
SchemaGraphSQL: Efficient Schema Linking with Pathfinding Graph
Algorithms for Text-to-SQL on Large-Scale Databases

Anonymous ACL submission

Abstract001

Text-to-SQL systems translate natural language002
questions into executable SQL queries, and003
recent progress with large language models004
(LLMs) has driven substantial improvements005
in this task. Schema linking remains a criti-006
cal component in Text-to-SQL systems, reduc-007
ing prompt size for models with narrow con-008
text windows and sharpening model focus even009
when the entire schema fits. We present a zero-010
shot, training-free schema linking approach011
that first constructs a schema graph based on012
foreign key relations, then uses a single prompt013
to Gemini 2.5 Flash to extract source and des-014
tination tables from the user query, followed015
by applying classical path-finding algorithms016
and post-processing to identify the optimal se-017
quence of tables and columns that should be018
joined, enabling the LLM to generate more019
accurate SQL queries. Despite being simple,020
cost-effective, and highly scalable, our method021
achieves state-of-the-art results on the BIRD022
benchmark, outperforming previous special-023
ized, fine-tuned, and complex multi-step LLM-024
based approaches. We conduct detailed ab-025
lation studies to examine the precision–recall026
trade-off in our framework. Additionally, we027
evaluate the execution accuracy of our schema028
filtering method compared to other approaches029
across various model sizes.030

1 Introduction031

Relational databases are foundational to modern032

data infrastructure, powering analytics, reporting,033

and decision-making across domains. Yet, query-034

ing these databases typically requires fluency in035

SQL—a barrier for many users. Text-to-SQL sys-036

tems aim to democratize access by translating nat-037

ural language (NL) questions into executable SQL038

queries (Zhu et al., 2024; Zhang et al., 2024). En-039

abled by large language models (LLMs), recent040

systems achieve impressive performance across041

complex cross-domain settings.042

Algorithm 1: Graph-Based Schema Linking
Input: Question q; schema graph G;
Output: Relevant table set T ⋆ ⊆ T

1 Step 1: Identify source/destination tables;
2 (Tsrc, Tdst)← LLM_call(q)

3 Step 2: Build candidate path set;
4 C ← ∅;
5 foreach Tsrc ∈ Tsrc, Tdst ∈ Tdst do
6 C ← C ∪ ShortestPaths(Tsrc, Tdst)

7 Step 3: Build union path;
8 U ←

⋃
p∈C p;

9 return U ;

However, bringing these systems to real-world 043

applications introduces new challenges. Enterprise 044

databases often contain hundreds of tables and thou- 045

sands of columns—far beyond the scale of aca- 046

demic benchmarks. Supplying the entire schema 047

to the model risks exceeding token limits and intro- 048

duces considerable noise, which can hinder SQL 049

generation and inflate inference cost (Cao et al., 050

2024; Li et al., 2023c). In practice, user queries 051

typically touch only a small subset of the schema, 052

making it crucial to identify and extract the rele- 053

vant part—a process known as schema linking (Lei 054

et al., 2020). 055

Schema linking aims to determine which ta- 056

bles or columns are needed to answer a user ques- 057

tion. While early methods relied on exact string 058

matches (Yu et al., 2018), recent work has proposed 059

neural linkers (Gan et al., 2023), retrieval-based 060

modules (Pourreza and Rafiei, 2024), and prompt- 061

based systems (Wang and Liu, 2025). These can 062

capture semantic signals beyond surface overlap, 063

but typically require supervised training, complex 064

multi-stage pipelines, or brittle prompt engineering. 065

They also struggle with the core trade-off: being 066

precise enough to reduce noise, yet broad enough 067

not to miss critical context (Liu et al., 2024; Wang 068

et al., 2025). 069

1

In this work, we ask: Can we perform effec-070

tive schema linking without relying on specialized071

fine-tuned models or complex prompting strate-072

gies? Our answer is affirmative.073

We introduce SchemaGraphSQL, a zero-shot074

schema linking framework that revisits classical075

algorithmic tools. Our key idea is to model schema076

linking as a graph search problem. We treat the077

database schema as a graph where nodes are tables078

and edges reflect foreign-key connections. Given079

a user query, we make a single LLM call to pre-080

dict coarse-grained source and destination tables,081

then apply deterministic path-finding algorithms082

to enumerate all shortest join paths between them.083

The union of these paths forms a compact sub-084

schema—guaranteed to be connected and grounded085

in the query.086

This perspective is both simple and surprisingly087

powerful. To our knowledge, SchemaGraphSQL088

is the first Text-to-SQL system to rely exclusively089

on classical graph algorithms for schema link-090

ing, using LLMs only for coarse guidance. It091

requires no training, incurs minimal inference cost,092

and integrates easily into any downstream parser093

or LLM-based SQL generator.094

Empirical results on the BIRD benchmark show095

that SchemaGraphSQL achieves new state-of-the-096

art scores on recall-focused schema linking metrics097

and improves execution accuracy across multiple098

SQL generators. We also conduct ablations demon-099

strating that even this minimal linking method out-100

performs specialized neural or prompt-based sys-101

tems in robustness and cost-efficiency.102

Main Contributions:103

• We introduce a zero-shot schema linking104

approach that models database schemas as105

graphs and applies classical path-finding al-106

gorithms. Our method achieves state-of-107

the-art performance without requiring any108

training—either for fine-tuning or infer-109

ence—making it highly suitable for low-110

resource, real-world scenarios where training111

data is unavailable or difficult to obtain.112

• Our system uses only a single lightweight113

LLM call (Gemini 2.5 Flash) per query, with114

minimal token usage (averaging 4593 input115

and 14 output tokens), significantly reducing116

inference cost while maintaining ease of inte-117

gration and deployment.118

• We conduct comprehensive empirical evalu-119

ations, demonstrating superior schema link- 120

ing performance compared to fine-tuned and 121

specialized methods. Additionally, we per- 122

form detailed ablation studies to examine pre- 123

cision–recall trade-offs and assess the down- 124

stream impact on Text-to-SQL execution accu- 125

racy across a range of open-source and closed- 126

source models. 127

2 Related Work 128

Text-to-SQL systems aim to automatically trans- 129

late natural language questions into executable SQL 130

queries, thereby enabling non-experts to interact 131

with relational databases. The advent of large lan- 132

guage models (LLMs) has significantly advanced 133

this task (Zhang et al., 2024; Zhu et al., 2024), with 134

models like GPT-3.5/4, Gemini, and their open- 135

source variants demonstrating impressive perfor- 136

mance across benchmarks. However, as schema 137

size increases, providing the entire schema as input 138

may exceed the model’s context window, especially 139

in large-scale databases. Even when using recent 140

LLMs with extended context lengths, supplying 141

the full schema can introduce noise and hinder the 142

model’s ability to focus on relevant elements. 143

2.1 Schema Linking in Text-to-SQL 144

Schema linking—the process of aligning natural 145

language mentions to corresponding tables and 146

columns in a database—is a crucial component 147

of Text-to-SQL systems (Lei et al., 2020; Liu et al., 148

2022; Li et al., 2023c). Early approaches relied 149

on exact string matching or type-based heuris- 150

tics (Yu et al., 2018), which struggled with syn- 151

onyms, paraphrases, and complex cross-domain 152

schemas. Recent methods have increasingly lever- 153

aged pretrained LLMs and neural encoders to im- 154

prove linking accuracy (Gan et al., 2023; Glass 155

et al., 2025). Schema linking has proven partic- 156

ularly important for LLM pipelines that operate 157

on large or multi-database environments, where 158

prompt space is limited and precision in schema fil- 159

tering directly affects SQL generation quality (Cao 160

et al., 2024; Liu et al., 2025). 161

2.2 Neural and Prompt-Based Linking 162

Strategies 163

Numerous methods have been proposed to handle 164

schema linking within LLM-based Text-to-SQL 165

systems. Some decouple schema linking as a sepa- 166

rate module before SQL generation (Pourreza and 167

2

Figure 1: Overview of our graph-based schema linking pipeline.

Rafiei, 2024; Li et al., 2023a), while others in-168

corporate schema selection as a prompt-driven or169

retrieval-augmented step (Wang and Liu, 2025).170

Extractive methods, such as Glass et al. (2025), di-171

rectly prompt LLMs to list relevant schema items,172

trading generation flexibility for interpretability173

and control. RSL-SQL (Cao et al., 2024) pro-174

poses a bidirectional pruning mechanism with self-175

correction to boost recall, while Solid-SQL (Liu176

et al., 2025) augments training data to improve link-177

ing robustness. Despite variations in architecture,178

a common trend across these systems is the effort179

to balance schema coverage (recall) with relevance180

filtering (precision) to avoid overloading the LLM181

or omitting critical elements.182

2.3 Graph-Based Approaches for Schema183

Linking184

A parallel line of work models the database schema185

as a graph structure, where tables and columns are186

nodes, and foreign-key or semantic relations form187

edges. These methods primarily leverage graph188

neural networks (GNNs) or relation-aware trans-189

formers to propagate information across schema190

components. RAT-SQL (Wang et al., 2020) pio-191

neered relation-aware attention over a joint ques-192

tion–schema graph, inspiring successors such as193

LGESQL (Cao et al., 2021) (line-graph encoding194

of meta-relations) and ShadowGNN (Chen et al.,195

2021) (delexicalised projection for cross-schema196

generalisation). Later hybrids integrate graph rea-197

soning directly into pretrained LMs, e.g. Graphix- 198

T5 (Li et al., 2023b) and GRL-SQL (Gong and 199

Sun, 2024). Most recently, SQLformer (Bazaga 200

et al., 2024) embeds schema structure as induc- 201

tive bias in a Transformer encoder and autoregres- 202

sively generates SQL ASTs as graphs. While graph- 203

enhanced models capture rich global relations, they 204

typically require substantial fine-tuning or architec- 205

tural changes—an obstacle in low-resource, real- 206

time deployments. Graph-based schema linking 207

methods have recently declined in popularity as 208

LLM-driven approaches have become dominant. 209

2.4 Classical Graph Algorithms in Schema 210

Linking 211

In contrast to learned graph encoders, only a hand- 212

ful of systems reuse classical graph algorithms to 213

aid LLMs. DBCopilot (Wang et al., 2025) con- 214

structs a directed schema graph and performs depth- 215

first traversal to linearise the sub-schema passed 216

to a lightweight “router” model. Interactive- 217

T2S (Xiong et al., 2024) equips an LLM agent 218

with a FINDSHORTESTPATH tool that runs breadth- 219

first search over the foreign-key graph to supply 220

valid join chains during multi-turn dialogue. These 221

works demonstrate the practicality of DFS/BFS as 222

auxiliary helpers, but the graph search remains pe- 223

ripheral—responsible only for join validation or 224

routing—rather than serving as the core schema- 225

linking engine. 226

3

2.5 Positioning Our Work227

While prior literature has thoroughly explored neu-228

ral and graph-enhanced architectures for schema229

linking, the explicit use of classical graph algo-230

rithms—particularly as the core mechanism for231

schema linking in LLM-based Text-to-SQL sys-232

tems—remains rare. Our approach, SCHEMA-233

GRAPHSQL, revisits this paradigm by operational-234

izing schema linking as a path-selection problem235

on the schema graph. To our knowledge, this is the236

first work to systematically evaluate and ablate clas-237

sic path-finding algorithms for schema linking in238

LLM-driven Text-to-SQL pipelines on real-world239

benchmarks.240

3 Methodology241

Notation

Databases. A relational database is repre-
sented as

D = ⟨T ,A,K⟩,

where:

• T = {T1, . . . , Tn}: set of tables.

• A(Ti): attributes (columns) of table Ti;
A =

⋃
Ti∈T A(Ti) is the global set of

attributes.

• K ⊆ T × T : set of foreign key (FK)
relations.

The schema graph is the undirected graph
G = (T ,K), with nodes as tables and edges
as FK links. For sparse schemas (fewer than
two edges), we further augment the schema
graph by adding edges between tables that
share a column containing “id” in its name,
thus ensuring that the schema graph is suffi-
ciently connected for path enumeration.

Languages.

• L: set of well-formed natural language
questions.

• S: set of valid SQL queries.

Given q ∈ L, the objective is to generate
Q ∈ S that answers q over D.

242

This section formalizes the schema linking prob-243

lem and describes our graph-based, training-free244

approach for selecting minimal connected sub- 245

schemas to facilitate Text-to-SQL generation. We 246

begin by introducing notation and the problem for- 247

mulation, then present our graph-based schema 248

linking procedure, and finally detail the configura- 249

tion space of our approach. 250

3.1 Problem Formulation 251

We first introduce the notation used throughout this 252

paper: 253

Definition 3.1 (Text-to-SQL). Given q and D, 254

Text-to-SQL seeks a function 255

fNL2SQL : L ×D −→ S 256

that returns an executable SQL query Q = 257

fNL2SQL(q,D) that answers the user question q 258

on the database D. 259

Definition 3.2 (Schema Linking). Let G = (T ,K) 260

be the schema graph of D. Schema linking selects 261

a connected sub-schema S = ⟨T ⋆,K⋆⟩ with T ⋆ ⊆ 262

T and K⋆ ⊆ K sufficient to express the SQL query 263

answering q. Formally, 264

gSL : L ×G −→ P(T), T ⋆ = gSL(q,G) 265

Here, 266

K⋆ = {(Ti, Tj) ∈ K | Ti, Tj ∈ T ⋆} 267

The output sub-schema S defines the smallest set 268

of tables and links needed to answer q while re- 269

maining connected within the schema graph. 270

3.2 Graph-Based Schema Linking as Path 271

Selection 272

Step 1: Extracting Source and Destination Ta- 273

bles. A single LLM call extracts two subsets of 274

tables from the schema: 275

• Ts (sources): tables whose columns appear in 276

query conditions or filtering predicates; 277

• Td (destinations): tables containing the 278

columns requested as output. 279

Both sets are guaranteed to be non-empty and may 280

overlap, reflecting cases where the same table is 281

used for both filtering and output. 282

We operationalize schema linking as a path- 283

selection task on the schema graph G, which en- 284

ables systematic and efficient sub-schema identifi- 285

cation: 286

This extraction is performed via a single call to 287

Gemini 2.5 Flash, guided by a dedicated system 288

prompt designed to elicit precise identification of 289

4

source and destination tables from the question and290

schema. The full prompt is shown in Prompt 1.291

Prompt 1: System prompt for source and des-
tination extraction
ROLE & OBJECTIVE
You are a senior data engineer who analyses SQL schemas
and maps user questions precisely to source tables (filter-
ing) and destination tables (final result columns).

TASK
Identify:

• Source table(s) (src): contain columns used in filter-
s/conditions.

• Destination table(s) (dst): contain columns returned
in the answer.

INSTRUCTIONS

1. Internally inspect every table to determine

• which tables participate in filtering, and
• which tables supply the requested output columns.

Briefly justify your choice internally but do not include
that justification in the final answer.

2. Output exactly one line in the following format:
src=TableA,TableB, dst=TableC,TableD

292

Step 2: Candidate Path Enumeration. For ev-293

ery pair (Ts, Td) ∈ Ts × Td, we enumerate all294

shortest simple paths connecting them in G:295

296

SP(Ts, Td) =
{
p
∣∣∣ p is a simple path Ts ;

Td, |p| = distG(Ts, Td)
}297

This set SP(Ts, Td) contains all minimal-length298

paths in the schema graph between each source and299

destination table pair.300

The global candidate set and their union are de-301

fined as:302

C =
⋃

Ts∈Ts

⋃
Td∈Td

SP(Ts, Td), U =
⋃
p∈C

p303

Here, C enumerates all candidate paths, and U is304

the union of all tables appearing in any candidate305

path—representing the maximal connected sub-306

graph that could be relevant for the query.307

Step 3: Path Selection and Sub-schema Con-308

struction. Depending on the configuration (de-309

tailed below), the set U is optionally appended to C.310

A second LLM call (or a deterministic rule) selects311

a candidate path p⋆ ∈ C, and we set T ⋆ := p⋆ as312

the chosen subset of relevant tables for downstream313

SQL generation.314

3.3 Configurations 315

To provide flexibility and support empirical analy- 316

sis, we define a family of selection strategies param- 317

eterized by the following flags: let ks = |Ts| > 0, 318

kd = |Td| > 0, 319

LONGEST ∈ {false, true},
UNION ∈ {false, true}.

320

Table 3.3 summarizes the seven configura- 321

tions we evaluate, spanning single-source/single- 322

destination and union-based settings. 323

(ks, kd) LONGEST UNION

1 (1, 1) false true
2 (1, ∗) false true
3 (∗, 1) false true
4 (∗, ∗) false true
5 (∗, ∗) true true
6 (∗, ∗) false false
7 (∗, ∗) false always select U

324

Here, ∗ means any positive integer. Mode 5 325

chooses the longest among the shortest paths; 326

Mode 6 excludes U from C; Mode 7 bypasses path 327

selection and deterministically returns the union 328

U . This design enables ablation studies to assess 329

the effect of schema coverage and path selection 330

criteria on final Text-to-SQL accuracy. 331

3.4 End-to-End Objective 332

Given configuration Θ, our full pipeline is: 333

fΘ
NL2SQL(q,D) = hGEN

(
q, gΘSL(q,G)

)
334

where gΘSL is our graph-based schema linker and 335

hGEN is any downstream SQL generator, con- 336

strained to use only the filtered schema T ⋆. All 337

pipeline steps operate in a single pass, are fully 338

automatic, and require no training data or domain 339

adaptation. 340

4 Experimental Setup 341

4.1 Dataset 342

All experiments are conducted on the BIRD de- 343

velopment split, which comprises 1,534 natural- 344

language questions over 11 heterogeneous rela- 345

tional databases. For schema linking precision, 346

recall, and exact match rate, we use the BIRD dev 347

set gold queries by extracting the referenced ta- 348

bles. For execution accuracy, we follow the official 349

evaluation script provided by BIRD without modi- 350

fication. 351

5

4.2 Compared Methods352

SchemaGraphSQL (Ours) Unless otherwise353

noted, results correspond to Mode 7 in Table 3.3,354

i.e., we deterministically return the union U of355

all shortest paths connecting the LLM-identified356

source and destination tables (cf. Section 3.2). The357

src/dst extraction prompt (Prompt 1) is executed358

using google/gemini-2.5-flash-preview at359

temperature 0.2, while downstream SQL genera-360

tion is performed at temperature 0.3.361

LLM as Schema Linker (Baseline) A single362

Gemini 2.5 Flash call is prompted to list all tables363

that must appear in the FROM/JOIN clause given364

the user question. This mirrors prior “single-step”365

schema linking approaches while controlling for366

model and prompt length.367

DENSE RETRIEVER We embed each table368

name (along with its column names) using the369

multilingual-E5-large-instruct encoder. For each370

question, the top-k tables (k = 1 . . . 6) retrieved371

via cosine similarity form the predicted schema.372

For completeness, we also include published373

BIRD dev results from recent schema-linking374

systems such as Extractive Schema Linking for375

Text-to-SQL (Glass et al., 2025) and LINKALIGN.376

(Wang and Liu, 2025) We did not re-run these sys-377

tems; hence, they are excluded from execution ac-378

curacy comparisons.379

4.3 LLMs for SQL Generation380

Following schema filtering, we evaluate four LLMs381

for SQL generation:382

• google/gemini-2.5-flash-preview;383

• google/gemma-3-27b-it;384

• google/gemma-3-12b-it;385

• google/gemma-3-4b-it.386

All calls are made through the respective387

provider APIs using identical configurations and388

prompting templates.389

4.4 Evaluation Metrics390

Schema-level Metrics. Let G be the gold table391

set and P the predicted set.392

• Precision: The percentage of predicted tables393

that are actually present in the gold SQL query:394

Precision =
|P ∩G|
|P |

395

• Recall: The percentage of gold tables that are 396

successfully predicted: 397

Recall =
|P ∩G|
|G|

398

• Fβ Score: The generalized F-score that 399

weights recall β times more than precision: 400

Fβ =
(1 + β2) |P ∩G|
β2|G|+ |P |

, β ∈ {1, 6} 401

• Exact Match Rate (EMR): The percentage of 402

examples where the predicted schema exactly 403

matches the gold schema: 404

EMR =
1

N

N∑
i=1

I[Pi = Gi] 405

End-to-End Metric Execution accuracy is com- 406

puted using the official BIRD evaluation script: 407

the generated SQL query is executed against the 408

database, and its result must exactly match that of 409

the reference query. 410

4.5 Implementation Notes 411

All experiments are conducted via hosted API end- 412

points; no on-premise hardware is used. Each query 413

incurs (i) one Gemini 2.5 Flash call for schema 414

linking, and (ii) one model call for SQL genera- 415

tion (Gemini2.5 or Gemma3). Code, prompts, and 416

outputs will be released to support reproducibility. 417

5 Results 418

5.1 Schema Linking Evaluation 419

Table 1 shows that our primary configuration, 420

SchemaGraphSQLforce-union, attains Recall = 421

95.71 % and an F6=95.43 % on the BIRD devel- 422

opment split—surpassing all published systems, 423

including the previous recall-centric leader ExSLf 424

(F6=93.92 %). Prior work has argued that recall- 425

weighted metrics such as F6 are the most reliable 426

indicator of downstream success, because omitting 427

a relevant table is far more damaging than includ- 428

ing extras (Glass et al., 2025). By pushing both 429

recall and F6 to new highs without any supervised 430

training, SchemaGraphSQLforce-union establishes 431

a new performance bar for zero-shot schema link- 432

ing. 433

6

Table 1: Schema Linking Results in Dev Mode

Method Exact Match Rate (%) Precision (%) Recall (%) F1 (%) F6 (%)
LLM as Schema Linker 75.88 91.79 89.90 90.83 89.95
Retrieval (Top1) 20.08 86.70 44.46 58.78 45.05
Retrieval (Top2) 26.79 66.59 67.80 67.19 67.77
Retrieval (Top3) 4.63 53.67 80.91 64.54 79.82
Retrieval (Top4) 1.24 45.79 87.64 60.15 85.52
Retrieval (Top5) 1.04 39.89 91.11 55.49 88.06
Retrieval (Top6) 1.04 35.43 93.31 51.36 89.37
DIN-SQL - 79.90 55.70 65.64 56.16
PET-SQL - 81.60 64.90 72.30 65.26
MAC-SQL - 76.30 56.20 64.73 56.60
MCS-SQL - 79.60 76.90 78.23 76.97
RSL-SQL - 78.10 77.50 77.80 77.52
LinkAlign Agent - 77.10 79.40 78.23 79.34
DTS-SQL - 95.07 92.74 93.89 92.80
Gen - 90.40 95.50 92.88 95.35
ExSLc - 95.86 93.94 94.89 93.99
ExSLf - 96.35 93.85 95.08 93.92
SchemaGraphSQL1−1 71.06 94.89 84.02 89.12 84.28
SchemaGraphSQLforce−union 76.60 86.21 95.71 90.71 95.43

For users who require a tighter schema, our bal-434

anced SchemaGraphSQLn-n variant delivers the435

best F1 (92.93 %) with only a modest drop in re-436

call (95.10 %). Exact-match rate also improves437

over the single-step LLM baseline (75.88 %)—ris-438

ing to 78.29 % for n-n and 76.60 % for force-439

union—demonstrating that classical graph search440

repairs connectivity errors that an LLM alone often441

misses.442

5.2 Ablation Insights443

The configuration sweep in Table 2 highlights two444

actionable lessons:445

• Union is essential. Removing the union step446

(no-union) drops both F1 and EMR, confirming447

that coverage matters more than compactness.448

• Avoid unnecessary hops. Forcing the longest449

path (force-longest) harms all metrics, indicat-450

ing that extra intermediate tables add noise with-451

out benefit.452

Together, these results validate our design453

choice: merge all shortest paths for maximum re-454

call, then optionally down-select (e.g., n-n) when455

higher precision is required.456

5.3 End-to-End Execution Accuracy457

Table 3 reports execution accuracy for four458

LLM generators. Across the board, Schema-459

GraphSQL yields gains of 6–12 % over the460

Table 2: Schema-linking results across graph settings
on BIRD-Dev.

Method EMR Prec. Rec. F1 F6
(%) (%) (%) (%) (%)

SchemaGraphSQL1−1 71.06 94.89 84.02 89.12 84.28
SchemaGraphSQL1−n 78.16 93.29 91.55 92.41 91.60
SchemaGraphSQLn−1 78.23 90.99 94.86 92.89 94.76
SchemaGraphSQLn−n 78.29 90.87 95.10 92.93 94.98
SchemaGraphSQLforce-longest 71.64 89.47 88.45 88.96 88.47
SchemaGraphSQLno-union 73.73 91.39 90.03 90.71 90.07
SchemaGraphSQLforce-union 76.60 86.21 95.71 90.71 95.43

single-step baseline. Using Gemini-2.5-Flash, 461

SchemaGraphSQLforce−union attains 62.91 % 462

total accuracy—only 1.5 % short of the oracle 463

“ideal schema linking” setting, implying that most 464

residual errors stem from SQL generation rather 465

than linking. 466

Improvements concentrate on the Moderate and 467

Challenging subsets: Gemini-2.5-Flash sees a 468

+15 % boost on challenging questions, reflect- 469

ing SchemaGraphSQL’s advantage on multi-join 470

queries. 471

For every generator, the high-recall force-union 472

variant outperforms the high-precision 1-1 variant 473

on execution accuracy by 2–7 % (Dev) and 4–12 474

% (MiniDev). This affirms that omitting a table is 475

far more damaging than including extras—LLMs 476

can ignore noise but cannot guess missing joins. 477

Among schema metrics, F6 correlates best with 478

7

Table 3: SQL Execution Accuracy Results - Dev

LLM Method Simple (%) Moderate (%) Challenging (%) Total (%)

Gemma-3-4B

Ideal Schema Linking 42.49 21.94 16.67 33.83
Baseline 30.05 13.76 7.64 23.01
Retrieval 33.51 17.20 13.19 26.66

SchemaGraphSQLn−n 35.46 17.63 12.50 27.90
SchemaGraphSQL1−1 28.76 11.61 8.33 21.64

SchemaGraphSQLforce−union 35.35 18.92 20.83 29.01

Gemma-3-12B

Ideal Schema Linking 58.38 41.08 29.86 50.46
Baseline 42.59 22.15 16.67 33.96
Retrieval 46.38 30.97 27.08 39.90

SchemaGraphSQLn−n 52.00 35.05 27.78 44.59
SchemaGraphSQL1−1 50.59 29.03 23.61 41.53

SchemaGraphSQLforce−union 54.38 35.27 26.39 45.96

Gemma-3-27B

Ideal Schema Linking 63.14 47.96 38.19 56.19
Baseline 49.41 31.40 25.69 41.72
Retrieval 52.22 41.51 33.33 47.20

SchemaGraphSQLn−n 59.68 45.16 34.03 52.87
SchemaGraphSQL1−1 58.38 41.08 31.94 50.65

SchemaGraphSQLforce−union 61.19 44.73 37.50 53.98

Gemini-2.5-Flash

Ideal Schema Linking 71.46 55.48 47.92 64.41
Baseline 59.35 41.08 34.72 51.50
Retrieval 64.11 50.97 45.83 58.41

SchemaGraphSQLn−n 68.22 53.33 44.44 61.47
SchemaGraphSQL1−1 66.81 51.61 43.06 59.97

SchemaGraphSQLforce−union 68.32 56.13 50.00 62.91

end-to-end success: the highest-F6 model is invari-479

ably the highest-accuracy model, whereas precision480

alone can be misleading.481

5.4 Efficiency482

Our pipeline adds negligible latency: one Gemini-483

Flash call consumes on average 4.6 K input and 14484

output tokens, and the subsequent O(|E|) shortest-485

path search completes in under 15 ms on commod-486

ity hardware. Thus SchemaGraphSQL is compat-487

ible with real-time database interfaces and low-488

resource deployments.489

6 Conclusion490

We have presented SCHEMAGRAPHSQL, a491

lightweight, zero-shot schema linking framework492

that integrates classical path-finding algorithms493

into modern LLM-based Text-to-SQL systems. Un-494

like prior work that often relies on heavy prompting495

techniques or supervised fine-tuning, our method496

outperforms prior work in schema linking with min-497

imal computational overhead. Beyond accuracy498

gains, SCHEMAGRAPHSQL offers a transparent499

and interpretable mechanism for schema filtering,500

making it well-suited for practical deployment in 501

real-world text-to-SQL systems. 502

Limitation 503

While SCHEMAGRAPHSQL delivers strong per- 504

formance on large-scale databases with well- 505

structured foreign key relations, it has several lim- 506

itations. First, our approach is not optimized for 507

deeply nested or compositional queries that require 508

complex subquery reasoning. Second, on dense 509

schema graphs with excessive or noisy foreign 510

key links, the shortest-path enumeration may yield 511

overly broad candidate sets, affecting precision. 512

Lastly, we treat all join paths equally and do not 513

incorporate heuristics or weights for foreign key 514

importance or estimated join costs, which could 515

further improve path selection and SQL execution 516

quality. 517

References 518

Adrián Bazaga, Pietro Liò, and Gos Micklem. 2024. 519
Sqlformer: Deep auto-regressive query graph 520
generation for text-to-sql translation. Preprint, 521
arXiv:2310.18376. 522

8

https://arxiv.org/abs/2310.18376
https://arxiv.org/abs/2310.18376
https://arxiv.org/abs/2310.18376

Ruisheng Cao, Lu Chen, Zhi Chen, Yanbin Zhao,523
Su Zhu, and Kai Yu. 2021. LGESQL: Line graph524
enhanced text-to-SQL model with mixed local and525
non-local relations. In Proceedings of the 59th An-526
nual Meeting of the Association for Computational527
Linguistics and the 11th International Joint Confer-528
ence on Natural Language Processing (Volume 1:529
Long Papers), pages 2541–2555, Online. Association530
for Computational Linguistics.531

Zhenbiao Cao, Yuanlei Zheng, Zhihao Fan, Xiaojin532
Zhang, Wei Chen, and Xiang Bai. 2024. Rsl-533
sql: Robust schema linking in text-to-sql generation.534
Preprint, arXiv:2411.00073.535

Zhi Chen, Lu Chen, Yanbin Zhao, Ruisheng Cao, Zihan536
Xu, Su Zhu, and Kai Yu. 2021. ShadowGNN: Graph537
projection neural network for text-to-SQL parser. In538
Proceedings of the 2021 Conference of the North539
American Chapter of the Association for Computa-540
tional Linguistics: Human Language Technologies,541
pages 5567–5577, Online. Association for Computa-542
tional Linguistics.543

Yujian Gan, Xinyun Chen, and Matthew Purver. 2023.544
Re-appraising the schema linking for text-to-SQL. In545
Findings of the Association for Computational Lin-546
guistics: ACL 2023, pages 835–852, Toronto, Canada.547
Association for Computational Linguistics.548

Michael Glass, Mustafa Eyceoz, Dharmashankar Sub-549
ramanian, Gaetano Rossiello, Long Vu, and Alfio550
Gliozzo. 2025. Extractive schema linking for text-to-551
sql. Preprint, arXiv:2501.17174.552

Zheng Gong and Ying Sun. 2024. Graph reasoning553
enhanced language models for text-to-sql. In Pro-554
ceedings of the 47th International ACM SIGIR Con-555
ference on Research and Development in Information556
Retrieval, SIGIR ’24, page 2447–2451, New York,557
NY, USA. Association for Computing Machinery.558

Wenqiang Lei, Weixin Wang, Zhixin Ma, Tian Gan,559
Wei Lu, Min-Yen Kan, and Tat-Seng Chua. 2020.560
Re-examining the role of schema linking in text-to-561
SQL. In Proceedings of the 2020 Conference on562
Empirical Methods in Natural Language Processing563
(EMNLP), pages 6943–6954, Online. Association for564
Computational Linguistics.565

Haoyang Li, Jing Zhang, Cuiping Li, and Hong Chen.566
2023a. Resdsql: Decoupling schema linking and567
skeleton parsing for text-to-sql. In AAAI Conference568
on Artificial Intelligence.569

Jinyang Li, Binyuan Hui, Reynold Cheng, Bowen Qin,570
Chenhao Ma, Nan Huo, Fei Huang, Wenyu Du, Luo571
Si, and Yongbin Li. 2023b. Graphix-t5: Mixing572
pre-trained transformers with graph-aware layers for573
text-to-sql parsing. Preprint, arXiv:2301.07507.574

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li,575
Bowen Li, Bailin Wang, Bowen Qin, Rongyu Cao,576
Ruiying Geng, Nan Huo, Xuanhe Zhou, Chenhao577
Ma, Guoliang Li, Kevin C. C. Chang, Fei Huang,578
Reynold Cheng, and Yongbin Li. 2023c. Can llm579

already serve as a database interface? a big bench for 580
large-scale database grounded text-to-sqls. Preprint, 581
arXiv:2305.03111. 582

Aiwei Liu, Xuming Hu, Li Lin, and Lijie Wen. 2022. 583
Semantic enhanced text-to-sql parsing via iteratively 584
learning schema linking graph. In Proceedings of the 585
28th ACM SIGKDD Conference on Knowledge Dis- 586
covery and Data Mining, KDD ’22, page 1021–1030, 587
New York, NY, USA. Association for Computing 588
Machinery. 589

Geling Liu, Yunzhi Tan, Ruichao Zhong, Yuanzhen Xie, 590
Lingchen Zhao, Qian Wang, Bo Hu, and Zang Li. 591
2024. Solid-sql: Enhanced schema-linking based 592
in-context learning for robust text-to-sql. Preprint, 593
arXiv:2412.12522. 594

Geling Liu, Yunzhi Tan, Ruichao Zhong, Yuanzhen Xie, 595
Lingchen Zhao, Qian Wang, Bo Hu, and Zang Li. 596
2025. Solid-SQL: Enhanced schema-linking based 597
in-context learning for robust text-to-SQL. In Pro- 598
ceedings of the 31st International Conference on 599
Computational Linguistics, pages 9793–9803, Abu 600
Dhabi, UAE. Association for Computational Linguis- 601
tics. 602

Mohammadreza Pourreza and Davood Rafiei. 2024. 603
Dts-sql: Decomposed text-to-sql with small large 604
language models. Preprint, arXiv:2402.01117. 605

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr 606
Polozov, and Matthew Richardson. 2020. RAT-SQL: 607
Relation-aware schema encoding and linking for text- 608
to-SQL parsers. In Proceedings of the 58th Annual 609
Meeting of the Association for Computational Lin- 610
guistics, pages 7567–7578, Online. Association for 611
Computational Linguistics. 612

Tianshu Wang, Xiaoyang Chen, Hongyu Lin, Xian- 613
pei Han, Le Sun, Hao Wang, and Zhenyu Zeng. 614
2025. Dbcopilot: Natural language querying over 615
massive databases via schema routing. Preprint, 616
arXiv:2312.03463. 617

Yihan Wang and Peiyu Liu. 2025. Linkalign: Scal- 618
able schema linking for real-world large-scale multi- 619
database text-to-sql. Preprint, arXiv:2503.18596. 620

Guanming Xiong, Junwei Bao, Hongfei Jiang, Yang 621
Song, and Wen Zhao. 2024. Interactive-t2s: Multi- 622
turn interactions for text-to-sql with large language 623
models. Preprint, arXiv:2408.11062. 624

Tao Yu, Zifan Li, Zilin Zhang, Rui Zhang, and Dragomir 625
Radev. 2018. TypeSQL: Knowledge-based type- 626
aware neural text-to-SQL generation. In Proceedings 627
of the 2018 Conference of the North American Chap- 628
ter of the Association for Computational Linguistics: 629
Human Language Technologies, Volume 2 (Short Pa- 630
pers), pages 588–594, New Orleans, Louisiana. As- 631
sociation for Computational Linguistics. 632

Bin Zhang, Yuxiao Ye, Guoqing Du, Xiaoru Hu, 633
Zhishuai Li, Sun Yang, Chi Harold Liu, Rui Zhao, 634

9

https://doi.org/10.18653/v1/2021.acl-long.198
https://doi.org/10.18653/v1/2021.acl-long.198
https://doi.org/10.18653/v1/2021.acl-long.198
https://doi.org/10.18653/v1/2021.acl-long.198
https://doi.org/10.18653/v1/2021.acl-long.198
https://arxiv.org/abs/2411.00073
https://arxiv.org/abs/2411.00073
https://arxiv.org/abs/2411.00073
https://doi.org/10.18653/v1/2021.naacl-main.441
https://doi.org/10.18653/v1/2021.naacl-main.441
https://doi.org/10.18653/v1/2021.naacl-main.441
https://doi.org/10.18653/v1/2023.findings-acl.53
https://arxiv.org/abs/2501.17174
https://arxiv.org/abs/2501.17174
https://arxiv.org/abs/2501.17174
https://doi.org/10.1145/3626772.3657961
https://doi.org/10.1145/3626772.3657961
https://doi.org/10.1145/3626772.3657961
https://doi.org/10.18653/v1/2020.emnlp-main.564
https://doi.org/10.18653/v1/2020.emnlp-main.564
https://doi.org/10.18653/v1/2020.emnlp-main.564
https://api.semanticscholar.org/CorpusID:257078956
https://api.semanticscholar.org/CorpusID:257078956
https://api.semanticscholar.org/CorpusID:257078956
https://arxiv.org/abs/2301.07507
https://arxiv.org/abs/2301.07507
https://arxiv.org/abs/2301.07507
https://arxiv.org/abs/2301.07507
https://arxiv.org/abs/2301.07507
https://arxiv.org/abs/2305.03111
https://arxiv.org/abs/2305.03111
https://arxiv.org/abs/2305.03111
https://arxiv.org/abs/2305.03111
https://arxiv.org/abs/2305.03111
https://doi.org/10.1145/3534678.3539294
https://doi.org/10.1145/3534678.3539294
https://doi.org/10.1145/3534678.3539294
https://arxiv.org/abs/2412.12522
https://arxiv.org/abs/2412.12522
https://arxiv.org/abs/2412.12522
https://aclanthology.org/2025.coling-main.654/
https://aclanthology.org/2025.coling-main.654/
https://aclanthology.org/2025.coling-main.654/
https://arxiv.org/abs/2402.01117
https://arxiv.org/abs/2402.01117
https://arxiv.org/abs/2402.01117
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://arxiv.org/abs/2312.03463
https://arxiv.org/abs/2312.03463
https://arxiv.org/abs/2312.03463
https://arxiv.org/abs/2503.18596
https://arxiv.org/abs/2503.18596
https://arxiv.org/abs/2503.18596
https://arxiv.org/abs/2503.18596
https://arxiv.org/abs/2503.18596
https://arxiv.org/abs/2408.11062
https://arxiv.org/abs/2408.11062
https://arxiv.org/abs/2408.11062
https://arxiv.org/abs/2408.11062
https://arxiv.org/abs/2408.11062
https://doi.org/10.18653/v1/N18-2093
https://doi.org/10.18653/v1/N18-2093
https://doi.org/10.18653/v1/N18-2093

Ziyue Li, and Hangyu Mao. 2024. Benchmark-635
ing the text-to-sql capability of large language636
models: A comprehensive evaluation. Preprint,637
arXiv:2403.02951.638

Xiaohu Zhu, Qian Li, Lizhen Cui, and Yongkang Liu.639
2024. Large language model enhanced text-to-sql640
generation: A survey. Preprint, arXiv:2410.06011.641

10

https://arxiv.org/abs/2403.02951
https://arxiv.org/abs/2403.02951
https://arxiv.org/abs/2403.02951
https://arxiv.org/abs/2403.02951
https://arxiv.org/abs/2403.02951
https://arxiv.org/abs/2410.06011
https://arxiv.org/abs/2410.06011
https://arxiv.org/abs/2410.06011

A Prompts642

This section includes all system prompts used643

throughout the SchemaGraphSQL pipeline. These644

prompts are designed to be modular and reusable645

across different configurations and model sizes.646

• Prompt 2: Selection of the most appropriate647

join path among candidate schema paths.648

• Prompt 3: SQL query generation using the649

filtered schema and join path.650

• Prompt 4: Baseline SQL generation prompt651

using the full schema without schema linking.652

These prompts are issued via Gemini 2.5 Flash653

with low temperature settings to ensure stability654

and determinism during inference.655

Prompt 2: System prompt for join path selec-
tion
ROLE & OBJECTIVE
You are a database expert tasked with selecting the optimal
join path to answer user questions using a provided SQL
schema.

TASK
Choose the single most appropriate join path from a list of
candidates that correctly connects the relevant tables.

INSTRUCTIONS

1. Internally inspect each path to determine:

• whether it connects all necessary tables,
• whether joins are complete and valid,
• and whether it satisfies the intent of the question.

Briefly justify your decision internally but do not in-
clude any reasoning in the final output.

2. Output one line in the following format: Final Answer:
path_id: <ID>

656

Prompt 3: System prompt for SQLite query
generation after schema linking
ROLE & OBJECTIVE
You are an expert in SQLite query generation. Your task is
to generate a valid query to answer a user question based
on the given schema and join path.

INPUTS

• Schema: {schema}

• Join Path: {join_path_string}

• Question Context: {evidence_string}

INSTRUCTIONS

1. Use the provided schema and join path to construct a
valid SQLite query.

2. Ensure the query correctly answers the user’s question.

3. Format the query clearly and confirm it adheres to
SQLite syntax.

657

Prompt 4: Baseline prompt for SQLite query
generation
ROLE & OBJECTIVE
You are an expert in SQLite query generation. Your task
is to produce a valid query that answers a user’s question
using the provided schema.

INPUTS

• Schema: {schema}

• Question Context: {evidence_string}

INSTRUCTIONS

1. Generate a correct SQLite query that answers the user
question.

2. Ensure the query is syntactically valid and aligns with
the schema.

3. Format the query clearly and cleanly.
658

B Additional Results 659

This section presents extended evaluation results 660

that complement those in the main text. We report 661

schema linking scores and execution accuracy on 662

the MINIDEV split of the BIRD dataset to validate 663

robustness and generalization. 664

• Table 4: Comparison of schema linking meth- 665

ods on MiniDev, including LLM baselines, 666

dense retrievers, and SchemaGraphSQL. 667

• Table 5: SchemaGraphSQL ablation re- 668

sults across different graph configurations on 669

MiniDev. 670

• Table 6: End-to-end SQL execution accuracy 671

for all models and schema linking variants on 672

MiniDev, broken down by question difficulty. 673

These extended results reinforce the strong re- 674

call and execution performance of SchemaGraph- 675

SQL, especially on complex and multi-table SQL 676

queries. 677

11

Table 4: Schema Linking Results in MiniDev Dataset

Method Exact Match Rate (%) Precision (%) Recall (%) F1 (%) F6 (%)
LLM as Schema Linker 75.70 92.82 90.56 91.68 90.62
Retrieval (Top1) 14.40 86.40 41.24 55.83 41.83
Retrieval (Top2) 28.00 68.30 64.67 66.43 64.76
Retrieval (Top3) 4.80 55.00 77.73 64.42 76.88
Retrieval (Top4) 1.00 47.29 85.00 60.77 83.20
Retrieval (Top5) 0.80 41.52 89.64 56.75 86.92
Retrieval (Top6) 0.80 37.06 92.26 52.87 88.69
SchemaGraphSQL (Ours) 82.33 94.80 93.97 94.38 93.99

Table 5: Schema Linking Results Across Different Graph Settings (Minidev)

Method Exact Match Rate (%) Precision (%) Recall (%) F1 (%) F6 (%)
SchemaGraphSQL1−1 64.86 96.47 79.67 87.27 80.05
SchemaGraphSQL1−n 74.10 95.93 87.16 91.34 87.38
SchemaGraphSQLn−1 82.13 95.81 93.39 94.58 93.45
SchemaGraphSQLn−n 82.33 94.80 93.97 94.38 93.99
SchemaGraphSQLforce−longest 72.29 92.97 86.19 89.45 86.36
SchemaGraphSQLno−union 74.90 95.16 87.94 91.41 88.12
SchemaGraphSQLforce−union 80.72 89.36 94.75 91.97 94.59

Table 6: SQL Execution Accuracy Results - MiniDev

LLM Method Simple (%) Moderate (%) Challenging (%) Total (%)

Gemma-3-4B

Ideal Schema Linking 47.97 21.37 18.63 28.71
Baseline 32.43 10.08 6.86 16.06
Retrieval 36.49 18.55 13.73 22.89

SchemaGraphSQLn−n 42.57 18.15 12.75 24.3
SchemaGraphSQL1−1 31.08 10.08 6.86 15.66

SchemaGraphSQLforce−union 41.89 18.95 15.69 25.1

Gemma-3-12B

Ideal Schema Linking 63.51 45.56 34.31 48.59
Baseline 38.51 18.95 16.67 24.3
Retrieval 50.68 35.08 28.43 38.35

SchemaGraphSQLn−n 57.43 37.5 30.39 41.97
SchemaGraphSQL1−1 54.73 29.03 23.53 35.54

SchemaGraphSQLforce−union 60.14 42.34 33.33 45.78

Gemma-3-27B

Ideal Schema Linking 72.97 53.63 43.14 57.23
Baseline 50.0 27.82 21.57 33.13
Retrieval 60.81 44.76 36.27 47.79

SchemaGraphSQLn−n 66.22 50.81 35.29 52.21
SchemaGraphSQL1−1 61.49 38.71 27.45 43.17

SchemaGraphSQLforce−union 68.92 52.02 44.12 55.42

Gemini-2.5-Flash

Ideal Schema Linking 83.78 66.13 56.86 69.48
Baseline 58.78 43.95 36.27 46.79
Retrieval 75.0 53.63 53.92 60.04

SchemaGraphSQLn−n 77.03 58.87 50.98 62.65
SchemaGraphSQL1−1 76.35 56.85 41.18 59.44

SchemaGraphSQLforce−union 77.7 62.5 50.98 64.66

12

	Introduction
	Related Work
	Schema Linking in Text-to-SQL
	Neural and Prompt-Based Linking Strategies
	Graph-Based Approaches for Schema Linking
	Classical Graph Algorithms in Schema Linking
	Positioning Our Work

	Methodology
	Problem Formulation
	Graph-Based Schema Linking as Path Selection
	Configurations
	End-to-End Objective

	Experimental Setup
	Dataset
	Compared Methods
	LLMs for SQL Generation
	Evaluation Metrics
	Implementation Notes

	Results
	Schema Linking Evaluation
	Ablation Insights
	End-to-End Execution Accuracy
	Efficiency

	Conclusion
	Prompts
	Additional Results

