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Abstract

Text-to-SQL systems translate natural language
questions into executable SQL queries, and
recent progress with large language models
(LLMs) has driven substantial improvements
in this task. Schema linking remains a criti-
cal component in Text-to-SQL systems, reduc-
ing prompt size for models with narrow con-
text windows and sharpening model focus even
when the entire schema fits. We present a zero-
shot, training-free schema linking approach
that first constructs a schema graph based on
foreign key relations, then uses a single prompt
to Gemini 2.5 Flash to extract source and des-
tination tables from the user query, followed
by applying classical path-finding algorithms
and post-processing to identify the optimal se-
quence of tables and columns that should be
joined, enabling the LLM to generate more
accurate SQL queries. Despite being simple,
cost-effective, and highly scalable, our method
achieves state-of-the-art results on the BIRD
benchmark, outperforming previous special-
ized, fine-tuned, and complex multi-step LLM-
based approaches. We conduct detailed ab-
lation studies to examine the precision—recall
trade-off in our framework. Additionally, we
evaluate the execution accuracy of our schema
filtering method compared to other approaches
across various model sizes.

1 Introduction

Relational databases are foundational to modern
data infrastructure, powering analytics, reporting,
and decision-making across domains. Yet, query-
ing these databases typically requires fluency in
SQL—a barrier for many users. Text-to-SQL sys-
tems aim to democratize access by translating nat-
ural language (NL) questions into executable SQL
queries (Zhu et al., 2024; Zhang et al., 2024). En-
abled by large language models (LLMs), recent
systems achieve impressive performance across
complex cross-domain settings.

Algorithm 1: Graph-Based Schema Linking

Input: Question ¢; schema graph G;
Output: Relevant table set 7* C T

1 Step 1: Identify source/destination tables;
2 (Tsre, Tast) + LLM_call(q)

3 Step 2: Build candidate path set;

4 C«+ g

5 foreach Tcrc € 7:;7*(3 Tdst € 7:ist do

6 L C + C U ShortestPaths(Tsrc, Tyst)

7 Step 3: Build union path;
8 U+ Upeens
9 return U;

However, bringing these systems to real-world
applications introduces new challenges. Enterprise
databases often contain hundreds of tables and thou-
sands of columns—far beyond the scale of aca-
demic benchmarks. Supplying the entire schema
to the model risks exceeding token limits and intro-
duces considerable noise, which can hinder SQL
generation and inflate inference cost (Cao et al.,
2024; Li et al., 2023c). In practice, user queries
typically touch only a small subset of the schema,
making it crucial to identify and extract the rele-
vant part—a process known as schema linking (Lei
et al., 2020).

Schema linking aims to determine which ta-
bles or columns are needed to answer a user ques-
tion. While early methods relied on exact string
matches (Yu et al., 2018), recent work has proposed
neural linkers (Gan et al., 2023), retrieval-based
modules (Pourreza and Rafiei, 2024), and prompt-
based systems (Wang and Liu, 2025). These can
capture semantic signals beyond surface overlap,
but typically require supervised training, complex
multi-stage pipelines, or brittle prompt engineering.
They also struggle with the core trade-off: being
precise enough to reduce noise, yet broad enough
not to miss critical context (Liu et al., 2024; Wang
et al., 2025).



In this work, we ask: Can we perform effec-
tive schema linking without relying on specialized
fine-tuned models or complex prompting strate-
gies? Our answer is affirmative.

We introduce SchemaGraphSQL, a zero-shot
schema linking framework that revisits classical
algorithmic tools. Our key idea is to model schema
linking as a graph search problem. We treat the
database schema as a graph where nodes are tables
and edges reflect foreign-key connections. Given
a user query, we make a single LLM call to pre-
dict coarse-grained source and destination tables,
then apply deterministic path-finding algorithms
to enumerate all shortest join paths between them.
The union of these paths forms a compact sub-
schema—guaranteed to be connected and grounded
in the query.

This perspective is both simple and surprisingly
powerful. To our knowledge, SchemaGraphSQL
is the first Text-to-SQL system to rely exclusively
on classical graph algorithms for schema link-
ing, using LLMs only for coarse guidance. It
requires no training, incurs minimal inference cost,
and integrates easily into any downstream parser
or LLM-based SQL generator.

Empirical results on the BIRD benchmark show
that SchemaGraphSQL achieves new state-of-the-
art scores on recall-focused schema linking metrics
and improves execution accuracy across multiple
SQL generators. We also conduct ablations demon-
strating that even this minimal linking method out-
performs specialized neural or prompt-based sys-
tems in robustness and cost-efficiency.

Main Contributions:

* We introduce a zero-shot schema linking
approach that models database schemas as
graphs and applies classical path-finding al-
gorithms. Our method achieves state-of-
the-art performance without requiring any
training—either for fine-tuning or infer-
ence—making it highly suitable for low-
resource, real-world scenarios where training
data is unavailable or difficult to obtain.

* Our system uses only a single lightweight
LLM call (Gemini 2.5 Flash) per query, with
minimal token usage (averaging 4593 input
and 14 output tokens), significantly reducing
inference cost while maintaining ease of inte-
gration and deployment.

* We conduct comprehensive empirical evalu-

ations, demonstrating superior schema link-
ing performance compared to fine-tuned and
specialized methods. Additionally, we per-
form detailed ablation studies to examine pre-
cision—recall trade-offs and assess the down-
stream impact on Text-to-SQL execution accu-
racy across a range of open-source and closed-
source models.

2 Related Work

Text-to-SQL systems aim to automatically trans-
late natural language questions into executable SQL
queries, thereby enabling non-experts to interact
with relational databases. The advent of large lan-
guage models (LLMs) has significantly advanced
this task (Zhang et al., 2024; Zhu et al., 2024), with
models like GPT-3.5/4, Gemini, and their open-
source variants demonstrating impressive perfor-
mance across benchmarks. However, as schema
size increases, providing the entire schema as input
may exceed the model’s context window, especially
in large-scale databases. Even when using recent
LLMs with extended context lengths, supplying
the full schema can introduce noise and hinder the
model’s ability to focus on relevant elements.

2.1 Schema Linking in Text-to-SQL

Schema linking—the process of aligning natural
language mentions to corresponding tables and
columns in a database—is a crucial component
of Text-to-SQL systems (Lei et al., 2020; Liu et al.,
2022; Li et al., 2023c). Early approaches relied
on exact string matching or type-based heuris-
tics (Yu et al., 2018), which struggled with syn-
onyms, paraphrases, and complex cross-domain
schemas. Recent methods have increasingly lever-
aged pretrained LLMs and neural encoders to im-
prove linking accuracy (Gan et al., 2023; Glass
et al., 2025). Schema linking has proven partic-
ularly important for LLM pipelines that operate
on large or multi-database environments, where
prompt space is limited and precision in schema fil-
tering directly affects SQL generation quality (Cao
et al., 2024; Liu et al., 2025).

2.2 Neural and Prompt-Based Linking
Strategies

Numerous methods have been proposed to handle
schema linking within LLM-based Text-to-SQL
systems. Some decouple schema linking as a sepa-
rate module before SQL generation (Pourreza and
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Figure 1: Overview of our graph-based schema linking pipeline.

Rafiei, 2024; Li et al., 2023a), while others in-
corporate schema selection as a prompt-driven or
retrieval-augmented step (Wang and Liu, 2025).
Extractive methods, such as Glass et al. (2025), di-
rectly prompt LLMs to list relevant schema items,
trading generation flexibility for interpretability
and control. RSL-SQL (Cao et al., 2024) pro-
poses a bidirectional pruning mechanism with self-
correction to boost recall, while Solid-SQL (Liu
et al., 2025) augments training data to improve link-
ing robustness. Despite variations in architecture,
a common trend across these systems is the effort
to balance schema coverage (recall) with relevance
filtering (precision) to avoid overloading the LLM
or omitting critical elements.

2.3 Graph-Based Approaches for Schema
Linking

A parallel line of work models the database schema
as a graph structure, where tables and columns are
nodes, and foreign-key or semantic relations form
edges. These methods primarily leverage graph
neural networks (GNNSs) or relation-aware trans-
formers to propagate information across schema
components. RAT-SQL (Wang et al., 2020) pio-
neered relation-aware attention over a joint ques-
tion—schema graph, inspiring successors such as
LGESQL (Cao et al., 2021) (line-graph encoding
of meta-relations) and ShadowGNN (Chen et al.,
2021) (delexicalised projection for cross-schema
generalisation). Later hybrids integrate graph rea-

soning directly into pretrained LMs, e.g. Graphix-
T5 (Li et al., 2023b) and GRL-SQL (Gong and
Sun, 2024). Most recently, SQLformer (Bazaga
et al., 2024) embeds schema structure as induc-
tive bias in a Transformer encoder and autoregres-
sively generates SQL ASTs as graphs. While graph-
enhanced models capture rich global relations, they
typically require substantial fine-tuning or architec-
tural changes—an obstacle in low-resource, real-
time deployments. Graph-based schema linking
methods have recently declined in popularity as
LLM-driven approaches have become dominant.

2.4 Classical Graph Algorithms in Schema
Linking

In contrast to learned graph encoders, only a hand-
ful of systems reuse classical graph algorithms to
aid LLMs. DBCopilot (Wang et al., 2025) con-
structs a directed schema graph and performs depth-
first traversal to linearise the sub-schema passed
to a lightweight “router” model. Interactive-
T2S (Xiong et al., 2024) equips an LLM agent
with a FINDSHORTESTPATH tool that runs breadth-
first search over the foreign-key graph to supply
valid join chains during multi-turn dialogue. These
works demonstrate the practicality of DFS/BFS as
auxiliary helpers, but the graph search remains pe-
ripheral—responsible only for join validation or
routing—rather than serving as the core schema-
linking engine.



2.5 Positioning Our Work

While prior literature has thoroughly explored neu-
ral and graph-enhanced architectures for schema
linking, the explicit use of classical graph algo-
rithms—particularly as the core mechanism for
schema linking in LLM-based Text-to-SQL sys-
tems—remains rare. Our approach, SCHEMA-
GRAPHSQL, revisits this paradigm by operational-
izing schema linking as a path-selection problem
on the schema graph. To our knowledge, this is the
first work to systematically evaluate and ablate clas-
sic path-finding algorithms for schema linking in
LLM-driven Text-to-SQL pipelines on real-world
benchmarks.

3 Methodology

Databases. A relational database is repre-

sented as
D=(T,AK),
where:
o« T ={T1,...,T,}: setof tables.

» A(T;): attributes (columns) of table T;;
A = Ur,cr A(T) is the global set of
attributes.

* K C T x T: set of foreign key (FK)
relations.

The schema graph is the undirected graph
G = (T, K), with nodes as tables and edges
as FK links. For sparse schemas (fewer than
two edges), we further augment the schema
graph by adding edges between tables that
share a column containing “id” in its name,
thus ensuring that the schema graph is suffi-
ciently connected for path enumeration.

Languages.

* L: set of well-formed natural language
questions.

» S: set of valid SQL queries.

Given ¢ € L, the objective is to generate
Q@ € S that answers q over D.

\. J

This section formalizes the schema linking prob-
lem and describes our graph-based, training-free

approach for selecting minimal connected sub-
schemas to facilitate Text-to-SQL generation. We
begin by introducing notation and the problem for-
mulation, then present our graph-based schema
linking procedure, and finally detail the configura-
tion space of our approach.

3.1 Problem Formulation

We first introduce the notation used throughout this
paper:

Definition 3.1 (Text-to-SQL). Given ¢ and D,
Text-to-SQL seeks a function

‘fNLQSQL : ,CX’D—)S‘

that returns an executable SQL query @) =
In12sqL(g, D) that answers the user question g
on the database D.

Definition 3.2 (Schema Linking). Let G = (T, K)
be the schema graph of D. Schema linking selects
a connected sub-schema S = (7*, K*) with 7* C
T and K* C K sufficient to express the SQL query
answering g. Formally,

gsr, : LxG—P(T),

Here,

T* = gs1.(q,G) |

K*={(T;,T;) e K| T;,T; € T*}

The output sub-schema S defines the smallest set
of tables and links needed to answer ¢ while re-
maining connected within the schema graph.

3.2 Graph-Based Schema Linking as Path
Selection

Step 1: Extracting Source and Destination Ta-
bles. A single LLM call extracts two subsets of
tables from the schema:

* 75 (sources): tables whose columns appear in
query conditions or filtering predicates;

* T4 (destinations): tables containing the
columns requested as output.

Both sets are guaranteed to be non-empty and may
overlap, reflecting cases where the same table is
used for both filtering and output.

We operationalize schema linking as a path-
selection task on the schema graph G, which en-
ables systematic and efficient sub-schema identifi-
cation:

This extraction is performed via a single call to
Gemini 2.5 Flash, guided by a dedicated system
prompt designed to elicit precise identification of



source and destination tables from the question and
schema. The full prompt is shown in Prompt 1.

Prompt 1: System prompt for source and des-
tination extraction

ROLE & OBJECTIVE

You are a senior data engineer who analyses SQL schemas
and maps user questions precisely to source tables (filter-
ing) and destination tables (final result columns).

TASK
Identify:
* Source table(s) (src): contain columns used in filter-

s/conditions.

 Destination table(s) (dst): contain columns returned
in the answer.

INSTRUCTIONS

1. Internally inspect every table to determine

» which tables participate in filtering, and
» which tables supply the requested output columns.

Briefly justify your choice internally but do not include
that justification in the final answer.

2. Output exactly one line in the following format:
src=TableA,TableB, dst=TableC, TableD

Step 2: Candidate Path Enumeration. For ev-
ery pair (T5,Ty) € Ts x Tq, we enumerate all
shortest simple paths connecting them in G:

SP(T,, Ty) =
Ty, |p :distg(TS,Td)}

{ P ’ p is a simple path Ty ~~»

This set SP(Ts,Ty) contains all minimal-length
paths in the schema graph between each source and
destination table pair.

The global candidate set and their union are de-

fined as:
c=J U sea.1), U=p

Ts€Ts TyETy peC

Here, C enumerates all candidate paths, and U is
the union of all tables appearing in any candidate
path—representing the maximal connected sub-
graph that could be relevant for the query.

Step 3: Path Selection and Sub-schema Con-
struction. Depending on the configuration (de-
tailed below), the set U is optionally appended to C.
A second LLM call (or a deterministic rule) selects
a candidate path p* € C, and we set T* := p* as
the chosen subset of relevant tables for downstream
SQL generation.

3.3 Configurations

To provide flexibility and support empirical analy-
sis, we define a family of selection strategies param-
eterized by the following flags: let ks = |75 > 0,
ka = [Ta| > 0,

LONGEST € {false, true},
UNION € {false, true}.

Table 3.3 summarizes the seven configura-
tions we evaluate, spanning single-source/single-
destination and union-based settings.

# (ks,kq) LONGEST UNION

1 (1,1) false true

2 (1,%) false true

3 (x1) false true

4 (x,%) false true

5 (%,%) true true

6 (*,%) false false

7 (%) false always select U

Here, %« means any positive integer. Mode 5
chooses the longest among the shortest paths;
Mode 6 excludes U from C; Mode 7 bypasses path
selection and deterministically returns the union
U. This design enables ablation studies to assess
the effect of schema coverage and path selection
criteria on final Text-to-SQL accuracy.

3.4 End-to-End Objective

Given configuration ©, our full pipeline is:

fI?LszL(q,D) = hgen (q, Qg)L(an))

where gseL is our graph-based schema linker and
hgen is any downstream SQL generator, con-
strained to use only the filtered schema 7*. All
pipeline steps operate in a single pass, are fully
automatic, and require no training data or domain
adaptation.

4 Experimental Setup
4.1 Dataset

All experiments are conducted on the BIRD de-
velopment split, which comprises 1,534 natural-
language questions over 11 heterogeneous rela-
tional databases. For schema linking precision,
recall, and exact match rate, we use the BIRD dev
set gold queries by extracting the referenced ta-
bles. For execution accuracy, we follow the official
evaluation script provided by BIRD without modi-
fication.



4.2 Compared Methods

SchemaGraphSQL (Ours) Unless otherwise
noted, results correspond to Mode 7 in Table 3.3,
i.e., we deterministically return the union U of
all shortest paths connecting the LLM-identified
source and destination tables (cf. Section 3.2). The
src/dst extraction prompt (Prompt 1) is executed
using google/gemini-2.5-flash-preview at
temperature 0.2, while downstream SQL genera-
tion is performed at temperature 0.3.

LLM as Schema Linker (Baseline) A single
Gemini 2.5 Flash call is prompted to list all tables
that must appear in the FROM/JOIN clause given
the user question. This mirrors prior “single-step”
schema linking approaches while controlling for
model and prompt length.

DENSE RETRIEVER We embed each table
name (along with its column names) using the
multilingual-ES5-large-instruct encoder. For each
question, the top-k tables (k = 1...6) retrieved
via cosine similarity form the predicted schema.

For completeness, we also include published
BIRD dev results from recent schema-linking
systems such as Extractive Schema Linking for
Text-to-SQL (Glass et al., 2025) and LINKALIGN.
(Wang and Liu, 2025) We did not re-run these sys-
tems; hence, they are excluded from execution ac-
curacy comparisons.

4.3 LLMs for SQL Generation

Following schema filtering, we evaluate four LLMs
for SQL generation:

e google/gemini-2.5-flash-preview;
e google/gemma-3-27b-it;

e google/gemma-3-12b-it;

e google/gemma-3-4b-it.

All calls are made through the respective
provider APIs using identical configurations and
prompting templates.

4.4 Evaluation Metrics

Schema-level Metrics. Let G be the gold table
set and P the predicted set.

 Precision: The percentage of predicted tables
that are actually present in the gold SQL query:

|P NG|

Precision =
P

* Recall: The percentage of gold tables that are
successfully predicted:

IPNG

Recall =
G

* I3 Score: The generalized F-score that
weights recall 3 times more than precision:

(1+8H)|PNG|
BAG|+|P| 7

Fp = B e{1,6}

» Exact Match Rate (EMR): The percentage of
examples where the predicted schema exactly
matches the gold schema:

N
1
EMR = =Y I[P = G,
Ni:1[ ]

End-to-End Metric Execution accuracy is com-
puted using the official BIRD evaluation script:
the generated SQL query is executed against the
database, and its result must exactly match that of
the reference query.

4.5 Implementation Notes

All experiments are conducted via hosted API end-
points; no on-premise hardware is used. Each query
incurs (i) one Gemini 2.5 Flash call for schema
linking, and (ii) one model call for SQL genera-
tion (Gemini2.5 or Gemma3). Code, prompts, and
outputs will be released to support reproducibility.

5 Results

5.1 Schema Linking Evaluation

Table 1 shows that our primary configuration,
SchemaGraphSQLggce.union, attains Recall =
95.71 % and an F4=95.43 % on the BIRD devel-
opment split—surpassing all published systems,
including the previous recall-centric leader ExSL¢
(F6=93.92 %). Prior work has argued that recall-
weighted metrics such as Fg are the most reliable
indicator of downstream success, because omitting
a relevant table is far more damaging than includ-
ing extras (Glass et al., 2025). By pushing both
recall and Fg to new highs without any supervised
training, SchemaGraphSQLyce-union €stablishes
a new performance bar for zero-shot schema link-
ing.



Table 1: Schema Linking Results in Dev Mode

Method Exact Match Rate (%) Precision (%) Recall (%) F1(%) F6 (%)
LLM as Schema Linker 75.88 91.79 89.90 90.83 89.95
Retrieval (Topl) 20.08 86.70 44.46 58.78 45.05
Retrieval (Top2) 26.79 66.59 67.80 67.19 67.77
Retrieval (Top3) 4.63 53.67 80.91 64.54 79.82
Retrieval (Top4) 1.24 45.79 87.64 60.15 85.52
Retrieval (Top5) 1.04 39.89 91.11 55.49 88.06
Retrieval (Top6) 1.04 35.43 93.31 51.36 89.37
DIN-SQL - 79.90 55.70 65.64 56.16
PET-SQL - 81.60 64.90 72.30 65.26
MAC-SQL - 76.30 56.20 64.73 56.60
MCS-SQL - 79.60 76.90 78.23 76.97
RSL-SQL - 78.10 77.50 77.80 77.52
LinkAlign Agent - 77.10 79.40 78.23 79.34
DTS-SQL - 95.07 92.74 93.89 92.80
Gen - 90.40 95.50 92.88 95.35
ExSL. - 95.86 93.94 94.89 93.99
ExSL¢ - 96.35 93.85 95.08 93.92
SchemaGraphSQL; 71.06 94.89 84.02 89.12 84.28
SchemaGraphSQL ¢o;ce—union 76.60 86.21 95.71 90.71 95.43

For users who require a tighter schema, our bal-
anced SchemaGraphSQL,,.,, variant delivers the
best F; (92.93 %) with only a modest drop in re-
call (95.10 %). Exact-match rate also improves
over the single-step LLM baseline (75.88 %)—ris-
ing to 78.29 % for n-n and 76.60 % for force-
union—demonstrating that classical graph search
repairs connectivity errors that an LLM alone often
misses.

5.2 Ablation Insights

The configuration sweep in Table 2 highlights two
actionable lessons:

* Union is essential. Removing the union step
(no-union) drops both F; and EMR, confirming
that coverage matters more than compactness.

* Avoid unnecessary hops. Forcing the longest
path (force-longest) harms all metrics, indicat-
ing that extra intermediate tables add noise with-
out benefit.

Together, these results validate our design
choice: merge all shortest paths for maximum re-
call, then optionally down-select (e.g., n-n) when
higher precision is required.

5.3 End-to-End Execution Accuracy

Table 3 reports execution accuracy for four
LLM generators. Across the board, Schema-
GraphSQL yields gains of 6-12 % over the

Table 2: Schema-linking results across graph settings
on BIRD-Dev.

Method EMR Prec. Rec. F1 Fé
(%) () (F) (%) (%)
SchemaGraphSQL1 _ ¢ 71.06 94.89 84.02 89.12 84.28
SchemaGraphSQL1 _,, 78.16 93.29 91.55 92.41 91.60
SchemaGraphSQL,, _ 1 78.23 90.99 94.86 92.89 94.76
SchemaGraphSQL,, _», 78.29 90.87 95.10 92.93 94.98
SchemaGraphSQLyooc-ionges:  71.64 89.47 88.45 88.96 88.47
SchemaGraphSQL,o-ynion 73.73 91.39 90.03 90.71 90.07
SchemaGraphSQLyorce union ~ 10.60 86.21 95.71 90.71 95.43

single-step baseline. Using Gemini-2.5-Flash,
SchemaGraphSQL ;... union attains 62.91 %
total accuracy—only 1.5 % short of the oracle
“ideal schema linking” setting, implying that most
residual errors stem from SQL generation rather
than linking.

Improvements concentrate on the Moderate and
Challenging subsets: Gemini-2.5-Flash sees a
+15 % boost on challenging questions, reflect-
ing SchemaGraphSQL’s advantage on multi-join
queries.

For every generator, the high-recall force-union
variant outperforms the high-precision 1-1 variant
on execution accuracy by 2-7 % (Dev) and 4-12
% (MiniDev). This affirms that omitting a table is
far more damaging than including extras—LLMs
can ignore noise but cannot guess missing joins.
Among schema metrics, Fg correlates best with



Table 3: SQL Execution Accuracy Results - Dev

LLM Method Simple (%) Moderate (%) Challenging (%) Total (%)
Ideal Schema Linking 42.49 21.94 16.67 33.83
Baseline 30.05 13.76 7.64 23.01
Gemma-3-4B Retrieval 33.51 17.20 13.19 26.66
SchemaGraphSQL,,_,, 35.46 17.63 12.50 27.90
SchemaGraphSQL;_ 28.76 11.61 8.33 21.64
SchemaGraphSQL force—union 3535 18.92 20.83 29.01
Ideal Schema Linking 58.38 41.08 29.86 50.46
Baseline 42.59 22.15 16.67 33.96
Gemma-3-128 Retrieval 46.38 30.97 27.08 39.90
SchemaGraphSQL,,_,, 52.00 35.05 27.78 44.59
SchemaGraphSQL1_ 50.59 29.03 23.61 41.53
SchemaGraphSQL force—union 5438 3527 26.39 45.96
Ideal Schema Linking 63.14 47.96 38.19 56.19
Baseline 49.41 31.40 25.69 A1.72
Gemma-3-278 Retrieval 52.22 41.51 33.33 47.20
SchemaGraphSQL,,_,, 59.68 45.16 34.03 52.87
SchemaGraphSQL;_ 58.38 41.08 31.94 50.65
SchemaGraphSQL force—union ~ 61.19 44.73 37.50 53.98
Ideal Schema Linking 71.46 55.48 47.92 64.41
Baseline 5935 41.08 3472 51,50
. Retrieval 64.11 50.97 45.83 58.41
Gemini-2.5-Flash ¢ 1 maGraphSQL,, ., 68.22 53.33 44.44 61.47
SchemaGraphSQL;_ 66.81 51.61 43.06 59.97
SchemaGraphSQL force—union ~ 68.32 56.13 50.00 62.91

end-to-end success: the highest-Fg model is invari-
ably the highest-accuracy model, whereas precision
alone can be misleading.

5.4 Efficiency

Our pipeline adds negligible latency: one Gemini-
Flash call consumes on average 4.6 K input and 14
output tokens, and the subsequent O(|E|) shortest-
path search completes in under 15 ms on commod-
ity hardware. Thus SchemaGraphSQL is compat-
ible with real-time database interfaces and low-
resource deployments.

6 Conclusion

We have presented SCHEMAGRAPHSQL, a
lightweight, zero-shot schema linking framework
that integrates classical path-finding algorithms
into modern LLM-based Text-to-SQL systems. Un-
like prior work that often relies on heavy prompting
techniques or supervised fine-tuning, our method
outperforms prior work in schema linking with min-
imal computational overhead. Beyond accuracy
gains, SCHEMAGRAPHSQL offers a transparent
and interpretable mechanism for schema filtering,

making it well-suited for practical deployment in
real-world text-to-SQL systems.

Limitation

While SCHEMAGRAPHSQL delivers strong per-
formance on large-scale databases with well-
structured foreign key relations, it has several lim-
itations. First, our approach is not optimized for
deeply nested or compositional queries that require
complex subquery reasoning. Second, on dense
schema graphs with excessive or noisy foreign
key links, the shortest-path enumeration may yield
overly broad candidate sets, affecting precision.
Lastly, we treat all join paths equally and do not
incorporate heuristics or weights for foreign key
importance or estimated join costs, which could
further improve path selection and SQL execution
quality.
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A Prompts

This section includes all system prompts used
throughout the SchemaGraphSQL pipeline. These
prompts are designed to be modular and reusable
across different configurations and model sizes.

* Prompt 2: Selection of the most appropriate
join path among candidate schema paths.

e Prompt 3: SQL query generation using the
filtered schema and join path.

* Prompt 4: Baseline SQL generation prompt

using the full schema without schema linking.

These prompts are issued via Gemini 2.5 Flash
with low temperature settings to ensure stability
and determinism during inference.

Prompt 2: System prompt for join path selec-
tion

ROLE & OBJECTIVE

You are a database expert tasked with selecting the optimal
Jjoin path to answer user questions using a provided SQL
schema.

TASK
Choose the single most appropriate join path from a list of
candidates that correctly connects the relevant tables.

INSTRUCTIONS

1. Internally inspect each path to determine:

» whether it connects all necessary tables,
* whether joins are complete and valid,
» and whether it satisfies the intent of the question.

Briefly justify your decision internally but do not in-
clude any reasoning in the final output.

2. Output one line in the following format: Final Answer:
path_id: <ID>

Prompt 3: System prompt for SQLite query
generation after schema linking

ROLE & OBJECTIVE

You are an expert in SQLite query generation. Your task is
to generate a valid query to answer a user question based
on the given schema and join path.

INPUTS

e Schema: {schema}

e Join Path: {join_path_string}
* Question Context: {evidence_string}

INSTRUCTIONS

1. Use the provided schema and join path to construct a
valid SQLite query.

2. Ensure the query correctly answers the user’s question.

3. Format the query clearly and confirm it adheres to
SQLite syntax.
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Prompt 4: Baseline prompt for SQLite query
generation

ROLE & OBJECTIVE

You are an expert in SQLite query generation. Your task
is to produce a valid query that answers a user’s question
using the provided schema.

INPUTS
¢ Schema: {schema}

¢ Question Context: {evidence_string}

INSTRUCTIONS

1. Generate a correct SQLite query that answers the user
question.

2. Ensure the query is syntactically valid and aligns with
the schema.

3. Format the query clearly and cleanly.

B Additional Results

This section presents extended evaluation results
that complement those in the main text. We report
schema linking scores and execution accuracy on
the MINIDEV split of the BIRD dataset to validate
robustness and generalization.

* Table 4: Comparison of schema linking meth-
ods on MiniDeyv, including LLM baselines,
dense retrievers, and SchemaGraphSQL.

* Table 5: SchemaGraphSQL ablation re-
sults across different graph configurations on
MiniDeyv.

 Table 6: End-to-end SQL execution accuracy
for all models and schema linking variants on
MiniDev, broken down by question difficulty.

These extended results reinforce the strong re-
call and execution performance of SchemaGraph-
SQL, especially on complex and multi-table SQL
queries.



Table 4: Schema Linking Results in MiniDev Dataset

Method Exact Match Rate (%) Precision (%) Recall (%) F1 (%) ¥6 (%)
LLM as Schema Linker 75.70 92.82 90.56 91.68 90.62
Retrieval (Top1) 14.40 86.40 41.24 55.83 41.83
Retrieval (Top2) 28.00 68.30 64.67 66.43 64.76
Retrieval (Top3) 4.80 55.00 77.73 64.42 76.88
Retrieval (Top4) 1.00 47.29 85.00 60.77 83.20
Retrieval (Top5) 0.80 41.52 89.64 56.75 86.92
Retrieval (Top6) 0.80 37.06 92.26 52.87 88.69
SchemaGraphSQL (Ours) 82.33 94.80 93.97 94.38 93.99

Table 5: Schema Linking Results Across Different Graph Settings (Minidev)

Method Exact Match Rate (%) Precision (%) Recall (%) F1 (%) F6 (%)
SchemaGraphSQL;_; 64.86 96.47 79.67 87.27 80.05
SchemaGraphSQL;_,, 74.10 95.93 87.16 91.34 87.38
SchemaGraphSQL,,_; 82.13 95.81 93.39 94.58 93.45
SchemaGraphSQL,,_,, 82.33 94.80 93.97 94.38 93.99
SchemaGraphSQL ¢orce—1ongest 72.29 92.97 86.19 89.45 86.36
SchemaGraphSQL,,,—ynion 74.90 95.16 87.94 9141 88.12
SchemaGraphSQL ¢oce—union 80.72 89.36 94.75 9197 94.59

Table 6: SQL Execution Accuracy Results - MiniDev

LLM Method Simple (%) Moderate (%) Challenging (%) Total (%)
Ideal Schema Linking 47.97 21.37 18.63 28.71
Baseline 32.43 10.08 6.86 16.06
Gemma-3-4B Retrieval 36.49 18.55 13.73 22.89
SchemaGraphSQL,,_,, 42.57 18.15 12.75 24.3
SchemaGraphSQL;_; 31.08 10.08 6.86 15.66
SchemaGraphSQL force union  41.89 18.95 15.69 25.1
Ideal Schema Linking 63.51 45.56 34.31 48.59
Baseline 38.51 18.95 16.67 24.3
Gemma-3-12B Retrieval 50.68 35.08 28.43 38.35
SchemaGraphSQL,,_,, 57.43 37.5 30.39 41.97
SchemaGraphSQL1_ 54.73 29.03 23.53 35.54
SchemaGraphSQL ¢orce—union 60.14 42.34 33.33 45.78
Ideal Schema Linking 72.97 53.63 43.14 57.23
Baseline 50.0 27.82 21.57 33.13
Gemma-3-278 Retrieval 60.81 44.76 36.27 47.79
SchemaGraphSQL,,—,, 66.22 50.81 35.29 52.21
SchemaGraphSQL;_ 61.49 38.71 27.45 43.17
SchemaGraphSQL ¢orce—union 68.92 52.02 44.12 5542
Ideal Schema Linking 83.78 66.13 56.86 69.48
Baseline 58.78 43.95 36.27 46.79
.. Retrieval 75.0 53.63 53.92 60.04
Gemini-2.5-Flash ¢ 1 maGraphSQL, ., 77.03 58.87 50.98 62.65
SchemaGraphSQL;_; 76.35 56.85 41.18 59.44
SchemaGraphSQL force—union  77.7 62.5 50.98 64.66
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