10x10 15x15 20x20 30x30

Autoregressive 100 45.2 24.4 20.6 18.8
MLM-U 100 100 100 100 93.8

4.3 MLM-U

We contrast next token prediction with the MLM-U objective, explicitly predicting multiple steps
both ahead and backward. We closely follow the training setup in Kitouni et al. (2024a), includ-
ing the encoder-decoder transformer architecture with RoPE positional embeddings (see Appen-
dices D.1 and D.3). Identical to the next token baselines, the MLM-U objective is trained on text
representations of the maze solutions. Generation during inference is done in the same way as for
the standard next token baselines, generating one token at a time from left to right, with temperature
0 (argmax). Since the uniform masking rate in MLM-U (see Equation (2)) exposes the model to
different sequence prediction and context lengths, there is no distributional shift in a generative in-
ference step as shown in Figure 2 of Kitouni et al. (2024a). For MLM-U , we also train transformers
of varying model scales ranging from 3M to 25M parameters to study the effect of model scale on
maze navigation.

4.4 EXPERIMENTAL SETUP

To isolate the effect of training objectives, MLM-U versus next token prediction, we train all models
from scratch using an identical setup.

Training We train transformers for up to 3000 epochs on 100,000 mazes for each setup. The per-
formance of each model is evaluated on a held-out test set of 2000 mazes with the same configuration
as the training set. To ensure the baseline comparisons for next token prediction are competitive,
we conduct a sweep over learning rate choices and weight decay values (shown in Appendix B). We
select the best choice of hyperparameters based on held-out shortest path accuracy for 10x10 DFS
mazes. The architecture used to train MLM-U is an encoder-decoder (as in Kitouni et al. (2024a),
detailed in Appendix D.3), but for next token training in DFS mazes we found a decoder-only archi-
tecture to be superior to the MLM-U encoder-decoder, see Appendix A.2. For A* mazes, we report
the best available numbers from Lehnert et al. (2024) for next token prediction.

Evaluation axes We evaluate models in terms of maze navigation accuracy, data efficiency as
measured by the number of training mazes, and training efficiency in terms of GPU training hours
needed for convergence. To assess the correctness of a generated path similar to Lehnert et al. (2024)
we compare whether the full path matches the shortest path. We additionally compare the token-
wise accuracy in Appendix A.1 to assess navigation paths that only slightly deviate from the shortest
path. Finally, to complement the overall maze navigation accuracy, we assess training dynamics by
comparing convergence curves on training and held-out tests mazes.

5 RESULTS: LEARNING TO NAVIGATE MAZES WITH MLM-U TRAINING

We compare the next token and MLM-U objectives via maze navigation accuracy across three di-
mensions: maze complexity, training data efficiency and computational efficiency. We also investi-
gate scaling laws as well as analyze the training dynamics of MLM-U .

5.1 MLM-U AND STANDARD NEXT TOKEN TRAINING IN DFS MAZES

MLM-U outperforms next token prediction for DFS generated mazes. First, we compare the
objectives in the setting with DFS generated mazes described in the first part of Section 4.1. We

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

train 8M parameter transformer models across mazes with grid sizes ranging from 5x5 to 30x30.
We find MLM-U is able to perfectly navigate mazes of up to a grid size of 20x20 and achieve nearly
3x the performance of next token training on more complex 30x30 mazes as shown in Table 1. For
example, even on comparatively small mazes of size 10x10 we find next token performance saturates
below 50% accuracy. In contrast, a model of the same size can navigate 30x30 mazes with over 90%
accuracy when trained with MLM-U .

number of training mazes

na
vi

ga
tio

n
ac

cu
ra

cy

0.00

0.25

0.50

0.75

1.00

20000 40000 60000 80000

MLM-U Next Token

5x5 Data Efficiency

number of training mazes

0.00

0.25

0.50

0.75

1.00

20000 40000 60000 80000

MLM-U Next Token

10x10 Data Efficiency

Figure 3: Training Data Sample Efficiency. We compare 8M parameter model next token versus
MLM-U held-out accuracy as we vary the number of mazes seen during training. On the left, for
5x5 mazes which both learning objectives can solve, MLM-U is 4× more data efficient. On the
right, for 10x10 mazes we see MLM-U converges to perfectly solve 10x10 mazes with 25k training
samples, where next token performance peaks below 50% accuracy.

G
P

U
 H

ou
rs

0.0

10.0

20.0

30.0

MLM-U Next Token

G
P

U
 H

ou
rs

0.0

10.0

20.0

30.0

MLM-U Next Token

2.03x faster

Held-out Maze Accuracy Training Time

Figure 4: Training efficiency of next token vs. MLM-U on 5x5 mazes. While both models are
able to perfectly solve held-out 5x5 mazes, MLM-U does so 2.03x more quickly relative to next
token. The shaded region shows the standard error across the mean over three random seeds. We
also observe overfitting for next token training past 200k training steps whereas MLM-U accuracy
remains at near perfect accuracy.On the right, we show the number of GPU hours needed for each
training objective to converge.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Maze navigation accuracy for MLM-U training compared to next token training with and
without A* search traces for encoder-decoder models trained on 100k A* maze and solution pairs.
Baseline numbers are all taken directly from Lehnert et al. (2024). 15M, 175M, and 8M indicate the
number of parameters in the transformer architecture used for training. Accuracies refer to an exact
match of true and generated path. See Table 4 for per token accuracies in MLM-U .

Maze Navigation 10x10 20x20 30x30

MLM-U 8M 98.5 95.2 85.5
Next token 15M (Lehnert et al., 2024) 93.6 39.0 13.3
Next token 175M (Lehnert et al., 2024) 94.9 53.5 19.3
+ A* trace supervision
Next token 175M (Lehnert et al., 2024) 98.5 90.4 70.2

MLM-U is more data efficient To evaluate the data efficiency of MLM-U relative to that of next
token, we train 8M parameter transformer models while varying the number of mazes seen during
training. We operate on maze sizes of 5x5 and 10x10 and train both models for 2000 epochs. As
shown in Figure 3, we find MLM-U is able to navigate both 5x5 and 10x10 mazes with only 25k
training samples, while next token requires all 100k mazes to reach full accuracy in 5x5 and reaches
a peak performance of less than 50% with 75k training samples, suggesting MLM-U is 4× more
data efficient.

MLM-U is more computationally efficient on small mazes We compare the convergence rates
both on training and held-out 5x5 mazes for MLM-U and next token prediction. We choose this
small setting because this is solvable by both objectives. We find as shown in Figure 4 MLM-U
converges 2.17x faster in terms of the number of training epochs. We additionally control for com-
putational overhead in terms of GPU training hours, we find training on the same data for 2k epochs
using 8M parameter transformers on 8 Tesla V100 32GB GPUs takes 13.7 hours for next token
versus 17.7 hours for MLM-U . Accounting for this additional 7% overhead, we find as shown in
Figure 4 MLM-U is ∼ 2× more efficient than a comparable next token model on small DFS
mazes. As a caveat, we note that on 10x10 mazes, next token training crosses the 40% performance
threshold faster than MLM-U , indicating faster initial learning before saturating at peak of 46%
accuracy on held-out test mazes.

5.2 MLM-U AND NEXT TOKEN TRAINING WITH A* MAZES

MLM-U outperforms next token prediction with and without A* search supervision In this
section, we train models with MLM-U on the deterministic A* maze dataset from Lehnert et al.
(2024) as described in the second part of Section 4.1. We compare those models to the ones trained
in Lehnert et al. with and without additional supervision from A* search traces. For example,
a nearly 2x larger 15M parameter transformer trained with next token prediction achieves 13.3%
navigation accuracy on 30x30 mazes whereas MLM-U reaches 85.5% navigation accuracy. The
results can be found in Table 2. The 8M parameter MLM-U trained transformer compares favorably
with all models from Lehnert et al. trained on 100k mazes. This holds true even when aiding
the training with additional supervision provided by the A* search trace, which boosts next token
training by a significant margin.

5.3 UNDERSTANDING THE TRAINING DYNAMICS OF MLM-U COMPARED TO NEXT TOKEN

Next token training is more prone to overfit than MLM-U We compare the convergence rates
both on training and held-out 10x10 DFS mazes for MLM-U compared to next token parameter-
matched 8M parameter models in Figure 5. Although we observe faster training convergence for
next token models as shown on the left, we see the next token model is not able to generalize from the
training data, with performance saturating at around 50%, while MLM-U is able to perfectly solve
10x10 mazes. This suggests while next token training is susceptible to overfitting, where MLM-U
exhibits good generalization without overfitting. We attribute this to the increased difficulty of the

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

epochs

tra
in

in
g

na
vi

ga
tio

n
ac

cu
ra

cy

0.00

0.25

0.50

0.75

1.00

250 500 750 1000 1250 1500 1750

MLM-U Train Next Token Train

Training mazes

epochs

na
vi

ga
tio

n
ac

cu
ra

cy
 (h

el
d-

ou
t)

0.00

0.25

0.50

0.75

1.00

250 500 750 1000 1250 1500 1750

MLM-U Next Token

Held-out mazes

Figure 5: Comparing convergence rates of next token and MLM-U on 10x10 mazes. Left is training
accuracy; right is navigation accuracy on held-out mazes.

objective. MLM-U is tasked to predict any subset of path tokens from any other, while next token
training only ever sees the same sequence of conditionals for each maze.

MLM-U benefits from scaling to larger transformers for more complex mazes. Here, we
investigate the effect of scaling transformer model size for 20x20 DFS mazes, one the more chal-
lenging settings where next token training yields 22% accuracy. As shown in Figure 6 MLM-U
training improves navigation accuracy from 85% to perfect navigation accuracy when transformer
model size is scaled from 3M to 8M parameters. For next token prediction, we also observe im-
provements with transformer model scale, but at a relatively slower rate. A more than 8x increase in
model size, from 3M to 25M, for a model trained with the next token objective yields a 43% relative
performance improvement.

model parameter size in millions

na
vi

ga
tio

n
ac

cu
ra

cy

0

25

50

75

100

3 8 25

MLM-U Next Token

Scaling Model Size (20x20 mazes) Truth Prediction

Figure 6: Left: Performance of differently sized models (in millions of parameters) across next
token and MLM-U training on 20x20 DFS mazes. Right: Example failure of next token training on
a 10x10 maze.

5.4 POSITIONAL ENCODINGS NEED MORE FLOATING POINT PRECISION

As we scaled MLM-U training to more complex mazes, we found the precision of the positional
encodings to be particularly important for good maze navigation performance. Unlike the learnable
((Radford et al., 2019)) and sinusoidal encodings in the original transformer paper Vaswani et al.
(2023) which are added to the input, MLM-U uses Rotational Positional Encodings (RoPE, (Su
et al., 2023)), which bias the query and key vectors in the attention mechanism as a function of their
relative positions. To better understand the role of these positional embedding precision we train
an 8M parameter transformer MLM-U on a small set of 100 DFS mazes with increasing grid size
complexities. We found with 16-bit precision positional encodings (float 16 via the automatic mixed
precision, AMP, package in PyTorch) as shown in Figure 7 (right), MLM-U generally predicted the
correct paths, but failed get the exact positions right, skipping some and duplicating others, resulting
in low navigation accuracy on more complex (25x25 and larger) training mazes.

With full 32-bit precision positional encodings however, we found MLM-U was able to reach per-
fect navigation accuracy even on these more complex mazes. For example, as shown in Figure 7 on

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Maze Size

A
cc

ur
ac

y
on

 T
ra

in
in

g
S

et

0.00

0.25

0.50

0.75

1.00

15 20 25 26 28 30

32-bit 16-bit

Overfitting on 100 mazes with positional encoding precisions

Truth Prediction

Figure 7: Left: Training accuracy of models trained with 16- versus 32-bit positional encoding
precision on mazes with different grid sizes. Each model has 8M parameters and is trained on only
100 mazes. For mazes of shape 25x25 and larger, the models cannot overfit on the 100 maze training
dataset with only 16-bit positional encoding precision. Right: Example 26x26 maze from the train
dataset with solution and predicted answer when training with 16-bit positional encoding. The red
line presents the true path and the yellow arrows depict the predicted path, generated in a next token
left to right fashion. The arrows show inconsistencies and errors on a small scale, but overall follow
the correct path.

30x30 mazes MLM-U only reached 50% navigation accuracy with 16-bit positional encoding preci-
sion whereas with 32-bit positional encodings MLM-U solved 30x30 mazes perfectly. This suggests
for larger grid sizes, higher precision in the positional encoding allowed the model to properly map
the learned paths to their proper positions on the maze. We observed a similar improvement in
performance with larger training data (100k samples) on 30x30 DFS mazes. In particular, by in-
creasing the precision from 16 to 32-bits for positional encodings, MLM-U performance on 30x30
DFS mazes improved from 40% to 93.8% highlighting the importance of higher positional encoding
precision.

While positional encodings have been tailored to next token prediction objectives, less emphasis
has been placed on the best positional encoding strategies for masking objectives such as MLM-U .
Consequently, the above observations lead us to question whether current approaches are optimal for
objectives such as MLM-U . A promising path for training on more complex mazes with larger grid
sizes could stem from a better understanding of how best to encode positions for longer-term plan-
ning objectives. Therefore, we consider the detailed study of positional bias in masking objectives
like MLM-U crucial for future work.

6 DISCUSSION

By adjusting the learning objective from next token prediction to one that explicitly predicts multiple
steps ahead and back (MLM-U), we show transformers can learn to effectively navigate mazes.
Fortunately, training with an explicit multi-step objective is also more efficient both in terms of
training samples as well as GPU training hours and offers nice model scaling benefits with maze
complexity. We hope these findings spur the research community to explore learning objectives as a
lever to address one of the main limitations of today’s best transformer models: multi-step planning.
In future work we hope to explore the role of learning objectives in a broader range of multi-step
planning tasks.

Limitations and Future Work Of course, such an approach also comes with the typical limita-
tions of transformers, including a fixed context length, which can limit or degrade the training speed
of transformers as maze size grows. We observed the importance of positional encodings in MLM-U
training, particularly for more complex mazes. We suggest that there is more understand about the
role of positional encodings for planning and identify this as important future work. Furthermore,
we acknowledge the increased hardness of the MLM-U objective. Instead of predicting the same
token always with the same context, the context is randomly sampled every time the same training
data is observed. For a sufficiently long sequence, the model will never see the same problem twice

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

due to the exponentially increasing number of possible contexts. We cannot say how this impacts
generalization speed in general, although we saw some favorable evidence in this work. In an effort
to keep the comparison as straight forward as possible, we used MLM-U exactly as described in
Kitouni et al. (2024a). However, multiple improvements are possible. At inference time, it might
be beneficial to generate tokens according to some heuristic about model certainty as opposed to
left-to-right. Additionally, the uniform masking rate applied the same way to each token is certainly
the simplest, but unlikely the optimal method. A semantic heuristic could favorably impact perfor-
mance. A possible intuition here is that for many mask realizations, the problem is too easy or too
difficult for the model, and it wastes time in those batches. Instead, over-sampling masks that make
the problem hard but solvable might yield vastly increased convergence speeds.

In all, these findings shine light on a promising path forward for research to improve long-horizon
planning in transformers, with lots of potential for future work.

REFERENCES

Neset Unver Akmandor, Hongyu Li, Gary Lvov, Eric Dusel, and T. Padır. Deep reinforcement
learning based robot navigation in dynamic environments using occupancy values of motion
primitives. IEEE/RJS International Conference on Intelligent RObots and Systems, 2022. doi:
10.1109/IROS47612.2022.9982133.

Jacob Austin, Daniel D. Johnson, Jonathan Ho, Daniel Tarlow, and Rianne van den Berg. Struc-
tured denoising diffusion models in discrete state-spaces. Neural Information Processing Systems,
2021.

Gregor Bachmann and Vaishnavh Nagarajan. The pitfalls of next-token prediction. arXiv preprint
arXiv: 2403.06963, 2024.

Lukas Berglund, Meg Tong, Max Kaufmann, Mikita Balesni, Asa Cooper Stickland, Tomasz Kor-
bak, and Owain Evans. The reversal curse: Llms trained on ”a is b” fail to learn ”b is a”, 2024.
URL https://arxiv.org/abs/2309.12288.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding, 2019. URL https://arxiv.org/
abs/1810.04805.

Abhimanyu Dubey et al. The llama 3 herd of models. arXiv preprint arXiv: 2407.21783, 2024.

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jiang, Bill Yuchen Lin, Sean
Welleck, Peter West, Chandra Bhagavatula, Ronan Le Bras, et al. Faith and fate: Limits of
transformers on compositionality. Advances in Neural Information Processing Systems, 36, 2024.

Gemma. Gemma: Open models based on gemini research and technology. arXiv preprint arXiv:
2403.08295, 2024.

Fabian Gloeckle, Badr Youbi Idrissi, Baptiste Rozière, David Lopez-Paz, and Gabriel Syn-
naeve. Better & faster large language models via multi-token prediction. arXiv preprint
arXiv:2404.19737, 2024.

Zhengfu He, Tianxiang Sun, Kuan Wang, Xuanjing Huang, and Xipeng Qiu. Diffusionbert: Improv-
ing generative masked language models with diffusion models. Annual Meeting of the Association
for Computational Linguistics, 2022. doi: 10.48550/arXiv.2211.15029.

Michael Igorevich Ivanitskiy, Rusheb Shah, Alex F Spies, Tilman Räuker, Dan Valentine, Can
Rager, Lucia Quirke, Chris Mathwin, Guillaume Corlouer, Cecilia Diniz Behn, et al. A config-
urable library for generating and manipulating maze datasets. arXiv preprint arXiv:2309.10498,
2023a.

Michael Igorevich Ivanitskiy, Alex F. Spies, Tilman Räuker, Guillaume Corlouer, Chris Mathwin,
Lucia Quirke, Can Rager, Rusheb Shah, Dan Valentine, Cecilia Diniz Behn, Katsumi Inoue, and
Samy Wu Fung. Structured world representations in maze-solving transformers. arXiv preprint
arXiv: 2312.02566, 2023b.

11

https://arxiv.org/abs/2309.12288
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Michael Janner, Yilun Du, Joshua B. Tenenbaum, and Sergey Levine. Planning with diffusion for
flexible behavior synthesis. arXiv preprint arXiv: 2205.09991, 2022.

Ouail Kitouni, Niklas Nolte, Diane Bouchacourt, Adina Williams, Mike Rabbat, and Mark Ibrahim.
The factorization curse: Which tokens you predict underlie the reversal curse and more, 2024a.
URL https://arxiv.org/abs/2406.05183.

Ouail Kitouni, Niklas Nolte, James Hensman, and Bhaskar Mitra. Disk: A diffusion model for
structured knowledge, 2024b. URL https://arxiv.org/abs/2312.05253.

Deqian Kong, Dehong Xu, Minglu Zhao, Bo Pang, Jianwen Xie, Andrew Lizarraga, Yuhao Huang,
Sirui Xie, and Ying Nian Wu. Latent plan transformer: Planning as latent variable inference.
arXiv preprint arXiv: 2402.04647, 2024.

Lucas Lehnert, Sainbayar Sukhbaatar, Paul Mcvay, Michael Rabbat, and Yuandong Tian. Beyond
a*: Better planning with transformers via search dynamics bootstrapping. arXiv preprint arXiv:
2402.14083, 2024.

Xiang Lisa Li, John Thickstun, Ishaan Gulrajani, Percy Liang, and Tatsunori Hashimoto. Diffusion-
lm improves controllable text generation. Neural Information Processing Systems, 2022. doi:
10.48550/arXiv.2205.14217.

A. Liu and A. Borisyuk. Investigating navigation strategies in the morris water maze through deep
reinforcement learning. Neural Networks, 2023. doi: 10.48550/arXiv.2306.01066.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

Subham Sekhar Sahoo, Marianne Arriola, Yair Schiff, Aaron Gokaslan, Edgar Marroquin, Justin T
Chiu, Alexander Rush, and Volodymyr Kuleshov. Simple and effective masked diffusion language
models. arXiv preprint arXiv: 2406.07524, 2024.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding, 2023. URL https://arxiv.org/abs/
2104.09864.

Aviv Tamar, S. Levine, P. Abbeel, Yi Wu, and G. Thomas. Value iteration networks. Neural Infor-
mation Processing Systems, 2016. doi: 10.24963/ijcai.2017/700.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2023. URL https://arxiv.
org/abs/1706.03762.

Haitong Wang, Aaron Hao Tan, and Goldie Nejat. NavFormer: A Transformer Architecture for
Robot Target-Driven Navigation in Unknown and Dynamic Environments, February 2024a. URL
http://arxiv.org/abs/2402.06838. arXiv:2402.06838 [cs].

Siwei Wang, Yifei Shen, Shi Feng, Haoran Sun, Shang-Hua Teng, and Wei Chen. Alpine: Unveiling
the planning capability of autoregressive learning in language models. arXiv preprint arXiv:
2405.09220, 2024b.

Yuhui Wang, Qingyuan Wu, Weida Li, Dylan R. Ashley, Francesco Faccio, Chao Huang, and Jürgen
Schmidhuber. Scaling value iteration networks to 5000 layers for extreme long-term planning.
arXiv preprint arXiv: 2406.08404, 2024c.

A ADDITIONAL RESULTS

A.1 PER TOKEN RESULTS

To evaluate the possibility of the generated paths deviating only slightly from the shortest paths,
we also compute the token-wise accuracy of the generated paths compared to the shortest path. In
Table 3 and Table 4 we present per-token accuracies for the experiments from Table 1 and Table 2.

12

https://arxiv.org/abs/2406.05183
https://arxiv.org/abs/2312.05253
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
http://arxiv.org/abs/2402.06838

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Table 3: MLM-U compared to next token training for 8M parameter transformer-based models
trained on 100k maze, solution pairs. We report per-token shortest path accuracy for held-out maze
of varying complexities based on their grid size. Same as Table 1, but including per token accuracies.

Maze Navigation (Accuracy) 5x5 10x10 15x15 20x20 30x30

Autoregressive (per token) 100 46.0 32.2 25.4 25.1
Autoregressive (full path) 100 45.2 24.4 20.6 18.8
MLM-U (per token) 100 100 100 100 95.8
MLM-U (full path) 100 100 100 100 93.8

Table 4: Maze navigation accuracy for MLM-U training for encoder-decoder models trained on
100k A* maze and solution pairs, per token and full path accuracies. Refer to Table 2 for baselines.

Maze Navigation 10x10 20x20 30x30

MLM-U 8M (full path accuracy) 98.5 95.2 85.5
MLM-U 8M (per token accuracy) 99.7 97.2 96.5

A.2 COMPARING TRANSFORMER MODELS FOR NEXT TOKEN TRAINING

We compare two choices of architecture for autoregressive training with transformers: 1) the stan-
dard decoder architecture commonly used in modern language models, 2) the encoder-decoder ar-
chitecture used for MLM-U. We train two 8M parameter transformer models with each of these
architectures on 100k DFS 10x10 mazes and evaluate performance on held-out mazes. As shown
in Figure 8, we find the common decoder-only architecture converges more quickly and generalizes
better than the comparable encoder-decoder architecture. We use the stronger decoder-only baseline
for our experiments.

B ABLATIONS FOR HYPERPARAMETERS

We conduct hyperparameter ablations for learning rates Figure 9 and weight decay in Table 5. We
train the next token model with 8M parameters for 500 epochs on 100k 10x10 training mazes and
evaluate per-token held-out accuracy to select the best learning rate. Based on this sweep we select
0.001 as the learning rate we use for all our experiments. For MLM-U we found learning rates
to have negligible effect beyond an upper bound to ensure training stability. We select 0.001 as
well. We found large weight decay values to be detrimental for next token training, see Table 5.
In MLM-U , we generally don’t see overfitting and therefore also don’t need any weight decay. We
choose 10−4 for next token and no weight decay for MLM-U . We found training to be most stable
with the AdamW optimizer with beta values β1 = 0.9 and β2 = 0.999 and batch sizes of 128 and
above.

We evaluate models of two different sizes: 8M parameter models with a width of 128, a depth of 40
and 4 heads per attention layer. For 25M parameter models, the width is 256 with a depth of 32 and

Figure 8: We compare two choices of architecture for next token training with transformers on
10x10 DFS mazes.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Figure 9: Learning rate ablations for autoregressive (8M parameter) model training on 10x10 mazes
for 500 epochs. The y-axis shows the accuracy on held-out 10x10 mazes.

Table 5: Impact of weight decay on GPT training on DFS mazes

Weight decay 10−2 10−3 10−4 10−5

Val Acc (%) 41.0 41.1 43.7 43.5

also 4 heads per attention layer. In the case of an encoder-decoder, both encoder and decoder have
depth/2 layers. During development of the experiments, we found that deeper models generally do
slightly better in the 8M parameter setting, both innext token training and in MLM-U .

C MLM-U AND NEXT TOKEN FAILURE MODES

In Figure 10 we give some visual examples of MLM-U failure modes on 30x30 DFS mazes using
the 8M model from Section 5.1. Often, the general path taken is mostly correct, but it takes a wrong
turn or two and then backtracks to follow the right track, possibly ending up only a few steps short
of the goal node. Figure 11 shows example failure cases of the next token model. Often, there is
a general tendency towards the right path, but we find frequent backtracks, traversals through walls
and often completely wrong end points.

Figure 12 shows failures for the 8M model trained on the A* mazes, from Section 5.2. Note that in
two of those failure cases (bottom left and right), the paths predicted are equivalent shortest paths.
However, since we are checking for exact match in the deterministic A* setting from Lehnert et al.
(2024), those count as faulty. In those instances, the model does not seem to have picked up the way
in which symmetry between shortest paths is broken in the deterministic dataset. Note that there
also exist other failures that cause parsing errors and can therefore not be depicted. Those make
up about half of all failure cases in the validation dataset for this 8M MLM-U model. The failure
cases in Figure 13 for the 30x30 A* maze case are conceptually similar. However, the model fails
in some additional ways. For instance, it sometimes misses –or malforms– a step, which ends up
being displayed as a diagonal move (left top and bottom). Or it predicts traversal through a wall (top
right). The bottom right path is a proper shortest path, but the model does not predict the last move
correctly.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Figure 10: MLM-U failure examples on 30x30 DFS mazes.

Figure 11: Next token failure examples on 30x30 DFS mazes.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Figure 12: MLM-U failure examples on 20x20 A* mazes.

Figure 13: MLM-U failure examples on 30x30 A* mazes.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

D MORE DETAILS ON THE EXPERIMENTAL SETUP

D.1 MLM-U TRAINING

The MLM-U models are exposed to the same maze representation, start and end cells and subse-
quent solution path. Unlike the next token baselines the loss is not a next token prediction loss, but a
masking loss reminiscent of the BERT training objective. Tokens are masked with a specific proba-
bility and the objective judges the model predictions on the masked tokens via the cross-entropy. In
BERT, the masking rate is fixed, but MLM-U draws masking rates uniformly for each batch. Kitouni
et al. (2024a) give an intuition for why uniform masking rates are advantageous. Since the uniform
masking rate exposes the model to different length sequences to be completed and to draw informa-
tion from, there is no distributional shift in a generative inference step, see Figure 2 in Kitouni et al.
(2024a).

For this specific case of maze navigation, the only tokens that can be masked are part of the solution
path. The model is never tasked to predict the maze representation or start or goal cells. Kitouni et al.
(2024a) report that the MLM-U objective is best trained with a specific encoder-decoder architecture.
The encoder has blocks in the layout of GPT-2 with a RoPE positional bias. The decoder input is a
sequence of multiple copies of the same learnable token such that the decoder only has information
about the positional bias via RoPE. See implementation details in Appendix D.3.

D.2 MAZE GENERATION DETAILS

We study two different kinds of mazes in this work. They have different properties and are repre-
sented in different formats. With that, we aim to demonstrate that our findings are not specific to a
single type of maze or representation, but hold more generally.

DFS mazes First, we utilize the maze generation method from Ivanitskiy et al. (2023a) to generate
2 dimensional mazes via the randomized Depth First Search (DFS) method. This method works by
visiting all grid cells in a depth-first manner. From a uniformly random start node, it uniformly picks
a neighbor cell and removes walls between both cells whenever the target cell was not previously
visited. If a cell does not have unvisited neighbors, it is declared a dead end and the algorithm
backtracks until a cell with unvisited neighbors is found, starting a new ”descent”, like in standard
depth first tree search. A goal cell is uniformly sampled. This generation algorithm makes for
long paths, but does not allow ambiguity. The shortest path is also the only path that does not
backtrack from dead ends. The mazes are serialized into strings that enumerate the edges of the
maze connection graph as a set of tuples. The start node, goal node and solution path are appended
to form the full text that the model trains with. We generate 100’000 mazes for each maze dimension,
spanning 5x5 to 30x30.

A* mazes Second, we use the deterministic A* maze dataset from Lehnert et al. (2024). Start
and goal cell were uniformly sampled in a 2 dimensional grid. Mazes were generated by randomly
selecting 30-50% of the cells to be walls and A* was used to solve those mazes. For an LxL maze,
the sampled problem is added to the dataset if the solution path is at least of length L. In contrast
to the DFS mazes, these mazes have many possible solutions, out of more than one are possibly the
shortest ones. Lehnert et al. (2024) experiment with both randomly and deterministically (heuristi-
cally) choosing the shortest path that the model sees as ground truth. Also unlike the DFS mazes, the
text representation describes the set of walls rather than connections and puts the goal and final cell
before everything else. In both datasets, the solution path is the last part of the string. Following,
the setup in Lehnert et al. (2024) we train on mazes of varying complexities with grid sizes 10x10,
20x20 and 30x30. We train only 100k mazes and reserve 2k mazes each for validation.

Comparison For a direct comparison of the maze setups, refer to Figures 14 and 15. They depict
how the prompt and response are made from maze instantiations of the A* and DFS type.

Notably, the tokenizers for A* and DFS mazes treat cell representations differently. In DFS mazes
each grid cell is one distinct token. This is done to avoid making the sequences too long. In A*
mazes, grid cells are tokenized with individual tokens for x and y coordinate. We believe this

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

: wall cell

: start cell
: goal cell

: plan step

2

1

0

210

Prompt
bos
start 0 2
goal 1 0
wall 1 2
wall 2 0
eos

Response
bos
plan 0 2
plan 0 1
plan 0 0
plan 1 0
eos

Figure 14: A* maze representation, from Lehnert et al. (2024). The maze is serialized as a list of
walls and start and goal node. All numbers and words are individual tokens.

: wall

: start cell
: goal cell

: plan step

2

1

0

210

Prompt
bos
start (0,2)
goal (1,0)
(0,0) <-> (0,1)
(0,1) <-> (0,2)
(0,0) <-> (1,0)
... (all connections)
eos

Response
bos
(0,2)
(0,1)
(0,0)
(1,0)
eos

Figure 15: DFS maze representation. The maze is serialized similarly to the A* setup, but instead
of listing walls, connections (i.e. possible movements) are listed, which comes closer to a graph

representation with an edge list. Here, each grid cell coordinate (x,y) is a unique token.

presents a better inductive bias than individual tokens for each grid cell, but also increases the
sequence length significantly. Since the solution paths are generally much shorter in these mazes,
the extra sequence length is affordable. See Figure 2 for a comparison of path lengths between A*
and DFS mazes.

D.3 IMPLEMENTATION OF ENCODER-DECODER

Here we show the exact encoder-decoder algorithm used for MLM-U training on mazes, as it differs
slightly from traditional models. Specifically, the difference lies in the fact that the decoder only
sees a sequence of equal embeddings and only gathers information about the mazes from the cross
attention with the encoder. Positional information is brought in via RoPE on queries and keys.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Algorithm 1 Encoder-Decoder with MLM-U
Hyperparameters: v = vocabulary size, d = hidden dim
Parameters:
Enc = Stack of Encoder-Transformer blocks (Self attn & RoPE)
Dec = Stack of Decoder-Transformer blocks (Cross attn & RoPE)
Emb = torch.Embedding [v × d]
p = [1× d] ▷ single trainable vector as input to decoder
Head = EmbT (embedding tied transformer head + softmax)

Training:
Input: Input sequence xt=1:T , Target sequence y∗t=1:T (usually equal to x)
Input: mpred ▷ tokens of interest to calculate the loss over (the solution tokens for mazes)

mp ← bernoulli sample a mask over tokens with p ∼ U(0, 1) ▷ MLM-U here
mpred ← mpred ∩mp ▷ these tokens will be predicted (held out tokens of the solution)
menc ← ¬mpred ▷ all else: visible context (maze + part of the solution path)
x1:T ← Emb(x1:T)
x1:T ← Enc(x1:T , attn-mask = menc)
p1:T ← expand(p, [T]) ▷ repeat single p to match x1:T

x1:T ← Dec(p1:T , x1:T , attn-mask = menc) ▷ pt → Q, xt → (K,V) in cross attn
ŷ1:T ← Head(x1:T)
L← CE(ŷ1:T , y∗1:T ,mask = mpred) ▷ Loss, only calculated over mpred

Inference: (in AR fashion)
Input: Input sequence xt=1:T

Input: mpred ▷ tokens to be predicted
ŷ ← zeros [T] ▷ zero tensor of same length as x
for T ′ ∈ 1: T do

if ¬mT ′

pred then ▷ mi
pred is the i’th element of the mask

ŷ′T ← x′
T ▷ don’t predict the mazes, only the path

else
y1:T ′ ← Emb(ŷ1:T ′)

y1:T ′ ← Enc(y1:T ′ , attn-mask = ¬m1:T ′

pred)

yT ′ ← Dec(p, y1:T ′ , attn-mask = ¬m1:T ′

pred) ▷ p→ Q, y → (K,V) in cross attn
ŷT ′ ← argmax(Head(yT ′)) ▷ AR generation via argmax (Temperature 0)
mT ′

pred ← False
end if

end for
ŷ1:T ← (ŷ1, ..., ŷT)

E MISCELLANEOUS EXPERIMENTS

E.1 ORDERED MASKS

One of our motivations for utilizing a training scheme like MLM-U is that such a scheme enables
more explicit reasoning over tokens that are further in the future than the immediate next token,
hopefully aiding longer-horizon planning. In light of this view we evaluate the following ablation:
In MLM-U each token in the solution path is masked with some (uniformly drawn) probability,
independently of other tokens. Instead, we uniformly pick a position in the solution path and mask
all tokens to the right of this position. Then we predict all of those tokens as a function of the context
to the left of the chosen position. This method relates closer to the method used to solve the Star-
Graph problem in Bachmann & Nagarajan (2024). However, we find that this method is far inferior
to MLM-U in the 10x10 A* maze setting tested. The maximum per-token accuracy observed is
73%, with less than 4% full path accuracy.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

E.2 GENERALIZATION TO SMALLER MAZES

To see whether and how MLM-U and next token trained models perform out of their immediate
training distribution, we evaluate models trained on 20x20 DFS mazes on smaller (10x10) mazes.
Limitations in length generalization prohibit non-zero accuracies on larger mazes, but experiments
on smaller mazes yield interesting results, see Table 6. In all experiments, we tokenize the 10x10
mazes via the 20x20 tokenizer. This is important because the 10x10 and 20x20 tokenizers in our
training methods assign different tokens to the grid cells. While next token trained decoders can
achieve non-trivial accuracy on smaller mazes out of the box, changing only the tokenizer, MLM-U
can not.
In order to recover good performance in MLM-U , we embed the 10x10 maze into the upper left cor-
ner of a random 20x20 maze in an effort to bring the smaller maze closer to the training distribution.

Configuration Token Accuracy(%) Full Path Accuracy(%)
Next Token 30 21
Next Token embedded in 20x20 maze 37 29

MLM-U 2 0
MLM-U embedded in 20x20 maze 100 100

Table 6: Generalization of models trained on 20x20 DFS mazes on 10x10 DFS mazes. Every setting
has the 10x10 mazes tokenized via the 20x20 tokenizer. ”Embedded in 20x20 maze” means that we
put the 10x10 maze into the upper left corner of a 20x20 maze. For all experiments, the 10x10 maze
was tokenized via the 20x20 tokenizer.

20

	Introduction
	Related Work
	The role of learning objectives in maze navigation
	Predicting the next step with standard training
	Predicting multiple steps ahead and back with MLM-U

	Methods
	Mazes and Their Representations
	Standard Next Token Prediction and A* Search Dynamic Supervision
	MLM-U
	Experimental setup

	Results: Learning to Navigate Mazes with MLM-U Training
	MLM-U and standard next token training in DFS mazes
	MLM-U and next token training with A* Mazes
	Understanding the training dynamics of MLM-U Compared to next token
	Positional encodings need more floating point precision

	Discussion
	Additional Results
	Per Token Results
	Comparing transformer models for Next Token training

	Ablations for Hyperparameters
	MLM-U and Next token Failure Modes
	More details on the Experimental Setup
	MLM-U training
	Maze Generation Details
	Implementation of Encoder-Decoder

	Miscellaneous experiments
	Ordered masks
	Generalization to smaller mazes

